JP4717432B2 - Lighting control device - Google Patents

Lighting control device Download PDF

Info

Publication number
JP4717432B2
JP4717432B2 JP2004370465A JP2004370465A JP4717432B2 JP 4717432 B2 JP4717432 B2 JP 4717432B2 JP 2004370465 A JP2004370465 A JP 2004370465A JP 2004370465 A JP2004370465 A JP 2004370465A JP 4717432 B2 JP4717432 B2 JP 4717432B2
Authority
JP
Japan
Prior art keywords
period
power supply
voltage
load
disconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004370465A
Other languages
Japanese (ja)
Other versions
JP2006179261A (en
Inventor
尚延 藤本
昭助 森
哲 遠藤
廉 横田
智純 西郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2004370465A priority Critical patent/JP4717432B2/en
Publication of JP2006179261A publication Critical patent/JP2006179261A/en
Application granted granted Critical
Publication of JP4717432B2 publication Critical patent/JP4717432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は、照明制御装置に関し、特に、電球の断線を検出することができる照明制御装置に関する。   The present invention relates to an illumination control device, and more particularly, to an illumination control device that can detect disconnection of a light bulb.

白熱電球などの電球の照度を制御する調光制御装置は、従来からトライアックやサイリスタなどのスイッチング素子を利用して実現されている。例えば、電球にトライアックを接続した直列回路の両端に商用交流電源を接続し、トライアックのゲートパルスを交流電源の正負電圧に同期して供給して当該トライアックをオンさせ、そのゲートパルスの供給タイミングを変えることで電球が点灯している時間を調整する。   A dimming control device that controls the illuminance of a light bulb such as an incandescent light bulb is conventionally realized by using a switching element such as a triac or a thyristor. For example, a commercial AC power supply is connected to both ends of a series circuit in which a triac is connected to a light bulb, a triac gate pulse is supplied in synchronization with the positive / negative voltage of the AC power supply, the triac is turned on, and the supply timing of the gate pulse is determined. Adjust the amount of time the bulb is on by changing it.

また、冷陰極放電管の多階調輝度制御を可能にする駆動回路が提案されている(例えば、特許文献1)。更に、恒温槽のヒータの断線を検出する断線警報器が提案されている(例えば、特許文献2)。そして、照明装置の不完全接触により端子部が加熱するルーズコンタクトモードを防止することができる照明装置が提案されている。
特開平7−106089号公報 特開平11−83927号公報 特開平9−204987号公報
In addition, a drive circuit that enables multi-tone brightness control of a cold cathode discharge tube has been proposed (for example, Patent Document 1). Furthermore, a disconnection alarm device that detects disconnection of the heater of the thermostatic chamber has been proposed (for example, Patent Document 2). And the illuminating device which can prevent the loose contact mode which a terminal part heats by the incomplete contact of an illuminating device is proposed.
Japanese Patent Laid-Open No. 7-106089 Japanese Patent Laid-Open No. 11-83927 JP-A-9-204987

上記の調光制御装置に、電球の断線の有無を検出する機能を付加することが求められている。例えば、負荷である電球の断線を検出するためには、負荷の電流の有無を検出すれば良いが、消灯状態や0%調光状態にある電球に対してはそもそも電流を流さないので、負荷の電流の有無からはその断線状態を検出することができない。自動車のストップランプのように常時微少電流を流して、負荷の電流の有無を監視する方法も考えられるが、省エネルギーの観点から望ましくない。また、スイッチング素子の両端の電圧を監視することで、電球が断線した時にスイッチング素子に印加される電圧がゼロになることを検出する方法もあるが、100%調光時にはスイッチング素子自体が常時導通状態にあり、常時導通状態では電球が断線の有無にかかわらずスイッチング素子には電圧が印加されず、断線状態を検出することができない。   It is required to add a function for detecting the presence or absence of disconnection of a light bulb to the dimming control device. For example, in order to detect disconnection of a light bulb that is a load, it is only necessary to detect the presence or absence of the current of the load, but since no current flows to a light bulb that is in the off state or 0% dimming state, The disconnection state cannot be detected from the presence or absence of the current. Although a method of monitoring the presence or absence of a load current by always passing a very small current like a stop lamp of an automobile is conceivable, it is not desirable from the viewpoint of energy saving. There is also a method of detecting that the voltage applied to the switching element becomes zero when the bulb is disconnected by monitoring the voltage at both ends of the switching element, but the switching element itself is always conductive at 100% dimming. In the normal state, the voltage is not applied to the switching element regardless of whether the bulb is disconnected or not, and the disconnection state cannot be detected.

そこで、本発明の目的は、電球の断線を容易に検出可能にした照明制御装置を提供することにある。   Accordingly, an object of the present invention is to provide an illumination control device that can easily detect disconnection of a light bulb.

上記目的を達成するために、本発明の第1の側面によれば、交流電源が供給される電源端子と、負荷素子が接続される出力端子と、当該出力端子と電源端子との間に設けられたスイッチング素子と、前記交流電源に対応して前記スイッチング素子の導通を制御する負荷制御手段とを有し、前記スイッチング素子の導通タイミングを可変制御することで前記負荷素子への交流電源供給期間を可変制御して調光レベルを制御する照明制御装置であって、前記負荷制御手段は、調光レベルにかかわらず前記スイッチング素子の導通を強制的に行わない断線検出期間を有することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a power supply terminal to which AC power is supplied, an output terminal to which a load element is connected, and the output terminal and the power supply terminal are provided. An AC power supply period to the load element by variably controlling the conduction timing of the switching element. A lighting control device that controls the dimming level by variably controlling the load control means, wherein the load control means has a disconnection detection period in which the conduction of the switching element is not forced regardless of the dimming level. To do.

上記の側面において、より好ましい実施例では、前記スイッチング素子の両端の電圧を監視する電圧監視手段を有し、前記断線検出期間を含む断線判定期間において、前記電圧監視手段が少なくとも1回でも電圧印加が検出される場合に負荷素子の非断線状態が検出され、当該断線判定期間において、前記電圧監視手段が電圧印加を検出しない場合に負荷素子の断線状態が検出される。   In the above aspect, in a more preferable embodiment, the voltage monitoring unit that monitors the voltage across the switching element has voltage monitoring unit, and the voltage monitoring unit applies voltage at least once in the disconnection determination period including the disconnection detection period. Is detected, and the disconnection state of the load element is detected when the voltage monitoring means does not detect voltage application during the disconnection determination period.

また、本発明の別の側面によれば、交流電源が供給される電源端子と、負荷素子が接続される出力端子と、当該出力端子と電源端子との間に設けられたスイッチング素子と、前記交流電源に対応して前記スイッチング素子の導通を制御する負荷制御手段とを有し、前記スイッチング素子の導通タイミングを可変制御することで前記負荷素子への交流電源供給期間を可変制御して調光レベルを制御する照明制御装置であって、前記負荷制御手段は、点灯要求時に、前回の消灯からの経過時間が基準時間より長い場合には、調光レベルを第1の期間で徐々に上げながら点灯制御し、前記前回の消灯からの経過時間が前記基準時間より短い場合は、調光レベルを前記第1の期間より短い期間で上昇させて点灯制御することを特徴とする。   According to another aspect of the present invention, a power supply terminal to which AC power is supplied, an output terminal to which a load element is connected, a switching element provided between the output terminal and the power supply terminal, Load control means for controlling the conduction of the switching element corresponding to the AC power supply, and variably controlling the conduction timing of the switching element to variably control the AC power supply period to the load element to adjust the light. An illumination control device for controlling a level, wherein the load control means is configured to gradually increase the dimming level in the first period when the lighting request is made and the elapsed time from the previous extinction is longer than the reference time. The lighting control is performed, and when the elapsed time from the previous extinction is shorter than the reference time, the lighting control is performed by increasing the dimming level in a period shorter than the first period.

