JP4717502B2 - Lens fixing device - Google Patents

Lens fixing device Download PDF

Info

Publication number
JP4717502B2
JP4717502B2 JP2005133314A JP2005133314A JP4717502B2 JP 4717502 B2 JP4717502 B2 JP 4717502B2 JP 2005133314 A JP2005133314 A JP 2005133314A JP 2005133314 A JP2005133314 A JP 2005133314A JP 4717502 B2 JP4717502 B2 JP 4717502B2
Authority
JP
Japan
Prior art keywords
lens
adjustment
fixing device
frame
chart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005133314A
Other languages
Japanese (ja)
Other versions
JP2006308986A (en
Inventor
晴滋 山本
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005133314A priority Critical patent/JP4717502B2/en
Publication of JP2006308986A publication Critical patent/JP2006308986A/en
Application granted granted Critical
Publication of JP4717502B2 publication Critical patent/JP4717502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レンズをレンズ枠に固定するレンズ固定装置に関する。 The present invention relates to a lens fixing device that fixes a lens to a lens frame .

従来のレンズ固定装置は、鏡筒に固定すべきレンズの偏芯量を測定し、測定した偏芯量に基づいてレンズの位置決めをした後、レンズの外周部に塗布した紫外線硬化型接着剤に紫外線を照射してレンズを鏡筒に固定する。   The conventional lens fixing device measures the amount of eccentricity of the lens to be fixed to the lens barrel, positions the lens based on the measured amount of eccentricity, and then applies the ultraviolet curable adhesive applied to the outer periphery of the lens. The lens is fixed to the lens barrel by irradiating with ultraviolet rays.

上記装置において、レンズの偏芯量の測定は、二方向の直線パターンを有するチャートをレンズを含む光学系を介してセンサに投影し、センサに投影されたチャート像のX方向及びY方向の照度分布からコマフレア量を算出することにより行う。   In the above apparatus, the amount of eccentricity of the lens is measured by projecting a chart having a linear pattern in two directions onto a sensor via an optical system including the lens, and the illuminance in the X and Y directions of the chart image projected on the sensor. This is done by calculating the amount of coma flare from the distribution.

上記装置は、測定された偏芯量と予め計測された参照データとを比較することによりレンズの移動量を決定し、その後、XY微動ステージにてレンズを当該移動量だけ移動させる(例えば、特許文献1参照)。
特開2000−121901号公報
The apparatus determines the amount of lens movement by comparing the measured eccentricity with pre-measured reference data, and then moves the lens by the amount of movement on an XY fine movement stage (for example, patents) Reference 1).
JP 2000-121901 A

しかしながら、上記固定装置は、レンズの位置決めとは別の工程で、接着剤への紫外線照射によりレンズを鏡筒に固定するので、接着剤硬化前にレンズが動く場合がある。さらに、紫外線硬化型接着剤は、公知の通り、これに紫外線を照射したときに体積率で約5%程度の硬化収縮を起こすため、レンズをレンズ枠に固定する際、接着剤の硬化収縮によりレンズが動く。 However, since the fixing device fixes the lens to the lens barrel by irradiating the adhesive with ultraviolet rays in a process different from the positioning of the lens, the lens may move before the adhesive is cured. Furthermore, as known in the art, UV curable adhesives cause curing shrinkage of about 5% in volume ratio when irradiated with ultraviolet rays. Therefore, when the lens is fixed to the lens frame , The lens moves.

また、この接着剤を紫外線により硬化させると、20〜30秒程度の時間を要するので、組立工程時間が長くなり、組立コストを増大させる。   Further, when this adhesive is cured by ultraviolet rays, it takes about 20 to 30 seconds, so that the assembly process time becomes long and the assembly cost increases.

本発明の目的は、レンズ枠に固定すべきレンズを高精度且つ高速に調整し固定することができるレンズ固定装置を提供することにある。 An object of the present invention is to provide a lens fixing device capable of adjusting and fixing a lens to be fixed to a lens frame with high accuracy and high speed.

上記目的を達成するために、本発明のレンズ固定装置は、レンズをレンズ枠に固定するレンズ固定装置であって、前記レンズを支持した前記レンズ枠が保持される架台と、前記架台の一方側に配置される光源と、前記架台の一方側にて、前記架台と前記光源との間に配置されるチャートと、前記架台の他方側に配置され、前記光源を点灯したときに発生する前記チャートの投影像を反射させる反射部材と、前記反射部材によって反射された前記チャートの投影像を受光するセンサと、前記センサからの出力に基づいて前記レンズ枠に対する前記レンズの位置を調整する調整手段と、前記架台の他方側に配置され、前記調整手段による前記レンズの位置調整が完了した後、前記反射部材の外側から前記レンズ枠に向けてレーザー光を照射するレーザー照射ユニットとを備えることを特徴とする。 In order to achieve the above object, a lens fixing device according to the present invention is a lens fixing device for fixing a lens to a lens frame, and a frame on which the lens frame supporting the lens is held, and one side of the frame A light source arranged on one side of the gantry, a chart arranged between the gantry and the light source, and a chart which is arranged on the other side of the gantry and is generated when the light source is turned on A reflecting member that reflects the projected image of the lens, a sensor that receives the projected image of the chart reflected by the reflecting member, and an adjusting unit that adjusts the position of the lens with respect to the lens frame based on an output from the sensor; The laser beam is disposed on the other side of the gantry and irradiates laser light from the outside of the reflecting member toward the lens frame after the adjustment of the position of the lens by the adjusting means is completed. Characterized in that it comprises a Heather irradiation unit.

