JP4717774B2 - Injection molding machine - Google Patents

Injection molding machine Download PDF

Info

Publication number
JP4717774B2
JP4717774B2 JP2006280639A JP2006280639A JP4717774B2 JP 4717774 B2 JP4717774 B2 JP 4717774B2 JP 2006280639 A JP2006280639 A JP 2006280639A JP 2006280639 A JP2006280639 A JP 2006280639A JP 4717774 B2 JP4717774 B2 JP 4717774B2
Authority
JP
Japan
Prior art keywords
motor
injection
screw
molding machine
movable body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006280639A
Other languages
Japanese (ja)
Other versions
JP2008094034A (en
Inventor
順一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2006280639A priority Critical patent/JP4717774B2/en
Publication of JP2008094034A publication Critical patent/JP2008094034A/en
Application granted granted Critical
Publication of JP4717774B2 publication Critical patent/JP4717774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スクリュを回転させる計量モータを有する計量駆動部及びスクリュを進退移動させる射出モータを有する射出駆動部を備える射出成形機に関する。   The present invention relates to an injection molding machine including a metering drive unit having a metering motor for rotating a screw and an injection drive unit having an injection motor for moving the screw back and forth.

従来、スクリュを回転駆動及び直進駆動する電動式の駆動装置を搭載したインラインスクリュ式射出成形機は特開平9−11290号公報等で知られている。この種の射出成形機は、スクリュを回転させる計量モータを有する計量駆動部及びスクリュを進退させる射出モータを有する射出駆動部を備え、計量工程では計量駆動部によりスクリュを回転させることにより、成形材料を可塑化計量するとともに、射出工程では射出駆動部によりスクリュを前進させることにより、計量された樹脂を金型に射出充填する動作を行う。   Conventionally, an in-line screw type injection molding machine equipped with an electric drive device for rotating and driving a screw is known in Japanese Patent Laid-Open No. 9-11290. This type of injection molding machine includes a metering drive unit having a metering motor for rotating the screw and an injection drive unit having an injection motor for moving the screw back and forth. In the metering process, the molding material is rotated by rotating the screw by the metering drive unit In the injection process, the screw is moved forward by the injection drive unit, whereby the measured resin is injected and filled into the mold.

一方、射出駆動部は、スクリュを前進又は後退させる動作を行うため、射出モータにリニアモータを利用した射出駆動部を備える成形機(射出成形機)も、特許第3427171号公報で知られている。この成形機は、スクリュを回転駆動及び直進駆動する駆動装置を備える成形機であって、移動側磁極部を有する軸方向に移動自在に支持された移動体部と、この移動体部を直進移動させる固定側磁極部を有する固定体部からなるリニアモータ部を備え、移動体部に移動側傾斜面を設け、この移動側傾斜面に移動側磁極部の一部を配するとともに、固定体部に移動側傾斜面に対向する固定側傾斜面を設け、この固定側傾斜面に固定側磁極部の一部を配して射出駆動部を構成し、かつ移動体部に、可動部に接続する出力軸を回転させるロータリモータ部を一体に設けて計量駆動部を構成した駆動装置を備えている。
特開平9−11290号 特許第3427171号
On the other hand, a molding machine (injection molding machine) provided with an injection drive unit using a linear motor as an injection motor is known in Japanese Patent No. 3427171 because the injection drive unit performs an operation of moving the screw forward or backward. . This molding machine is a molding machine that includes a drive device that drives a screw to rotate and linearly move, and has a moving body portion that is movable in the axial direction and has a moving-side magnetic pole portion, and linearly moves the moving body portion. A linear motor unit comprising a fixed body part having a fixed side magnetic pole part to be provided, a moving side inclined surface is provided on the moving body part, a part of the moving side magnetic pole part is disposed on the moving side inclined surface, and the fixed body part A fixed-side inclined surface facing the moving-side inclined surface is provided on the fixed-side inclined surface, and a part of the fixed-side magnetic pole portion is arranged on the fixed-side inclined surface to form an injection driving unit, and the moving body unit is connected to the movable unit. The rotary motor part which rotates an output shaft is provided integrally, and the drive device which comprised the measurement drive part is provided.
JP-A-9-11290 Japanese Patent No. 3427171

しかし、上述した従来の成形機(射出成形機)は、次のような解決すべき課題が存在した。   However, the conventional molding machine (injection molding machine) described above has the following problems to be solved.

第一に、射出工程には、速度制御を行う充填領域と圧力制御を行う保圧領域が含まれるが、リニアモータは減速機構(増圧機構)を介在させることが容易でないため、スクリュを進退移動、即ち、速度制御を行う充填領域には適しているが、圧力制御を行う保圧領域には適さない。このため、上述した従来の成形機(特許文献2)では、移動体部に移動側傾斜面を設け、この移動側傾斜面に移動側磁極部の一部を配するとともに、固定体部に移動側傾斜面に対向する固定側傾斜面を設け、この固定側傾斜面に固定側磁極部の一部を配して射出駆動部を構成しているが、圧力制御を担うには限界がある。結局、必要かつ十分な圧力制御を行うにはリニアモータのかなりの大型化を招くとともに、反面、大きさが制約される場合には能力の小さい小型成形機に限定されるなど、汎用性に難がある。   First, the injection process includes a filling area for speed control and a pressure holding area for pressure control. However, since it is not easy for a linear motor to intervene with a speed reduction mechanism (pressure increase mechanism), the screw is moved forward and backward. It is suitable for a filling region where movement, that is, speed control is performed, but is not suitable for a pressure holding region where pressure control is performed. For this reason, in the above-described conventional molding machine (Patent Document 2), the moving body portion is provided with a moving-side inclined surface, and a part of the moving-side magnetic pole portion is arranged on the moving-side inclined surface and moved to the fixed body portion. A fixed-side inclined surface facing the side-inclined surface is provided, and a part of the fixed-side magnetic pole portion is arranged on the fixed-side inclined surface to configure the injection driving unit. However, there is a limit to bear pressure control. In the end, in order to perform necessary and sufficient pressure control, the linear motor is considerably increased in size, but on the other hand, if the size is restricted, it is difficult to be versatile, such as being limited to a small molding machine with small capacity. There is.