更に、本発明の別の側面によれば、交流電源が供給される電源端子と、負荷素子が接続される出力端子と、当該出力端子と電源端子との間に設けられたスイッチング素子と、前記交流電源に対応して前記スイッチング素子の導通を制御する負荷制御手段とを有し、前記スイッチング素子の導通タイミングを可変制御することで前記負荷素子への交流電源供給期間を可変制御して調光レベルを制御する照明制御装置において、前記負荷制御手段は、点灯要求時に、周囲の照度に応じて、調光レベルを第1の期間で徐々に上げながら点灯制御、または、調光レベルを前記第1の期間より短い期間で上昇させて点灯制御のいずれかを行うことを特徴とする照明制御装置。   Furthermore, according to another aspect of the present invention, a power supply terminal to which AC power is supplied, an output terminal to which a load element is connected, a switching element provided between the output terminal and the power supply terminal, Load control means for controlling the conduction of the switching element corresponding to the AC power supply, and variably controlling the conduction timing of the switching element to variably control the AC power supply period to the load element to adjust the light. In the lighting control device for controlling the level, the load control means, when requested to turn on, controls the lighting control or the dimming level while gradually increasing the dimming level in the first period according to the ambient illuminance. A lighting control device, wherein the lighting control device performs any one of the lighting controls by raising in a period shorter than one period.

上記の発明の第1の側面によれば、いかなる調光レベルであっても、断線検出期間におけるスイッチング素子の両端の電圧の有無をチェックすることにより負荷素子の断線状態を確実に検出することができる。よって、人手によるチェックを必要とせずに負荷素子の断線状態を検出することができ、照明制御装置の付加価値を高めることができる。   According to the first aspect of the present invention, the disconnection state of the load element can be reliably detected by checking the presence / absence of the voltage across the switching element in the disconnection detection period at any dimming level. it can. Therefore, the disconnection state of the load element can be detected without requiring manual check, and the added value of the lighting control device can be increased.

また、上記の発明の別の側面によれば、点灯要求時の点灯制御を、最適な態様で行うことが可能になる。   Further, according to another aspect of the present invention, it is possible to perform lighting control at the time of a lighting request in an optimal manner.

以下、図面にしたがって本発明の実施の形態について説明する。但し、本発明の技術的範囲はこれらの実施の形態に限定されず、特許請求の範囲に記載された事項とその均等物まで及ぶものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to these embodiments, but extends to the matters described in the claims and equivalents thereof.

図1は、本実施の形態の照明制御装置の回路図である。この照明制御装置は、商用交流電源が供給される電源端子10と、負荷である白熱電球が接続される出力端子12と、出力端子12と電源端子10との間に設けられるスイッチング素子T1とを有する。このスイッチング素子T1は、例えばトライアックなどの双方向のスイッチング素子、或いは、サイリスタを逆方向に並列に接続した素子で構成される。照明制御装置は、更に、スイッチング素子T1の導通タイミングを可変制御する負荷制御手段としての調光制御回路20を有する。この調光制御回路20は、電源端子10に接続されたゼロクロス点検出手段22からのゼロクロス点検出信号inを入力し、そのタイミングに同期して、スイッチング素子を導通させる出力信号outをゲート信号生成手段19に出力し、スイッチング素子T1を導通させる。   FIG. 1 is a circuit diagram of the illumination control device according to the present embodiment. The lighting control device includes a power supply terminal 10 to which commercial AC power is supplied, an output terminal 12 to which an incandescent bulb as a load is connected, and a switching element T1 provided between the output terminal 12 and the power supply terminal 10. Have. The switching element T1 is composed of a bidirectional switching element such as a triac or an element in which thyristors are connected in parallel in the opposite direction. The illumination control device further includes a dimming control circuit 20 as load control means for variably controlling the conduction timing of the switching element T1. The dimming control circuit 20 receives the zero cross point detection signal in from the zero cross point detecting means 22 connected to the power supply terminal 10, and generates an output signal out for making the switching element conductive in synchronization with the timing. It outputs to the means 19 and makes the switching element T1 conduct.

ゼロクロス点検出手段22は、抵抗R1,R2に接続される双方向の発光素子(例えばLED)と、抵抗R3に接続される受光素子とからなるフォトリレー素子からなり、電源端子10に印加される商用交流電源が正または負電圧の期間は発光素子が発光して、受光素子を導通させ、入力inをLレベルにし、商用交流電源がゼロクロスを通過するときに発光素子の発光が停止し、受光素子が非導通となり、入力inをHレベルにする。つまり、入力inが交流電源のゼロクロスタイミングを通知する信号になる。   The zero-cross point detection means 22 includes a photorelay element including a bidirectional light emitting element (for example, LED) connected to the resistors R1 and R2 and a light receiving element connected to the resistor R3, and is applied to the power supply terminal 10. While the commercial AC power supply is positive or negative voltage, the light emitting element emits light, the light receiving element is turned on, the input in is set to L level, and when the commercial AC power supply passes through the zero cross, the light emitting element stops emitting light and receives light The element becomes non-conductive, and the input in is set to H level. That is, the input in is a signal for notifying the zero cross timing of the AC power supply.

また、ゲート信号生成手段18は、抵抗R4に接続される発光素子と、抵抗R5,R6に接続される双方向の受光素子とを有するフォトリレー素子からなり、出力信号outに応答して、スイッチング素子T1のゲート端子Gにゲート信号を供給する。トライアックからなるスイッチング素子T1は、ゲート信号に応答して、導通状態になり、交流電源のゼロクロス時に非導通状態になる。ゼロクロス点検出手段22とゲート信号生成手段18は、いずれも、商用交流電源(例えば50Hz、100V)と、調光制御回路20の直流電源Vcc(例えば、直流5V)とを絶縁するために、フォトリレー素子で構成されている。そして、調光制御回路20は、例えば5Vの直流電源Vccにより動作するマイクロコンピュータからなる。   The gate signal generating means 18 is composed of a photorelay element having a light emitting element connected to the resistor R4 and a bidirectional light receiving element connected to the resistors R5 and R6, and performs switching in response to the output signal out. A gate signal is supplied to the gate terminal G of the element T1. The switching element T1 made of triac becomes conductive in response to the gate signal, and becomes non-conductive when the AC power supply is zero-crossed. Both the zero-cross point detection means 22 and the gate signal generation means 18 are arranged so as to insulate the commercial AC power supply (for example, 50 Hz, 100 V) from the DC power supply Vcc (for example, DC 5 V) of the dimming control circuit 20. It is composed of relay elements. The dimming control circuit 20 is composed of a microcomputer that operates with, for example, a DC power supply Vcc of 5V.