本発明によれば、測定された偏芯量を補正するように光学素子を光軸と略直交する面上で移動し、光学素子が支持される光学素子の光軸延長線上にレーザ光を照射するので、光学素子の移動とレーザ光の照射とを同工程で行うことができ、もって鏡筒に固定すべきレンズを高精度且つ高速に調整し固定することができる。   According to the present invention, the optical element is moved on a plane substantially orthogonal to the optical axis so as to correct the measured eccentricity, and the laser beam is irradiated onto the optical axis extension line of the optical element on which the optical element is supported. Therefore, the movement of the optical element and the irradiation of the laser beam can be performed in the same process, and the lens to be fixed to the lens barrel can be adjusted and fixed with high accuracy and high speed.

以下、本発明の実施の形態を図面を用いて詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施の形態に係るレンズ固定装置の構成を概略的に示す図である。   FIG. 1 is a diagram schematically showing a configuration of a lens fixing device according to a first embodiment of the present invention.

図1のレンズ固定装置100は、レンズ枠2に保持される調整用レンズ1の偏芯量を測定するとともに、測定した偏芯量を補正するように調整用レンズ1を移動させた後、レーザ光を照射してレンズ枠2に調整用レンズ1を固定する装置である。   The lens fixing device 100 in FIG. 1 measures the amount of eccentricity of the adjustment lens 1 held by the lens frame 2, moves the adjustment lens 1 so as to correct the measured amount of eccentricity, and then moves the laser. This is an apparatus for fixing the adjustment lens 1 to the lens frame 2 by irradiating light.

レンズ枠2は、架台5の保持部5aに嵌合保持される外周部2aと、調整用レンズ1を上側において支承すると共に、レンズ3を下側において支承する座面2bと、調整用レンズ1の外周部1aに一定の隙間をもって対向する縁部2cと、レンズ3の外周部3aを保持する縁部2dとを備える。   The lens frame 2 includes an outer peripheral portion 2a fitted and held in the holding portion 5a of the gantry 5, a seating surface 2b that supports the adjustment lens 1 on the upper side and a lens 3 on the lower side, and an adjustment lens 1. The outer peripheral portion 1a is provided with an edge portion 2c that faces the outer peripheral portion 1a with a certain gap, and an edge portion 2d that holds the outer peripheral portion 3a of the lens 3.

また、レンズ枠2は、縁部2cが調整用レンズ1の外周部1aに一定の隙間をもって対向しているので、調整用レンズ1は、自重により座面2bに載置された状態にあり、調整用レンズ1の固定時に調整用レンズ1が座面2bに対して傾くのを防止することができる。   Further, since the edge 2c of the lens frame 2 faces the outer peripheral portion 1a of the adjustment lens 1 with a certain gap, the adjustment lens 1 is placed on the seat surface 2b by its own weight. It is possible to prevent the adjustment lens 1 from being tilted with respect to the seating surface 2b when the adjustment lens 1 is fixed.

レンズ固定装置100は、調整用マスターレンズ4と、マスターレンズ4側において光軸A上に配された光源8(測定手段)と、マスターレンズ4と光源8間において光軸A上に配された後述する図3のチャート9(測定手段)と、マスターレンズ4を保持するマスターレンズ保持枠6と、マスターレンズ保持枠6を保持する架台5と備える。さらに、レンズ固定装置100は、架台5に取り付けられるレンズ枠2が保持する調整用レンズ1をそのレンズ面を含むXY面内で移動すべく調整用レンズ1をその外周部において保持するXYステージ7(移動手段)と、調整用レンズ1側において光軸A上に配されたレーザ照射ユニット10とを備える。   The lens fixing device 100 is disposed on the optical axis A between the master lens 4 for adjustment, the light source 8 (measurement means) disposed on the optical axis A on the master lens 4 side, and between the master lens 4 and the light source 8. 3, which will be described later, a master lens holding frame 6 that holds the master lens 4, and a gantry 5 that holds the master lens holding frame 6. Further, the lens fixing device 100 includes an XY stage 7 that holds the adjustment lens 1 on its outer peripheral portion so as to move the adjustment lens 1 held by the lens frame 2 attached to the gantry 5 within an XY plane including the lens surface. (Moving means) and a laser irradiation unit 10 disposed on the optical axis A on the adjustment lens 1 side.