第二に、リニアモータを構成するに際して幾何学的な特殊構造を採用するため、部品コスト及び製造コストの双方の面で無視できないコストアップを招く。しかも、幾何学的な構成に基づくため、増圧できる区間がリニアモータにおける移動体部(スクリュ)の位置により決まるなど、成形品の形状や大きさに対応した成形条件の設定や制御を柔軟かつ臨機応変に行えないとともに、メンテナンス時の調整も容易に行うことができない。   Secondly, since a geometric special structure is adopted in constructing the linear motor, a cost increase that cannot be ignored in terms of both component cost and manufacturing cost is caused. In addition, because it is based on a geometric configuration, the section where pressure can be increased is determined by the position of the moving body (screw) in the linear motor, and the setting and control of molding conditions corresponding to the shape and size of the molded product are flexible and flexible. In addition to being flexible, it cannot be easily adjusted during maintenance.

本発明は、このような背景技術に存在する課題を解決した射出成形機の提供を目的とするものである。   An object of the present invention is to provide an injection molding machine that solves the problems existing in the background art.

本発明に係る射出成形機Mは、上述した課題を解決するため、スクリュ2を回転させる計量モータ3を有する計量駆動部Dm及びスクリュ2を進退移動させる射出モータを有する射出駆動部Diを備える射出成形機において、射出駆動部Diを、スクリュ2の後端に連結した可動体5を進退移動させるリニアモータ6sを用いた第一射出モータ6と、可動体5を進退移動させるボールねじ機構8及びこのボールねじ機構8の回転入力部8iを回転させるロータリモータ7sを用いた第二射出モータ7を備えて構成し、第一射出モータ6と第二射出モータ7を同時に又は選択的に駆動制御する制御部9を備えるとともに、筒状のハウジング11を有し、このハウジング11の内周面に、リニアモータ6sの固定側磁極部12を配設し、ハウジング11の内部に、外周面にリニアモータ6sの移動側磁極部13を配設した可動体5を進退自在に配し、かつ可動体5の後端面にボールねじ機構8を接続するとともに、ハウジング11の後端にロータリモータ7sを配設してなることを特徴とする。   An injection molding machine M according to the present invention is provided with an injection drive unit Di having a measuring drive unit Dm having a measuring motor 3 for rotating the screw 2 and an injection motor moving the screw 2 forward and backward in order to solve the above-described problems. In the molding machine, a first injection motor 6 using a linear motor 6 s that moves the movable body 5 connected to the rear end of the screw 2 in the injection drive unit Di, a ball screw mechanism 8 that moves the movable body 5 back and forth, and A second injection motor 7 using a rotary motor 7s for rotating the rotation input portion 8i of the ball screw mechanism 8 is provided, and the first injection motor 6 and the second injection motor 7 are simultaneously or selectively driven and controlled. A control unit 9 is provided, and a cylindrical housing 11 is provided. On the inner peripheral surface of the housing 11, a fixed-side magnetic pole portion 12 of the linear motor 6s is disposed. 11, a movable body 5 having a moving-side magnetic pole portion 13 of the linear motor 6s disposed on the outer peripheral surface thereof is disposed so as to be movable back and forth, and a ball screw mechanism 8 is connected to a rear end surface of the movable body 5, and a housing 11 A rotary motor 7s is disposed at the rear end of the motor.

この場合、発明の好適な態様により、ハウジング11の内周面における進退方向に対して直角となる断面形状及び可動体5の外周面における進退方向に対して直角となる断面形状は、円形に形成してもよいし、多角形に形成してもよい。また、制御部9は、射出工程Ziの充填領域Zifにおいて、少なくとも、第一射出モータ6を駆動制御してスクリュ2を前進させるとともに、スクリュ2の前進開始からの一部区間Zfpで第二射出モータ7を第一射出モータ6に対して同時に駆動制御することができるとともに、射出工程Ziの保圧領域Zihにおいて、少なくとも、第二射出モータ7を駆動制御してスクリュ2に保圧を付与するとともに、保圧付与中の一部区間Zhpで第一射出モータ6を第二射出モータ7に対して同時に駆動制御することができる。   In this case, according to a preferred aspect of the present invention, the cross-sectional shape perpendicular to the advance / retreat direction on the inner peripheral surface of the housing 11 and the cross-sectional shape perpendicular to the advance / retreat direction on the outer peripheral surface of the movable body 5 are formed in a circle. Alternatively, it may be formed in a polygon. Further, in the filling region Zif of the injection process Zi, the control unit 9 drives and controls at least the first injection motor 6 to advance the screw 2, and the second injection in a partial section Zfp from the start of advancement of the screw 2. The motor 7 can be driven and controlled simultaneously with respect to the first injection motor 6, and at least the second injection motor 7 is driven and controlled to hold pressure on the screw 2 in the pressure holding area Zih of the injection process Zi. At the same time, the first injection motor 6 can be simultaneously driven and controlled with respect to the second injection motor 7 in the partial zone Zhp during the holding pressure.

このような構成及び手法による本発明に係る射出成形機Mによれば、次のような顕著な効果を奏する。   According to the injection molding machine M according to the present invention having such a configuration and technique, the following remarkable effects can be obtained.

(1) 射出駆動部Diを、リニアモータ6sを用いた第一射出モータ6とロータリモータ7sを用いた第二射出モータ7により構成するとともに、第一射出モータ6と第二射出モータ7を同時に又は選択的に駆動制御する制御部9を備えるため、射出工程Ziにおける必要かつ十分な圧力制御を行うことができるとともに、併せてリニアモータ6sの小型化或いは能力の大きい射出成形機の実用化などを実現できる。   (1) The injection drive unit Di is constituted by the first injection motor 6 using the linear motor 6s and the second injection motor 7 using the rotary motor 7s, and the first injection motor 6 and the second injection motor 7 are simultaneously used. Alternatively, since the controller 9 that selectively controls the drive is provided, necessary and sufficient pressure control can be performed in the injection process Zi, and the linear motor 6s can be downsized or an injection molding machine having a large capacity can be put into practical use. Can be realized.

(2) リニアモータ6sを用いた第一射出モータ6とロータリモータ7sを用いた第二射出モータ7を組合わせ、この第一射出モータ6と第二射出モータ7を同時に又は選択的に駆動制御するようにしたため、汎用的なリニアモータ6sと汎用的なロータリモータ7sを利用でき、部品コスト及び製造コストの双方においてコストダウンを図れる。また、成形品の形状や大きさに対応した成形条件の設定や制御を柔軟かつ臨機応変に行うことができるとともに、メンテナンス時の調整も容易に行うことができる。   (2) The first injection motor 6 using the linear motor 6s and the second injection motor 7 using the rotary motor 7s are combined, and the first injection motor 6 and the second injection motor 7 are simultaneously or selectively driven and controlled. Therefore, the general-purpose linear motor 6s and the general-purpose rotary motor 7s can be used, and the cost can be reduced in both the component cost and the manufacturing cost. Further, setting and control of molding conditions corresponding to the shape and size of the molded product can be performed flexibly and flexibly, and adjustment during maintenance can be easily performed.