この照明制御回路では、ゼロクロス点検出手段22からのゼロクロス点検出信号inに応答して、調光制御回路20が導通制御用の出力信号パルスoutを所定のタイミングで出力し、それに応答して、ゲート信号生成手段18がゲート信号を生成し、トライアックからなるスイッチング素子T1を導通させる。スイッチング素子T1が導通している間、負荷素子である電球14に交流電源による電流が供給されて電球14が点灯する。そして、交流電源がゼロクロス点に達するとトライアックはオフ状態となり、電球14は自動的に消灯する。また、次の期間において、新たに出力信号outが生成されると電球14は点灯し、次の交流電源のゼロクロス点に達するまで点灯を継続する。このように、スイッチング素子T1は、交流電源の半周期毎に、調光制御回路20の出力信号outからそれに続くゼロクロス点までの期間で導通し、その期間において電球14を点灯させる。したがって、調光制御回路20の出力信号outのタイミングを早くすれば点灯期間を長くして、調光レベルを上げることができ、タイミングを遅くすれば点灯期間を短くして、調光レベルを下げることができる。よって、この出力信号outのタイミングを可変制御することにより、負荷素子である電球の点灯期間の長短を制御し、調光制御を行うことができる。   In this illumination control circuit, in response to the zero cross point detection signal in from the zero cross point detection means 22, the dimming control circuit 20 outputs an output signal pulse out for conduction control at a predetermined timing, and in response to this, The gate signal generation means 18 generates a gate signal, and turns on the switching element T1 made of triac. While the switching element T1 is conducting, a current from the AC power source is supplied to the light bulb 14 which is a load element, and the light bulb 14 is turned on. When the AC power supply reaches the zero cross point, the triac is turned off and the light bulb 14 is automatically turned off. Further, in the next period, when a new output signal out is generated, the light bulb 14 is turned on and continues to be turned on until the zero cross point of the next AC power supply is reached. Thus, the switching element T1 conducts in the period from the output signal out of the dimming control circuit 20 to the subsequent zero cross point every half cycle of the AC power supply, and turns on the bulb 14 in that period. Therefore, if the timing of the output signal out of the dimming control circuit 20 is advanced, the lighting period can be lengthened and the dimming level can be raised, and if the timing is delayed, the lighting period is shortened and the dimming level is lowered. be able to. Therefore, by variably controlling the timing of the output signal out, it is possible to control the length of the lighting period of the light bulb, which is the load element, and to perform dimming control.

本実施の形態では、スイッチング手段T1の両端の電圧を監視する電圧監視手段16を有する。この電圧監視手段16は、スイッチング手段T1の両端間に抵抗R7,R8を介して接続される双方向の発光素子と、その発光素子からの受光に応答して断線検出信号S16を生成する受光素子とで構成されるフォトリレー素子で構成される。受光素子には抵抗R9を介して直流電源Vccが接続され、受光素子が受光して導通すると、抵抗R9に電流が流れてLレベルを出力する。フォトリレー素子の出力はインバータ17により反転されて断線検出パルスS16が生成され、マイクロコンピュータである調光制御回路20の割り込み入力端子intに与えられる。したがって、スイッチング手段T1間に電圧が印加されると、インバータ17がHレベルの断線検出信号S16を出力する。   In the present embodiment, the voltage monitoring means 16 for monitoring the voltage across the switching means T1 is provided. The voltage monitoring means 16 includes a bidirectional light emitting element connected between both ends of the switching means T1 via resistors R7 and R8, and a light receiving element that generates a disconnection detection signal S16 in response to light received from the light emitting element. It is comprised with the photorelay element comprised by these. A DC power source Vcc is connected to the light receiving element via a resistor R9. When the light receiving element receives light and becomes conductive, a current flows through the resistor R9 and outputs an L level. The output of the photorelay element is inverted by the inverter 17 to generate a disconnection detection pulse S16, which is given to the interrupt input terminal int of the dimming control circuit 20 which is a microcomputer. Therefore, when a voltage is applied between the switching means T1, the inverter 17 outputs an H level disconnection detection signal S16.

そして、負荷素子である電球14の断線状態を検出可能にするために、調光制御を行う調光制御回路20が、調光レベルにかかわらず前記スイッチング素子の導通を強制的に行わない断線検出期間を有する。すなわち、商用交流電源は、50Hz(または60Hz)の周波数を有し、調光制御回路20は、半周期である10msec毎にゼロクロス点検出信号inを受信する。そして、調光制御回路20は、ゼロクロス点検出信号inに応答して、調光レベルに対応するタイミングで、出力信号outを出力する。但し、いかなる調光レベルであっても、調光制御回路20は、上記ゼロクロス点の周期よりも大きな周期で、前記出力信号outを出力しない断線検出期間を有する。この断線検出期間において出力信号outが出力されず、その期間はスイッチング手段T1が強制的に非導通状態にされ、いかなる調光レベルであっても、必ずスイッチング手段T1の両端に電圧が印加されうる状態、つまり、電圧監視手段16に電圧が印加されうる状態が生成される。   Then, in order to make it possible to detect the disconnection state of the light bulb 14 that is the load element, the dimming control circuit 20 that performs dimming control detects disconnection that does not forcibly conduct the switching element regardless of the dimming level. Have a period. That is, the commercial AC power supply has a frequency of 50 Hz (or 60 Hz), and the dimming control circuit 20 receives the zero cross point detection signal in every 10 msec which is a half cycle. Then, the dimming control circuit 20 outputs the output signal out at a timing corresponding to the dimming level in response to the zero cross point detection signal in. However, regardless of the dimming level, the dimming control circuit 20 has a disconnection detection period in which the output signal out is not output at a cycle longer than the cycle of the zero cross point. During this disconnection detection period, the output signal out is not output, and during that period, the switching means T1 is forcibly turned off, and a voltage can be applied to both ends of the switching means T1 at any dimming level. A state, that is, a state in which a voltage can be applied to the voltage monitoring unit 16 is generated.

そこで、負荷素子である電球14が導通状態にあれば、上記断線検出期間においてスイッチング手段T1の両端に電圧が印加され、電圧監視手段16がその電圧を検出し、発光素子が発光し受光素子が導通し、断線検出信号S16をHレベルにする。一方、負荷素子である電球14が断線状態であれば、上記断線検出期間においてスイッチング手段T1の両端には電圧は印加されないので、電圧監視手段16は電圧印加を検出せず、発光素子は発光せず受光素子も導通せず、断線検出信号S16をLレベルに維持する。交流電源がゼロクロス点近傍にあるときは、スイッチング素子T1への印加電圧が低く、電圧監視手段16は断線検出信号S16をLレベルの状態にするが、断線検出期間において電球14が導通状態にあれば電圧印加を検出して断線検出信号S16をHレベルにするが、電球14が非導通状態であれば電圧印加を検出できず断線検出信号S16をLレベルのままにする。   Therefore, if the light bulb 14 which is a load element is in a conductive state, a voltage is applied to both ends of the switching means T1 in the disconnection detection period, the voltage monitoring means 16 detects the voltage, the light emitting element emits light, and the light receiving element Conduction is performed, and the disconnection detection signal S16 is set to the H level. On the other hand, if the light bulb 14 serving as the load element is in a disconnected state, no voltage is applied to both ends of the switching means T1 during the disconnection detection period, so that the voltage monitoring means 16 does not detect voltage application and the light emitting element does not emit light. In addition, the light receiving element is not conducted, and the disconnection detection signal S16 is maintained at the L level. When the AC power supply is in the vicinity of the zero cross point, the voltage applied to the switching element T1 is low, and the voltage monitoring unit 16 sets the disconnection detection signal S16 to the L level, but the bulb 14 is in the conductive state during the disconnection detection period. For example, voltage application is detected and the disconnection detection signal S16 is set to H level. However, if the light bulb 14 is in a non-conductive state, voltage application cannot be detected and the disconnection detection signal S16 remains at L level.