レーザ照射ユニット10は、下端が円錐ロート状に形成された円筒形のレンズ保持枠14と、レンズ保持枠14の上端に配され、レーザ光13を光軸Cに沿って下方へ照射するレーザ照射口12と、レンズ保持枠14の円筒形部に配され、レーザ照射口12から照射されたレーザ光13の光束を拡散する負のパワーを有するレンズ15(拡径手段)と、レンズ保持枠14の円筒形部に配され、レンズ15により拡散したレーザ光13の光束を収束したレーザ光にする正のパワーを有するレンズ16(拡径手段)と、レンズ保持枠14の円錐ロート状部の中央に配され、上端が円錐面をなすと共に下端が水平に対して45°の傾斜面をなす反射部材11と、外周部がレンズ保持枠14に固定されており、内周部で反射部材11を保持するドーナツ状の集光レンズ17とを備える。   The laser irradiation unit 10 has a cylindrical lens holding frame 14 whose lower end is formed in a conical funnel shape, and a laser irradiation that is arranged on the upper end of the lens holding frame 14 and irradiates laser light 13 downward along the optical axis C. A lens 15 (diameter expanding means) having a negative power for diffusing the light beam of the laser beam 13 emitted from the laser irradiation port 12, and the lens holding frame 14. A lens 16 (diameter expansion means) having a positive power for converting the light beam of the laser beam 13 diffused by the lens 15 into a converged laser beam, and the center of the conical funnel portion of the lens holding frame 14 A reflecting member 11 having an upper end forming a conical surface and a lower end forming an inclined surface of 45 ° with respect to the horizontal, and an outer peripheral portion fixed to the lens holding frame 14. Donna to hold And a Jo focusing lens 17.

レンズ固定装置100は、さらに、光源8が照射した光が、後述する図3のチャート9、マスターレンズ4,レンズ3,調整用レンズ1を介して反射部材11の下端の傾斜面で反射した光を受光するセンサ18(測定手段)と、センサ18に接続された画像処理装置20(測定手段)と、レーザ照射口12、XYステージ7、光源8、及び画像処理装置20に接続され、これらを制御する制御装置21とを備える。   In the lens fixing device 100, the light irradiated from the light source 8 is further reflected by the inclined surface at the lower end of the reflecting member 11 through the chart 9, the master lens 4, the lens 3, and the adjusting lens 1 in FIG. Are connected to a sensor 18 (measuring means) that receives light, an image processing apparatus 20 (measuring means) connected to the sensor 18, a laser irradiation port 12, an XY stage 7, a light source 8, and an image processing apparatus 20. And a control device 21 for controlling.

図3は、図1におけるチャート9の平面図である。   FIG. 3 is a plan view of the chart 9 in FIG.

図3において、チャート9は、直交する二方向の直線パターンである光透過性のチャートパターンPx,Pyを有し、これら以外の部分は光を透過しない部分である。各チャートパターンPx,Pyの幅は、被調整レンズ系に要求される光学性能によるが、例えばこの光学性能が空間周波数で100本/mmとした場合、5ミクロンに設定される。   In FIG. 3, a chart 9 has light-transmitting chart patterns Px and Py that are linear patterns in two orthogonal directions, and the other portions are portions that do not transmit light. The width of each chart pattern Px, Py depends on the optical performance required for the lens system to be adjusted. For example, when the optical performance is 100 / mm in spatial frequency, it is set to 5 microns.

以下、図1のレンズ固定装置の動作を図1及び図2を参照しながら説明する。   The operation of the lens fixing device of FIG. 1 will be described below with reference to FIGS.

まず、図2において、不図示の自動組込み装置又は組立てを行う作業者が、レンズ3を支承した状態のレンズ枠2がその外周部2aにおいて架台5の保持部5aに嵌合保持されるようにレンズ枠2を架台5に組み込む。続いて、レンズ組込み用把持装置19が調整用レンズ1を縁部2c内に嵌合するようにレンズ枠2に組み込む。このとき、XYステージ7は、該組込み作業を阻害しないように光軸Aに沿って上方に退避した状態にある。調整用レンズ1がレンズ枠2に組み込まれ、レンズ組込み用把持装置19が退避した後、XYステージ7が下方に降下し、XYステージ7のレンズ把持部7aが調整用レンズ1の外周部1aと一定の隙間を持って嵌合する。   First, in FIG. 2, an automatic assembling apparatus (not shown) or an operator who performs assembly is such that the lens frame 2 with the lens 3 supported is fitted and held on the holding portion 5a of the gantry 5 at the outer peripheral portion 2a. The lens frame 2 is incorporated into the gantry 5. Subsequently, the lens incorporation gripping device 19 incorporates the adjustment lens 1 into the lens frame 2 so as to fit into the edge 2c. At this time, the XY stage 7 is in a state of being retracted upward along the optical axis A so as not to disturb the assembling work. After the adjustment lens 1 is incorporated into the lens frame 2 and the lens incorporation gripping device 19 is retracted, the XY stage 7 is lowered downward, and the lens gripping portion 7a of the XY stage 7 is connected to the outer peripheral portion 1a of the adjustment lens 1. Mates with a certain gap.

次に、図1において、光源8を点灯すると、チャート9の投影像はマスターレンズ4,レンズ3,調整用レンズ1を介してセンサ18に投影される(図4)。その際、チャート9の投影像は、レーザ照射ユニット10の反射部材11の反射面11aによりその光軸Aに対して略90°に配向した光軸B方向に反射する。また、該投影に際して、チャート9は、不図示の駆動制御装置によりセンサ18上でのチャート9の投影像のフレア幅が最小、すなわち、チャート9の投影像がセンサ18上で合焦状態となるように光軸A方向に沿って駆動制御される。   Next, in FIG. 1, when the light source 8 is turned on, the projected image of the chart 9 is projected onto the sensor 18 through the master lens 4, the lens 3, and the adjustment lens 1 (FIG. 4). At this time, the projected image of the chart 9 is reflected by the reflecting surface 11a of the reflecting member 11 of the laser irradiation unit 10 in the direction of the optical axis B oriented at approximately 90 ° with respect to the optical axis A. In the projection, the flare width of the projection image of the chart 9 on the sensor 18 is minimized by the drive control device (not shown), that is, the projection image of the chart 9 is brought into focus on the sensor 18. Thus, drive control is performed along the optical axis A direction.