(3) 射出駆動部Diは、筒状のハウジング11の内周面にリニアモータ6sの固定側磁極部12を配設するとともに、ハウジング11の内部に、外周面にリニアモータ6sの移動側磁極部13を配設した可動体5を進退自在に配し、かつ可動体5の後端面にボールねじ機構8を接続するとともに、ハウジング11の後端にロータリモータ7sを配設してなるため、リニアモータ6sとロータリモータ7sの合理的な組合わせ構成により、更なる小型コンパクト化に寄与できる。   (3) The injection drive unit Di has a fixed-side magnetic pole portion 12 of the linear motor 6s disposed on the inner peripheral surface of the cylindrical housing 11, and a moving-side magnetic pole of the linear motor 6s on the outer peripheral surface inside the housing 11. Since the movable body 5 provided with the portion 13 is disposed so as to be movable back and forth, the ball screw mechanism 8 is connected to the rear end surface of the movable body 5, and the rotary motor 7s is disposed at the rear end of the housing 11, A rational combination of the linear motor 6s and the rotary motor 7s can contribute to further miniaturization and compactness.

(4) 好適な態様により、ハウジング11の内周面における進退方向に対して直角となる断面形状及び可動体5の外周面における進退方向に直角の断面形状は、円形或いは多角形に形成できるなど、ハウジング11及び可動体5の形状を用途や目的などに応じて任意に選定でき、柔軟性の高い設計自由度を確保できる。   (4) According to a preferred embodiment, the cross-sectional shape perpendicular to the advancing / retreating direction on the inner peripheral surface of the housing 11 and the cross-sectional shape perpendicular to the advancing / retreating direction on the outer peripheral surface of the movable body 5 can be formed in a circular or polygonal shape. The shapes of the housing 11 and the movable body 5 can be arbitrarily selected according to the use and purpose, and a high degree of flexibility in design can be ensured.

(5) 好適な態様により、制御部9に、射出工程Ziの充填領域Zifにおいて、少なくとも、第一射出モータ6を駆動制御してスクリュ2を前進させるとともに、スクリュ2の前進開始からの一部区間Zfpで第二射出モータ7を第一射出モータ6に対して同時に駆動制御する機能を設ければ、スクリュ2の前進を第一射出モータ6(リニアモータ6s)に分担させ、かつ大きなトルクが必要となるスクリュ2の前進開始からの一部区間Zfpで第二射出モータ7(ロータリモータ7s)を付加するため、充填領域Zifにおける最適な制御モードを実現することができる。   (5) According to a preferred embodiment, at least the first injection motor 6 is driven and controlled to advance the screw 2 in the filling region Zif of the injection process Zi, and a part from the start of advancement of the screw 2 is caused. If the function of simultaneously driving and controlling the second injection motor 7 with respect to the first injection motor 6 in the section Zfp is provided, the forward movement of the screw 2 is shared by the first injection motor 6 (linear motor 6s) and a large torque is generated. Since the second injection motor 7 (rotary motor 7s) is added in a partial section Zfp from the start of advancement of the screw 2 that is required, an optimal control mode in the filling region Zif can be realized.

(6) 好適な態様により、制御部9に、射出工程Ziの保圧領域Zihにおいて、少なくとも、第二射出モータ7を駆動制御してスクリュ2に保圧を付与するとともに、保圧付与中の一部区間Zhpで第一射出モータ6を第二射出モータ7に対して同時に駆動制御する機能を設ければ、スクリュ2に対する保圧を第二射出モータ7(ロータリモータ7s)に分担させ、保圧を多段制御する際の高圧付加区間となる保圧付与中の一部区間Zhpで第一射出モータ6(リニアモータ6s)を付加するため、保圧領域Zihにおける最適な制御モードを実現することができる。   (6) According to a preferred embodiment, at least in the pressure holding region Zih of the injection process Zi, the controller 9 controls the drive of the second injection motor 7 to apply the holding pressure to the screw 2 and also applies the holding pressure. If the function of simultaneously driving and controlling the first injection motor 6 with respect to the second injection motor 7 is provided in the partial zone Zhp, the holding pressure for the screw 2 is shared by the second injection motor 7 (rotary motor 7s). In order to add the first injection motor 6 (linear motor 6s) in the partial zone Zhp during holding pressure, which is a high pressure addition zone when performing multistage control of pressure, an optimal control mode in the holding pressure zone Zih is realized. Can do.

次に、本発明に係る最良の実施形態を挙げ、図面に基づき詳細に説明する。   Next, the best embodiment according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る射出成形機Mの構成について、図1及び図2を参照して説明する。   First, the configuration of an injection molding machine M according to this embodiment will be described with reference to FIGS. 1 and 2.

図1はインラインスクリュ式射出成形機Mにおける射出装置Miを示す。射出装置Miは、先端に射出ノズル32を有するとともに、後部にホッパー33を有する加熱筒31を備え、加熱筒31の後端は、支持盤34を介して機台Mb上に設置される。また、加熱筒31にはスクリュ2を回転自在及び進退自在に内蔵し、スクリュ2は、支持盤34の後方に配した駆動装置35により回転駆動又は進退駆動される。なお、駆動装置35は、支持盤36を介して機台Mb上に設置される。   FIG. 1 shows an injection device Mi in an inline screw type injection molding machine M. The injection device Mi includes a heating cylinder 31 having an injection nozzle 32 at the tip and a hopper 33 at the rear, and the rear end of the heating cylinder 31 is installed on the machine base Mb via a support plate 34. Further, the heating cylinder 31 incorporates the screw 2 so as to be rotatable and advanceable / retractable, and the screw 2 is driven to rotate or advance / retreat by a driving device 35 disposed behind the support plate 34. The driving device 35 is installed on the machine base Mb via the support board 36.