以下、本実施の形態における照明制御回路の動作を、調光レベル毎に説明する。図2は、調光レベル0%の時の動作波形図である。図中、横軸は時間であり、左側に電球が正常状態の動作を、右側に電球が断線状態の動作を示す。まず、電源端子ACINに供給される商用交流電源は、50Hzの100V交流電源である。図示しないが、この交流電源ACINがゼロクロスを通過するたびに、つまり半周期毎に、調光制御回路20にゼロクロス点検出信号inが供給される。そして、調光レベル0%であるので、このゼロクロス点検出信号inに応答して出力信号outが生成されることはない。それに伴い、スイッチング手段T1は導通することはなく、常に非導通状態に制御される。   Hereinafter, the operation of the illumination control circuit in the present embodiment will be described for each dimming level. FIG. 2 is an operation waveform diagram when the dimming level is 0%. In the drawing, the horizontal axis represents time, and the operation on the left side of the bulb is in a normal state, and the operation on the right side of the bulb is in a disconnected state. First, the commercial AC power supplied to the power terminal ACIN is a 50 Hz 100 V AC power source. Although not shown, the zero cross point detection signal in is supplied to the dimming control circuit 20 every time the AC power supply ACIN passes through the zero cross, that is, every half cycle. Since the light control level is 0%, the output signal out is not generated in response to the zero cross point detection signal in. Accordingly, the switching means T1 does not conduct and is always controlled to a non-conducting state.

左側の電球正常状態において、スイッチング手段T1が非導通であるので、印加される交流電圧は、低抵抗の電球14には印加されず、高抵抗のスイッチング手段T1に印加される。したがって、電圧監視手段16の発光素子の両端の監視電圧は、入力交流電圧と同じになり、監視電圧が発光素子の閾値レベルを超える期間、発光素子が発光し、断線検出信号S16がHレベルになる。但し、監視電圧がゼロクロスになる前後において、発光素子が非発光状態になり、断線検出信号S16はLレベルになる。つまり、断線検出信号S16は入力交流信号の半周期毎にHレベルになる。   Since the switching means T1 is non-conductive in the normal state of the left light bulb, the applied AC voltage is not applied to the low resistance light bulb 14, but is applied to the high resistance switching means T1. Therefore, the monitoring voltage at both ends of the light emitting element of the voltage monitoring means 16 becomes the same as the input AC voltage, the light emitting element emits light during the period when the monitoring voltage exceeds the threshold level of the light emitting element, and the disconnection detection signal S16 becomes H level. Become. However, before and after the monitoring voltage becomes zero cross, the light emitting element is in a non-light emitting state, and the disconnection detection signal S16 becomes L level. That is, the disconnection detection signal S16 becomes H level every half cycle of the input AC signal.

一方、右側の電球断線状態において、スイッチング手段T1には電圧は印加されず、電圧監視手段16の発光素子の両端の監視電圧は、ゼロになる。したがって、断線検出信号S16はLレベルに維持される。   On the other hand, in the light bulb disconnection state on the right side, no voltage is applied to the switching means T1, and the monitoring voltage across the light emitting element of the voltage monitoring means 16 becomes zero. Therefore, the disconnection detection signal S16 is maintained at the L level.

図3は、調光レベル10%の時の動作波形図である。この図においても、左側に電球が正常状態の動作を、右側に電球が断線状態の動作を示す。調光レベル10%であるので、調光制御回路20は、ゼロクロス点検出信号inに応答して、出力信号outを所定の遅いタイミングでHレベルにする。この出力信号outのHレベルに応答して、スイッチング手段T1のゲートパルスが生成され、スイッチング手段T1が導通する。そして、導通した後の交流電源のゼロクロス点でスイッチング手段T1が非導通となる。したがって、負荷である電球14への負荷電圧ACOUTは、図示されるとおり、交流電源の半周期の最後の期間において、電力供給可能状態になる。   FIG. 3 is an operation waveform diagram when the light control level is 10%. Also in this figure, the operation of the light bulb in the normal state is shown on the left side, and the operation of the light bulb in the disconnected state is shown on the right side. Since the dimming level is 10%, the dimming control circuit 20 sets the output signal out to the H level at a predetermined late timing in response to the zero cross point detection signal in. In response to the H level of the output signal out, the gate pulse of the switching means T1 is generated, and the switching means T1 becomes conductive. Then, the switching means T1 becomes non-conductive at the zero cross point of the AC power supply after being conductive. Therefore, the load voltage ACOUT to the light bulb 14 as a load is in a power supply enabled state in the last period of the half cycle of the AC power supply, as shown in the figure.

そこで、左側の電球正常状態において、スイッチング手段T1が導通する短い期間において、負荷電圧ACOUTが発生し、それ以外の期間は、スイッチング手段T1が非導通となり、監視電圧が電圧監視手段16に印加される。それに伴い、Hレベルの断線検出信号S16が生成される。一方、右側の電球断線状態において、スイッチング手段T1が導通と非導通とに制御されるが、電球14が断線状態であるので、スイッチング手段T1には電圧印加はなく、監視電圧はゼロになる。したがって、電球14が断線状態の時は、断線検出信号S16はHレベルにはならない。   Therefore, in the normal state of the left bulb, the load voltage ACOUT is generated in a short period in which the switching means T1 is conductive. In other periods, the switching means T1 is non-conductive and the monitoring voltage is applied to the voltage monitoring means 16. The Accordingly, an H level disconnection detection signal S16 is generated. On the other hand, in the light bulb disconnection state on the right side, the switching means T1 is controlled to be conductive or nonconductive, but since the light bulb 14 is in a disconnected state, no voltage is applied to the switching means T1 and the monitoring voltage becomes zero. Therefore, when the light bulb 14 is in a disconnected state, the disconnection detection signal S16 does not become H level.

なお、本実施の形態では、負荷制御手段である調光制御回路20が、調光レベルにかかわらずスイッチング素子T1の導通を強制的に行わない断線検出期間TXを有する。この断線検出期間TXは、調光レベルへの影響を最小限にするために、比較的長い周期に1回の頻度で発生し、その断線検出期間TXでは、調光制御回路20は出力信号outを出力しない。本実施の形態では、交流電源の1つの半周期の期間において出力信号outが出力されず、スイッチング手段T1がオフの状態にされる。この断線検出期間TXは、例えば、50Hzの交流電源に対して、数秒に1回の頻度で設けられる。   In the present embodiment, the dimming control circuit 20 serving as the load control means has a disconnection detection period TX in which the switching element T1 is not forcibly conducted regardless of the dimming level. The disconnection detection period TX is generated with a frequency of once in a relatively long period in order to minimize the influence on the dimming level. In the disconnection detection period TX, the dimming control circuit 20 outputs the output signal out. Is not output. In the present embodiment, the output signal out is not output during one half cycle of the AC power supply, and the switching means T1 is turned off. This disconnection detection period TX is provided, for example, at a frequency of once every few seconds for an AC power supply of 50 Hz.