次いで、センサ18に投影されたチャート9の投影像の光強度分布は画像処理装置20に取り込まれ、画像処理装置20はその照度分布(図5及び図6)を算出して調整用レンズ1の偏芯調整を行うための移動量を決定する。そして、制御装置21は、XYステージ7が決定した移動量に基づいて調整用レンズ1の偏芯調整を行うようにXYステージ7を制御する。その際、調整用レンズ1にはレンズ面に対して前述のごとく調整用レンズ1の外周部1aとXYステージ7のレンズ把持部7aが一定の隙間をもって嵌合しているため水平方向の駆動力のみ作用して調整が行われる。   Next, the light intensity distribution of the projected image of the chart 9 projected on the sensor 18 is taken into the image processing device 20, and the image processing device 20 calculates the illuminance distribution (FIGS. 5 and 6) and calculates the illuminance distribution of the adjustment lens 1. The amount of movement for performing eccentricity adjustment is determined. Then, the control device 21 controls the XY stage 7 so as to adjust the eccentricity of the adjustment lens 1 based on the movement amount determined by the XY stage 7. At this time, since the outer peripheral portion 1a of the adjustment lens 1 and the lens gripping portion 7a of the XY stage 7 are fitted to the adjustment lens 1 with a certain gap as described above, a horizontal driving force is provided. Adjustment is made only by acting.

調整用レンズ1の偏芯調整の後、レーザ照射ユニット10は、レーザ照射口12からレーザ光13を照射する。そして、レンズ15,16を介して拡径されたレーザ光13は、反射部材11の上端の円錐面(変換手段)及びレンズ保持枠14の下部の円錐部(変換手段)で夫々反射し、さらに集光レンズ17を介して調整用レンズ1の座面1bとレンズ枠2の座面2bの境界部に集光する。レーザ光13が、調整用レンズ1の座面1bとレンズ枠2の座面2bの境界部に照射されると、熱可塑性樹脂で構成された調整用レンズ1の座面1b及びレンズ枠2の座面2bがレーザ光を吸収し発熱を起こして溶解し、樹脂同士が溶解により溶け合うことで溶着が行われる。   After adjusting the eccentricity of the adjustment lens 1, the laser irradiation unit 10 irradiates the laser beam 13 from the laser irradiation port 12. Then, the laser beam 13 whose diameter has been enlarged through the lenses 15 and 16 is reflected by the conical surface (conversion means) at the upper end of the reflecting member 11 and the conical portion (conversion means) at the bottom of the lens holding frame 14, respectively. The light is condensed on the boundary between the seating surface 1 b of the adjustment lens 1 and the seating surface 2 b of the lens frame 2 via the condenser lens 17. When the laser beam 13 is applied to the boundary between the seating surface 1b of the adjusting lens 1 and the seating surface 2b of the lens frame 2, the seating surface 1b of the adjusting lens 1 and the lens frame 2 made of thermoplastic resin are used. The seating surface 2b absorbs the laser beam, generates heat, and melts, and the resins are melted together to perform welding.

また、調整用レンズ1は、例えばガラス素材で構成されてもよく、その場合は、中間部材として公知の不図示のホットメルトシート等を調整用レンズ1の座面1bとレンズ枠2の座面2bとの間に介在させ、該ホットメルトシートにレーザ光を吸収発熱させて両者を固着してもよい。   The adjustment lens 1 may be made of, for example, a glass material. In this case, a known hot melt sheet (not shown) or the like is used as an intermediate member, and the seat surface 1b of the adjustment lens 1 and the seat surface of the lens frame 2 are used. 2b may be interposed between the hot melt sheet and the hot melt sheet to absorb and heat the laser beam to fix them.

図4は、図1におけるセンサ18上に投影された図3のチャートパターンPx,Pyの投影像を示す平面図である。   4 is a plan view showing projected images of the chart patterns Px and Py of FIG. 3 projected on the sensor 18 in FIG.

図4において、センサ18上には、図3におけるチャートパターンPx,Pyのチャート像P1,P2が結像される。図1における画像処理装置20は、センサ18にて得られる光強度分布を取り込み、チャート像P1の測定ポイントS1におけるY方向の照度分布、及びチャート像P2の測定ポイントS2におけるX方向の照度分布を算出し、算出に基づいて調整用レンズ1の偏芯調整するための移動量を決定する(図5及び図6)。   In FIG. 4, chart images P1 and P2 of the chart patterns Px and Py in FIG. The image processing apparatus 20 in FIG. 1 takes in the light intensity distribution obtained by the sensor 18, and obtains the illuminance distribution in the Y direction at the measurement point S1 of the chart image P1 and the illuminance distribution in the X direction at the measurement point S2 of the chart image P2. Based on the calculation, a movement amount for adjusting the eccentricity of the adjustment lens 1 is determined (FIGS. 5 and 6).