駆動装置35は、スクリュ2を回転させる計量モータ3を有する計量駆動部Dmと、スクリュ2を進退移動させる射出モータ6,7を有する射出駆動部Diを備える。射出駆動部Diは、スクリュ2の後端に連結した可動体5を進退移動させるリニアモータ6sを用いた第一射出モータ6と、可動体5を進退移動させるボールねじ機構8及びこのボールねじ機構8の回転入力部8iを回転させるロータリモータ7sを用いた第二射出モータ7を備えて構成する。   The drive device 35 includes a metering drive unit Dm having a metering motor 3 for rotating the screw 2 and an injection drive unit Di having injection motors 6 and 7 for moving the screw 2 forward and backward. The injection drive unit Di includes a first injection motor 6 using a linear motor 6s that moves the movable body 5 connected to the rear end of the screw 2 forward and backward, a ball screw mechanism 8 that moves the movable body 5 forward and backward, and the ball screw mechanism. And a second injection motor 7 using a rotary motor 7s for rotating the eight rotation input portions 8i.

この場合、駆動装置35は、後端部に後端壁部11rを一体に有し、かつ前端部が開放された筒状のハウジング11を備え、このハウジング11の内部に可動体5を収容する。ハウジング11の内周面における進退方向に対して直角となる断面形状及び可動体5の外周面における進退方向に対して直角となる断面形状は、図2に示すように円形である。そして、スクリュ2の後端に固定したカップリング15の外周部と可動体5の前端部に設けた凹結合部5fを、ベアリング16を介して回動自在に結合する。なお、ベアリング16にはスクリュ2に付加される圧力を検出する不図示のロードセルが配設されている。   In this case, the driving device 35 includes a cylindrical housing 11 integrally having a rear end wall portion 11r at a rear end portion and an open front end portion, and accommodates the movable body 5 inside the housing 11. . The cross-sectional shape perpendicular to the advancing / retreating direction on the inner peripheral surface of the housing 11 and the cross-sectional shape perpendicular to the advancing / retreating direction on the outer peripheral surface of the movable body 5 are circular as shown in FIG. Then, the outer peripheral portion of the coupling 15 fixed to the rear end of the screw 2 and the concave coupling portion 5 f provided at the front end portion of the movable body 5 are rotatably coupled via a bearing 16. The bearing 16 is provided with a load cell (not shown) that detects the pressure applied to the screw 2.

また、例示のリニアモータ6sは、ムービングマグネット型リニアモータである。したがって、ハウジング11の内周面に、リニアモータ6sの固定側磁極部12となるコイル12c…を取付けるとともに、可動体5の外周面には、リニアモータ6sの移動側磁極部13となるマグネット13m…を取付ける。このリニアモータ6sは、三相交流駆動方式を採用するため、磁性材を用いたハウジング11の内周面に形成した複数のスロットに、三相(U相・V相・W相)に対応した複数のコイル12c…を軸方向(可動体5の進退方向)に電気角でそれぞれ120゜ずらして順次配列させるとともに、磁性材を用いた可動体5の外周面の軸方向(進退方向)に複数のマグネット13m…を配列させる。   The illustrated linear motor 6s is a moving magnet type linear motor. Therefore, the coil 12c that becomes the fixed-side magnetic pole portion 12 of the linear motor 6s is attached to the inner peripheral surface of the housing 11, and the magnet 13m that becomes the moving-side magnetic pole portion 13 of the linear motor 6s is attached to the outer peripheral surface of the movable body 5. Install ... Since this linear motor 6s employs a three-phase alternating current drive system, a plurality of slots formed on the inner peripheral surface of the housing 11 using a magnetic material correspond to three phases (U phase, V phase, W phase). A plurality of coils 12c... Are sequentially arranged in the axial direction (advancing and retreating direction of the movable body 5) with an electrical angle shifted by 120 °, and a plurality of coils 12c. Of magnets 13m are arranged.

他方、ハウジング11の後端壁部11rの外面にはロータリモータ7sを取付ける。そして、ロータリモータ7sの回転シャフト17に、ボールねじ機構8におけるスクリュ部8sの後端(回転入力部8i)を結合するとともに、可動体5の後端部に設けた凹結合部5rに、ナット保持部18を介してボールねじ機構8におけるナット部8nの外周部を固定する。この場合、可動体5の内部には、スクリュ部8sが挿通する許容空間5pを設ける。このロータリモータ7sには三相交流駆動方式のサーボモータを用いることができる。また、可動体5の後端とハウジング11の後端壁部11r間には、可動体5の回転を規制し、かつ可動体5の進退変位は許容するガイド規制部19を設ける。ガイド規制部19としては、例えば、可動体5の後端から軸方向後方に突出した複数のガイドピン20…と、このガイドピン20…をスライド自在に支持するカラー部材21…により構成できる。なお、22はロータリモータ7sを覆う保護カバーを示す。以上により、リニアモータ6sを用いた第一射出モータ6とロータリモータ7sを用いた第二射出モータ7を有する射出駆動部Diが構成される。   On the other hand, the rotary motor 7s is attached to the outer surface of the rear end wall portion 11r of the housing 11. The screw shaft 8s of the ball screw mechanism 8 is coupled to the rotary shaft 17 of the rotary motor 7s, and the nut 5 is coupled to the concave coupling portion 5r provided at the rear end of the movable body 5. The outer peripheral portion of the nut portion 8 n in the ball screw mechanism 8 is fixed through the holding portion 18. In this case, an allowable space 5p through which the screw portion 8s is inserted is provided inside the movable body 5. A three-phase AC drive type servo motor can be used as the rotary motor 7s. A guide restricting portion 19 is provided between the rear end of the movable body 5 and the rear end wall portion 11r of the housing 11 to restrict the rotation of the movable body 5 and allow the movable body 5 to move forward and backward. The guide restricting portion 19 can be constituted by, for example, a plurality of guide pins 20 projecting axially rearward from the rear end of the movable body 5 and a collar member 21 slidably supporting the guide pins 20. Reference numeral 22 denotes a protective cover that covers the rotary motor 7s. Thus, the injection driving unit Di having the first injection motor 6 using the linear motor 6s and the second injection motor 7 using the rotary motor 7s is configured.