この断線検出期間TXでは、スイッチング手段T1が導通しないので、電球正常状態では、図中100に示すとおり監視電圧が交流電源と同じになり、それに対応して断線検出信号S16が生成される。また、電球断線状態では、スイッチング手段T1が導通しなくても、監視電圧はゼロであるので、断線検出信号S16は生成されない。   In the disconnection detection period TX, since the switching means T1 is not conducted, the monitoring voltage is the same as that of the AC power source as indicated by 100 in the figure in the normal state of the bulb, and the disconnection detection signal S16 is generated correspondingly. In the light bulb disconnection state, the disconnection detection signal S16 is not generated because the monitoring voltage is zero even if the switching means T1 is not conducted.

図4は、調光レベル50%の時の動作波形図である。この図においても、左側に電球が正常状態の動作を、右側に電球が断線状態の動作を示す。調光レベル10%の図3と同様の動作であるが、調光レベルが50%と高いので、調光制御回路20の出力信号outの立ち上がりタイミングがより早くなっている。それに伴い、負荷電圧と監視電圧との割合が異なっている。それ以外は、図3と同じである。   FIG. 4 is an operation waveform diagram when the light control level is 50%. Also in this figure, the operation of the light bulb in the normal state is shown on the left side, and the operation of the light bulb in the disconnected state is shown on the right side. Although the operation is the same as that of FIG. 3 with a dimming level of 10%, the rising timing of the output signal out of the dimming control circuit 20 is earlier because the dimming level is as high as 50%. Accordingly, the ratio between the load voltage and the monitoring voltage is different. The rest is the same as FIG.

図4において、断線検出期間TXにおいて出力信号outが出力されないので、その期間TXでは、電球正常状態では監視電圧が交流電圧と等しくなり、電球断線状態では監視電圧はゼロになる。それに伴い、断線検出信号S16は、電球正常状態ではHレベルとなり、電球断線状態ではLレベルのままとなる。   In FIG. 4, since the output signal out is not output in the disconnection detection period TX, the monitoring voltage becomes equal to the AC voltage in the normal state of the bulb, and the monitoring voltage becomes zero in the disconnection state of the bulb. Accordingly, the disconnection detection signal S16 is at the H level when the bulb is in a normal state and remains at the L level when the bulb is disconnected.

図5は、調光レベル90%の時の動作波形図である。この図も、調光レベル10%の図3及び調光レベル50%の図4と同様の動作である。但し、調光レベルが90%と高いので、調光制御回路20の出力信号outの立ち上がりタイミングは、交流電源ACINのゼロクロス点のすぐ後に制御されている。そのため、電球正常状態における負荷電圧ACOUTは、長い期間にわたり交流電源ACINと同じになり、電球14は長い期間点灯し、調光レベル90%を実現する。   FIG. 5 is an operation waveform diagram when the light control level is 90%. This figure is also the same operation as FIG. 3 with a light control level of 10% and FIG. 4 with a light control level of 50%. However, since the dimming level is as high as 90%, the rising timing of the output signal out of the dimming control circuit 20 is controlled immediately after the zero cross point of the AC power supply ACIN. Therefore, the load voltage ACOUT in the normal state of the bulb is the same as the AC power supply ACIN for a long period of time, and the bulb 14 is lit for a long period of time to achieve a dimming level of 90%.

一方、電圧監視手段16に印加される監視電圧は、図示されるように、電球正常状態では、わずかな期間のみ交流電圧が印加されるだけであり、断線検出信号S16は、短いHレベルパルスになる。しかし、断線検出期間TXでは、スイッチング手段T1が強制的に非導通に制御されるので、電球正常状態では、交流電源と同じ電圧が印加される(図中100)。それにより、断線検出信号S16は、ほぼ半周期の期間Hレベルとなる。一方で、電球が断線状態であると、スイッチング手段T1には電圧印加はなく、スイッチング手段T1の状態にかかわらず、監視電圧がゼロであるので、断線検出信号S16はLレベルのままとなる。   On the other hand, as shown in the figure, the monitoring voltage applied to the voltage monitoring means 16 is only an AC voltage applied for a short period in the normal state of the bulb, and the disconnection detection signal S16 is a short H level pulse. Become. However, in the disconnection detection period TX, the switching means T1 is forcibly controlled to be non-conductive, so that the same voltage as the AC power supply is applied in the normal state of the bulb (100 in the figure). As a result, the disconnection detection signal S16 is at the H level for a period of approximately half a cycle. On the other hand, when the light bulb is in a disconnected state, no voltage is applied to the switching unit T1, and the monitoring voltage is zero regardless of the state of the switching unit T1, and thus the disconnection detection signal S16 remains at the L level.

図5に示されるとおり、調光レベルが高くなると、電球が正常状態であっても監視電圧は短い期間のみしか発生しないので、断線検出信号S16のパルス幅は短くなる。しかし、断線検出期間TXにおいてスイッチング手段T1を強制的に非導通状態にするので、電球正常状態であれば、その間に監視電圧が発生し、断線検出信号S16のパルス幅は十分長くなる。よって、マイクロコンピュータで構成される調光制御回路20の割り込み信号端子intで、適切に断線検出信号S16のHレベルを検出することができる。   As shown in FIG. 5, when the dimming level is increased, the monitoring voltage is generated only for a short period even when the bulb is in a normal state, so that the pulse width of the disconnection detection signal S16 is shortened. However, since the switching means T1 is forcibly turned off in the disconnection detection period TX, the monitoring voltage is generated during the normal state of the bulb, and the pulse width of the disconnection detection signal S16 becomes sufficiently long. Therefore, it is possible to appropriately detect the H level of the disconnection detection signal S16 at the interrupt signal terminal int of the dimming control circuit 20 configured by a microcomputer.

図6は、調光レベル100%の時の動作波形図である。調光レベル100%とは、スイッチング手段T1が常に導通状態に維持されることを意味する。つまり、調光制御回路20は、出力信号outを常にHレベルに維持し、入力交流電源ACINが全て負荷素子の電球14に印加されるように制御する。その結果、スイッチング手段T1の抵抗は常にゼロまたは微少レベルとなり、電球が正常状態であっても断線状態であっても、入力交流電源ACINがそのまま負荷電圧ACOUTとなり、監視電圧は常にゼロになる。   FIG. 6 is an operation waveform diagram when the light control level is 100%. A dimming level of 100% means that the switching means T1 is always maintained in a conductive state. That is, the dimming control circuit 20 controls the output signal out so that it is always maintained at the H level and all the input AC power supply ACIN is applied to the light bulb 14 of the load element. As a result, the resistance of the switching means T1 is always zero or a minute level, and the input AC power supply ACIN remains the load voltage ACOUT as it is regardless of whether the bulb is in a normal state or a disconnected state, and the monitoring voltage is always zero.

しかしながら、本実施の形態では、適切な周期で断線検出期間TXを設け、その期間TXでは出力信号outがLレベルにされ、スイッチング手段T1が強制的に非導通状態にされる。それにより、電球正常状態では、図中100に示されるとおり、電圧監視手段16に印加される監視電圧が入力交流電源と同じになり、断線検出信号S16がHレベルになる。一方、電球断線状態では、図中200に示されるとおり、電圧監視手段16には電圧が印加されず、断線検出信号S16はLレベルに維持される。したがって、断線検出期間TXを含む断線判定期間Tyにおいて断線検出信号S16がHレベルになるか否かをチェックすることで、負荷素子である電球の断線状態を検出することができる。しかも、調光レベル100%では、断線検出期間TXを除いては入力交流電源ACINを全て電球への負荷電圧ACOUTとすることができ、定格電源をほぼ最大限負荷素子に印加することができ、エネルギー効率を高くすることができる。   However, in the present embodiment, the disconnection detection period TX is provided with an appropriate period, and during that period TX, the output signal out is set to the L level, and the switching means T1 is forcibly made non-conductive. Thereby, in the normal state of the bulb, as shown by 100 in the figure, the monitoring voltage applied to the voltage monitoring means 16 becomes the same as the input AC power supply, and the disconnection detection signal S16 becomes H level. On the other hand, in the light bulb disconnection state, as shown by 200 in the figure, no voltage is applied to the voltage monitoring means 16, and the disconnection detection signal S16 is maintained at the L level. Therefore, by checking whether or not the disconnection detection signal S16 becomes H level in the disconnection determination period Ty including the disconnection detection period TX, it is possible to detect the disconnection state of the light bulb that is the load element. In addition, at the dimming level of 100%, all the input AC power supply ACIN can be set to the load voltage ACOUT to the light bulb except for the disconnection detection period TX, and the rated power supply can be applied to the load element to the maximum extent. Energy efficiency can be increased.

本実施の形態では、図1に示したとおり、断線検出信号S16がマイクロコンピュータである調光制御回路20の割り込み信号端子intに供給される。調光制御回路20では、少なくとも断線検出期間TXを含む断線判定期間Tyの間、割り込み信号端子intをイネーブル状態にし、その間にHレベルに立ち上がるエッジ信号が入力されるか否かをチェックする。そのため、中間的な調光レベルの場合は、例えば図4に示されるように、断線検出期間TXを含む前後の半周期の期間からなる断線判定期間Tyを設定すると、監視電圧が発生して断線検出信号S16が少なくとも1回でも立ち上がりエッジ信号を発生すると、調光制御回路20は、電球正常状態を検出する。また、1回でも立ち上がりエッジ信号が発生しないと、調光制御回路20は、電球断線状態を検出する。図2,3,5の調光レベル0%、10%、90%の場合も同様にして電球断線状態を検出する。また、調光レベル100%の時は、図6に示されるとおり、調光判定期間Tyにおいて、電球正常状態であれば、1回の立ち上がりエッジを検出して断線なしと判定し、電球断線状態であれば、1回も立ち上がりエッジを検出せずに断線ありと判定する。したがって、この調光判定期間Tyは、調光検出期間TXと厳格に一致させても良いが、上記のように、調光検出期間TXを含む少し長い期間にすることができ、調光制御回路20内の割り込み検出動作を簡単化することができる。   In the present embodiment, as shown in FIG. 1, the disconnection detection signal S16 is supplied to the interrupt signal terminal int of the dimming control circuit 20 which is a microcomputer. The dimming control circuit 20 enables the interrupt signal terminal int during at least the disconnection determination period Ty including the disconnection detection period TX, and checks whether an edge signal rising to the H level is input during that period. Therefore, in the case of an intermediate dimming level, for example, as shown in FIG. 4, if a disconnection determination period Ty consisting of a period of a half cycle before and after the disconnection detection period TX is set, a monitoring voltage is generated and the disconnection occurs. When the detection signal S16 generates a rising edge signal even at least once, the dimming control circuit 20 detects the normal state of the bulb. If no rising edge signal is generated even once, the dimming control circuit 20 detects a light bulb disconnection state. In the case of the dimming levels of 0%, 10%, and 90% in FIGS. When the light control level is 100%, as shown in FIG. 6, if the light bulb is in a normal state in the light control determination period Ty, one rising edge is detected and it is determined that there is no disconnection. If so, it is determined that there is a disconnection without detecting the rising edge even once. Therefore, the dimming determination period Ty may be strictly matched with the dimming detection period TX. However, as described above, the dimming determination period Ty can be a slightly longer period including the dimming detection period TX. The interrupt detection operation within 20 can be simplified.

以上の実施の形態によれば、調光レベルにかかわらず、負荷素子である電球の断線状態を確実に検出することができる。したがって、例えば、劇場内の照明装置においてどの電球が断線状態にあるかを自動的に検出することができる。調光制御回路20が断線状態を検出した場合は、図示しない制御パネル上に断線状態を表示するようにすることで、制御パネル上で電球断線を検知することができ、電球の取り替えを適切に行うことができる。   According to the above embodiment, the disconnection state of the light bulb as a load element can be reliably detected regardless of the dimming level. Therefore, for example, it is possible to automatically detect which bulb is in a disconnected state in a lighting device in a theater. When the dimming control circuit 20 detects a disconnection state, by displaying the disconnection state on a control panel (not shown), it is possible to detect the disconnection of the light bulb on the control panel, and appropriately replace the light bulb. It can be carried out.

図7は、別の実施の形態における照明の点灯開始制御を示すフローチャート図である。上記の発明において、マイクロコンピュータを利用した調光制御回路20による調光制御機能を利用して、点灯開始時の改良された制御について説明する。図7(1)は、消灯後から経過した時間の長さに応じて、点灯開始制御を異ならせる一例である。この点灯開始制御では、点灯指令を受けたときに、消灯後所定の時間以上経過している場合は(S100のYES)、周囲が暗い場合を想定して、徐々に照度を上げるように調光制御して点灯を行う(S102)。つまり、調光制御回路20は、調光%をゼロ%から100%に上げるように、出力信号outの出力タイミングを遅いタイミングから徐々に早くするように制御する。これにより、そこに居る人の目に点灯によるストレスをかけないようにする。また、消灯後、所定の時間以上経過していない場合は(工程S100のNO)、そこに居る人の目が明るい状態に慣れていると想定して、短時間で点灯するように調光制御して点灯を行う(S204)。   FIG. 7 is a flowchart showing lighting start control in another embodiment. In the above invention, the improved control at the start of lighting will be described using the dimming control function by the dimming control circuit 20 using a microcomputer. FIG. 7 (1) is an example in which the lighting start control is varied according to the length of time that has elapsed since the lights were turned off. In this lighting start control, when a lighting command is received, if the specified time has passed since turning off (YES in S100), dimming to gradually increase the illuminance assuming that the surroundings are dark Lighting is performed under control (S102). That is, the dimming control circuit 20 performs control so that the output timing of the output signal out is gradually advanced from the late timing so that the dimming percent is increased from zero% to 100%. As a result, the stress of lighting on the eyes of those who are present is prevented. In addition, if the specified time has not elapsed after turning off (NO in step S100), it is assumed that the eyes of the person there are accustomed to a bright state, and the dimming control is performed so that the light turns on in a short time. And turn on (S204).

図7(2)は、別の点灯開始制御の例であり、周囲の明るさに応じて、点灯開始制御を異ならせる例である。点灯指令を受けたときに、別途取り付けた照度センサからのセンサ出力により周囲の照度が明るいか否かをチェックし(S200)、周囲の照度が明るい場合は、そこに居る人は明るい状態になれていると想定して、短時間で点灯するように調光制御して点灯を行う(S202)。また、周囲の照度が暗い場合は、そこに居る人は暗い状態になれていると想定して、徐々に照度を上げるように調光制御して点灯する(S204)。   FIG. 7B is an example of another lighting start control, and is an example in which the lighting start control is varied according to the surrounding brightness. When the lighting command is received, the sensor output from the separately installed illuminance sensor is used to check whether the ambient illuminance is bright (S200). Assuming that the light is lit, the light is controlled so that the light is lit in a short time (S202). If the ambient illuminance is dark, it is assumed that the person in the surrounding area is in a dark state, and the light is controlled to light up gradually so that the illuminance is gradually increased (S204).

図7(2)の点灯開始制御方法は、周囲の照度に応じて、工程S202とS204とを逆にしても良い。つまり、点灯指令を受けた時に、周囲の照度が高ければ徐々に照度を上げるよう調光制御して点灯して照度の急変を感じさせないようにし、周囲の照度が低ければ、明るくなることを予測していると想定して、短時間で照度を上げて点灯する。   In the lighting start control method in FIG. 7B, steps S202 and S204 may be reversed according to the ambient illuminance. In other words, when a lighting command is received, dimming control is performed so as to gradually increase the illuminance if the surrounding illuminance is high, so that it does not feel a sudden change in illuminance, and if the surrounding illuminance is low, it is predicted to become brighter Assuming that the light is on, turn on the illuminance in a short time.

上記の3つの点灯制御例を、利用者が事前にカスタマイズできるようにしても良いし、点灯制御する場所、環境、用途に応じてカスタマイズするようにしても良い。いずれにしても、調光制御機能を利用することにより、第1の実施の形態のように、電球の断線状態を自動的に検出することができると共に、所定の条件に応じて異なる点灯開始制御を行うこともできる。

以上の実施の形態をまとめると以下の付記の通りである。
The above three lighting control examples may be customized in advance by the user, or may be customized according to the place, environment, and usage of lighting control. In any case, by using the dimming control function, the disconnection state of the light bulb can be automatically detected as in the first embodiment, and different lighting start control is performed according to a predetermined condition. Can also be done.

The above embodiment is summarized as follows.

(付記1)交流電源が供給される電源端子と、負荷素子が接続される出力端子と、当該出力端子と電源端子との間に設けられたスイッチング素子と、前記交流電源に対応して前記スイッチング素子の導通を制御する負荷制御手段とを有し、前記スイッチング素子の導通タイミングを可変制御することで前記負荷素子への交流電源供給期間を可変制御して調光レベルを制御する照明制御装置において、
前記負荷制御手段は、調光レベルにかかわらず前記スイッチング素子の導通を強制的に行わない断線検出期間を有することを特徴とする照明制御装置。
(Supplementary Note 1) A power supply terminal to which AC power is supplied, an output terminal to which a load element is connected, a switching element provided between the output terminal and the power supply terminal, and the switching corresponding to the AC power supply And a load control unit that controls conduction of the element, and variably controls the conduction timing of the switching element to variably control the AC power supply period to the load element to control the dimming level. ,
The load control unit has a disconnection detection period in which the conduction of the switching element is not forcibly performed regardless of the dimming level.

(付記2)付記1において、
前記スイッチング素子の両端の電圧を監視する電圧監視手段を有し、
前記断線検出期間を含む断線判定期間において、前記電圧監視手段が少なくとも1回でも電圧印加が検出される場合に負荷素子の非断線状態が検出され、当該断線判定期間において、前記電圧監視手段が電圧印加を検出しない場合に負荷素子の断線状態が検出されることを特徴とする照明制御装置。
(Appendix 2) In Appendix 1,
Voltage monitoring means for monitoring the voltage across the switching element;
In the disconnection determination period including the disconnection detection period, when the voltage monitoring means detects at least one voltage application, a non-disconnection state of the load element is detected. In the disconnection determination period, the voltage monitoring means An illumination control device, wherein a disconnection state of a load element is detected when application is not detected.

(付記3)付記1において、
前記スイッチング素子は、前記負荷制御手段からの導通制御信号に応答して導通状態になり、前記交流電源のゼロクロスに応答して非導通状態になることを特徴とする照明制御装置。
(Appendix 3) In Appendix 1,
The lighting control device according to claim 1, wherein the switching element is turned on in response to a conduction control signal from the load control means, and is turned off in response to a zero cross of the AC power supply.

(付記4)付記3において、
前記負荷制御手段は、前記導通制御信号を、前記交流電源のゼロクロスから所定時間後に出力し、当該負荷制御手段は、前記所定時間を長くすることで調光レベルを下げ、短くすることで調光レベルを上げるよう制御することを特徴とする照明制御装置。
(Appendix 4) In Appendix 3,
The load control means outputs the continuity control signal after a predetermined time from the zero cross of the AC power supply, and the load control means lowers the dimming level by shortening the dimming level by increasing the predetermined time and dimming by shortening the dimming level. An illumination control device that controls to increase the level.

(付記5)交流電源が供給される電源端子と、負荷素子が接続される出力端子と、当該出力端子と電源端子との間に設けられたスイッチング素子と、前記交流電源に対応して前記スイッチング素子の導通を制御する負荷制御手段とを有し、前記スイッチング素子の導通タイミングを可変制御することで前記負荷素子への交流電源供給期間を可変制御して調光レベルを制御する照明制御装置において、
前記負荷制御手段は、点灯要求時に、前回の消灯からの経過時間が基準時間より長い場合には、調光レベルを第1の期間で徐々に上げながら点灯制御し、前記前回の消灯からの経過時間が前記基準時間より短い場合は、調光レベルを前記第1の期間より短い期間で上昇させて点灯制御することを特徴とする照明制御装置。
(Supplementary Note 5) A power supply terminal to which AC power is supplied, an output terminal to which a load element is connected, a switching element provided between the output terminal and the power supply terminal, and the switching corresponding to the AC power supply And a load control unit that controls conduction of the element, and variably controls the conduction timing of the switching element to variably control the AC power supply period to the load element to control the dimming level. ,
The load control means controls the lighting while gradually increasing the dimming level in the first period when the elapsed time from the previous extinction is longer than the reference time when the lighting is requested, and the elapsed from the previous extinction When the time is shorter than the reference time, the lighting control device controls lighting by increasing the dimming level in a period shorter than the first period.

(付記6)交流電源が供給される電源端子と、負荷素子が接続される出力端子と、当該出力端子と電源端子との間に設けられたスイッチング素子と、前記交流電源に対応して前記スイッチング素子の導通を制御する負荷制御手段とを有し、前記スイッチング素子の導通タイミングを可変制御することで前記負荷素子への交流電源供給期間を可変制御して調光レベルを制御する照明制御装置において、
前記負荷制御手段は、点灯要求時に、周囲の照度に応じて、調光レベルを第1の期間で徐々に上げながら点灯制御、または、調光レベルを前記第1の期間より短い期間で上昇させて点灯制御のいずれかを行うことを特徴とする照明制御装置。
(Appendix 6) A power supply terminal to which AC power is supplied, an output terminal to which a load element is connected, a switching element provided between the output terminal and the power supply terminal, and the switching corresponding to the AC power supply And a load control unit that controls conduction of the element, and variably controls the conduction timing of the switching element to variably control the AC power supply period to the load element to control the dimming level. ,
The load control means, when requested to turn on, raises the light control level while gradually increasing the dimming level in the first period according to the ambient illuminance, or increases the dimming level in a shorter period than the first period. A lighting control device that performs any one of lighting control.

本実施の形態の照明制御装置の回路図である。It is a circuit diagram of the illumination control apparatus of this Embodiment. 調光レベル0%の時の動作波形図である。FIG. 6 is an operation waveform diagram at a dimming level of 0%. 調光レベル10%の時の動作波形図である。It is an operation | movement waveform diagram at the time of 10% of light control levels. 調光レベル50%の時の動作波形図である。It is an operation | movement waveform diagram at the time of light control level 50%. 調光レベル90%の時の動作波形図である。It is an operation | movement waveform diagram at the time of 90% of light control levels. 調光レベル100%の時の動作波形図である。It is an operation | movement waveform diagram at the time of light control level 100%. 別の実施の形態における照明の点灯開始制御を示すフローチャート図である。It is a flowchart figure which shows the lighting start control of the illumination in another embodiment.

符号の説明Explanation of symbols

10:電源端子、12:出力端子、T1:スイッチング素子、16:電圧監視手段
20:負荷制御手段(調光制御回路)、out:導通制御信号、S16:断線検出信号
10: power supply terminal, 12: output terminal, T1: switching element, 16: voltage monitoring means 20: load control means (dimming control circuit), out: conduction control signal, S16: disconnection detection signal

Claims (3)

交流電源が供給される電源端子と、負荷素子が接続される出力端子と、当該出力端子と電源端子との間に設けられたスイッチング素子と、前記交流電源に対応して前記スイッチング素子の導通を制御する負荷制御手段とを有し、前記スイッチング素子の導通タイミングを可変制御することで前記負荷素子への交流電源供給期間を可変制御して調光レベルを制御する照明制御装置において、
前記スイッチング素子の両端の電圧を監視する電圧監視手段を有し、
記負荷制御手段は、前記負荷素子に電力が供給さている場合に、調光レベルにかかわらず前記スイッチング素子の導通を強制的に行わない断線検出期間を有し、
前記断線検出期間を含む断線判定期間において、前記電圧監視手段が少なくとも1回でも電圧印加を検出する場合に負荷素子の非断線状態が検出され、当該断線判定期間において、前記電圧監視手段が電圧印加を検出しない場合に負荷素子の断線状態が検出されることを特徴とする照明制御装置。
A power supply terminal to which an AC power supply is supplied; an output terminal to which a load element is connected; a switching element provided between the output terminal and the power supply terminal; and conduction of the switching element corresponding to the AC power supply. and a load control means for controlling for, Te lighting controller odor controlling the variable control to dimming level AC power supply period to the load device by variably controlling the conduction timing of the switching element,
Voltage monitoring means for monitoring the voltage across the switching element;
Before SL load control means, when said power to the load element is supplied, have a disconnection detection period not forcibly performed the conduction of the switching element irrespective of the dimming level,
In the disconnection determination period including the disconnection detection period, when the voltage monitoring unit detects voltage application at least once, a non-disconnection state of the load element is detected. In the disconnection determination period, the voltage monitoring unit applies voltage. A lighting control device, wherein a disconnection state of a load element is detected when no signal is detected.
請求項1において、
前記スイッチング素子は、前記負荷制御手段からの導通制御信号に応答して導通状態になり、前記交流電源のゼロクロスに応答して非導通状態になることを特徴とする照明制御装置。
In claim 1,
The lighting control device according to claim 1, wherein the switching element is turned on in response to a conduction control signal from the load control means, and is turned off in response to a zero cross of the AC power supply.
請求項1において、
前記断線検出期間は、前記スイッチング素子のゼロクロス点の周期よりも大きい周期を有することを特徴とする照明制御装置。
In claim 1,
The disconnection detection period has a period longer than a period of a zero cross point of the switching element.
JP2004370465A 2004-12-22 2004-12-22 Lighting control device Active JP4717432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370465A JP4717432B2 (en) 2004-12-22 2004-12-22 Lighting control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370465A JP4717432B2 (en) 2004-12-22 2004-12-22 Lighting control device

Publications (2)

Publication Number Publication Date
JP2006179261A JP2006179261A (en) 2006-07-06
JP4717432B2 true JP4717432B2 (en) 2011-07-06

Family

ID=36733163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370465A Active JP4717432B2 (en) 2004-12-22 2004-12-22 Lighting control device

Country Status (1)

Country Link
JP (1) JP4717432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286770B2 (en) * 2007-12-11 2013-09-11 東芝ライテック株式会社 Dimming system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121178A (en) * 1991-10-29 1993-05-18 Katsura Denko Kk Incandescent lamp dimming device
JPH10223380A (en) * 1997-02-07 1998-08-21 Canon Inc Halogen lamp lighting device and image formation device using this device
JPH11204273A (en) * 1998-01-14 1999-07-30 Matsushita Electric Works Ltd Lighting system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632399A (en) * 1986-06-20 1988-01-07 カルソニックカンセイ株式会社 Heat-shrinkable tube for electromagnetic shielding and manufacture of the same
JP2675664B2 (en) * 1990-10-09 1997-11-12 株式会社東芝 Light core break detector
JP2000100583A (en) * 1998-09-25 2000-04-07 Matsushita Electric Works Ltd Lighting system
JP3900761B2 (en) * 1999-10-26 2007-04-04 松下電工株式会社 Lighting control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121178A (en) * 1991-10-29 1993-05-18 Katsura Denko Kk Incandescent lamp dimming device
JPH10223380A (en) * 1997-02-07 1998-08-21 Canon Inc Halogen lamp lighting device and image formation device using this device
JPH11204273A (en) * 1998-01-14 1999-07-30 Matsushita Electric Works Ltd Lighting system

Also Published As

Publication number Publication date
JP2006179261A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
KR101423403B1 (en) Illumination device
TWI488019B (en) Two-wire load control device
JP2005011739A (en) Circuit for preventing malfunction when dimming and lighting system
EP3128815B1 (en) Light-dimming device
JP2002015892A (en) Discharge lamp lighting device
TWI461095B (en) Method and apparatus for controlling brightness of light emitting diodes
JP4717432B2 (en) Lighting control device
JP2009140631A (en) Dimming device
JPH0317193B2 (en)
JP2014216765A (en) Led anomaly detection device
JP2005026142A (en) Light control device
JP2004235070A (en) Illumination control device and illumination device
JP2008243456A (en) Illumination device
JP4687208B2 (en) Lighting device and lighting fixture
JP2004146299A (en) Lighting control device
JP5126571B2 (en) Light control device and light control system
CN206118115U (en) LED controller with binary channels function
KR101664729B1 (en) Led lighting device with multi illuminance
CN218868408U (en) LED dimming driver directly controlled by common switch
JP2000048970A (en) Auxiliary lighting system
JP4784469B2 (en) Automatic light source switching device
US11160150B2 (en) System and method for detecting a type of load
JP3315398B2 (en) Discharge lamp lighting device
JP4036003B2 (en) Phase control device
JPS596479B2 (en) 2-wire fluorescent light dimmer circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350