図5は、図4におけるチャート像P1の測定ポイントS1のY方向照度分布を説明する図であり、調整開始時点の場合を示す。   FIG. 5 is a diagram for explaining the Y-direction illuminance distribution at the measurement point S1 of the chart image P1 in FIG. 4 and shows the case of the adjustment start time.

図5において、調整用レンズ1の偏芯成分により、照度分布は、Y軸方向プラス側に相対的に大きなフレアが発生して左右対称形状とならない。この照度分布を左右対称形状とするために、調整用レンズ1の偏芯調整を行う。   In FIG. 5, due to the eccentric component of the adjustment lens 1, the illuminance distribution does not have a symmetrical shape due to a relatively large flare occurring on the positive side in the Y-axis direction. In order to make this illuminance distribution symmetrical, the eccentricity of the adjustment lens 1 is adjusted.

ここで、偏芯調整開始時点における照度のピーク位置から右側スライスレベルまでの右フレアFR1の幅をWR1、同左側スライスレベルまでの左フレアFL1の幅をWL1とし、制御装置21からの指令により、XYステージ7は、調整用レンズ1を右フレアFR1が減少する方向に任意の量δ1だけ偏芯させ、再度、チャート像P1の測定ポイントS1におけるY方向照度分布を測定する。   Here, the width of the right flare FR1 from the peak position of the illuminance at the start of eccentricity adjustment to the right slice level is WR1, the width of the left flare FL1 to the left slice level is WL1, and a command from the control device 21 The XY stage 7 decenters the adjustment lens 1 by an arbitrary amount δ1 in the direction in which the right flare FR1 decreases, and again measures the Y-direction illuminance distribution at the measurement point S1 of the chart image P1.

図6は、図4におけるチャート像P1の測定ポイントS1のY方向照度分布を説明する図であり、δ1の偏芯調整完了後の場合を示す。   FIG. 6 is a diagram for explaining the Y-direction illuminance distribution at the measurement point S1 of the chart image P1 in FIG. 4, and shows a case after the eccentricity adjustment of δ1 is completed.

図6において、偏芯調整中の照度のピーク位置からスライスレベルまでのフレアの幅を左右それぞれWL2,WR2とし、調整用レンズ1を上述δ1だけ偏芯させたときに、上述の左右のフレア幅の差の減少率が線形性を持っていると仮定すると、次に調整するべき偏芯量δ2は、以下の式により求められる。   In FIG. 6, when the flare width from the illuminance peak position during the eccentricity adjustment to the slice level is set to WL2 and WR2, respectively, and the adjustment lens 1 is eccentric by the above-mentioned δ1, the above-mentioned left and right flare widths Assuming that the rate of decrease of the difference is linear, the eccentricity δ2 to be adjusted next is obtained by the following equation.

δ2=δ1*(WR2−WL2)/{(WR1−WL1)−(WR2−WL2)}
また、この際、最初に調整用レンズ1を移動させる偏芯量と移動方向は、調整用レンズ1をある方向に一定量偏芯させた時に発生するフレア量とその発生方向の関係を数値データとして予め記憶させておき、調整時に最初に確認されたフレア量とその発生方向に応じてその補正をするための調整用レンズ1の偏芯方向と偏芯量の条件を前記した記憶させてある数値データから演算して与えてやるのがより早く調整を収束させるために有効である。
δ2 = δ1 * (WR2-WL2) / {(WR1-WL1)-(WR2-WL2)}
At this time, the amount of eccentricity and the moving direction in which the adjustment lens 1 is first moved are numerical data indicating the relationship between the amount of flare generated when the adjustment lens 1 is eccentric by a certain amount and the direction in which the adjustment lens 1 is generated. And the conditions of the eccentricity direction and the eccentricity amount of the adjustment lens 1 for correcting the flare amount first confirmed at the time of adjustment in accordance with the generation direction thereof are stored as described above. It is effective to converge the adjustment more quickly by calculating from numerical data.

これにより、制御装置21からの制御信号に応じて上記式から求められた必要偏芯量δ2だけさらにXYステージが駆動制御されて、調整用レンズ1の偏芯調整が行われる。   As a result, the XY stage is further driven and controlled by the required eccentricity amount δ2 obtained from the above equation in accordance with the control signal from the control device 21, and the eccentricity adjustment of the adjustment lens 1 is performed.

そして、再度チャート像P1の測定ポイントS1におけるY方向の照度分布が測定され、規定のフレア差以内にフレアが収まっているかを確認し、規定値内に収まっていればそこで調整を完了する。ここでもし、規定値内にフレア差が収まらなかった場合には前述と同様に、照度のピーク位置からスライスレベルまでのフレアの幅を今度は左右それぞれWL3,WR3とし上述と同じ式を適用して次の偏芯調整量δ3を下記の式により求める。   Then, the illuminance distribution in the Y direction at the measurement point S1 of the chart image P1 is measured again to check whether the flare is within a specified flare difference. If the flare is within the specified value, the adjustment is completed there. If the flare difference does not fall within the specified value, the width of the flare from the illuminance peak position to the slice level is now set to WL3 and WR3, respectively, and the same formula as above is applied. The next eccentricity adjustment amount δ3 is obtained by the following equation.