さらに、可動体5の前端面には、前方に突出する計量モータ支持部23を一体形成し、この計量モータ支持部23に、支持台24を介して計量駆動部Dmを構成する計量モータ3を取付ける。この計量モータ3はロータリモータであり、三相交流駆動方式のサーボモータを用いることができる。また、計量モータ3の回転は回転伝達機構25を介してスクリュ2に伝達される。この場合、回転伝達機構25は、スクリュ2の後部における外周面所定位置に取付けた被動側プーリ,計量モータ3の回転シャフトに取付けた駆動側プーリ,被動側プーリと駆動側プーリ間に架け渡した無端の回転伝達ベルト(タイミングベルト)を備えて構成する。   Further, a weighing motor support 23 that protrudes forward is integrally formed on the front end surface of the movable body 5, and the weighing motor 3 that constitutes the weighing drive unit Dm via the support base 24 is formed on the weighing motor support 23. Install. This measuring motor 3 is a rotary motor, and a three-phase AC drive type servo motor can be used. The rotation of the metering motor 3 is transmitted to the screw 2 via the rotation transmission mechanism 25. In this case, the rotation transmission mechanism 25 spans between a driven pulley attached to a predetermined position on the outer peripheral surface of the rear portion of the screw 2, a driving pulley attached to the rotating shaft of the metering motor 3, and between the driven pulley and the driving pulley. An endless rotation transmission belt (timing belt) is provided.

そして、上述したリニアモータ6s(第一射出モータ6),ロータリモータ7s(第二射出モータ7)及び計量モータ3は、射出成形機Mにおける各種制御及び処理を司るコンピュータ機能を有する制御部9に接続する。これにより、各モータ6s,7s,3は、制御部9により駆動制御されるとともに、特に、本発明に従って少なくともリニアモータ6sとロータリモータ7sが同時に又は選択的に駆動制御される。したがって、制御部9にはリニアモータ6s,ロータリモータ7s及び計量モータ3を駆動制御するための制御パターンを生成するインバータが内蔵されている。また、51はロータリモータ7sの回転を検出するロータリエンコーダ、52は計量モータ3の回転を検出するロータリエンコーダを示すとともに、53は制御部9に接続した設定部であり、上述した制御パターンなどの各種設定を行うことができる。   The linear motor 6s (first injection motor 6), rotary motor 7s (second injection motor 7), and metering motor 3 described above are added to the control unit 9 having a computer function for performing various controls and processes in the injection molding machine M. Connecting. Thereby, each motor 6s, 7s, 3 is driven and controlled by the controller 9, and in particular, at least the linear motor 6s and the rotary motor 7s are driven or controlled simultaneously or selectively according to the present invention. Therefore, the control unit 9 incorporates an inverter that generates a control pattern for driving and controlling the linear motor 6s, the rotary motor 7s, and the metering motor 3. Reference numeral 51 denotes a rotary encoder that detects the rotation of the rotary motor 7s, 52 denotes a rotary encoder that detects the rotation of the metering motor 3, and 53 denotes a setting unit connected to the control unit 9. Various settings can be made.

次に、本実施形態に係る射出成形機Mの動作について、各図を参照しつつ図4に示すフローチャートに従って説明する。   Next, operation | movement of the injection molding machine M which concerns on this embodiment is demonstrated according to the flowchart shown in FIG. 4, referring each figure.

まず、図3に示すように、射出工程Ziでは最初に充填領域(充填工程)Zifを行う。充填領域Zifは、スクリュ2を前進移動させる速度制御領域となるため、速度制御に適したリニアモータ6sを基本に使用する。この場合、充填領域Zifの初期では、停止しているスクリュ2を前進させるため、スクリュ2を加速させる大きなトルクが必要となり、充填領域Zifの初期ではロータリモータ7sを同時に作動させる。即ち、図3に示すように、充填領域Zifの開始から予め設定した所定の設定時間による一部区間Zfpが経過するまでは、リニアモータ6sの動作に加えてロータリモータ7sも同時に動作させ、スクリュ2の加速支援を行う(ステップS1,S2)。この一部区間Zfpの設定時間は、少なくともスクリュ2が定常速度に達する時間を設定することが望ましい。したがって、この際には、リニアモータ6sにより可動体5に対して軸方向の推力が付加されるとともに、同時に、ロータリモータ7sの回転がボールねじ機構8により直進方向の推力に変換されて可動体5に付加される。   First, as shown in FIG. 3, in the injection process Zi, a filling region (filling process) Zif is first performed. Since the filling area Zif is a speed control area in which the screw 2 is moved forward, a linear motor 6s suitable for speed control is basically used. In this case, in order to advance the stopped screw 2 in the initial stage of the filling area Zif, a large torque for accelerating the screw 2 is required. In the initial stage of the filling area Zif, the rotary motor 7s is operated simultaneously. That is, as shown in FIG. 3, the rotary motor 7s is simultaneously operated in addition to the operation of the linear motor 6s until the partial section Zfp with a predetermined set time elapses from the start of the filling region Zif. 2 is supported (steps S1 and S2). The set time for the partial section Zfp is preferably set to a time for at least the screw 2 to reach a steady speed. Accordingly, at this time, axial thrust is applied to the movable body 5 by the linear motor 6s, and at the same time, the rotation of the rotary motor 7s is converted into thrust in the straight traveling direction by the ball screw mechanism 8 and the movable body. 5 is added.

そして、設定時間(一部区間Zfp)が経過したなら、ロータリモータ7sを停止させる(ステップS3,S4)。これにより、これ以降はリニアモータ6sのみの速度制御による充填領域Zifを行う。このように、スクリュ2の前進開始から設定時間(一部区間Zfp)が経過するまで、リニアモータ6sとロータリモータ7sを同時に駆動制御するため、スクリュ2を加速させるに十分なトルクを容易に確保でき、充填領域Zifにおける最適な制御モードを実現できる。   When the set time (partial section Zfp) has elapsed, the rotary motor 7s is stopped (steps S3 and S4). Thereby, after this, the filling region Zif by the speed control of only the linear motor 6s is performed. Thus, since the linear motor 6s and the rotary motor 7s are simultaneously driven and controlled until the set time (partial section Zfp) elapses from the start of the advancement of the screw 2, a sufficient torque for accelerating the screw 2 can be easily secured. And an optimal control mode in the filling region Zif can be realized.

一方、充填領域Zifが終わりに近づき、設定した充填終了直前時間tiに達したなら、図3に示すように、リニアモータ6sに対して逆方向に通電するブレーキ制御を行う(ステップS5,S6)。この後、設定した充填終了時間toが経過したならリニアモータ6sを停止させる(ステップS7,S8)。以上により充填領域Zifが終了する。   On the other hand, when the filling area Zif approaches the end and reaches the set time immediately before filling ti, as shown in FIG. 3, brake control is performed to energize the linear motor 6s in the reverse direction (steps S5 and S6). . Thereafter, when the set filling end time to elapses, the linear motor 6s is stopped (steps S7 and S8). Thus, the filling area Zif ends.

次いで、保圧領域(保圧工程)Zihに移行する。保圧領域Zihでは、スクリュ2がほとんど停止した状態の圧力制御領域となるため、圧力制御に適したロータリモータ7sを基本に使用する。この場合、多段制御を行う際の高圧段ではリニアモータ6sを同時に作動させるとともに、低圧段ではロータリモータ7sのみを作動させる。即ち、図3に示すように、まず、保圧領域Zihの開始によりロータリモータ7sを作動させて第一段階の低圧段による圧力制御を行う(ステップS9)。そして、第一段階の圧力制御が終了し、予め設定した高圧開始時間tsに達したなら、ロータリモータ7sに加えてリニアモータ6sを同時に作動させ、第二段階の高圧段による圧力制御を行う(ステップS10,S11)。このように、保圧付与中の一部区間Zhpにおいて、リニアモータ6sとロータリモータ7sを同時に駆動制御するため、スクリュ2に付加する高圧の保圧力を容易に確保でき、保圧領域Zihにおける最適な制御モードを実現できる。   Next, the process proceeds to a pressure holding region (pressure holding step) Zih. Since the pressure holding area Zih is a pressure control area in which the screw 2 is almost stopped, a rotary motor 7s suitable for pressure control is basically used. In this case, the linear motor 6s is simultaneously operated in the high pressure stage when performing the multistage control, and only the rotary motor 7s is operated in the low pressure stage. That is, as shown in FIG. 3, first, the rotary motor 7s is actuated by the start of the pressure holding area Zih to perform pressure control by the first low pressure stage (step S9). When the first-stage pressure control is completed and the preset high-pressure start time ts is reached, the linear motor 6s is simultaneously operated in addition to the rotary motor 7s, and the pressure control by the second-stage high-pressure stage is performed ( Steps S10 and S11). As described above, since the linear motor 6s and the rotary motor 7s are simultaneously driven and controlled in the partial section Zhp during the holding pressure application, the high holding pressure applied to the screw 2 can be easily secured, and the optimum in the holding pressure area Zih. Control mode can be realized.

また、第二段階の圧力制御が終了し、予め設定した高圧終了時間teに達したなら、リニアモータ6sを停止させる(ステップS12,S13)。これにより、これ以降はロータリモータ7sのみに対する圧力制御、即ち、ロータリモータ7sのみを作動させて第三段階の低圧段による圧力制御を行う(ステップS9)。そして、設定した保圧終了時間txに達したなら、ロータリモータ7sを停止させる(ステップS14,S15)。以上により保圧領域Zih、更には射出工程Ziが終了する。   When the second-stage pressure control is finished and the preset high pressure end time te is reached, the linear motor 6s is stopped (steps S12 and S13). Thus, thereafter, pressure control only for the rotary motor 7s, that is, pressure control by the third low pressure stage is performed by operating only the rotary motor 7s (step S9). When the set pressure holding end time tx is reached, the rotary motor 7s is stopped (steps S14 and S15). Thus, the pressure holding area Zih and the injection process Zi are completed.

この後、次のショット(成形)が継続する場合には、次のショットのための計量工程Zmに移行する(ステップS16)。計量工程Zmでは計量モータ3が駆動制御されて計量が行われる(ステップS17)。この際、スクリュ2に対して背圧が付加されるが、この際の背圧は比較的低い圧力で足りるため、リニアモータ6sの制御により背圧が付与される。計量工程Zmでは、計量モータ3の回転が回転伝達機構25を介してスクリュ2に伝達される。そして、計量工程Zmが終了したなら上述した射出工程Ziが同様に行われる(ステップS1…)。   Thereafter, when the next shot (molding) continues, the process proceeds to the weighing process Zm for the next shot (step S16). In the weighing process Zm, the weighing motor 3 is driven and controlled to perform weighing (step S17). At this time, a back pressure is applied to the screw 2. Since the back pressure at this time is sufficient, a back pressure is applied by controlling the linear motor 6s. In the weighing process Zm, the rotation of the weighing motor 3 is transmitted to the screw 2 via the rotation transmission mechanism 25. And if the measurement process Zm is complete | finished, the injection process Zi mentioned above will be performed similarly (step S1 ...).

このように、本実施形態に係る射出成形機Mによれば、射出駆動部Diを、リニアモータ6sを用いた第一射出モータ6とロータリモータ7sを用いた第二射出モータ7により構成するとともに、第一射出モータ6と第二射出モータ7を同時に又は選択的に駆動制御する制御部9を備えるため、射出工程Ziにおける必要かつ十分な圧力制御を行うことができるとともに、併せてリニアモータ6sの小型化或いは能力の大きい射出成形機の実用化などを実現できる。また、リニアモータ6sを用いた第一射出モータ6とロータリモータ7sを用いた第二射出モータ7を組合わせ、この第一射出モータ6と第二射出モータ7を同時に又は選択的に駆動制御するようにしたため、汎用的なリニアモータ6sと汎用的なロータリモータ7sを利用でき、部品コスト及び製造コストの双方においてコストダウンを図れる。また、成形品の形状や大きさに対応した成形条件の設定や制御を柔軟かつ臨機応変に行うことができるとともに、メンテナンス時の調整も容易に行うことができる。しかも、射出駆動部Diは、筒状のハウジング11の内周面にリニアモータ6sの固定側磁極部12を配設するとともに、ハウジング11の内部に、外周面にリニアモータ6sの移動側磁極部13を配設した可動体5を進退自在に配し、かつ可動体5の後端面にボールねじ機構8を接続するとともに、ハウジング11の後端にロータリモータ7sを配設してなるため、リニアモータ6sとロータリモータ7sの合理的な組合わせ構成により、更なる小型コンパクト化に寄与できる。   Thus, according to the injection molding machine M according to the present embodiment, the injection driving unit Di is configured by the first injection motor 6 using the linear motor 6s and the second injection motor 7 using the rotary motor 7s. In addition, since the controller 9 that controls the first injection motor 6 and the second injection motor 7 simultaneously or selectively is provided, necessary and sufficient pressure control in the injection process Zi can be performed, and the linear motor 6s. This makes it possible to achieve downsizing or practical use of an injection molding machine having a large capacity. Further, the first injection motor 6 using the linear motor 6s and the second injection motor 7 using the rotary motor 7s are combined, and the first injection motor 6 and the second injection motor 7 are simultaneously or selectively driven and controlled. Therefore, the general-purpose linear motor 6s and the general-purpose rotary motor 7s can be used, and the cost can be reduced in both the component cost and the manufacturing cost. Further, setting and control of molding conditions corresponding to the shape and size of the molded product can be performed flexibly and flexibly, and adjustment during maintenance can be easily performed. In addition, the injection drive unit Di has a fixed-side magnetic pole portion 12 of the linear motor 6s disposed on the inner peripheral surface of the cylindrical housing 11, and a moving-side magnetic pole portion of the linear motor 6s on the outer peripheral surface inside the housing 11. Since the movable body 5 provided with 13 is disposed so as to be movable back and forth, the ball screw mechanism 8 is connected to the rear end face of the movable body 5, and the rotary motor 7 s is disposed at the rear end of the housing 11. The rational combination of the motor 6s and the rotary motor 7s can contribute to further miniaturization and compactness.

以上、最良の実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,数量,手法等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。   Although the best embodiment has been described in detail above, the present invention is not limited to such an embodiment, and the scope of the present invention is not deviated from the gist of the present invention in terms of the detailed configuration, shape, quantity, technique, and the like. It can be changed, added, or deleted arbitrarily.

例えば、図1及び図2は、ハウジング11の内周面における進退方向に対して直角となる断面形状及び可動体5の外周面における進退方向に対して直角となる断面形状を、円形に形成した場合を例示したが、図5及び図6に示すような多角形、即ち、図5に示すような四角形或いは図6に示すような六角形に形成することもできる。また、リニアモータ6sとして、ムービングマグネット型リニアモータを例示したが、ムービングコイル型リニアモータ或いは前述した特許第3427171号で採用するリニアモータの構成(一部構成)であってもよく、その種類は問わない。なお、図5及び図6において、図2と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。さらに、例示の実施形態では、ロータリモータ7sとボールねじ機構8におけるスクリュ部8sをダイレクトに結合した場合を示したが、プーリ及びベルトを用いた回転伝達機構により伝達してもよく、この場合、ロータリモータ7sの取付位置を任意に変更できる。また、ボールねじ機構8は、スクリュ8sを固定し、ナット部8nを回転させる構成であってもよいし、計量モータ3の取付及び回転伝達機構等も例示に限らず、任意の構成を採用できる。一方、リニアモータ6s(第一射出モータ6)とロータリモータ7s(第二射出モータ7)を同時又は選択的に駆動する制御パターン(制御モード)は例示(図3)に限定されることなく目的や用途などに応じて任意の制御パターンを設定できる。   For example, in FIGS. 1 and 2, a cross-sectional shape perpendicular to the advancing / retreating direction on the inner peripheral surface of the housing 11 and a cross-sectional shape perpendicular to the advancing / retreating direction on the outer peripheral surface of the movable body 5 are formed in a circle. Although the case has been illustrated, it is also possible to form a polygon as shown in FIGS. 5 and 6, that is, a quadrangle as shown in FIG. 5 or a hexagon as shown in FIG. In addition, the moving magnet type linear motor is exemplified as the linear motor 6s, but it may be a moving coil type linear motor or a configuration (partial configuration) of the linear motor employed in the above-mentioned Japanese Patent No. 3427171. It doesn't matter. 5 and 6, the same parts as those in FIG. 2 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted. Furthermore, in the exemplary embodiment, the case where the rotary motor 7s and the screw portion 8s in the ball screw mechanism 8 are directly coupled is shown, but the rotation may be transmitted by a rotation transmission mechanism using a pulley and a belt. The mounting position of the rotary motor 7s can be arbitrarily changed. Further, the ball screw mechanism 8 may be configured to fix the screw 8s and rotate the nut portion 8n, and the mounting of the metering motor 3 and the rotation transmission mechanism are not limited to the examples, and any configuration can be adopted. . On the other hand, the control pattern (control mode) for driving the linear motor 6s (first injection motor 6) and the rotary motor 7s (second injection motor 7) simultaneously or selectively is not limited to the example (FIG. 3). Arbitrary control patterns can be set according to the application.

本発明の最良の実施形態に係るインラインスクリュ式射出成形機における射出装置を示す断面側面図、Sectional side view showing an injection device in an inline screw type injection molding machine according to the best embodiment of the present invention, 同射出成形機におけるボールねじ機構を含む断面正面図、Sectional front view including a ball screw mechanism in the same injection molding machine, 同射出成形機における各モータの動作を示すタイミングチャート、A timing chart showing the operation of each motor in the same injection molding machine; 同射出成形機の動作を説明するためのフローチャート、A flowchart for explaining the operation of the injection molding machine; 本発明の変更実施形態に係る射出成形機におけるボールねじ機構を含む断面正面図、Sectional front view including a ball screw mechanism in an injection molding machine according to a modified embodiment of the present invention, 本発明の他の変更実施形態に係る射出成形機におけるボールねじ機構を含む断面正面図、Sectional front view including a ball screw mechanism in an injection molding machine according to another modified embodiment of the present invention,

2:スクリュ,3:計量モータ,5:可動体,6:第一射出モータ,6s:リニアモータ,7:第二射出モータ,7s:ロータリモータ,8:ボールねじ機構,8i:回転入力部,9:制御部,11:ハウジング,12:固定側磁極部,13:移動側磁極部,M:射出成形機,Dm:計量駆動部,Di:射出駆動部,Zi:射出工程,Zif:充填領域,Zih:保圧領域,Zfp:一部区間,Zhp:一部区間   2: screw, 3: metering motor, 5: movable body, 6: first injection motor, 6s: linear motor, 7: second injection motor, 7s: rotary motor, 8: ball screw mechanism, 8i: rotation input unit, 9: Controller, 11: Housing, 12: Fixed magnetic pole, 13: Moving magnetic pole, M: Injection molding machine, Dm: Metering drive, Di: Injection drive, Zi: Injection process, Zif: Filling area , Zih: pressure holding region, Zfp: partial section, Zhp: partial section

Claims (5)

スクリュを回転させる計量モータを有する計量駆動部及びスクリュを進退移動させる射出モータを有する射出駆動部を備える射出成形機において、前記射出駆動部を、前記スクリュの後端に連結した可動体を進退移動させるリニアモータを用いた第一射出モータと、前記可動体を進退移動させるボールねじ機構及びこのボールねじ機構の回転入力部を回転させるロータリモータを用いた第二射出モータを備えて構成し、かつ前記第一射出モータと前記第二射出モータを同時に又は選択的に駆動制御する制御部を備えるとともに、筒状のハウジングを有し、このハウジングの内周面に、前記リニアモータの固定側磁極部を配設し、前記ハウジングの内部に、外周面に前記リニアモータの移動側磁極部を配設した前記可動体を進退自在に配し、かつ前記可動体の後端面に前記ボールねじ機構を接続するとともに、前記ハウジングの後端に前記ロータリモータを配設してなることを特徴とする射出成形機。   In an injection molding machine comprising a metering drive unit having a metering motor for rotating a screw and an injection drive unit having an injection motor for moving the screw back and forth, a movable body connected to the rear end of the screw is moved forward and backward. A first injection motor using a linear motor, a ball screw mechanism for moving the movable body forward and backward, and a second injection motor using a rotary motor for rotating a rotation input portion of the ball screw mechanism, and The controller includes a control unit that controls drive control of the first injection motor and the second injection motor simultaneously or selectively, and has a cylindrical housing, and a fixed-side magnetic pole portion of the linear motor is provided on an inner peripheral surface of the housing. In the housing, the movable body in which the moving-side magnetic pole portion of the linear motor is disposed on the outer peripheral surface is disposed so as to be movable back and forth. With connecting the ball screw mechanism in the rear end surface of the movable body, an injection molding machine, characterized in that formed by disposing the rotary motor to the rear end of the housing. 前記ハウジングの内周面における前記進退方向に対して直角となる断面形状及び前記可動体の外周面における前記進退方向に対して直角となる断面形状は、円形に形成してなることを特徴とする請求項1記載の射出成形機。   A cross-sectional shape perpendicular to the advance / retreat direction on the inner peripheral surface of the housing and a cross-sectional shape perpendicular to the advance / retreat direction on the outer peripheral surface of the movable body are formed in a circular shape. The injection molding machine according to claim 1. 前記ハウジングの内周面における前記進退方向に対して直角となる断面形状及び前記可動体の外周面における前記進退方向に対して直角となる断面形状は、多角形に形成してなることを特徴とする請求項1記載の射出成形機。   The cross-sectional shape perpendicular to the advancing / retreating direction on the inner peripheral surface of the housing and the cross-sectional shape perpendicular to the advancing / retreating direction on the outer peripheral surface of the movable body are formed into polygons. The injection molding machine according to claim 1. 前記制御部は、前記射出工程の充填領域で、少なくとも、前記第一射出モータを駆動制御して前記スクリュを前進させるとともに、前記スクリュの前進開始からの一部区間で前記第二射出モータを前記第一射出モータに対して同時に駆動制御することを特徴とする請求項1記載の射出成形機。   The control unit drives and controls the first injection motor at least in the filling region of the injection process to advance the screw, and sets the second injection motor in a partial section from the start of advancement of the screw. 2. The injection molding machine according to claim 1, wherein the first injection motor is simultaneously driven and controlled. 前記制御部は、前記射出工程の保圧領域で、少なくとも、前記第二射出モータを駆動制御して前記スクリュに保圧を付与するとともに、保圧付与中の一部区間で前記第一射出モータを前記第二射出モータに対して同時に駆動制御することを特徴とする請求項1又は4記載の射出成形機。   In the pressure holding region of the injection process, the control unit drives and controls at least the second injection motor to apply a holding pressure to the screw, and the first injection motor in a partial section during the holding of the pressure. 5. The injection molding machine according to claim 1, wherein drive control is performed simultaneously with respect to the second injection motor.
JP2006280639A 2006-10-13 2006-10-13 Injection molding machine Active JP4717774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280639A JP4717774B2 (en) 2006-10-13 2006-10-13 Injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280639A JP4717774B2 (en) 2006-10-13 2006-10-13 Injection molding machine

Publications (2)

Publication Number Publication Date
JP2008094034A JP2008094034A (en) 2008-04-24
JP4717774B2 true JP4717774B2 (en) 2011-07-06

Family

ID=39377399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280639A Active JP4717774B2 (en) 2006-10-13 2006-10-13 Injection molding machine

Country Status (1)

Country Link
JP (1) JP4717774B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087843A (en) * 2012-10-05 2014-05-15 Ube Machinery Corporation Ltd Injection unit of die cast machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001133A (en) * 2003-06-09 2005-01-06 Toshiba Mach Co Ltd Injection device and injection molding machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427171B2 (en) * 1998-05-01 2003-07-14 日創電機株式会社 Molding machine
JP2002079555A (en) * 2000-09-04 2002-03-19 Meiki Co Ltd Injection device of injection molding machine and method for controlling injection device
JP2002292708A (en) * 2001-03-30 2002-10-09 Nissei Plastics Ind Co Drive device of injection molding machine
JP2002330577A (en) * 2001-04-27 2002-11-15 Toshiba Mach Co Ltd Linear motor, and injection-molding machine using it
JP4659281B2 (en) * 2001-06-27 2011-03-30 東芝機械株式会社 Injection molding drive
JP2003231154A (en) * 2002-02-08 2003-08-19 Toshiba Mach Co Ltd Injection device
TW578684U (en) * 2002-10-09 2004-03-01 Ind Tech Res Inst Electromagnetic type coaxial driving injecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001133A (en) * 2003-06-09 2005-01-06 Toshiba Mach Co Ltd Injection device and injection molding machine

Also Published As

Publication number Publication date
JP2008094034A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4856162B2 (en) Clamping device
KR101160536B1 (en) Injection molding machine
US7261554B2 (en) Injection unit of injection molding machine
JP5384044B2 (en) Die casting machine
JP4503074B2 (en) Linearly slidable rotational drive device for plastic injection molding machines
JPH02307714A (en) Injection unit of injection molder
JP2012162092A (en) Mold clamping device and mold thickness adjusting method
JP2007504963A (en) Drive assembly for rotating and translating a shaft
US20070296281A1 (en) Electrical motor
JP2009039899A (en) Molding machine
KR20030007570A (en) Device for removing injection moulded parts
US5158783A (en) Crank driven injection apparatus for injection molding machine
JP4717774B2 (en) Injection molding machine
JPH11243675A (en) Driving device for driving motor and molder
JP3255591B2 (en) Injection molding machine
JPH0440176B2 (en)
JP2008094035A (en) Injection molding machine
JP2006197722A (en) Linear drive device
JP2007312575A (en) Linear drive device
JP2009012050A (en) Molding machine
JP3491008B2 (en) Injection equipment of injection molding machine
US20040161485A1 (en) Electric injection unit
US20070296121A1 (en) Molding-system drive
JP5108465B2 (en) Molding machine
JPH10286842A (en) Injection molder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250