δ3=δ2*(WR3−WL3)/{(WR2−WL2)−(WR3−WL3)}
そして、前述と同様に、制御装置21からの制御信号により上記式から求められた必要偏芯量δ3だけさらにXYステージが駆動制御され調整用レンズ1を偏芯させることで調整用レンズ1の偏芯調整が行われる。そして、規定値内にフレア差が収束するまでこの作業が継続され、規定値内に収まったところで調整作業が終了する。
δ3 = δ2 * (WR3-WL3) / {(WR2-WL2)-(WR3-WL3)}
In the same manner as described above, the XY stage is further driven and controlled by the necessary eccentric amount δ3 obtained from the above equation by the control signal from the control device 21, and the adjustment lens 1 is decentered to decenter the adjustment lens 1. The lead is adjusted. Then, this operation is continued until the flare difference converges within the specified value, and the adjustment operation ends when the difference falls within the specified value.

上記説明においては、Y方向の偏芯について述べたが、X方向についても、チャート像P2の測定ポイントS2におけるX方向の照度分布を元にX方向の偏芯量の測定及び調整がY方向の調整と同時に行われることは、上述の通りである。   In the above description, the eccentricity in the Y direction has been described. In the X direction, the measurement and adjustment of the eccentricity amount in the X direction can be performed in the Y direction based on the illuminance distribution in the X direction at the measurement point S2 of the chart image P2. What is performed simultaneously with the adjustment is as described above.

調整用レンズ1の偏芯調整が完了すると、次に、制御装置21は、レーザ照射ユニット10にレーザ照射の指令信号を発し、前述の通りレーザ光線が調整用レンズ1の外周部に照射され、調整用レンズ1とレンズ枠2との溶着固定が行われる。   When the eccentric adjustment of the adjustment lens 1 is completed, the control device 21 then issues a laser irradiation command signal to the laser irradiation unit 10, and the laser beam is irradiated on the outer peripheral portion of the adjustment lens 1 as described above. The adjustment lens 1 and the lens frame 2 are fixed by welding.

本実施の形態によれば、調整用レンズ1を組み込む工程及び偏芯調整工程、そしてレーザ照射によるレンズの溶着固定の工程は、本発明の固定装置の中で行われるので、従来のように、調整工程後、次の工程に場所を変更して、紫外線硬化型接着剤を塗布し、紫外線照射を行い固定するような複数の工程を必要とせず、さらに、レーザ光溶着によりレンズを固定するので、短時間にレンズの固定を行うことが出来る。   According to the present embodiment, the steps of incorporating the adjusting lens 1 and the eccentricity adjusting step, and the step of welding and fixing the lens by laser irradiation are performed in the fixing device of the present invention. After the adjustment process, change the location to the next process, apply UV curable adhesive, do not need multiple steps to fix by irradiating with UV, and also fix the lens by laser beam welding The lens can be fixed in a short time.

図7は、本発明の第2の実施の形態に係るレンズ固定装置の構成を概略的に示す図である。   FIG. 7 is a diagram schematically showing a configuration of a lens fixing device according to the second embodiment of the present invention.

本第2の実施の形態は、その構成が上記第1の実施の形態と基本的に同じであり、同じ構成要素については同一の符号を付して重複した説明を省略し、以下に、異なるもののみ説明する。   The configuration of the second embodiment is basically the same as that of the first embodiment, and the same components are denoted by the same reference numerals and redundant description is omitted. Only things are explained.

本実施の形態は、調整用レンズ1を偏芯調整する手段の構成が第1の実施の形態のXYステージ7と異なる。   This embodiment differs from the XY stage 7 of the first embodiment in the configuration of the means for adjusting the eccentricity of the adjustment lens 1.

図7において、レンズ固定装置100は、架台5の上に互いに離間又は接近すべく水平移動自在に取り付けられたX方向及びY方向夫々一対のモータ保持部材23を備える。各モータ保持部材23にはモータ22が取り付けられ、モータ22の出力軸には、モータ22の出力軸の回転に伴って軸方向に進退する(図1の矢印D,E)レンズ押圧部材24が取り付けられている。さらに、レンズ固定装置100は、調整用レンズ1をレンズ枠2に組み込むレンズ組込用把持装置25を備える(図8)。   In FIG. 7, the lens fixing device 100 includes a pair of motor holding members 23 in the X direction and the Y direction, which are mounted on the gantry 5 so as to be horizontally movable so as to be separated from or approach each other. A motor 22 is attached to each motor holding member 23, and a lens pressing member 24 is moved on the output shaft of the motor 22 in the axial direction as the output shaft of the motor 22 rotates (arrows D and E in FIG. 1). It is attached. Furthermore, the lens fixing device 100 includes a lens incorporation gripping device 25 that incorporates the adjustment lens 1 into the lens frame 2 (FIG. 8).

以下、図7のレンズ固定装置の動作を図7及び図8を参照しながら説明する。   The operation of the lens fixing device of FIG. 7 will be described below with reference to FIGS.

図8において、不図示の自動組込み装置又は組み立てを行う作業者が、レンズ3を支承した状態のレンズ枠2がその外周部2aにおいて架台5の保持部5aに嵌合保持されるようにレンズ枠2を架台5に組み込む。続いて、レンズ組込み用把持装置25が調整用レンズ1を縁部2c内に嵌合するようにレンズ枠2に組み込む。このとき、モータ22を保持するモータ保持部材23は、該組込み作業を阻害しないように架台5上を水平方向に離間(退避)した状態にある。調整用レンズ1がレンズ枠2に組み込まれ、レンズ組込み用把持装置25が退避した後、モータ保持部材23が図7に示す調整待機位置まで移動する。そして、図7において、レンズ押圧部材24の先端部24aが調整用レンズ1の外周上部1cを斜め方向に押圧し、調整用レンズ1の偏芯調整を行う。このとき、調整用レンズ1は斜め方向の押圧力の分力によりその座面1bがレンズ枠2の座面2bに対して押し付けられ、レンズの浮きや傾きを生ずることなく偏芯調整を行うことができる。そして、偏芯調整及びレーザ光照射による溶着が第1の実施の形態と同じように行われる。   In FIG. 8, the lens frame is arranged such that the lens frame 2 in a state where the lens 3 is supported by an automatic assembling apparatus or an assembly operator (not shown) is fitted and held by the holding portion 5a of the gantry 5 at the outer peripheral portion 2a. 2 is incorporated into the gantry 5. Subsequently, the lens incorporation gripping device 25 incorporates the adjustment lens 1 into the lens frame 2 so as to fit into the edge 2c. At this time, the motor holding member 23 holding the motor 22 is in a state of being separated (retracted) in the horizontal direction on the gantry 5 so as not to hinder the assembling work. After the adjustment lens 1 is incorporated into the lens frame 2 and the lens incorporation gripping device 25 is retracted, the motor holding member 23 moves to the adjustment standby position shown in FIG. In FIG. 7, the distal end portion 24 a of the lens pressing member 24 presses the outer peripheral upper portion 1 c of the adjustment lens 1 in an oblique direction to adjust the eccentricity of the adjustment lens 1. At this time, the seating surface 1b of the adjusting lens 1 is pressed against the seating surface 2b of the lens frame 2 by the component force of the oblique pressing force, and the eccentricity adjustment is performed without causing the lens to float or tilt. Can do. Then, the eccentricity adjustment and welding by laser light irradiation are performed in the same manner as in the first embodiment.

本発明の第1の実施の形態に係るレンズ固定装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the lens fixing device which concerns on the 1st Embodiment of this invention. 図1のレンズ固定装置の動作を説明する図である。It is a figure explaining operation | movement of the lens fixing device of FIG. 図1におけるチャートの平面図である。It is a top view of the chart in FIG. 図1におけるセンサ上に投影された図3のチャートパターンの投影像を示す平面図である。It is a top view which shows the projection image of the chart pattern of FIG. 3 projected on the sensor in FIG. 図4におけるチャート像の測定ポイントのY方向照度分布を説明する図であり、調整開始時点の場合を示す。It is a figure explaining the Y direction illumination intensity distribution of the measurement point of the chart image in FIG. 4, and shows the case of the adjustment start time. 図4におけるチャート像の測定ポイントのY方向照度分布を説明する図であり、δ1の偏芯調整完了後の場合を示す。It is a figure explaining the Y direction illuminance distribution of the measurement point of the chart image in FIG. 4, and shows the case after the eccentricity adjustment of δ1 is completed. 本発明の第2の実施の形態に係るレンズ固定装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the lens fixing device which concerns on the 2nd Embodiment of this invention. 図7のレンズ固定装置の動作を説明する図である。It is a figure explaining operation | movement of the lens fixing device of FIG.

符号の説明Explanation of symbols

1 調整用レンズ
2 レンズ枠
5 架台
7 XYステージ
8 光源
10 レーザ照射ユニット
13 レーザ光
18 センサ
20 画像処理装置
21 制御装置
100 レンズ固定装置
DESCRIPTION OF SYMBOLS 1 Adjustment lens 2 Lens frame 5 Base 7 XY stage 8 Light source 10 Laser irradiation unit 13 Laser light 18 Sensor 20 Image processing apparatus 21 Control apparatus 100 Lens fixing apparatus

Claims (4)

レンズをレンズ枠に固定するレンズ固定装置であって、
前記レンズを支持した前記レンズ枠が保持される架台と、
前記架台の一方側に配置される光源と、
前記架台の一方側にて、前記架台と前記光源との間に配置されるチャートと、
前記架台の他方側に配置され、前記光源を点灯したときに発生する前記チャートの投影像を反射させる反射部材と、
前記反射部材によって反射された前記チャートの投影像を受光するセンサと、
前記センサからの出力に基づいて前記レンズ枠に対する前記レンズの位置を調整する調整手段と、
前記架台の他方側に配置され、前記調整手段による前記レンズの位置調整が完了した後、前記反射部材の外側から前記レンズ枠に向けてレーザー光を照射するレーザー照射ユニットとを備えることを特徴とするレンズ固定装置。
A lens fixing device for fixing a lens to a lens frame ,
A frame on which the lens frame supporting the lens is held;
A light source disposed on one side of the gantry;
A chart disposed between the gantry and the light source on one side of the gantry;
A reflecting member that is disposed on the other side of the gantry and reflects a projected image of the chart that is generated when the light source is turned on;
A sensor for receiving a projected image of the chart reflected by the reflecting member;
Adjusting means for adjusting the position of the lens with respect to the lens frame based on the output from the sensor;
A laser irradiation unit disposed on the other side of the gantry and configured to irradiate laser light from the outside of the reflecting member toward the lens frame after the adjustment of the position of the lens by the adjusting unit is completed. Lens fixing device.
前記反射部材には、前記レーザー照射ユニットから照射されるレーザ光を断面リング状の光束に変換する円錐面が形成されることを特徴とする請求項1に記載のレンズ固定装置。 Wherein the reflecting member, the lens fixing device according to claim 1, characterized in Rukoto are formed conical surface which converts the laser beam emitted from the laser irradiation unit in cross section a ring-shaped light flux. 前記チャートと前記レンズ枠との間にて、マスターレンズが前記架台に固定されていることを特徴とする請求項1または2に記載のレンズ固定装置。 At between the chart and the lens frame, lens fixing device according to claim 1 or 2 the master lens is characterized that you have been fixed to the frame. 前記光源と前記レーザー照射ユニットとが同一軸上に配置されることを特徴とする請求項1ないしのいずれか1項に記載のレンズ固定装置。 Lens fixing device according to any one of claims 1 to 3 and the laser irradiation unit and wherein the light source Rukoto disposed on the same axis.
JP2005133314A 2005-04-28 2005-04-28 Lens fixing device Expired - Fee Related JP4717502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133314A JP4717502B2 (en) 2005-04-28 2005-04-28 Lens fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133314A JP4717502B2 (en) 2005-04-28 2005-04-28 Lens fixing device

Publications (2)

Publication Number Publication Date
JP2006308986A JP2006308986A (en) 2006-11-09
JP4717502B2 true JP4717502B2 (en) 2011-07-06

Family

ID=37475927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133314A Expired - Fee Related JP4717502B2 (en) 2005-04-28 2005-04-28 Lens fixing device

Country Status (1)

Country Link
JP (1) JP4717502B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274798B2 (en) * 2007-08-20 2013-08-28 東洋ゴム工業株式会社 Polishing pad and manufacturing method thereof
US8731347B2 (en) 2012-10-11 2014-05-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Lens standoff and protection for optical communication systems
JP5646028B2 (en) * 2013-10-07 2014-12-24 日立マクセル株式会社 Lens unit and camera module
KR101817937B1 (en) 2015-08-11 2018-01-12 (주)하이비젼시스템 Apparatus for active alignment of lens of camera module and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013388A (en) * 1999-06-29 2001-01-19 Canon Inc Optical axis adjustment method for lens system and optical axis adjustment device for lens system
JP2005028428A (en) * 2003-07-09 2005-02-03 Denso Corp Laser beam machining device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142965A (en) * 1992-11-11 1994-05-24 Mitsubishi Heavy Ind Ltd Heating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013388A (en) * 1999-06-29 2001-01-19 Canon Inc Optical axis adjustment method for lens system and optical axis adjustment device for lens system
JP2005028428A (en) * 2003-07-09 2005-02-03 Denso Corp Laser beam machining device

Also Published As

Publication number Publication date
JP2006308986A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
US8113813B2 (en) Optical shaping apparatus and shaping base
TWI352832B (en)
KR20110087401A (en) Auto focusing device and method of maskless exposure apparatus
JP4717502B2 (en) Lens fixing device
KR101939876B1 (en) Raser repair device
US20090316127A1 (en) Substrate, and method and apparatus for producing the same
JP5815869B2 (en) Lithographic apparatus, lithographic apparatus setup method, and device manufacturing method
JP5045402B2 (en) Stereolithography equipment
JP4381719B2 (en) Optical component fixing method, optical component fixing device and optical module by laser bonding
JP2001013388A (en) Optical axis adjustment method for lens system and optical axis adjustment device for lens system
TW202241623A (en) Adjustment method of laser processing apparatus, and laser processing apparatus
JP2007029959A (en) Laser beam machining apparatus
JP2004333946A (en) Method for manufacturing optical component unit, optical component fixing device, and optical component unit
JPH0936033A (en) Semiconductor aligner
JP2008176342A (en) Method and device for alignment and fixation
JP7355629B2 (en) How to adjust laser processing equipment
JP2006162947A (en) Optical device and optical member fixing method
JP2017049514A (en) Illumination unit, optical engine, and image projection device
JP2007232629A (en) Lens shape measuring instrument
JPWO2019059315A1 (en) Lighting equipment for exposure, exposure equipment and exposure method
CN114755770B (en) Automatic dimming system and dimming method for laser coupling optical fiber
JP2003057496A (en) Method and device for alignment and fixation
KR100649719B1 (en) Apparatus of Focusing Adjustment for Exposer
JP2019166780A (en) Apparatus, method, and program for manufacturing composite lens, and mold for manufacturing composite lens
JP2010040107A (en) Method of manufacturing optical pickup device, adjustment method, and manufacturing apparatus

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees