JP4717334B2 - Circuit connection material, circuit terminal connection structure and connection method - Google Patents

Circuit connection material, circuit terminal connection structure and connection method Download PDF

Info

Publication number
JP4717334B2
JP4717334B2 JP2003186397A JP2003186397A JP4717334B2 JP 4717334 B2 JP4717334 B2 JP 4717334B2 JP 2003186397 A JP2003186397 A JP 2003186397A JP 2003186397 A JP2003186397 A JP 2003186397A JP 4717334 B2 JP4717334 B2 JP 4717334B2
Authority
JP
Japan
Prior art keywords
circuit
connection
connection terminal
resin
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003186397A
Other languages
Japanese (ja)
Other versions
JP2004128465A5 (en
JP2004128465A (en
Inventor
伊津夫 渡辺
貢 藤縄
征宏 有福
朋子 金澤
敦司 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2003186397A priority Critical patent/JP4717334B2/en
Publication of JP2004128465A publication Critical patent/JP2004128465A/en
Publication of JP2004128465A5 publication Critical patent/JP2004128465A5/ja
Application granted granted Critical
Publication of JP4717334B2 publication Critical patent/JP4717334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Polyethers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)

Description

【0001】
(技術分野)
本発明は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料と、回路端子の接続構造及び接続方法とに関する。
【0002】
(背景技術)
エポキシ樹脂系接着剤は、高い接着強さが得られ、耐水性や耐熱性に優れること等から、電気・電子・建築・自動車・航空機等の各種用途に多用されている。中でも一液型エポキシ樹脂系接着剤は、主剤と硬化剤との混合が不必要であり使用が簡便なことから、フィルム状、ペースト状、粉体状の形態で使用されている。この場合、エポキシ樹脂と硬化剤及び変性剤との多様な組合せにより、特定の性能を得ることが一般的である(例えば、特開昭62−141083号公報)。
【0003】
しかしながら、上記特開昭62−141083号公報に示されるようなエポキシ樹脂系のフィルム状接着剤は、作業性に優れるものの、20秒程度の接続時間で140〜180℃程度の加熱、10秒では180〜210℃程度の加熱が必要であった。
【0004】
この理由は、短時間硬化性(速硬化性)と貯蔵安定性(保存性)の両立により良好な安定性を得ることを目的として、常温で不活性な触媒型硬化剤を用いているために、硬化に際して十分な反応が得られないためである。
【0005】
近年、精密電子機器の分野では、回路の高密度化が進んでおり、電極幅、電極間隔が極めて狭くなっている。このため、従来のエポキシ樹脂系を用いた回路接続材料の接続条件では、配線の脱落、剥離や位置ずれが生じるなどの問題があった。また、生産効率向上のために10秒以下への接続時間の短縮化が求められてきており、低温速硬化性が必要不可欠となっている。
【0006】
(発明の開示)
本発明は、低温速硬化性に優れ、かつ、長い可使時間を有する電気・電子用の回路接続材料を提供するものである。
【0007】
本発明の第一の回路接続材料は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、下記(1)〜(3)の成分を必須とする接着剤樹脂成分を含み、
(1)加熱により遊離ラジカルを発生する硬化剤
(2)フェノール樹脂、エポキシ樹脂およびフェノキシ樹脂から選択された分子量10000以上の水酸基含有樹脂(但し、アミノ基変性フェノキシ樹脂を除く)
(3)ラジカル重合性物質
かつ、導電性粒子を含まないことを特徴とするフィルム状回路接続材料である。
【0008】
また、本発明の別の回路接続材料は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続するフィルム状回路接続材料(但し、シランカップリング剤を含むものを除く)であって、下記(1)〜(3)の成分を必須とする接着剤樹脂成分を含み、
(1)加熱により遊離ラジカルを発生する硬化剤
(2)ポリビニルブチラール、ポリビニルホルマール、ポリエステル、フェノール樹脂、エポキシ樹脂およびフェノキシ樹脂から選択された分子量10000以上の水酸基含有樹脂
(3)ラジカル重合性物質
かつ、導電性粒子を含まないことを特徴とするフィルム状回路接続材料である
【0009】
ラジカル重合性物質中には下記化学式(a)で示されるラジカル重合性物質を含有することができる。
【0010】
【化9】

Figure 0004717334
【0011】
本発明の更に別の回路接続材料は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続するフィルム状異方導電性回路接続材料であって、下記(1)〜(4)の成分を必須とする接着剤樹脂成分を含み、該フィルム状異方導電性回路接続材料について示差走査熱量計(DSC)を用いて10℃/分の測定を行った際に、発熱反応の立ち上がり温度(Ta)が70℃〜110℃の範囲内で、ピーク温度(Tp)がTa+5〜30℃となり、かつ終了温度(Te)が160℃以下となり、上記導電性粒子の含有量は上記接着剤樹脂成分100体積部に対して0.1〜30体積部であるフィルム状異方導電性回路接続材料である。
(1)加熱により遊離ラジカルを発生する硬化剤
(2)分子量10000以上の水酸基含有樹脂
(3)下記化学式(a)で示されるラジカル重合性物質を含有するラジカル重合性物質
【化9】
Figure 0004717334
(ただし、nは1〜3の整数である)
(4)導電性粒子
分子量10000以上の水酸基含有樹脂としてはフェノキシ樹脂、特にカルボキシル基含有のエラストマーで変性されたフェノキシ樹脂、エポキシ基含有のエラストマーで変性されたフェノキシ樹脂が好ましい。
加熱により遊離ラジカルを発生する硬化剤として、半減期10時間の温度が40℃以上かつ、半減期1分の温度が180℃以下である硬化剤が好ましく、パーオキシエステルが使用できる。
【0012】
本発明の第二の回路接続材料は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、下記(5)、(6)の成分を必須とする回路接続材料である。
【0013】
)加熱により遊離ラジカルを発生し、半減期10時間の温度が40℃以上かつ、半減期1分の温度が180℃以下である硬化剤
)ラジカル重合性物質
加熱により遊離ラジカルを発生する硬化剤はパーオキシエステルが好ましい。
【0014】
上記の回路接続材料には、アクリルゴムを含有することができる。
【0015】
本発明の第三の回路接続材料は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、示差走査熱量計(DSC)を用いて10℃/minの測定において、発熱反応の立ち上がり温度(Ta)が70℃〜110℃の範囲内で、ピーク温度(Tp)がTa+5〜30℃であり、かつ終了温度(Te)が160℃以下であることを特徴とする。
【0017】
本発明の回路端子の接続構造は、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とが、第一の接続端子と第二の接続端子を対向して配置されており、前記対向配置した第一の接続端子と第二の接続端子の間に上記の回路接続材料が介在されており、前記対向配置した第一の接続端子と第二の接続端子が電気的に接続されているものである。
【0018】
本発明の回路端子の接続方法は、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に上記の回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続させるものである。
【0019】
また本発明の回路端子の接続構造は、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とが、第一の接続端子と第二の接続端子を対向して配置されており、前記対向配置した第一の接続端子と第二の接続端子の間にラジカル重合による硬化性を有する回路接続材料が介在されており、前記接続端子の少なくとも一方の表面が金、銀、錫及び白金族から選ばれる金属であり、前記対向配置した第一の接続端子と第二の接続端子が電気的に接続されているものである。
【0020】
また、本発明の回路端子の接続方法は、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間にラジカル重合による硬化性を有する回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続させる回路端子の接続方法であって、前記接続端子の少なくとも一方の表面が金、銀、錫及び白金族から選ばれる金属であり、ラジカル重合による硬化性を有する回路接続材料を表面が金、銀、錫及び白金族から選ばれる金属である一方の接続端子に形成した後、もう一方の回路電極を位置合わせし加熱、加圧して接続するものである。
【0021】
(発明を実施するための最良の形態)
本発明に用いる加熱により遊離ラジカルを発生する硬化剤としては、過酸化化合物、アゾ系化合物などの加熱により分解して遊離ラジカルを発生するものであり、目的とする接続温度、接続時間、ポットライフ等により適宜選定されるが、高反応性とポットライフの点から、半減期10時間の温度が40℃以上かつ、半減期1分の温度が180℃以下の有機過酸化物が好ましく、半減期10時間の温度が60℃以上かつ、半減期1分の温度が170℃以下の有機過酸化物が好ましい。
【0022】
配合量は、分子量10000以上の水酸基含有樹脂とラジカル重合性物質の和100重量部に対し0.05〜10重量部が好ましく、0.1〜5重量部がより好ましい。
【0023】
硬化剤は、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイドなどから選定できる。また、回路部材の接続端子の腐食を抑えるために、硬化剤中に含有される塩素イオンや有機酸は5000ppm以下であることが好ましく、更に、加熱分解後に発生する有機酸が少ないものがより好ましい。
【0024】
具体的には、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイドから選定され、高反応性が得られるパーオキシエステルから選定されることがより好ましい。
【0025】
上記硬化剤は、適宜混合して用いることができる。
【0026】
パーオキシエステルとしては、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシノエデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノネート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノネート、t−ヘキシルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノネート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ジ(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート等が使用できる。
【0027】
ジアルキルパーオキサイドとしては、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド等が使用できる。
【0028】
ハイドロパーオキサイドとしては、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が使用できる
ジアシルパーオキサイドとしては、イソブチルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が使用できる。
【0029】
パーオキシジカーボネートとしては、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ジ(2−エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等が使用できる。
【0030】
パーオキシケタールとしては、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1、1−(t−ブチルパーオキシ)シクロドデカン、2,2−ビス(t−ブチルパーオキシ)デカン等が使用できる。
【0031】
シリルパーオキサイドとしてはt−ブチルトリメチルシリルパーオキサイド、ビス(t−ブチル)ジメチルシリルパーオキサイド、t−ブチルトリビニルシリルパーオキサイド、ビス(t−ブチル)ジビニルシリルパーオキサイド、トリス(t−ブチル)ビニルシリルパーオキサイド、t−ブチルトリアリルシリルパーオキサイド、ビス(t−ブチル)ジアリルシリルパーオキサイド、トリス(t−ブチル)アリルシリルパーオキサイド等が使用できる。
【0032】
これらの遊離ラジカルを発生する硬化剤は単独又は混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。
【0033】
また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは、可使時間が延長されるために好ましい。
【0034】
本発明で用いるラジカル重合性物質としては、ラジカルにより重合する官能基を有する物質であり、アクリレート、メタクリレート、マレイミド化合物等が挙げられる。ラジカル重合性物質はモノマー、オリゴマーいずれの状態で用いることが可能であり、モノマーとオリゴマーを併用することも可能である。
アクリレート(メタクリレート)の具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス〔4−(アクリロキシメトキシ)フェニル〕プロパン、2,2−ビス〔4−(アクリロキシポリエトキシ)フェニル〕プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロイロキシエチル)イソシアヌレート等がある。これらは単独又は併用して用いることができ、必要によっては、ハイドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。また、ジシクロペンテニル基及び/又はトリシクロデカニル基及び/又はトリアジン環を有する場合は、耐熱性が向上するので好ましい。
【0035】
マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するもので、例えば、1−メチル−2,4−ビスマレイミドベンゼン、N,N’−m−フェニレンビスマレイミド、N,N’−p−フェニレンビスマレイミド、N,N’−m−トルイレンビスマレイミド、N,N’−4,4−ビフェニレンビスマレイミド、N,N’−4,4−(3,3’−ジメチル−ビフェニレン)ビスマレイミド、N,N’−4,4−(3,3’−ジメチルジフェニルメタン)ビスマレイミド、N,N’−4,4−(3,3’−ジエチルジフェニルメタン)ビスマレイミド、N,N’−4,4−ジフェニルメタンビスマレイミド、N,N’−4,4−ジフェニルプロパンビスマレイミド、N,N’−4,4−ジフェニルエーテルビスマレイミド、N,N’−3,3’−ジフェニルスルホンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−4−8(4−マレイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−マレイミドフェノキシ)フェニル)デカン、4,4’−シクロヘキシリデン−ビス(1−(4マレイミドフェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)ヘキサフルオロプロパンなどを挙げることができる。これらは単独でもまた組み合わせても使用できる。
【0036】
また、上記のラジカル重合性物質に上記化学式(a)で示されるリン酸エステル構造を有するラジカル重合性物質を併用すると金属等の無機物表面での接着強度が向上する。配合量は、分子量10000以上の水酸基含有樹脂とラジカル重合性物質の和100重量部に対し0.1〜10重量部用いるのが好ましく、0.5〜5重量部がより好ましい。
【0037】
リン酸エステル構造を有するラジカル重合性物質は、無水リン酸と2−ヒドロキシエチル(メタ)アクリレートの反応物として得られる。具体的には、モノ(2−メタクリロイルオキシエチル)アッシドポスフェート、ジ(2−メタクリロイルオキシエチル)アッシドポスフェート等がある。これらは単独でもまた組み合わせても使用できる。
【0038】
本発明で用いる分子量10000以上の水酸基含有樹脂としては、ポリビニルブチラール、ポリビニルホルマール、ポリアミド、ポリエステル、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂などのポリマーが使用でき、硬化時の応力緩和性に優れ、水酸基による接着性が向上する。各ポリマーをラジカル重合性の官能基で変性したものは耐熱性が向上するためより好ましい。このような場合は分子量10000以上の水酸基含有樹脂であり、かつラジカル重合性物質でもある。
【0039】
これらポリマーの分子量は10000以上が好ましいが1000000以上になると混合性が悪くなる傾向にある。
【0040】
分子量10000以上の水酸基含有樹脂としては、Tg(ガラス転移温度)が40℃以上で分子量10000以上の水酸基含有樹脂が使用され、フェノキシ樹脂を使用することができる。分子量10000以上の水酸基含有樹脂は、カルボキシル基含有エラストマー、エポキシ基含有エラストマー、ラジカル重合性の官能基によって変性されていてもよい。またラジカル重合性の官能基で変性したものは耐熱性が向上するため好ましい。
【0041】
フェノキシ樹脂は、二官能フェノール類とエピハロヒドリンを高分子量まで反応させるか、又は二官能エポキシ樹脂と二官能フェノール類を重付加反応させることにより得られる樹脂である。具体的には、二官能フェノール類1モルとエピハロヒドリン0.985〜1.015モルとをアルカリ金属水酸化物の存在下で、非反応性溶媒中で40〜120℃の温度で反応させることにより得ることができる。
【0042】
また、樹脂の機械的特性や熱的特性の点からは、特に二官能エポキシ樹脂と二官能フェノール類の配合当量比をエポキシ基/フェノール水酸基=1/0.9〜1/1.1とし、アルカリ金属化合物、有機リン系化合物、環状アミン系化合物等の触媒の存在下で、沸点が120℃以上のアミド系、エーテル系、ケトン系、ラクトン系、アルコール系等の有機溶剤中で、反応固形分濃度が50重量%以下で50〜200℃に加熱して重付加反応させて得たものが好ましい。
【0043】
二官能エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂及びこれらのアルキレンオキサイド付加物、ハロゲン化物(テトラブロモビスフェノール型エポキシ樹脂等)、水素添加物、更に脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂及びこれらのハロゲン化物、水素添加物などがある。
【0044】
これら化合物の分子量はどのようなものでもよく、特に二官能フェノール類と反応させる場合はできるだけ高純度のものが好ましい。これらの化合物は何種類かを併用することができる。エピハロヒドリンとしては、エピクロルヒドリン、エピブロムヒドリン、エピヨードヒドリンなどが挙げられる。
【0045】
また、二官能フェノール類は、2個のフェノール性水酸基をもつ化合物であればどのようなものでもよく、例えば、ハイドロキノン、2−ブロモハイドロキノン、レゾルシノール、カテコールなどの単環二官能フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS等のビスフェノール類、4,4’−ジヒドロキシビフェニルなどのジヒドロキシビフェニル類、ビス(4−ヒドロキシフェニル)エーテルなどのジヒドロキシフェニルエーテル類及びこれらのフェノール骨格の芳香環に直鎖アルキル基、分枝アルキル基、アリール基、メチロール基、アリル基、環状脂肪族基、ハロゲン(テトラブロモビスフェノールA等)、ニトロ基等を導入したもの、これらのビスフェノール骨格の中央にある炭素原子に直鎖アルキル基、分枝アルキル基、アリル基、置換基のついたアリル基、環状脂肪族基、アルコキシカルボニル基等を導入した多環二官能フェノール類である。
【0046】
具体的には、4,4’−(1−メチルエチリデン)ビス[2−メチルフェノール]、4,4’−メチレンビス[2−メチルフェノール]、4,4’−(1−メチルエチリデン)ビス[2−(1−メチルエチル)フェノール]、4,4’−(1−メチルエチリデン)ビス[2−(1,1−メチルプロピル)フェノール]、4,4’−(1−メチルエチリデン)ビス[2−(1,1−ジメチルエチル)フェノール]、テトラメチルビスフェノールA、テトラメチルビスフェノールF、4,4’−メチレンビス[2,6−ビス(1,1−ジメチルエチル)フェノール]、4,4’−(1−メチルエチリデン)ビス[2,6−ジ(1,1−ジメチルエチル)フェノール]、4,4’−(1−メチルエチリデン)ビス[2−(2−プロペニル)フェノール]、4,4’−メチレンビス[2−(2−プロペニル)フェノール]、4,4’−(1−メチルエチリデン)ビス[2−(1−フェニルエチル)フェノール]、3,3’−ジメチル[1,1’−ビフェニル]−4,4’−ジオール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、3,3’,5,5’−テトラ−t−ブチル−[1,1’−ビフェニル]−4,4’−ジオール、3,3’−ビス(2−プロペニル)−[1,1’−ビフェニル]−4,4’−ジオール、4,4’−(1−メチルエチリデン)ビス[2−メチル−6−ヒドロキシメチルフェノール]、テトラメチロールビスフェノールA、3,3’,5,5’−テトラキス(ヒドロキシメチル)−(1,1’−ビフェニル)−4,4’−ジオール、4,4’−(1−メチルエチリデン)ビス[2−フェニルフェノール]、4,4’−(1−メチルエチリデン)ビス[2−シクロヘキシルフェノール]、4,4’−メチレンビス(2−シクロヘキシル−5−メチルフェノール)、4,4’−(1−メチルプロピリデン)ビスフェノール、4,4’−(1−メチルヘプチリデン)ビスフェノール、4,4’−(1−メチルオクチリデン)ビスフェノール、4,4’−(1,3−ジメチルブチリデン)ビスフェノール、4,4’−(2−エチルヘキシリデン)ビスフェノール、4,4’−(2−メチルプロピリデン)ビスフェノール、4,4’−プロピリデンビスフェノール、4,4’−(1−エチルプロピリデン)ビスフェノール、4,4’−(3−メチルブチリデン)ビスフェノール、4,4’−(1−フェニルエチリデン)ビスフェノール、4,4’−(フェニルメチレン)ビスフェノール、4,4’−(ジフェニルメチレン)ビスフェノール、4,4’−[1−(4−ニトロフェニル)エチリデン]ビスフェノール、4,4’−[1−(4−アミノフェニル)エチリデン]ビスフェノール、4,4’−[(4−ブロモフェニル)メチレンビスフェノール、4,4’−[(4−クロロフェニル)メチレンビスフェノール、4,4’−[(4−フルオロフェニル)メチレンビスフェノール、4,4’−(2−メチルプロピリデン)ビス[3−メチル−6−(1,1−ジメチルエチル)フェノール]、4,4’−(1−エチルプロピリデン)ビス[2−メチルフェノール]、4,4’−(1−フェニルエチリデン)ビス[2−メチルフェノール]、4,4’−(フェニルメチレン)ビス−2,3,5−トリメチルフェノール、4,4’−(1−フェニルエチリデン)ビス[2−(1,1−ジメチルエチル)フェノール]、4,4’−(1−メチルプロピリデン)ビス[2−シクロヘキシル−5−メチルフェノール]、4,4’−(1−フェニルエチリデン)ビス[2−フェニルフェノール]、4,4’−ブチリデンビス[3−メチル−6−(1,1−ジメチルエチル)フェノール]、4−ヒドロキシ−α−(4−ヒドロキシフェニル−α−メチルベンゼンアセチックアシドメチルエステル、4−ヒドロキシ−α−(4−ヒドロキシフェニル−α−メチルベンゼンアセチックアシドエチルエステル、4−ヒドロキシ−α−(4−ヒドロキシフェニル)ベンゼンアセチックアシドブチルエステル、テトラブロモビスフェノールA、テトラブロモビスフェノールF、テトラブロモビスフェノールAD、4,4’−(1−メチルエチレン)ビス[2,6−ジクロロフェノール]、4,4’−(1−メチルエチリデン)ビス[2−クロロフェノール]、4,4’−(1−メチルエチリデン)ビス[2−クロロ−6−メチルフェノール]、4,4’−メチレンビス[2−フルオロフェノール]、4,4’−メチレンビス[2,6−ジフルオロフェノール]、4,4’−イソプロピリデンビス[2−フルオロフェノール]、3,3’−ジフルオロ−[1,1’−ジフェニル]−4,4’−ジオール、3,3’,5,5’−テトラフルオロ−[1,1’−ビフェニル]−4,4’−ジオール、4,4’−(フェニルメチレン)ビス[2−フルオロフェノール]、4,4’−[(4−フルオロフェニル)メチレンビス[2−フルオロフェノール]、4,4’−(フェニルメチレン)ビス[2,6−ジフルオロフェノール]、4,4’−(4−フルオロフェニル)メチレンビス[2,6−ジフルオロフェノール]、4,4’−(ジフェニルメチレン)ビス[2−フルオロフェノール]、4,4’−(ジフェニルメチレン)ビス[2,6−ジフルオロフェノール]、4,4’−(1−メチルエチレン)ビス[2−ニトロフェノール]などがある。
【0047】
また、これら以外の多環二官能フェノール類としては、1,4−ナフタレンジオール、1,5−ナフタレンジオール、1,6−ナフタレンジオール、1,7−ナフタレンジオール、2,7−ナフタレンジオール、4,4’−ジヒドロキシジフェニルエーテル、ビス(4−ヒドロキシフェニル)メタノン、4,4’−シクロヘキシリデンビスフェノール、4,4’−シクロヘキシリデンビス[2−メチルフェノール]、4,4’−シクロペンチリデンビスフェノール、4,4’−シクロペンチリデンビス[2−メチルフェノール]、4,4’−シクロヘキシリデン[2,6−ジメチルフェノール]、4,4’−シクロヘキシリデンビス[2−(1,1−ジメチルエチル)フェノール]、4,4’−シクロヘキシリデンビス[2−シクロヘキシルフェノール]、4,4’−(1,2−エタンジイル)ビスフェノール、4,4’−シクロヘキシリデンビス[2−フェニルフェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス[2−メチルフェノール]、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスフェノール、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスフェノール、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス[2−メチル−6−ヒドロキシメチルフェノール]、4−[1−[4−(4−ヒドロキシ−3−メチルフェニル)−4−メチルシクロヘキシル]−1−メチルエチル]−2−メチルフェノール、4−[1−[4−(4−ヒドロキシ−3,5−ジメチルフェニル)−4−メチルシクロヘキシル]−1−メチルエチル]−2,6−ジメチルフェノール、4,4’−(1,2−エタンジイル)ビス[2,6−ジ−(1,1−ジメチルエチル)フェノール]、4,4’−(ジメチルシリレン)ビスフェノール、1,3−ビス(p−ヒドロキシフェニル)−1,1,3,3−テトラメチルジシロキサン、両末端にp−ヒドロキシフェニル基を有するシリコーンオリゴマー及び2,2’−メチリデンビスフェノール、2,2’−メチルエチリデンビスフェノール、2,2’−エチリデンビスフェノール等のフェノール骨格の芳香環に直鎖アルキル基、分枝アルキル基、アリール基、メチロール基、アリル基等を導入したものである。
【0048】
具体的には、2,2’−メチリデンビス[4−メチルフェノール]、2,2’−エチリデンビス[4−メチルフェノール]、2,2’−メチリデンビス[4,6−ジメチルフェノール]、2,2’−(1−メチルエチリデン)ビス[4,6−ジメチルフェノール]、2,2’−(1−メチルエチリデン)ビス[4−sec−ブチルフェノール]、2,2’−メチリデンビス[6−(1,1−ジメチルエチル)−4−メチルフェノール]、2,2’−エチリデンビス[4,6−ジ(1,1−ジメチルエチル)フェノール]、2,2’−メチリデンビス[4−ノニルフェノール]、2,2’−メチリデンビス[3−メチル−4,6−ジ−(1,1−ジメチルエチル)フェノール]、2,2’−(2−メチルプロピリデン)ビス[2,4−ジメチルフェノール]、2,2’−エチリデンビス[4−(1,1−ジメチルエチル)フェノール]、2,2’−メチリデンビス(2,4−ジ−t−ブチル−5−メチルフェノール)、2,2’−メチリデンビス(4−フェニルフェノール)、2,2’−メチリデンビス[4−メチル−6−ヒドロキシメチルフェノール]、2,2’−メチレンビス[6−(2−プロペニル)フェノール]などがある。これらの化合物は何種類かを併用することができる。
【0049】
反応終了後の溶液は、メタノールなどの貧溶媒を用いて再沈精製を行い固形フェノキシ樹脂として得ることもできる。このようにして製造したフェノキシ樹脂は、2種以上を組み合わせて用いることができる。
【0050】
本発明の目的を達成するには、下記一般式(I)で表される第1の構成単位、及び/又は、下記一般式(II)で表される第2の構成単位からなり、第1の構成単位を分子中に少なくとも一つ含む樹脂であることが好ましい。なお、第1の構成単位と第2の構成単位とを両方備える共重合体を上記フェノキシ樹脂として用いる場合、そのフェノキシ樹脂中に第1の構成単位が10モル%以上含まれていることが好ましく、共重合比を、第1の構成単位数:第2の構成単位数=2:8〜8:2とすることが更に好ましい。また、2種以上のフェノキシ樹脂を用いる場合には、そのうち少なくとも1種がこの第1の構成単位及び/又は第2の構成単位からなり、第1の構成単位を分子中に少なくとも一つ含む樹脂であることが好ましい。
【0051】
【化1】
Figure 0004717334
【0052】
【化2】
Figure 0004717334
【0053】
ここで、R1、R2、R3、R4は、水素原子、炭素数1〜4のアルキル基(メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等)、及び、電子吸引基の中から独立して選ばれ、少なくとも一つは電子吸引基である。電子吸引基とは、Hammettの置換基定数σが+の値を有する基であり(「化学辞典」833〜834頁、1986年、森北出版(株)発行)、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン、トリフロロメチル基、トリクロロメチル基、トリブロモメチル基、ニトロ基、ニトリル基、メトキシ基やエトキシ基などのアルコキシ基、カルボキシル基、メチルカルボニル基やエチルカルボニル基などのアルキルカルボニル基、メトキシカルボニル基やエトキシカルボニル基などのアルコキシカルボニル基、及び、アルキルスルホニル基等が挙げられ、ハロゲンとすることが好ましい。
【0054】
また、R5、R6、R7、R8は、水素原子及び炭素数1〜4のアルキル基(メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等)の中から独立して選ばれるものである。
【0055】
1及びX2は、2価の有機基又は結合を示すものである。このX1及びX2の表す2価の有機基は、特に限定されるものではないが、例えばつぎのようなものが挙げられる。
【0056】
【化3】
Figure 0004717334
【0057】
【化4】
Figure 0004717334
【0058】
このようなフェノキシ樹脂は合成原料の少なくとも一つが、これら水素原子、炭素数1〜4のアルキル基、電子吸引基を有する二官能エポキシ樹脂及び/又は二官能フェノール類を用いることにより得ることができる。
【0059】
このフェノキシ樹脂の具体例としては、例えば、下記構造式(III)により表される繰り返し単位と、下記構造式(IV)により表される繰り返し単位とからなるランダム共重合体や、
【0060】
【化5】
Figure 0004717334
【0061】
下記構造式(V)で示される繰り返し単位からなる重合体、
【0062】
【化6】
Figure 0004717334
【0063】
下記構造式(VI)で示される繰り返し単位からなる重合体、
【0064】
【化7】
Figure 0004717334
【0065】
下記構造式(VII)で示される繰り返し単位からなる重合体
【0066】
【化8】
Figure 0004717334
【0067】
などが挙げられる。
【0068】
硬化物が可撓性、強靱性、膜形成性などの優れた特性を示すために、平均分子量(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量)が好ましくは10000以上、より好ましくは20000以上、更に好ましくは30000以上のフェノキシ樹脂が用いられる。市販品としては、例えばPKHH、PAHJ(Union Carbide社製)、YPB−43C、YPB−43D、YPB−43G、YPB−43m、YP−50、又はYPB−40ASB25、YPB−40AM40(東都化成社製)等を再沈精製したものなどを挙げることができる。
【0069】
また、カルボキシル基含有エラストマー、エポキシ基含有エラストマーとしては、分子末端又は分子鎖中にカルボキシル基又はエポキシ基を有するエラストマーであるならばどのようなものでもよく、例えば、ブタジエン系重合体、アクリル重合体、ポリエーテルウレタンゴム、ポリエステルウレタンゴム、ポリアミドウレタンゴム、シリコーンゴムなどがあり、ブタジエン系重合体が好ましい。なお、ブタジエン系重合体としては、ブタジエン重合体、ブタジエン−スチレン共重合体、ブタジエン−アクリロニトリル共重合体などが挙げられる。これらのうち、ブタジエン−アクリロニトリル共重合体が特に好ましい。
【0070】
カルボキシル基含有エラストマーの重量平均分子量は、500〜1000000の範囲ものが好ましく、より好ましくは1000〜800000、更に好ましくは1000〜10000である。
【0071】
エラストマーの骨格中に含まれるフェノキシ樹脂と相溶性を有する成分の量は、多すぎると相溶してしまうので、フェノキシ相とエラストマー相が相分離するように決定するのが好ましい。この成分量は、フェノキシ樹脂の構造(SP値)及び変性後の樹脂の耐熱性や機械的強度に応じて任意に加減することができる。例えばブタジエン−アクリロニトリル共重合体の場合には、アクリロニトリル含量が40重量%以下に設定されることが好ましく、より好ましくは5〜40重量%、更に好ましくは10〜30重量%である。市販品としては、例えば、HYCAR CTBN1300x31、HYCAR CTBN1300x8、HYCAR CTBN1300x13、HYCAR CTBNX1300x9、HYCAR CTBNX1009-SP、HYCAR CTB200x162(宇部興産社製)、NIPOL DN 601(日本ゼオン社製)、Nisso PB、C-1000、C-2000(日本曹達社製)、ELC-4(日本合成ゴム社製)などを挙げることができる。
【0072】
また、本発明の封止用成形材料を半導体等の電子部品装置用途に用いる場合、材料中のイオン性不純物をできるだけ低減することが好ましい。したがって、これらカルボキシル基含有エラストマーにおいても、ポリマー中のNa+、K+などのアルカリ金属イオンは、好ましくは10ppm以下、より好ましくは5ppm以下、Cl-は、好ましくは400ppm以下、より好ましくは100ppm以下、更に好ましくは40ppm以下である。
【0073】
本発明の相分離構造物は、例えば、つぎのようにして製造することができる。
【0074】
まず、上記フェノキシ樹脂を溶剤に溶解し、これに上記のカルボキシル基含有エラストマーを溶解する(フェノキシ樹脂とエラストマーの体積比は、対象用途で要求される硬化物の可撓性、強靱性及び接着強度の目標値に応じて任意に設定することができるが、フェノキシ樹脂:エラストマーが60:40〜90:10の範囲が好ましく、更に好ましくは66:33〜87:13の範囲である)。
【0075】
製造時の溶剤としては、フェノキシ樹脂及びカルボキシル基含有エラストマーを溶解する溶剤であればどのようなものでもよいが、加熱混合後の溶液に後述するブロックイソシアネートを添加する場合には、イソシアネート基に対して不活性な溶剤であることが必要である。
【0076】
次に、溶液中を十分に窒素置換した後、常温で半透明又は透明、好ましくは粘度が一定値になるまで、窒素下で100℃〜220℃、好ましくは130℃〜180℃程度で加熱しながら攪拌混合する。なお、加熱混合は溶剤を還流しながら行うことが好ましい。
【0077】
加熱混合終了後のエラストマー変性フェノキシ樹脂の溶液は、メタノールなどの貧溶剤を用いて再沈精製を行い固形の相分離構造物として得ることもできる。変性の機構は明らかではないが、変性前後でのH1−NMRスペクトルでは、フェノキシ樹脂骨格中の水酸基に結合したメチンのプロトンに相当する積分値が、変性後減少していることを確認した。また、FT−IR(フーリエ変換−赤外吸収)スペクトルでは、エラストマーを単純にブレンドしたものでは認められない3460cm-1〜3560cm-1及び1610cm-1〜1640cm-1の領域のスペクトルに顕著な変化が生じていることを確認した。このことから、カルボキシル基含有エラストマーのカルボキシル基の少なくとも1部と、フェノキシ樹脂中の水酸基の少なくとも1部とが、エステル結合を形成していると考えられる。
【0078】
このようにして得られるエラストマー変性フェノキシ樹脂は、フェノキシ樹脂とカルボキシル基含有エラストマーとが相分離を形成しており、この相分離構造物のみで光学的に透明又は半透明のフィルム状物を成形可能で、その膜厚75μmのフィルム状物の波長500nmでの光透過率が、空気の光透過率に対して10%以上である。光透過率は、20〜90%であることがより好ましく、30〜85%であることが更に好ましい。
【0079】
相分離の形成は、走査型や透過型の電子顕微鏡、原子間力顕微鏡等による観察や動的粘弾性測定、光散乱法、X線小角散乱法等により確認可能である(「ポリマーブレンド」第80〜124頁、(株)シーエムシー発行)。例えば、動的粘弾性測定では、エラストマー相の主分散のtanδ(損失弾性率G”/貯蔵弾性率G’)ピークとフェノキシ樹脂相の主分散のtanδピークが独立に存在していることを確認すればよい。
【0080】
なお、本発明の相分離構造物は、そのフィルム状物の走査型電子顕微鏡像において、エラストマー相とフェノキシ樹脂相とが約0.1〜0.3μmのサブミクロンオーダーの微細粒子状に分散したミクロ相分離構造を形成していることが好ましく、このような相分離構造のフィルム状物は光学的に透明あるいは半透明なものとなる。すなわち、本発明の相分離構造物の、その膜厚75μmのフィルム状物の波長500nmでの光透過率は、空気の光透過率に対して10%以上である。
【0081】
本発明で得られるエラストマー変性フェノキシ樹脂の相分離構造としては、例えばエラストマー相とフェノキシ樹脂相のミクロ相分離構造やミクロドメインが連結したミクロ相分離構造等、カルボキシル基含有エラストマーとフェノキシ樹脂の混合では従来知られていない構造が挙げられる。このようなミクロ相分離構造が、被着体に対する接着強度を向上させる一つの要因として考えられる。
【0082】
分子量10000以上の水酸基含有樹脂とラジカル重合性物質との配合量は、重量で、分子量10000以上の水酸基含有樹脂/ラジカル重合性物質が10/90〜90/10であることが好ましく、30/70〜70/30であることがより好ましい。
【0083】
また、本発明の回路接続材料にアクリル酸、アクリル酸エステル、メタクリル酸エステル又はアクリロニトリルのうち少なくとも一つをモノマー成分とした重合体又は共重合体であり、グリシジルエーテル基を含有するグリシジルアクリレートやグリシジルメタクリレートを含む共重合体系アクリルゴムを併用した場合、応力緩和に優れるので好ましい。これらアクリルゴムの分子量(重量平均)は接着剤の凝集力を高める点から20万以上が好ましい。
【0084】
更に、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤及びフェノール樹脂やメラミン樹脂、イソシアネート類等を含有することもできる。
【0085】
充填材を含有した場合、接続信頼性等の向上が得られるので好ましい。充填材の最大径が導電粒子の粒径未満であれば使用でき、5〜60体積部(接着剤樹脂成分100体積部に対して)の範囲が好ましい。60体積部を超えると信頼性向上の効果が飽和することがあり、5体積部未満では添加の効果が少ない。
【0086】
カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基、及びイソシアネート基含有物が、接着性の向上の点から好ましい。
【0087】
本発明の回路接続材料は、相対向する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する接続材料であって、示差走査熱量計(DSC)を用いて10℃/minの測定において、発熱反応の立ち上がり温度(Ta)が70℃〜110℃の範囲内で、ピーク温度(Tp)がTa+5〜30℃であり、かつ終了温度(Te)が160℃以下であることを特徴とする。
【0088】
従来のエポキシ樹脂系フィルム状接着剤は、作業性に優れるものの、20秒程度の接続時間で140〜190℃程度の加熱、10秒では190〜210℃程度の加熱が必要であった。この理由は、短時間硬化性(速硬化性)と貯蔵安定性(保存性)の両立により良好な安定性を得ることを目的として、常温で不活性な触媒型硬化剤を用いているために、硬化に際して十分な反応が得られないためである。近年、精密電子機器の分野では、回路の高密度化が進んでおり、電極幅、電極間隔が極めて狭くなっている。このため、従来のエポキシ樹脂系を用いた回路接続材料の接続条件では、配線の脱落、剥離や位置ずれが生じるなどの問題があった。また、生産効率向上のために10秒以下への接続時間の短縮化が求められてきており、低温速硬化性が必要不可欠となっている。
【0089】
本発明の回路接続材料は、140〜180℃で10秒程度加熱により硬化し回路電極の接続ができ、かつ、室温での比較的長い可使時間を有する電気・電子用の回路接続材料を提供することができる。
【0090】
本発明の回路接続材料は導電性粒子がなくても、接続時に相対向する回路電極の直接接触により接続が得られるが、導電性粒子を含有した場合、より安定した接続が得られる。
【0091】
導電性粒子としては、Au、Ag、Ni、Cu、はんだ等の金属粒子やカーボン等があり、十分なポットライフを得るためには、表層はNi、Cuなどの遷移金属類ではなくAu、Ag、白金族の貴金属類が好ましくAuがより好ましい。また、Niなどの遷移金属類の表面をAu等の貴金属類で被覆したものでもよい。また、非導電性のガラス、セラミック、プラスチック等に前記した導通層を被覆等により形成し、最外層を貴金属類プラスチックを核とした場合や、熱溶融金属粒子の場合、加熱加圧により変形性を有するので接続時に電極との接触面積が増加し信頼性が向上するので好ましい。貴金族類の被覆層の厚みは良好な抵抗を得るためには、100Å以上が好ましい。しかし、Ni等の遷移金属の上に貴金属類の層を設ける場合では、貴金属類層の欠損や導電性粒子の混合分散時に生じる貴金属類層の欠損等により生じる酸化還元作用で遊離ラジカルが発生し保存性低下を引き起こすため、300Å以上が好ましい。導電性粒子は、接着剤樹脂成分100部(体積)に対して0.1〜30部(体積)の範囲で用途により使い分ける。過剰な導電性粒子による隣接回路の短絡等を防止するためには0.1〜10部(体積)とするのがより好ましい。
【0092】
また、回路接続材料を2層以上に分割し、遊離ラジカルを発生する硬化剤を含有する層と導電性粒子を含有する層に分離した場合、ポットライフの向上が得られる。
【0093】
本発明の回路用接続材料は、ICチップとチップ搭載基板との接着や電気回路相互の接着用のフィルム状接着剤として使用することもできる。
【0094】
本発明の回路接続材料は、例えばフェイスダウン方式により半導体チップを基板と接着フィルムで接着固定すると共に両者の電極どうしを電気的に接続する場合にも使用できる。
【0095】
すなわち、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に本発明の接続材料(フィルム状接着剤)を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続させることができる。
【0096】
このような回路部材としては半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板等が用いられる。
【0097】
これらの回路部材には接続端子が通常は多数(場合によっては単数でもよい)設けられており、前記回路部材の少なくとも1組をそれらの回路部材に設けられた接続端子の少なくとも1部を対向配置し、対向配置した接続端子間に接着剤を介在させ、加熱加圧して対向配置した接続端子どうしを電気的に接続して回路板とする。
【0098】
回路部材の少なくとも1組を加熱加圧することにより、対向配置した接続端子どうしは、直接接触により又は異方導電性接着剤の導電性粒子を介して電気的に接続することができる。
【0099】
本発明の回路用接続材料は、接続時に接着剤が溶融流動し相対向する回路電極の接続を得た後、硬化して接続を保持するものであり、接着剤の流動性は重要な因子である。厚み0.7mm、15mm×15mmのガラスを用いて、厚み35μm、5mm×5mmの回路用接続材料をこのガラスにはさみ、150℃2MPa10sで加熱加圧を行った場合、初期の面積(A)と加熱加圧後の面積(B)を用いて表される流動性(B)/(A)の値は1.3〜3.0であることが好ましく、1.5〜2.5であることがより好ましい。1.3未満では流動性が悪く、良好な接続が得らない場合があり、3.0を超える場合は、気泡が発生しやくす信頼性に劣る場合がある。
【0100】
本発明の回路用接続材料の、硬化後の40℃での弾性率は、100〜2000MPaが好ましく、1000〜1800MPaがより好ましい。
【0101】
本発明の回路電極の接続方法は、ラジカル重合による硬化性を有する回路接続材料を表面が金、銀、錫及び白金族から選ばれる金属である一方の電極回路に形成した後、もう一方の回路電極を位置合わせし加熱、加圧して接続することを特徴とする。
【0102】
本発明の回路電極の接続構造は、相対向する回路電極が回路接続材料を介して電気的に接続された回路電極の接続構造であって、前記回路電極の少なくとも一方の表面が金、銀、錫及び白金族から選ばれる金属であり、前記回路接続材料がラジカル重合による硬化性を有する回路接続材料であることを特徴とする。
【0103】
ラジカル重合による硬化性を有する回路接続材料としては、導電性粒子を含有する異方導電性接着剤が使用され、異方導電性接着剤の導電性粒子としては表面が金、銀及び白金族から選ばれる貴金属である導電性粒子が使用される。
【0104】
ラジカル重合による硬化性を有する接着剤を用いて、相対向する回路電極を電気的に接続する接続方法を鋭意検討した結果、回路電極の少なくとも一方の表面を金、銀、白金族、又は錫とし、この面にラジカル硬化性の接着剤を載置形成(仮接続)後、本接続することにより、良好な電気的接続が得られる。
【0105】
図1は本発明の一実施例を説明する回路基板の仮接続行程を示す断面図である。図2は、本発明の一実施例を説明する回路基板の本接続行程を示す断面図である。これらの図において、1及び2は基板を、1−a及び2−aは回路電極を、3は接着剤を、4は導電性粒子を、5は熱板を、それぞれ示している。
【0106】
本発明に用いる基板1は、半導体チップ類のシリコーンやガリウム・ヒ素等や、ガラス、セラミックス、ガラス・エポキシ複合体、プラスチック等の絶縁基板であり、これに対向する基板2も同様な材質からなる。
【0107】
回路電極1−aは基板1の表面に銅箔で設けたもので、金の表面層が形成されている。表面層は金、銀、白金族、又は錫のいずれかから選択され、これらを組み合わせて用いてもよい。また、銅/ニッケル/金のように複数の金属を組み合わせて多層構成としてもよい。回路電極2−aは基板2の表面に銅箔で設けたもので、錫の表面層が形成されている。
【0108】
回路電極を設けた基板は接続時の加熱による揮発成分による接続への影響をなくすために、回路接続材料による接続工程の前に予め加熱処理されることが好ましい。加熱処理条件は50℃以上の温度で1時間以上が好ましく、100℃以上の温度で5時間以上がより好ましい。
【0109】
接着剤3は加熱により遊離ラジカルを発生する硬化剤及びラジカル硬化性の物質を必須とする接着剤であり、導電性粒子を所定量分散したラジカル硬化性の異方導電性接着剤としてもよい。この際、導電性粒子の表面は金、銀、又は白金族から選択される貴金属であることが好ましい。接着剤3は基板1上に載置形成(仮接続)されている。
【0110】
図2に示すように、仮接続の後に、基板1の回路電極1−aと基板2の回路電極2−aを位置合わせし、基板2上方より熱板5にて所定時間の加熱加圧を行い本接続を完了する。
【0111】
反応性に優れるラジカル硬化性の接着剤を使用し、表面がニッケルや銅などの遷移金属の回路電極を用いて接続を行う場合、ラジカル硬化性の接着剤を回路電極に載置形成(仮接続)後一定期間放置すると、酸化還元作用によりラジカル重合が進行してしまい接着剤が流動しにくくなり、本接続時に十分な電気的接続ができないが、本発明においては、従来のエポキシ樹脂系よりも低温速硬化性に優れかつ可使時間が長い電気・電子用の回路接続が可能となる。
【0112】
回路電極を設けた基板の少なくとも一方を50℃以上の温度で1時間以上加熱処理することができる。
【0113】
<実施例1>
フェノキシ樹脂(ユニオンカーバイド株式会社製、商品名PKHC、平均分子量45,000)50gを、重量比でトルエン(沸点110.6℃、SP値8.90)/酢酸エチル(沸点77.1℃、SP値9.10)=50/50の混合溶剤に溶解して、固形分40%の溶液とした。
【0114】
ラジカル重合性物質としてトリヒドロキシエチルグリコールジメタクリレート(共栄社油脂株式会社製、商品名80MFA)を用いた。
【0115】
遊離ラジカル発生剤としてt−ヘキシルパーオキシ2−エチルヘキサノネートの50重量%DOP溶液(日本油脂株式会社製、商品名パーキュアHO)を用いた。
【0116】
ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.04μmの金層を設け、平均粒径10μmの導電性粒子を作製した。
【0117】
固形重量比でフェノキシ樹脂50g、トリヒドロキシエチルグリコールジメタクリレート樹脂50g、t−ヘキシルパーオキシ2−エチルヘキサノネート5gとなるように配合し、更に導電性粒子を3体積部(樹脂成分100体積部に対し)配合分散させ、厚み80μmの片面を表面処理したPETフィルムに塗工装置を用いて塗布し、70℃、10分の熱風乾燥により、接着剤層の厚みが35μmの回路接続材料を得た。
【0118】
上述の回路接続材料を用いて、ライン幅50μm、ピッチ100μm、厚み18μmの銅回路を500本有するフレキシブル回路板(FPC)同士を160℃、3MPaで10秒間加熱加圧して幅2mmにわたり接続した。このとき、予め一方のFPC上に、回路接続材料の接着面を貼り付けた後、70℃、0.5MPaで5秒間加熱加圧して仮接続し、その後、PETフィルムを剥離してもう一方のFPCと接続することにより、回路を接続した。
【0119】
<実施例2〜4>
ラジカル重合性物質としてトリヒドロキシエチルグリコールジメタクリレート、リン酸エステル型アクリレート(共栄社油脂株式会社製、商品名P2m)を用いて、フェノキシ樹脂/トリヒドロキシエチルグリコールジメタクリレート、リン酸エステル型アクリレートの固形重量比を50g/49g/1g(実施例2)、30g/69g/1g(実施例3)、70g/29g/1g(実施例4)としたほかは、実施例1と同様にして回路接続材料を得た。この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0120】
<実施例5>
硬化剤の配合量を2gとしたほかは、実施例2と同様にして回路接続材料を得た。
【0121】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0122】
<実施例6>
硬化剤をt−ブチルパーオキシ2−エチルヘキサノネート(日本油脂株式会社製、商品名パーブチルO)としたほかは、実施例1と同様にして回路接続材料を得た。
【0123】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0124】
<実施例7>
平均分子量45,000のフェノキシ樹脂(PKHC)100gに末端カルボキシル基含有ブタジエン−アクリロニトリル共重合体(Hycar CTBNX1009-SP、宇部興産(株)製)25gを一般的方法で反応させて、カルボキシル基含有ブタジエン−アクリロニトリル共重合体で変性したフェノキシ樹脂を作製した。このフェノキシ樹脂を用い、フェノキシ樹脂/トリヒドロキシエチルグリコールジメタクリレート、リン酸エステル型アクリレートの固形重量比を60g/39g/1gとしたほかは実施例1と同様にして回路接続材料を得た。
【0125】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0126】
<実施例8>
平均分子量45,000のフェノキシ樹脂(PKHC)100gにエポキシ基含有アクリル共重合体25gで変性したフェノキシ樹脂を作製した。このフェノキシ樹脂を用い、フェノキシ樹脂/トリヒドロキシエチルグリコールジメタクリレート、リン酸エステル型アクリレートの固形重量比を60g/39g/1gとしたほかは実施例1と同様にして回路接続材料を得た。
【0127】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0128】
<実施例9>
エポキシ基含有アクリル共重合体(アクリルゴム)を用いフェノキシ樹脂/アクリルゴム/トリヒドロキシエチルグリコールジメタクリレート、リン酸エステル型アクリレートの固形重量比を40g/20g/39g/1gとしたほかは実施例1と同様にして回路接続材料を得た。
【0129】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0130】
<実施例10>
平均分子量45,000のフェノキシ樹脂(PKHC)100gに末端にアクリル基を持つモノイソシアネート5gを一般的方法で反応させて、アクリル基で変性したフェノキシ樹脂を作製した。このフェノキシ樹脂を用い、フェノキシ樹脂/トリヒドロキシエチルグリコールジメタクリレート、リン酸エステル型アクリレートの固形重量比を60g/3
9g/1gとしたほかは実施例1と同様にして回路接続材料を得た。
【0131】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0132】
<実施例11>
導電性粒子を平均粒径2μmのNi粒子の表面をAuで被覆(被覆厚み0.08μm)したものを用いて、0.5体積部としたほかは、実施例1と同様にして回路接続材料を得た。
【0133】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0134】
<実施例12>
導電性粒子の粒径を5μmとしたほかは、実施例1と同様にして回路接続材料を得た。
【0135】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0136】
<実施例13>
ラジカル重合性物質として2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン(新中村化学(株)製、商品名 A−BPE−4)を用い、フェノキシ樹脂/2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、リン酸エステル型アクリレートの固形重量比を60g/39g/1g他は実施例1と同様にして回路接続材料を得た。
【0137】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0138】
<実施例14>
ラジカル重合性物質としてジシクロペンテニルアクリレート(共栄社油脂株式会社製、商品名DCP−A)を用い、フェノキシ樹脂/ジシクロペンテニルアクリレート、リン酸エステル型アクリレートの固形重量比を60g/39g/1gとしたほかは、実施例1と同様にして回路接続材料を得た。
【0139】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0140】
<実施例15>
ラジカル重合性物質としてトリス(アクリロイロキシエチル)イソシアヌレートを用い、フェノキシ樹脂/トリス(アクリロイロキシエチル)イソシアヌレート、リン酸エステル型アクリレートの固形重量比を60g/39g/1gとしたほかは、実施例1と同様にして回路接続材料を得た。
【0141】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0142】
<実施例16>
ラジカル重合性物質として4,4’−ビスマレイミドジフェニルメタン30gとジアリルビスフェノールA35gを120℃で20分間加熱混合したものとリン酸エステル型アクリレート(共栄社油脂株式会社製、商品名P−2m)を用いた。
【0143】
フェノキシ樹脂(PKHC)とニトリルゴム(日本ゼオン株式会社製、商品名ニポール1072)を用い、フェノキシ樹脂/ニトリルゴムを20g/10gとしメチルエチルケトン30gで溶解し、固形分50%の溶液とした。
【0144】
固形重量比で4,4’−ビスマレイミドジフェニルメタンとジアリルビスフェノールAを120℃で20分間加熱混合したものを69g、フェノキシ樹脂20g、ニトリルゴム10g、リン酸エステル型アクリレート1g、t−ヘキシルパーオキシ2−エチルヘキサノネート5gとなるように配合し、更に導電性粒子を3体積%配合分散させ、実施例1と同様にして回路接続材料を得た。
【0145】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0146】
<実施例17>
ラジカル重合性物質として4,4’−ビスマレイミドジフェニルメタン30gとジアリルビスフェノールA20gを120℃で20分間加熱混合したものを用いたほかは、実施例14と同様にして回路接続材料を得た。
【0147】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0148】
<実施例18>
導電性粒子を平均粒径2μmのNi粒子の表面をPdで被覆(被覆厚み0.04μm)したものを用いて、0.5体積%としたほかは、実施例1と同様にして回路接続材料を得た。
【0149】
この回路接続材料を用いて、実施例1と同様にして回路を接続した。
【0150】
<比較例>
フェノキシ樹脂(PKHC)、ビスフェノールA型エポキシ樹脂(YL980、油化シェル株式会社製品名)、イミダゾール系マイクロカプセル型硬化剤(3941HP 株式会社旭化成製商品名)を用いて、フェノキシ樹脂/ビスフェノールA型エポキシ樹脂/イミダゾール系マイクロカプセル型硬化剤の固形重量比を40/20/40とした他は、実施例1と同様にして回路接続材料を得た。
【0151】
(接続抵抗の測定)
回路の接続後、上記接続部を含むFPCの隣接回路間の抵抗値を、初期と、85℃、85%RHの高温高湿槽中に500時間保持した後にマルチメータで測定した。抵抗値は隣接回路間の抵抗150点の平均(x+3σ)で示した。実施例1で得られた回路接続材料は良好な接続信頼性を示した。また、初期の接続抵抗も低く、高温高湿試験後の抵抗の上昇もわずかであり、高い耐久性を示した。また、実施例2〜18も実施例1と同様に良好な信頼性が得られた。これらに対して、比較例は、硬化反応が不十分であるため接着状態が悪く、初期の接続抵抗が高くなった。
【0152】
(接着力の測定)
回路の接続後、90度剥離、剥離速度50mm/分で接着力測定を行った。比較例は硬化反応が不十分で、接着強度に200gf/cm程度と接着力が低かったが、実施例1〜18では1000gf/cm程度と良好な接着力が得られた。
【0153】
(保存性の評価)
得られた回路接続材料を30℃の恒温槽で30日間処理し、上記と同様にして回路の接続を行い保存性を評価した。
【0154】
いずれの場合も、30℃の恒温槽で30日間処理しない状態(初期)と同等の接続結果が得られた。
【0155】
(絶縁性の評価)
得られた回路接続材料を用いて、ライン幅50μm、ピッチ100μm、厚み18μmの銅回路を交互に250本配置した櫛形回路を有するプリント基板とライン幅50μm、ピッチ100μm、厚み18μmの銅回路を500本有するフレキシブル回路板(FPC)を160℃、3MPaで10秒間加熱加圧して幅2mmにわたり接続した。この接続体の櫛形回路に100Vの電圧を印加し、85℃85%RH高温高湿試験500時間後の絶縁抵抗値を測定した。
【0156】
いずれの場合も109Ω以上の良好な絶縁性が得られ絶縁性の低下は観察されなかった。
【0157】
(流動性の評価)
厚み35μm、5mm×5mmの回路用接続材料を用い、これを厚み0.7mm、15mm×15mmのガラスにはさみ、150℃、2MPa、10秒の条件で加熱加圧を行った。初期の面積(A)と加熱加圧後の面積(B)を用いて流動性(B)/(A)の値を求めたところ、実施例1は1.9であり、実施例2〜10についても1.3〜3.0の範囲内であった。
【0158】
(硬化後の弾性率)
実施例1の回路用接続材料の、硬化後の40℃での弾性率を測定したところ1500MPaであった。
【0159】
(DSCの測定)
得られた回路接続材料を用いて、示差走査熱量計(DSC TAインスツルメント社製 商品名910型)を用いて10℃/分の測定において、発熱反応の立ち上がり温度(Ta)、ピーク温度(Tp)、終了温度(Te)を求めた。
【0160】
実施例1の立ち上がり温度(Ta)は89℃、ピーク温度(Tp)は103℃、終了温度(Te)は145℃であった。実施例2の立ち上がり温度(Ta)は87℃、ピーク温度(Tp)は99℃、終了温度(Te)は140℃であった。実施例7の立ち上がり温度(Ta)は92℃、ピーク温度(Tp)は116℃、終了温度(Te)は150℃であった。比較例の立ち上がり温度(Ta)は86℃、ピーク温度(Tp)は121℃、終了温度(Te)は180℃であった。
【0161】
(産業上の利用可能性)
上述のように、本発明によれば、従来のエポキシ樹脂系よりも低温速硬化性に優れかつ長い可使時間を有する電気・電子用の回路接続材料を提供が可能となる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施例を説明する、回路基板の仮接続工程を示す断面図である。
【図2】図2は、本発明の一実施例を説明する、回路基板の仮接続工程を示す断面図である。[0001]
(Technical field)
The present invention relates to a circuit connection material that is interposed between circuit electrodes facing each other, pressurizes circuit electrodes facing each other, and electrically connects the electrodes in the pressing direction, and a circuit terminal connection structure and a connection method.
[0002]
(Background technology)
Epoxy resin adhesives are widely used in various applications such as electricity, electronics, architecture, automobiles, and aircraft because of their high adhesive strength and excellent water resistance and heat resistance. Among them, the one-pack type epoxy resin adhesive is used in the form of a film, a paste, or a powder because it is not necessary to mix the main agent and the curing agent and is easy to use. In this case, it is common to obtain specific performance by various combinations of an epoxy resin, a curing agent, and a modifier (for example, JP-A-62-141083).
[0003]
However, although the epoxy resin film adhesive as shown in the above-mentioned JP-A-62-141083 is excellent in workability, it is heated at about 140 to 180 ° C. for about 20 seconds and heated for about 10 seconds. Heating of about 180 to 210 ° C. was necessary.
[0004]
This is because a catalyst-type curing agent that is inert at room temperature is used for the purpose of obtaining good stability by coexistence of short-term curability (fast curability) and storage stability (storability). This is because a sufficient reaction cannot be obtained upon curing.
[0005]
In recent years, in the field of precision electronic equipment, the density of circuits has been increasing, and the electrode width and electrode interval have become extremely narrow. For this reason, the connection conditions of the circuit connection material using the conventional epoxy resin system have problems such as dropout of wiring, peeling, and misalignment. In addition, shortening of the connection time to 10 seconds or less has been demanded in order to improve production efficiency, and low temperature rapid curability is indispensable.
[0006]
(Disclosure of the Invention)
The present invention provides an electrical / electronic circuit connection material that is excellent in low-temperature fast curing properties and has a long pot life.
[0007]
  The first circuit connecting material of the present invention is:A circuit connecting material that is interposed between circuit electrodes facing each other and pressurizes opposing circuit electrodes to electrically connect the electrodes in the pressurizing direction, and the following components (1) to (3) are essential: Including an adhesive resin component
(1) Curing agent that generates free radicals when heated
(2) Hydroxyl-containing resin having a molecular weight of 10,000 or more selected from phenol resin, epoxy resin and phenoxy resin (excluding amino group-modified phenoxy resin)
(3) Radical polymerizable substance
And it is a film-form circuit connection material characterized by not containing electroconductive particle.
[0008]
  Another circuit connection material of the present invention is:It is a film-like circuit connection material (except for those containing a silane coupling agent) that is interposed between circuit electrodes facing each other and pressurizes the opposite circuit electrodes to electrically connect the electrodes in the pressing direction. And an adhesive resin component essentially comprising the following components (1) to (3):
(1) Curing agent that generates free radicals when heated
(2) A hydroxyl group-containing resin having a molecular weight of 10,000 or more selected from polyvinyl butyral, polyvinyl formal, polyester, phenol resin, epoxy resin, and phenoxy resin
(3) Radical polymerizable substance
And it is a film-like circuit connection material characterized by not containing conductive particles.
[0009]
The radical polymerizable substance can contain a radical polymerizable substance represented by the following chemical formula (a).
[0010]
[Chemical 9]
Figure 0004717334
[0011]
  Another circuit connection material of the present invention is a film-like anisotropic conductive circuit connection material that is interposed between circuit electrodes facing each other, pressurizes opposite circuit electrodes, and electrically connects the electrodes in the pressing direction. It includes an adhesive resin component essentially comprising the following components (1) to (4), and the film-like anisotropic conductive circuit connecting material is 10 ° C./min using a differential scanning calorimeter (DSC). When measuring the above, the rise temperature (Ta) of the exothermic reaction is in the range of 70 ° C to 110 ° C, the peak temperature (Tp) is Ta + 5 to 30 ° C, and the end temperature (Te) is 160 ° C or less. The content of the conductive particles is a film-like anisotropic conductive circuit connecting material that is 0.1 to 30 parts by volume with respect to 100 parts by volume of the adhesive resin component.
  (1) Curing agent that generates free radicals when heated
  (2) Hydroxyl-containing resin having a molecular weight of 10,000 or more
  (3) Radical polymerizable substance containing a radical polymerizable substance represented by the following chemical formula (a)
[Chemical 9]
Figure 0004717334
(Where n is an integer from 1 to 3)
  (4) Conductive particles
  The hydroxyl group-containing resin having a molecular weight of 10,000 or more is preferably a phenoxy resin, particularly a phenoxy resin modified with a carboxyl group-containing elastomer, or a phenoxy resin modified with an epoxy group-containing elastomer.
  A curing agent that generates free radicals upon heating is preferably a curing agent having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 180 ° C. or less, and a peroxyester can be used.
[0012]
  The second circuit connection material of the present invention is a circuit connection material that is interposed between circuit electrodes facing each other, pressurizes opposite circuit electrodes, and electrically connects the electrodes in the pressurizing direction.(5), (6)It is a circuit connecting material that requires the above component.
[0013]
  (5) A curing agent that generates free radicals upon heating, has a half-life of 10 hours at a temperature of 40 ° C or higher, and a half-life of 1 minute at a temperature of 180 ° C or lower.
  (6) Radically polymerizable substances
Peroxyesters are preferred as curing agents that generate free radicals upon heating.
[0014]
The circuit connection material can contain acrylic rubber.
[0015]
A third circuit connection material of the present invention is a circuit connection material that is interposed between circuit electrodes facing each other, pressurizes opposite circuit electrodes, and electrically connects the electrodes in the pressurizing direction. In the measurement at 10 ° C./min using a calorimeter (DSC), the rising temperature (Ta) of the exothermic reaction is within the range of 70 ° C. to 110 ° C., the peak temperature (Tp) is Ta + 5 to 30 ° C., and is completed. The temperature (Te) is 160 ° C. or lower.
[0017]
In the circuit terminal connection structure of the present invention, the first circuit member having the first connection terminal and the second circuit member having the second connection terminal are the first connection terminal and the second connection terminal. The circuit connection material is interposed between the first connection terminal and the second connection terminal arranged opposite to each other, and the first connection terminal and the second connection terminal arranged opposite to each other. The connection terminals are electrically connected.
[0018]
The circuit terminal connection method of the present invention includes a first circuit member having a first connection terminal and a second circuit member having a second connection terminal, the first connection terminal and the second connection terminal. The circuit connection material is interposed between the first connection terminal and the second connection terminal arranged opposite to each other, and the first connection terminal and the second arranged opposite to each other by heating and pressing. The connection terminals are electrically connected.
[0019]
In the circuit terminal connection structure of the present invention, the first circuit member having the first connection terminal and the second circuit member having the second connection terminal are connected to the first connection terminal and the second connection. Terminals are arranged facing each other, and a circuit connection material having curability by radical polymerization is interposed between the first and second connection terminals arranged opposite to each other, and at least one of the connection terminals The surface is made of a metal selected from the group consisting of gold, silver, tin and platinum, and the first connection terminal and the second connection terminal arranged opposite to each other are electrically connected.
[0020]
The circuit terminal connection method of the present invention includes a first circuit member having a first connection terminal and a second circuit member having a second connection terminal. The connection terminals are arranged to face each other, and a circuit connection material having curability by radical polymerization is interposed between the first connection terminals and the second connection terminals arranged to face each other. A circuit terminal connection method for electrically connecting one connection terminal and a second connection terminal, wherein at least one surface of the connection terminal is a metal selected from the group consisting of gold, silver, tin and platinum, and a radical After forming a circuit connection material with curing properties by polymerization on one connection terminal whose surface is a metal selected from the group consisting of gold, silver, tin and platinum, the other circuit electrode is aligned, heated and pressurized to connect To do.
[0021]
(Best Mode for Carrying Out the Invention)
Curing agents that generate free radicals upon heating used in the present invention are those that decompose upon heating of peroxide compounds, azo compounds, etc. to generate free radicals, and the intended connection temperature, connection time, pot life However, from the viewpoint of high reactivity and pot life, an organic peroxide having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 180 ° C. or less is preferred. An organic peroxide having a 10-hour temperature of 60 ° C. or more and a half-life of 1 minute is preferably 170 ° C. or less.
[0022]
The blending amount is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the sum of the hydroxyl group-containing resin having a molecular weight of 10,000 or more and the radical polymerizable substance.
[0023]
The curing agent can be selected from diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide, and the like. Moreover, in order to suppress the corrosion of the connection terminals of the circuit member, the chlorine ions and organic acids contained in the curing agent are preferably 5000 ppm or less, and more preferably less organic acids generated after thermal decomposition. .
[0024]
Specifically, it is more preferably selected from peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and peroxyesters that provide high reactivity.
[0025]
The said hardening | curing agent can be mixed suitably and used.
[0026]
Peroxyesters include cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynoedecanoate, and t-hexyl. Peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanate, 2,5-dimethyl-2,5-di (2- Ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate Nate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohexane, t-hexyl Peroxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoyl peroxy) Hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate and the like can be used.
[0027]
Dialkyl peroxides include α, α′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butyl. Cumyl peroxide can be used.
[0028]
As hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, etc. can be used.
Diacyl peroxide includes isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, benzoyl Peroxytoluene, benzoyl peroxide, etc. can be used.
[0029]
Examples of peroxydicarbonate include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, di ( 2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate, and the like can be used.
[0030]
Peroxyketals include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t- Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like can be used.
[0031]
Examples of silyl peroxides include t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, and tris (t-butyl) vinyl. Silyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, tris (t-butyl) allylsilyl peroxide, and the like can be used.
[0032]
These curing agents that generate free radicals can be used alone or in combination, and a decomposition accelerator, an inhibitor, or the like may be used in combination.
[0033]
In addition, those encapsulating these curing agents with polyurethane-based or polyester-based polymeric substances and the like and microencapsulated are preferable because the pot life is extended.
[0034]
The radical polymerizable substance used in the present invention is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylates, methacrylates, maleimide compounds, and the like. The radical polymerizable substance can be used in either a monomer or oligomer state, and the monomer and oligomer can be used in combination.
Specific examples of the acrylate (methacrylate) include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, 2-hydroxy-1,3. -Diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl Examples include acrylate and tris (acryloyloxyethyl) isocyanurate. These can be used alone or in combination. If necessary, a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be appropriately used. Moreover, when it has a dicyclopentenyl group and / or a tricyclodecanyl group and / or a triazine ring, since heat resistance improves, it is preferable.
[0035]
The maleimide compound contains at least two maleimide groups in the molecule. For example, 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N′— p-phenylene bismaleimide, N, N′-m-toluylene bismaleimide, N, N′-4,4-biphenylene bismaleimide, N, N′-4,4- (3,3′-dimethyl-biphenylene) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N′- 4,4-diphenylmethane bismaleimide, N, N′-4,4-diphenylpropane bismaleimide, N, N′-4,4-diphenyl ether bismaleimide N, N′-3,3′-diphenylsulfone bismaleimide, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-4-8 (4 -Maleimidophenoxy) phenyl) propane, 1,1-bis (4- (4-maleimidophenoxy) phenyl) decane, 4,4'-cyclohexylidene-bis (1- (4maleimidophenoxy) -2-cyclohexylbenzene, Examples include 2,2-bis (4- (4-maleimidophenoxy) phenyl) hexafluoropropane, which can be used alone or in combination.
[0036]
In addition, when the radical polymerizable substance having a phosphate ester structure represented by the chemical formula (a) is used in combination with the radical polymerizable substance, the adhesive strength on the surface of an inorganic substance such as a metal is improved. The blending amount is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the sum of the hydroxyl group-containing resin having a molecular weight of 10,000 or more and the radical polymerizable substance.
[0037]
The radically polymerizable substance having a phosphoric ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyethyl (meth) acrylate. Specific examples include mono (2-methacryloyloxyethyl) acid phosphate and di (2-methacryloyloxyethyl) acid phosphate. These can be used alone or in combination.
[0038]
As the hydroxyl group-containing resin having a molecular weight of 10,000 or more used in the present invention, polymers such as polyvinyl butyral, polyvinyl formal, polyamide, polyester, phenol resin, epoxy resin, and phenoxy resin can be used. Adhesion is improved. A polymer obtained by modifying each polymer with a radically polymerizable functional group is more preferable because heat resistance is improved. In such a case, it is a hydroxyl group-containing resin having a molecular weight of 10,000 or more, and is also a radical polymerizable substance.
[0039]
The molecular weight of these polymers is preferably 10,000 or more, but if it is 1,000,000 or more, the mixing property tends to deteriorate.
[0040]
As the hydroxyl group-containing resin having a molecular weight of 10,000 or more, a hydroxyl group-containing resin having a Tg (glass transition temperature) of 40 ° C. or more and a molecular weight of 10,000 or more can be used, and a phenoxy resin can be used. The hydroxyl group-containing resin having a molecular weight of 10,000 or more may be modified with a carboxyl group-containing elastomer, an epoxy group-containing elastomer, or a radical polymerizable functional group. Those modified with radically polymerizable functional groups are preferred because the heat resistance is improved.
[0041]
The phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin to a high molecular weight or by polyaddition reaction of a bifunctional epoxy resin and a bifunctional phenol. Specifically, by reacting 1 mol of a bifunctional phenol with 0.985 to 1.015 mol of epihalohydrin in the presence of an alkali metal hydroxide at a temperature of 40 to 120 ° C. Obtainable.
[0042]
In addition, from the viewpoint of the mechanical properties and thermal properties of the resin, in particular, the blending equivalent ratio of the bifunctional epoxy resin and the bifunctional phenol is epoxy group / phenolic hydroxyl group = 1 / 0.9 to 1 / 1.1, In the presence of a catalyst such as an alkali metal compound, an organic phosphorus compound, or a cyclic amine compound, the reaction solid in an amide, ether, ketone, lactone, alcohol, or other organic solvent having a boiling point of 120 ° C. or higher. What was obtained by heating to 50 to 200 ° C. and subjecting it to a polyaddition reaction at a partial concentration of 50% by weight or less is preferable.
[0043]
Bifunctional epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, bisphenol S type epoxy resins and their alkylene oxide adducts, halides (tetrabromobisphenol type epoxy resins, etc.), Examples include hydrogenated products, alicyclic epoxy resins, aliphatic chain epoxy resins, their halides, and hydrogenated products.
[0044]
These compounds may have any molecular weight, and particularly when they are reacted with bifunctional phenols, those having a purity as high as possible are preferable. Several kinds of these compounds can be used in combination. Examples of the epihalohydrin include epichlorohydrin, epibromohydrin, epiiodohydrin, and the like.
[0045]
Further, the bifunctional phenols may be any compounds as long as they have two phenolic hydroxyl groups, for example, monocyclic bifunctional phenols such as hydroquinone, 2-bromohydroquinone, resorcinol, and catechol, and bisphenol A. Bisphenols such as bisphenol F, bisphenol AD and bisphenol S, dihydroxybiphenyls such as 4,4′-dihydroxybiphenyl, dihydroxyphenyl ethers such as bis (4-hydroxyphenyl) ether, and aromatic rings of these phenol skeletons Straight chain alkyl group, branched alkyl group, aryl group, methylol group, allyl group, cycloaliphatic group, halogen (tetrabromobisphenol A etc.), nitro group introduced, carbon in the center of these bisphenol skeletons original Straight chain alkyl group, branched alkyl group, an allyl group, with the allyl group of substituents, a cyclic aliphatic group, a polycyclic bifunctional phenols introduced alkoxycarbonyl group.
[0046]
Specifically, 4,4 ′-(1-methylethylidene) bis [2-methylphenol], 4,4′-methylenebis [2-methylphenol], 4,4 ′-(1-methylethylidene) bis [ 2- (1-methylethyl) phenol], 4,4 ′-(1-methylethylidene) bis [2- (1,1-methylpropyl) phenol], 4,4 ′-(1-methylethylidene) bis [ 2- (1,1-dimethylethyl) phenol], tetramethylbisphenol A, tetramethylbisphenol F, 4,4′-methylenebis [2,6-bis (1,1-dimethylethyl) phenol], 4,4 ′ -(1-methylethylidene) bis [2,6-di (1,1-dimethylethyl) phenol], 4,4 '-(1-methylethylidene) bis [2- (2-propenyl) phenone ], 4,4'-methylenebis [2- (2-propenyl) phenol], 4,4 '-(1-methylethylidene) bis [2- (1-phenylethyl) phenol], 3,3'-dimethyl [ 1,1′-biphenyl] -4,4′-diol, 3,3 ′, 5,5′-tetramethyl- [1,1′-biphenyl] -4,4′-diol, 3,3 ′, 5 , 5′-Tetra-t-butyl- [1,1′-biphenyl] -4,4′-diol, 3,3′-bis (2-propenyl)-[1,1′-biphenyl] -4,4 '-Diol, 4,4'-(1-methylethylidene) bis [2-methyl-6-hydroxymethylphenol], tetramethylol bisphenol A, 3,3 ', 5,5'-tetrakis (hydroxymethyl)-( 1,1′-biphenyl) -4,4′-dio 4,4 '-(1-methylethylidene) bis [2-phenylphenol], 4,4'-(1-methylethylidene) bis [2-cyclohexylphenol], 4,4'-methylenebis (2-cyclohexyl) -5-methylphenol), 4,4 '-(1-methylpropylidene) bisphenol, 4,4'-(1-methylheptylidene) bisphenol, 4,4 '-(1-methyloctylidene) bisphenol, 4,4 ′-(1,3-dimethylbutylidene) bisphenol, 4,4 ′-(2-ethylhexylidene) bisphenol, 4,4 ′-(2-methylpropylidene) bisphenol, 4,4′- Propylidenebisphenol, 4,4 '-(1-ethylpropylidene) bisphenol, 4,4'-(3-methylbutylidene) bisphenol 4,4 ′-(1-phenylethylidene) bisphenol, 4,4 ′-(phenylmethylene) bisphenol, 4,4 ′-(diphenylmethylene) bisphenol, 4,4 ′-[1- (4-nitrophenyl) ethylidene Bisphenol, 4,4 ′-[1- (4-aminophenyl) ethylidene] bisphenol, 4,4 ′-[(4-bromophenyl) methylene bisphenol, 4,4 ′-[(4-chlorophenyl) methylene bisphenol, 4,4 ′-[(4-fluorophenyl) methylenebisphenol, 4,4 ′-(2-methylpropylidene) bis [3-methyl-6- (1,1-dimethylethyl) phenol], 4,4 ′ -(1-ethylpropylidene) bis [2-methylphenol], 4,4 '-(1-phenylethylidene) bis [2-methyl Tylphenol], 4,4 ′-(phenylmethylene) bis-2,3,5-trimethylphenol, 4,4 ′-(1-phenylethylidene) bis [2- (1,1-dimethylethyl) phenol], 4,4 ′-(1-methylpropylidene) bis [2-cyclohexyl-5-methylphenol], 4,4 ′-(1-phenylethylidene) bis [2-phenylphenol], 4,4′-butylidenebis [ 3-methyl-6- (1,1-dimethylethyl) phenol], 4-hydroxy-α- (4-hydroxyphenyl-α-methylbenzeneacetic acid methyl ester, 4-hydroxy-α- (4-hydroxyphenyl) -Α-methylbenzeneacetic acid ethyl ester, 4-hydroxy-α- (4-hydroxyphenyl) benzeneacetic acid Dobutyl ester, tetrabromobisphenol A, tetrabromobisphenol F, tetrabromobisphenol AD, 4,4 ′-(1-methylethylene) bis [2,6-dichlorophenol], 4,4 ′-(1-methylethylidene ) Bis [2-chlorophenol], 4,4 '-(1-methylethylidene) bis [2-chloro-6-methylphenol], 4,4'-methylenebis [2-fluorophenol], 4,4'- Methylenebis [2,6-difluorophenol], 4,4′-isopropylidenebis [2-fluorophenol], 3,3′-difluoro- [1,1′-diphenyl] -4,4′-diol, 3, 3 ′, 5,5′-tetrafluoro- [1,1′-biphenyl] -4,4′-diol, 4,4 ′-(phenylmethylene) bis 2-fluorophenol], 4,4 ′-[(4-fluorophenyl) methylenebis [2-fluorophenol], 4,4 ′-(phenylmethylene) bis [2,6-difluorophenol], 4,4′- (4-Fluorophenyl) methylenebis [2,6-difluorophenol], 4,4 ′-(diphenylmethylene) bis [2-fluorophenol], 4,4 ′-(diphenylmethylene) bis [2,6-difluorophenol ], 4,4 '-(1-methylethylene) bis [2-nitrophenol].
[0047]
Other polycyclic bifunctional phenols include 1,4-naphthalenediol, 1,5-naphthalenediol, 1,6-naphthalenediol, 1,7-naphthalenediol, 2,7-naphthalenediol, 4 , 4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) methanone, 4,4′-cyclohexylidene bisphenol, 4,4′-cyclohexylidene bis [2-methylphenol], 4,4′-cyclopentylidene Bisphenol, 4,4′-cyclopentylidenebis [2-methylphenol], 4,4′-cyclohexylidene [2,6-dimethylphenol], 4,4′-cyclohexylidenebis [2- (1, 1-dimethylethyl) phenol], 4,4′-cyclohexylidenebis [2-cyclohexyl Enol], 4,4 ′-(1,2-ethanediyl) bisphenol, 4,4′-cyclohexylidenebis [2-phenylphenol], 4,4 ′-[1,4-phenylenebis (1-methylethylidene) )] Bis [2-methylphenol], 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol, 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] Bisphenol, 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bis [2-methyl-6-hydroxymethylphenol], 4- [1- [4- (4-hydroxy-3-methyl) Phenyl) -4-methylcyclohexyl] -1-methylethyl] -2-methylphenol, 4- [1- [4- (4-hydroxy-3,5-dimethylphenyl)- -Methylcyclohexyl] -1-methylethyl] -2,6-dimethylphenol, 4,4 '-(1,2-ethanediyl) bis [2,6-di- (1,1-dimethylethyl) phenol], 4 , 4 ′-(dimethylsilylene) bisphenol, 1,3-bis (p-hydroxyphenyl) -1,1,3,3-tetramethyldisiloxane, a silicone oligomer having a p-hydroxyphenyl group at both ends, and 2, Linear alkyl group, branched alkyl group, aryl group, methylol group, allyl group, etc. on the aromatic ring of the phenol skeleton such as 2'-methylidene bisphenol, 2,2'-methylethylidene bisphenol, 2,2'-ethylidene bisphenol Is introduced.
[0048]
Specifically, 2,2′-methylidenebis [4-methylphenol], 2,2′-ethylidenebis [4-methylphenol], 2,2′-methylidenebis [4,6-dimethylphenol], 2,2 '-(1-methylethylidene) bis [4,6-dimethylphenol], 2,2'-(1-methylethylidene) bis [4-sec-butylphenol], 2,2'-methylidenebis [6- (1, 1-dimethylethyl) -4-methylphenol], 2,2′-ethylidenebis [4,6-di (1,1-dimethylethyl) phenol], 2,2′-methylidenebis [4-nonylphenol], 2, 2′-methylidenebis [3-methyl-4,6-di- (1,1-dimethylethyl) phenol], 2,2 ′-(2-methylpropylidene) bis [2,4-dimethylphenol 2,2′-ethylidenebis [4- (1,1-dimethylethyl) phenol], 2,2′-methylidenebis (2,4-di-t-butyl-5-methylphenol), 2, 2'-methylidenebis (4-phenylphenol), 2,2'-methylidenebis [4-methyl-6-hydroxymethylphenol], 2,2'-methylenebis [6- (2-propenyl) phenol] and the like. Several kinds of these compounds can be used in combination.
[0049]
The solution after completion of the reaction can also be obtained as a solid phenoxy resin by reprecipitation purification using a poor solvent such as methanol. The phenoxy resin thus produced can be used in combination of two or more.
[0050]
In order to achieve the object of the present invention, the first structural unit represented by the following general formula (I) and / or the second structural unit represented by the following general formula (II) comprises: It is preferable that the resin contains at least one of the structural units in the molecule. When a copolymer having both the first structural unit and the second structural unit is used as the phenoxy resin, the phenoxy resin preferably contains 10 mol% or more of the first structural unit. The copolymerization ratio is more preferably set to the number of first structural units: the number of second structural units = 2: 8 to 8: 2. Further, when two or more phenoxy resins are used, at least one of them is composed of the first structural unit and / or the second structural unit, and the resin includes at least one first structural unit in the molecule. It is preferable that
[0051]
[Chemical 1]
Figure 0004717334
[0052]
[Chemical formula 2]
Figure 0004717334
[0053]
Where R1, R2, RThree, RFourIs independently selected from a hydrogen atom, an alkyl group having 1 to 4 carbon atoms (a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, etc.) and an electron withdrawing group. One is an electron withdrawing group. The electron-withdrawing group is a group having Hammett's substituent constant σ having a positive value (“Chemical Dictionary”, pages 83-383, 1986, published by Morikita Publishing Co., Ltd.), for example, a fluorine atom, a chlorine atom, Halogen such as bromine atom, trifluoromethyl group, trichloromethyl group, tribromomethyl group, nitro group, nitrile group, alkoxy group such as methoxy group and ethoxy group, carboxyl group, alkylcarbonyl such as methylcarbonyl group and ethylcarbonyl group Group, an alkoxycarbonyl group such as a methoxycarbonyl group and an ethoxycarbonyl group, an alkylsulfonyl group, and the like, and a halogen is preferable.
[0054]
RFive, R6, R7, R8Is independently selected from a hydrogen atom and an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, etc.).
[0055]
X1And X2Represents a divalent organic group or bond. This X1And X2The divalent organic group represented by is not particularly limited, and examples thereof include the following.
[0056]
[Chemical 3]
Figure 0004717334
[0057]
[Formula 4]
Figure 0004717334
[0058]
Such a phenoxy resin can be obtained by using at least one of the synthetic raw materials as a bifunctional epoxy resin and / or a bifunctional phenol having these hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an electron withdrawing group. .
[0059]
Specific examples of this phenoxy resin include, for example, a random copolymer composed of a repeating unit represented by the following structural formula (III) and a repeating unit represented by the following structural formula (IV),
[0060]
[Chemical formula 5]
Figure 0004717334
[0061]
A polymer comprising a repeating unit represented by the following structural formula (V):
[0062]
[Chemical 6]
Figure 0004717334
[0063]
A polymer comprising repeating units represented by the following structural formula (VI):
[0064]
[Chemical 7]
Figure 0004717334
[0065]
A polymer comprising repeating units represented by the following structural formula (VII)
[0066]
[Chemical 8]
Figure 0004717334
[0067]
Etc.
[0068]
In order for the cured product to exhibit excellent properties such as flexibility, toughness, and film-forming property, the average molecular weight (polystyrene equivalent weight average molecular weight by gel permeation chromatography) is preferably 10,000 or more, more preferably 20000 or more, More preferably, 30,000 or more phenoxy resins are used. Examples of commercially available products include PKHH, PAHJ (manufactured by Union Carbide), YPB-43C, YPB-43D, YPB-43G, YPB-43m, YP-50, or YPB-40ASB25, YPB-40AM40 (manufactured by Toto Kasei). And the like obtained by reprecipitation purification.
[0069]
Further, the carboxyl group-containing elastomer and the epoxy group-containing elastomer may be any elastomer as long as it is an elastomer having a carboxyl group or an epoxy group in the molecular terminal or molecular chain, such as a butadiene-based polymer and an acrylic polymer. , Polyether urethane rubber, polyester urethane rubber, polyamide urethane rubber, silicone rubber and the like, and butadiene polymers are preferred. Examples of the butadiene polymer include a butadiene polymer, a butadiene-styrene copolymer, and a butadiene-acrylonitrile copolymer. Of these, butadiene-acrylonitrile copolymers are particularly preferred.
[0070]
The weight average molecular weight of the carboxyl group-containing elastomer is preferably in the range of 500 to 1,000,000, more preferably 1000 to 800,000, still more preferably 1000 to 10,000.
[0071]
If the amount of the component having compatibility with the phenoxy resin contained in the elastomer skeleton is too large, it is preferably determined so that the phenoxy phase and the elastomer phase are phase-separated. The amount of this component can be arbitrarily adjusted according to the structure (SP value) of the phenoxy resin and the heat resistance and mechanical strength of the modified resin. For example, in the case of a butadiene-acrylonitrile copolymer, the acrylonitrile content is preferably set to 40% by weight or less, more preferably 5 to 40% by weight, still more preferably 10 to 30% by weight. Commercially available products include, for example, HYCAR CTBN1300x31, HYCAR CTBN1300x8, HYCAR CTBN1300x13, HYCAR CTBNX1300x9, HYCAR CTBNX1009-SP, HYCAR CTB200x162 (manufactured by Ube Industries, Ltd.), NIPOL DN 601 (manufactured by Nippon Zeon P, C Examples thereof include C-2000 (manufactured by Nippon Soda Co., Ltd.), ELC-4 (manufactured by Nippon Synthetic Rubber Co., Ltd.), and the like.
[0072]
Moreover, when using the molding compound for sealing of this invention for electronic component apparatus uses, such as a semiconductor, it is preferable to reduce the ionic impurity in material as much as possible. Therefore, even in these carboxyl group-containing elastomers, Na in the polymer+, K+Alkali metal ions such as 10 ppm or less, more preferably 5 ppm or less, Cl-Is preferably 400 ppm or less, more preferably 100 ppm or less, and still more preferably 40 ppm or less.
[0073]
The phase separation structure of the present invention can be produced, for example, as follows.
[0074]
First, the phenoxy resin is dissolved in a solvent, and the above carboxyl group-containing elastomer is dissolved therein (the volume ratio of the phenoxy resin to the elastomer is the flexibility, toughness and adhesive strength of the cured product required for the target application. The phenoxy resin: elastomer is preferably in the range of 60:40 to 90:10, and more preferably in the range of 66:33 to 87:13).
[0075]
As a solvent at the time of production, any solvent can be used as long as it dissolves the phenoxy resin and the carboxyl group-containing elastomer. And an inert solvent.
[0076]
Next, after sufficiently purging the solution with nitrogen, it is heated at 100 ° C. to 220 ° C., preferably about 130 ° C. to 180 ° C. under nitrogen until the viscosity becomes a translucent or transparent at room temperature, preferably a constant value. Mix with stirring. The heating and mixing are preferably performed while refluxing the solvent.
[0077]
The solution of the elastomer-modified phenoxy resin after completion of the heating and mixing can be obtained as a solid phase separation structure by performing reprecipitation purification using a poor solvent such as methanol. Although the mechanism of modification is not clear, H1-NMR spectra before and after modification confirmed that the integrated value corresponding to the proton of methine bonded to the hydroxyl group in the phenoxy resin skeleton decreased after modification. In addition, in the FT-IR (Fourier transform-infrared absorption) spectrum, 3460 cm, which is not recognized with a simple blend of elastomers.-1~ 3560cm-1And 1610 cm-1~ 1640cm-1It was confirmed that a remarkable change occurred in the spectrum of the region. From this, it is considered that at least one part of the carboxyl group of the carboxyl group-containing elastomer and at least one part of the hydroxyl group in the phenoxy resin form an ester bond.
[0078]
In the elastomer-modified phenoxy resin thus obtained, the phenoxy resin and the carboxyl group-containing elastomer form a phase separation, and an optically transparent or translucent film-like material can be formed only with this phase separation structure. Thus, the light transmittance at a wavelength of 500 nm of the film-like material having a film thickness of 75 μm is 10% or more with respect to the light transmittance of air. The light transmittance is more preferably 20 to 90%, and further preferably 30 to 85%.
[0079]
The formation of phase separation can be confirmed by observation with a scanning or transmission electron microscope, atomic force microscope, etc., dynamic viscoelasticity measurement, light scattering method, X-ray small angle scattering method, etc. 80-124 pages, issued by CMC Co., Ltd.). For example, in the dynamic viscoelasticity measurement, it is confirmed that the main dispersion tan δ (loss elastic modulus G ″ / storage elastic modulus G ′) peak of the elastomer phase and the main dispersion tan δ peak of the phenoxy resin phase exist independently. do it.
[0080]
In the phase-separated structure of the present invention, in the scanning electron microscope image of the film-like product, the elastomer phase and the phenoxy resin phase were dispersed in the form of fine particles of submicron order of about 0.1 to 0.3 μm. A micro phase separation structure is preferably formed, and a film-like material having such a phase separation structure is optically transparent or translucent. That is, the light transmittance at a wavelength of 500 nm of the film-like material having a film thickness of 75 μm of the phase separation structure of the present invention is 10% or more with respect to the light transmittance of air.
[0081]
As the phase separation structure of the elastomer-modified phenoxy resin obtained in the present invention, for example, a mixture of a carboxyl group-containing elastomer and a phenoxy resin, such as a microphase separation structure of an elastomer phase and a phenoxy resin phase or a microphase separation structure in which microdomains are connected. A structure that has not been known so far is included. Such a microphase-separated structure is considered as one factor for improving the adhesive strength to the adherend.
[0082]
The blending amount of the hydroxyl group-containing resin having a molecular weight of 10,000 or more and the radical polymerizable substance is preferably such that the hydroxyl group-containing resin / radical polymerizable substance having a molecular weight of 10,000 or more is from 10/90 to 90/10 by weight. More preferably, it is -70/30.
[0083]
Further, the circuit connection material of the present invention is a polymer or copolymer having at least one of acrylic acid, acrylic ester, methacrylic ester or acrylonitrile as a monomer component, and glycidyl acrylate or glycidyl containing a glycidyl ether group. The use of a copolymer acrylic rubber containing methacrylate is preferable because it is excellent in stress relaxation. The molecular weight (weight average) of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive.
[0084]
Furthermore, a filler, a softening agent, an accelerator, an anti-aging agent, a coloring agent, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, isocyanates, and the like can also be contained.
[0085]
When a filler is contained, it is preferable because connection reliability and the like can be improved. If the maximum diameter of the filler is less than the particle diameter of the conductive particles, it can be used, and the range of 5 to 60 parts by volume (with respect to 100 parts by volume of the adhesive resin component) is preferable. If it exceeds 60 parts by volume, the effect of improving the reliability may be saturated, and if it is less than 5 parts by volume, the effect of addition is small.
[0086]
As a coupling agent, a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group-containing material are preferable from the viewpoint of improving adhesiveness.
[0087]
The circuit connecting material of the present invention is a connecting material that is interposed between circuit electrodes facing each other, pressurizes the circuit electrodes facing each other, and electrically connects the electrodes in the pressurizing direction, and is a differential scanning calorimeter (DSC). ), The rising temperature (Ta) of the exothermic reaction is in the range of 70 ° C. to 110 ° C., the peak temperature (Tp) is Ta + 5 to 30 ° C., and the end temperature (Te) Is 160 ° C. or lower.
[0088]
Although the conventional epoxy resin film adhesive is excellent in workability, it requires heating at about 140 to 190 ° C. for a connection time of about 20 seconds, and heating at about 190 to 210 ° C. for 10 seconds. This is because a catalyst-type curing agent that is inert at room temperature is used for the purpose of obtaining good stability by coexistence of short-term curability (fast curability) and storage stability (storability). This is because a sufficient reaction cannot be obtained upon curing. In recent years, in the field of precision electronic equipment, the density of circuits has been increasing, and the electrode width and electrode interval have become extremely narrow. For this reason, the connection conditions of the circuit connection material using the conventional epoxy resin system have problems such as dropout of wiring, peeling, and misalignment. In addition, shortening of the connection time to 10 seconds or less has been demanded in order to improve production efficiency, and low temperature rapid curability is indispensable.
[0089]
The circuit connection material of the present invention provides a circuit connection material for electrical and electronic use that can be cured by heating at 140 to 180 ° C. for about 10 seconds to connect circuit electrodes and has a relatively long pot life at room temperature. can do.
[0090]
Even if the circuit connection material of the present invention does not have conductive particles, connection can be obtained by direct contact of circuit electrodes facing each other at the time of connection. However, when conductive particles are contained, more stable connection can be obtained.
[0091]
Examples of the conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, carbon, and the like. In order to obtain a sufficient pot life, the surface layer is not a transition metal such as Ni or Cu, but Au, Ag. Platinum group noble metals are preferred, and Au is more preferred. Alternatively, the surface of a transition metal such as Ni may be coated with a noble metal such as Au. In addition, when the conductive layer described above is formed by coating or the like on non-conductive glass, ceramic, plastic, etc., and the outermost layer is precious metal plastic as the core, or in the case of hot melt metal particles, it is deformable by heating and pressing. Therefore, it is preferable because the contact area with the electrode is increased at the time of connection and the reliability is improved. The thickness of the noble metal coating layer is preferably 100 mm or more in order to obtain good resistance. However, when a noble metal layer is provided on a transition metal such as Ni, free radicals are generated due to redox action caused by a deficiency in the noble metal layer or a deficiency in the noble metal layer generated when the conductive particles are mixed and dispersed. In order to cause a decrease in storage stability, 300 mm or more is preferable. The conductive particles are properly used depending on the application within a range of 0.1 to 30 parts (volume) with respect to 100 parts (volume) of the adhesive resin component. In order to prevent a short circuit of an adjacent circuit due to excessive conductive particles, the content is more preferably 0.1 to 10 parts (volume).
[0092]
Further, when the circuit connecting material is divided into two or more layers and separated into a layer containing a curing agent that generates free radicals and a layer containing conductive particles, an improvement in pot life can be obtained.
[0093]
The circuit connection material of the present invention can also be used as a film-like adhesive for bonding an IC chip and a chip mounting substrate or bonding electric circuits to each other.
[0094]
The circuit connection material of the present invention can also be used when, for example, a semiconductor chip is bonded and fixed to a substrate and an adhesive film by a face-down method and the electrodes of both are electrically connected.
[0095]
That is, the first circuit member having the first connection terminal and the second circuit member having the second connection terminal are disposed so that the first connection terminal and the second connection terminal face each other, The connection material (film adhesive) of the present invention is interposed between the first connection terminal and the second connection terminal that are arranged to face each other, and the first connection terminal and the second connection that are arranged to face each other by heating and pressing. Terminals can be electrically connected.
[0096]
As such a circuit member, a chip component such as a semiconductor chip, a resistor chip or a capacitor chip, a substrate such as a printed circuit board, or the like is used.
[0097]
These circuit members are usually provided with a large number of connection terminals (or a single connection terminal in some cases), and at least one set of the circuit members is disposed so that at least one part of the connection terminals provided on the circuit members is opposed to each other. Then, an adhesive is interposed between the connection terminals arranged opposite to each other, and the connection terminals arranged opposite to each other by heating and pressing are electrically connected to form a circuit board.
[0098]
By heating and pressurizing at least one set of circuit members, the connection terminals arranged opposite to each other can be electrically connected by direct contact or via conductive particles of an anisotropic conductive adhesive.
[0099]
The connection material for a circuit of the present invention is one in which the adhesive melts and flows at the time of connection and obtains connection of the opposite circuit electrodes, and then cures to hold the connection. The fluidity of the adhesive is an important factor. is there. When using a glass of 0.7 mm thickness, 15 mm × 15 mm, a circuit connection material of 35 μm thickness, 5 mm × 5 mm sandwiched between this glass and heating and pressing at 150 ° C. and 2 MPa for 10 s, the initial area (A) and The fluidity (B) / (A) value expressed using the area (B) after heating and pressing is preferably 1.3 to 3.0, and preferably 1.5 to 2.5. Is more preferable. If it is less than 1.3, the fluidity is poor and a good connection may not be obtained. If it exceeds 3.0, the reliability that bubbles are likely to be generated may be inferior.
[0100]
100-2000 MPa is preferable and, as for the elasticity modulus in 40 degreeC after hardening of the connection material for circuits of this invention, 1000-1800 MPa is more preferable.
[0101]
The circuit electrode connection method of the present invention is obtained by forming a circuit connection material having curability by radical polymerization on one electrode circuit whose surface is a metal selected from the group consisting of gold, silver, tin and platinum, and then the other circuit. The electrodes are aligned, heated and pressed to be connected.
[0102]
The circuit electrode connection structure of the present invention is a circuit electrode connection structure in which circuit electrodes facing each other are electrically connected via a circuit connection material, and at least one surface of the circuit electrode is gold, silver, It is a metal selected from tin and platinum group, and the circuit connection material is a circuit connection material having curability by radical polymerization.
[0103]
An anisotropic conductive adhesive containing conductive particles is used as a circuit connection material having curability by radical polymerization, and the surface of the anisotropic conductive adhesive is made of gold, silver and platinum groups. Conductive particles that are the noble metal chosen are used.
[0104]
As a result of intensive studies on a connection method for electrically connecting circuit electrodes facing each other using an adhesive having curability by radical polymerization, at least one surface of the circuit electrode is made of gold, silver, platinum group, or tin. A good electrical connection can be obtained by placing a radical-curing adhesive on this surface and placing it after temporary mounting.
[0105]
FIG. 1 is a sectional view showing a temporary connection process of a circuit board for explaining one embodiment of the present invention. FIG. 2 is a cross-sectional view showing the main connection process of the circuit board for explaining one embodiment of the present invention. In these drawings, 1 and 2 are substrates, 1-a and 2-a are circuit electrodes, 3 is an adhesive, 4 is conductive particles, and 5 is a hot plate.
[0106]
The substrate 1 used in the present invention is an insulating substrate such as silicon, gallium / arsenic, etc. of semiconductor chips, glass, ceramics, glass / epoxy composite, plastic, and the like, and the substrate 2 facing this is made of the same material. .
[0107]
The circuit electrode 1-a is provided on the surface of the substrate 1 with a copper foil, and a gold surface layer is formed thereon. The surface layer is selected from gold, silver, platinum group, or tin, and these may be used in combination. Moreover, it is good also as a multilayer structure combining several metals like copper / nickel / gold. The circuit electrode 2-a is provided on the surface of the substrate 2 with a copper foil, and a tin surface layer is formed thereon.
[0108]
The substrate provided with the circuit electrodes is preferably preheated before the connection step using the circuit connection material in order to eliminate the influence on the connection due to the volatile components due to the heating at the time of connection. The heat treatment condition is preferably 1 hour or more at a temperature of 50 ° C. or more, and more preferably 5 hours or more at a temperature of 100 ° C. or more.
[0109]
The adhesive 3 is an adhesive that essentially includes a curing agent that generates free radicals upon heating and a radical curable substance, and may be a radical curable anisotropic conductive adhesive in which a predetermined amount of conductive particles are dispersed. At this time, the surface of the conductive particles is preferably a noble metal selected from gold, silver, or platinum group. The adhesive 3 is placed and formed (temporary connection) on the substrate 1.
[0110]
As shown in FIG. 2, after temporary connection, the circuit electrode 1-a of the substrate 1 and the circuit electrode 2-a of the substrate 2 are aligned, and heating and pressurization for a predetermined time is performed on the hot plate 5 from above the substrate 2. To complete this connection.
[0111]
When using a radical curable adhesive with excellent reactivity and connecting with a transition metal circuit electrode such as nickel or copper, the radical curable adhesive is placed on the circuit electrode (tentative connection) ) If left standing for a certain period of time after that, the radical polymerization proceeds due to the oxidation-reduction action, and the adhesive becomes difficult to flow, and sufficient electrical connection cannot be made at the time of this connection. Electrical and electronic circuit connections with excellent low-temperature fast curing properties and long pot life are possible.
[0112]
At least one of the substrates provided with circuit electrodes can be heat-treated at a temperature of 50 ° C. or higher for 1 hour or longer.
[0113]
<Example 1>
50 g of phenoxy resin (trade name PKHC, manufactured by Union Carbide Co., Ltd., average molecular weight 45,000) was added by weight to toluene (boiling point 110.6 ° C., SP value 8.90) / ethyl acetate (boiling point 77.1 ° C., SP Value 9.10) = dissolved in a 50/50 mixed solvent to give a 40% solids solution.
[0114]
Trihydroxyethyl glycol dimethacrylate (manufactured by Kyoeisha Yushi Co., Ltd., trade name: 80MFA) was used as the radical polymerizable substance.
[0115]
As a free radical generator, a 50% by weight DOP solution (trade name Percure HO, manufactured by NOF Corporation) of t-hexylperoxy 2-ethylhexanonate was used.
[0116]
A nickel layer having a thickness of 0.2 μm was provided on the surface of particles having polystyrene as a core, and a gold layer having a thickness of 0.04 μm was provided outside the nickel layer to produce conductive particles having an average particle diameter of 10 μm.
[0117]
It is blended so as to be 50 g of phenoxy resin, 50 g of trihydroxyethyl glycol dimethacrylate resin, and 5 g of t-hexylperoxy 2-ethylhexanate in a solid weight ratio, and further 3 parts by volume of conductive particles (100 parts by volume of resin component). To a PET film having a surface treated on one side with a thickness of 80 μm, coated with a coating device, and dried with hot air at 70 ° C. for 10 minutes to obtain a circuit connecting material with an adhesive layer thickness of 35 μm. It was.
[0118]
Using the circuit connection material described above, flexible circuit boards (FPC) having 500 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm were heated and pressed at 160 ° C. and 3 MPa for 10 seconds to be connected over a width of 2 mm. At this time, after pasting the adhesive surface of the circuit connecting material on one FPC in advance, it was preliminarily connected by heating and pressing at 70 ° C. and 0.5 MPa for 5 seconds, and then the PET film was peeled off and the other The circuit was connected by connecting to the FPC.
[0119]
<Examples 2 to 4>
Solid weight of phenoxy resin / trihydroxyethyl glycol dimethacrylate, phosphate ester acrylate using trihydroxyethyl glycol dimethacrylate, phosphate ester acrylate (trade name P2m, manufactured by Kyoeisha Oil & Fat Co., Ltd.) as radical polymerizable substance The circuit connection material was prepared in the same manner as in Example 1 except that the ratio was 50 g / 49 g / 1 g (Example 2), 30 g / 69 g / 1 g (Example 3), and 70 g / 29 g / 1 g (Example 4). Obtained. Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0120]
<Example 5>
A circuit connecting material was obtained in the same manner as in Example 2 except that the amount of the curing agent was changed to 2 g.
[0121]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0122]
<Example 6>
A circuit connecting material was obtained in the same manner as in Example 1 except that t-butyl peroxy 2-ethylhexanate (trade name: Perbutyl O, manufactured by NOF Corporation) was used as the curing agent.
[0123]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0124]
<Example 7>
A terminal carboxyl group-containing butadiene-acrylonitrile copolymer (Hycar CTBNX1009-SP, Ube Industries, Ltd.) 25 g is reacted with 100 g of phenoxy resin (PKHC) having an average molecular weight of 45,000 by a general method, and carboxyl group-containing butadiene is reacted. -A phenoxy resin modified with an acrylonitrile copolymer was prepared. Using this phenoxy resin, a circuit connecting material was obtained in the same manner as in Example 1 except that the solid weight ratio of phenoxy resin / trihydroxyethyl glycol dimethacrylate and phosphate ester type acrylate was 60 g / 39 g / 1 g.
[0125]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0126]
<Example 8>
A phenoxy resin modified with 25 g of an epoxy group-containing acrylic copolymer was prepared on 100 g of phenoxy resin (PKHC) having an average molecular weight of 45,000. Using this phenoxy resin, a circuit connecting material was obtained in the same manner as in Example 1 except that the solid weight ratio of phenoxy resin / trihydroxyethyl glycol dimethacrylate and phosphate ester type acrylate was 60 g / 39 g / 1 g.
[0127]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0128]
<Example 9>
Example 1 except that an epoxy group-containing acrylic copolymer (acrylic rubber) was used and the solid weight ratio of phenoxy resin / acrylic rubber / trihydroxyethylglycol dimethacrylate and phosphate ester acrylate was 40 g / 20 g / 39 g / 1 g In the same manner as above, a circuit connecting material was obtained.
[0129]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0130]
<Example 10>
A phenoxy resin modified with an acrylic group was prepared by reacting 100 g of a phenoxy resin (PKHC) having an average molecular weight of 45,000 with 5 g of a monoisocyanate having an acrylic group at the terminal by a general method. Using this phenoxy resin, the solid weight ratio of phenoxy resin / trihydroxyethyl glycol dimethacrylate and phosphate ester acrylate was 60 g / 3.
A circuit connecting material was obtained in the same manner as in Example 1 except that the amount was 9 g / 1 g.
[0131]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0132]
<Example 11>
Circuit connection material as in Example 1 except that conductive particles were coated with Au on the surface of Ni particles having an average particle diameter of 2 μm (coating thickness 0.08 μm) and the volume was 0.5 parts by volume. Got.
[0133]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0134]
<Example 12>
A circuit connection material was obtained in the same manner as in Example 1 except that the particle size of the conductive particles was 5 μm.
[0135]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0136]
<Example 13>
2,2-bis {4- (acryloxy-diethoxy) phenyl} propane (made by Shin-Nakamura Chemical Co., Ltd., trade name A-BPE-4) was used as the radical polymerizable substance, and phenoxy resin / 2,2-bis { A circuit connection material was obtained in the same manner as in Example 1 except that the solid weight ratio of 4- (acryloxy-diethoxy) phenyl} propane and phosphate ester acrylate was 60 g / 39 g / 1 g.
[0137]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0138]
<Example 14>
Dicyclopentenyl acrylate (manufactured by Kyoeisha Yushi Co., Ltd., trade name DCP-A) was used as the radical polymerizable substance, and the solid weight ratio of phenoxy resin / dicyclopentenyl acrylate and phosphate ester acrylate was 60 g / 39 g / 1 g. Otherwise, a circuit connection material was obtained in the same manner as in Example 1.
[0139]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0140]
<Example 15>
Tris (acryloyloxyethyl) isocyanurate was used as the radical polymerizable substance, and the solid weight ratio of phenoxy resin / tris (acryloyloxyethyl) isocyanurate, phosphate ester acrylate was 60 g / 39 g / 1 g, A circuit connecting material was obtained in the same manner as in Example 1.
[0141]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0142]
<Example 16>
As a radical polymerizable substance, a mixture of 30 g of 4,4′-bismaleimide diphenylmethane and 35 g of diallyl bisphenol A heated at 120 ° C. for 20 minutes and a phosphate ester acrylate (Kyoeisha Yushi Co., Ltd., trade name P-2m) were used. .
[0143]
Using phenoxy resin (PKHC) and nitrile rubber (manufactured by Nippon Zeon Co., Ltd., trade name Nipol 1072), 20 g / 10 g of phenoxy resin / nitrile rubber was dissolved in 30 g of methyl ethyl ketone to obtain a solution having a solid content of 50%.
[0144]
69 g of 4,4′-bismaleimide diphenylmethane and diallyl bisphenol A heated and mixed at 120 ° C. for 20 minutes in a solid weight ratio, 20 g of phenoxy resin, 10 g of nitrile rubber, 1 g of phosphate ester acrylate, t-hexylperoxy 2 -Ethyl hexanonate was blended so as to be 5 g, and further 3% by volume of conductive particles were mixed and dispersed, and a circuit connecting material was obtained in the same manner as in Example 1.
[0145]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0146]
<Example 17>
A circuit connecting material was obtained in the same manner as in Example 14 except that 30 g of 4,4′-bismaleimide diphenylmethane and 20 g of diallyl bisphenol A were mixed by heating at 120 ° C. for 20 minutes as a radical polymerizable substance.
[0147]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0148]
<Example 18>
Circuit connection material as in Example 1 except that conductive particles were coated with Pd on the surface of Ni particles having an average particle diameter of 2 μm (coating thickness: 0.04 μm) and the volume was changed to 0.5% by volume. Got.
[0149]
Using this circuit connection material, a circuit was connected in the same manner as in Example 1.
[0150]
<Comparative example>
Using phenoxy resin (PKHC), bisphenol A type epoxy resin (YL980, Yuka Shell Co., Ltd. product name), and imidazole microcapsule type curing agent (3941HP, product name manufactured by Asahi Kasei Corporation), phenoxy resin / bisphenol A type epoxy A circuit connecting material was obtained in the same manner as in Example 1 except that the solid weight ratio of the resin / imidazole-based microcapsule type curing agent was 40/20/40.
[0151]
(Measurement of connection resistance)
After the circuit connection, the resistance value between the adjacent circuits of the FPC including the connection portion was measured with a multimeter at the beginning and after being held in a high-temperature and high-humidity bath at 85 ° C. and 85% RH for 500 hours. The resistance value is shown as an average (x + 3σ) of 150 resistances between adjacent circuits. The circuit connection material obtained in Example 1 showed good connection reliability. In addition, the initial connection resistance was low, and the increase in resistance after the high-temperature and high-humidity test was slight, indicating high durability. Also, in Examples 2 to 18, good reliability was obtained as in Example 1. On the other hand, in the comparative example, since the curing reaction was insufficient, the adhesion state was poor, and the initial connection resistance was high.
[0152]
(Measurement of adhesive strength)
After connecting the circuits, the adhesive strength was measured at 90 ° peeling and peeling speed 50 mm / min. In the comparative examples, the curing reaction was insufficient and the adhesive strength was as low as about 200 gf / cm.
[0153]
(Evaluation of storage stability)
The obtained circuit connecting material was treated in a thermostatic bath at 30 ° C. for 30 days, and the circuit was connected in the same manner as described above to evaluate the storage stability.
[0154]
In either case, a connection result equivalent to a state (initial) in which the treatment was not performed for 30 days in a constant temperature bath at 30 ° C. was obtained.
[0155]
(Insulation evaluation)
Using the obtained circuit connecting material, a printed circuit board having a comb circuit in which 250 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm are alternately arranged, and a copper circuit having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm of 500 The flexible circuit board (FPC) having this was heated and pressurized at 160 ° C. and 3 MPa for 10 seconds and connected over a width of 2 mm. A voltage of 100 V was applied to the comb circuit of this connection body, and the insulation resistance value after 500 hours at 85 ° C. and 85% RH high temperature and high humidity test was measured.
[0156]
In any case, good insulating properties of 109Ω or more were obtained, and no deterioration in insulating properties was observed.
[0157]
(Evaluation of liquidity)
A circuit connection material having a thickness of 35 μm and 5 mm × 5 mm was used, and this was sandwiched between glasses having a thickness of 0.7 mm and 15 mm × 15 mm. When the value of fluidity (B) / (A) was determined using the initial area (A) and the area after heating and pressing (B), Example 1 was 1.9, and Examples 2-10 Was also within the range of 1.3 to 3.0.
[0158]
(Elastic modulus after curing)
The elastic modulus at 40 ° C. after curing of the circuit connection material of Example 1 was 1500 MPa.
[0159]
(DSC measurement)
Using the obtained circuit connection material, an exothermic reaction rising temperature (Ta), peak temperature (Ta) (10 ° C / min measurement using a differential scanning calorimeter (trade name: Model 910, manufactured by DSC TA Instruments)) Tp) and end temperature (Te) were determined.
[0160]
In Example 1, the rising temperature (Ta) was 89 ° C., the peak temperature (Tp) was 103 ° C., and the end temperature (Te) was 145 ° C. In Example 2, the rising temperature (Ta) was 87 ° C., the peak temperature (Tp) was 99 ° C., and the end temperature (Te) was 140 ° C. In Example 7, the rising temperature (Ta) was 92 ° C., the peak temperature (Tp) was 116 ° C., and the end temperature (Te) was 150 ° C. The rising temperature (Ta) of the comparative example was 86 ° C., the peak temperature (Tp) was 121 ° C., and the end temperature (Te) was 180 ° C.
[0161]
(Industrial applicability)
As described above, according to the present invention, it is possible to provide an electrical / electronic circuit connection material that is superior in low-temperature fast curing properties and has a long pot life than conventional epoxy resin systems.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a circuit board temporary connection step for explaining an embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a circuit board temporary connection step for explaining an embodiment of the present invention.

Claims (7)

相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、下記(1)〜(3)の成分を必須とする接着剤樹脂成分を含み、
(1)加熱により遊離ラジカルを発生する硬化剤
(2)フェノール樹脂、エポキシ樹脂およびフェノキシ樹脂から選択された分子量10000以上の水酸基含有樹脂(但し、アミノ基変性フェノキシ樹脂を除く)
(3)ラジカル重合性物質
かつ、導電性粒子を含まないことを特徴とするフィルム状回路接続材料。
A circuit connecting material that is interposed between circuit electrodes facing each other and pressurizes opposing circuit electrodes to electrically connect the electrodes in the pressurizing direction, and the following components (1) to (3) are essential: Including an adhesive resin component
(1) Curing agent that generates free radicals upon heating (2) Hydroxyl-containing resin having a molecular weight of 10,000 or more selected from phenol resin, epoxy resin and phenoxy resin (excluding amino group-modified phenoxy resin)
(3) A film-like circuit connecting material characterized by containing a radically polymerizable substance and no conductive particles.
相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続するフィルム状回路接続材料(但し、シランカップリング剤を含むものを除く)であって、下記(1)〜(3)の成分を必須とする接着剤樹脂成分を含み、
(1)加熱により遊離ラジカルを発生する硬化剤
(2)ポリビニルブチラール、ポリビニルホルマール、ポリエステル、フェノール樹脂、エポキシ樹脂およびフェノキシ樹脂から選択された分子量10000以上の水酸基含有樹脂
(3)ラジカル重合性物質
かつ、導電性粒子を含まないことを特徴とするフィルム状回路接続材料。
It is a film-like circuit connection material (except for those containing a silane coupling agent) that is interposed between circuit electrodes facing each other and pressurizes the opposite circuit electrodes to electrically connect the electrodes in the pressing direction. And an adhesive resin component essentially comprising the following components (1) to (3):
(1) Curing agent that generates free radicals upon heating (2) Hydroxyl-containing resin having a molecular weight of 10,000 or more selected from polyvinyl butyral, polyvinyl formal, polyester, phenol resin, epoxy resin and phenoxy resin (3) radical polymerizable substance and A film-like circuit connecting material characterized by not containing conductive particles.
前記ラジカル重合性物質が、下記化学式(a)で示されるラジカル重合性物質を含有する請求項1又は2に記載のフィルム状回路接続材料。
Figure 0004717334

(ただし、nは1〜3の整数である)
The film-like circuit connecting material according to claim 1 or 2, wherein the radical polymerizable substance contains a radical polymerizable substance represented by the following chemical formula (a).
Figure 0004717334

(Where n is an integer from 1 to 3)
前記加熱により遊離ラジカルを発生する硬化剤の半減期10時間の温度が40℃以上かつ、半減期1分の温度が180℃以下である請求項1〜3のいずれかに記載のフィルム状回路接続材料。  The film-like circuit connection according to any one of claims 1 to 3, wherein the curing agent that generates free radicals upon heating has a half-life temperature of 10 ° C or more and a half-life temperature of 1 minute is 180 ° C or less. material. アクリルゴムを含有する請求項1〜4のいずれかに記載のフィルム状回路接続材料。  The film-form circuit connection material in any one of Claims 1-4 containing an acrylic rubber. 第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材と
が、第一の接続端子と第二の接続端子を対向して配置されており、前記対向配置した第一の接続端子と第二の接続端子の間に請求項1〜5のいずれかに記載のフィルム状回路接続材料が介在されており、前記対向配置した第一の接続端子と第二の接続端子が電気的に接続されている回路端子の接続構造。
The first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged to face the first connection terminal and the second connection terminal, and The film-like circuit connection material according to any one of claims 1 to 5 is interposed between the first connection terminal and the second connection terminal arranged to face each other, and the first connection terminal and the second connection terminal arranged to face each other. A circuit terminal connection structure in which two connection terminals are electrically connected.
第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に請求項1〜5のいずれかに記載のフィルム状回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続させる回路端子の接続方法。  A first circuit member having a first connection terminal and a second circuit member having a second connection terminal are disposed so that the first connection terminal and the second connection terminal are opposed to each other, and the opposed arrangement is performed. The film-like circuit connection material according to any one of claims 1 to 5 is interposed between the first connection terminal and the second connection terminal, and the first connection terminal and the first arranged opposite to each other by heating and pressing. A circuit terminal connection method for electrically connecting two connection terminals.
JP2003186397A 1997-03-31 2003-06-30 Circuit connection material, circuit terminal connection structure and connection method Expired - Fee Related JP4717334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186397A JP4717334B2 (en) 1997-03-31 2003-06-30 Circuit connection material, circuit terminal connection structure and connection method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP7942297 1997-03-31
JP1997079422 1997-03-31
JP1997079424 1997-03-31
JP7942497 1997-03-31
JP25293397 1997-09-18
JP1997252933 1997-09-18
JP2003186397A JP4717334B2 (en) 1997-03-31 2003-06-30 Circuit connection material, circuit terminal connection structure and connection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54145798A Division JP3587859B2 (en) 1997-03-31 1998-03-31 Circuit connection material, circuit terminal connection structure and connection method

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2005116157A Division JP4016995B2 (en) 1997-03-31 2005-04-13 Circuit connection material, circuit terminal connection structure and connection method
JP2005116155A Division JP4265565B2 (en) 1997-03-31 2005-04-13 Circuit connection material, circuit terminal connection structure and connection method
JP2005116147A Division JP4289319B2 (en) 1997-03-31 2005-04-13 Circuit connection material, circuit terminal connection structure and connection method
JP2005116151A Division JP5020476B6 (en) 1997-03-31 2005-04-13 Circuit connection material, circuit terminal connection structure and connection method

Publications (3)

Publication Number Publication Date
JP2004128465A JP2004128465A (en) 2004-04-22
JP2004128465A5 JP2004128465A5 (en) 2005-09-22
JP4717334B2 true JP4717334B2 (en) 2011-07-06

Family

ID=32303584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186397A Expired - Fee Related JP4717334B2 (en) 1997-03-31 2003-06-30 Circuit connection material, circuit terminal connection structure and connection method

Country Status (1)

Country Link
JP (1) JP4717334B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618713B2 (en) 1997-03-31 2009-11-17 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
WO1998044067A1 (en) 1997-03-31 1998-10-08 Hitachi Chemical Company, Ltd. Circuit connecting material, and structure and method of connecting circuit terminal
JP5032749B2 (en) 2005-03-16 2012-09-26 パナソニック株式会社 Optical filter and lighting device
JP3852858B1 (en) 2005-08-16 2006-12-06 株式会社日立製作所 Semiconductor radiation detector, radiation detection module and nuclear medicine diagnostic apparatus
JP5070748B2 (en) * 2006-04-05 2012-11-14 日立化成工業株式会社 Adhesive composition, circuit connection material, connection body and semiconductor device
JP5266598B2 (en) * 2008-11-28 2013-08-21 ナガセケムテックス株式会社 Phenoxy resin containing a condensed ring structure
JP7198479B2 (en) * 2018-08-31 2023-01-04 学校法人早稲田大学 Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent

Also Published As

Publication number Publication date
JP2004128465A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4858623B2 (en) Circuit connection material, circuit terminal connection structure and connection method
US7879956B2 (en) Circuit-connecting material and circuit terminal connected structure and connecting method
JP4289319B2 (en) Circuit connection material, circuit terminal connection structure and connection method
JP4916677B2 (en) Wiring connecting material and wiring board manufacturing method using the same
JP4016995B2 (en) Circuit connection material, circuit terminal connection structure and connection method
JP4717334B2 (en) Circuit connection material, circuit terminal connection structure and connection method
JP2007291396A (en) Wiring-connecting material and process for producing circuit board with the same
JP4265565B2 (en) Circuit connection material, circuit terminal connection structure and connection method
JP5020476B6 (en) Circuit connection material, circuit terminal connection structure and connection method
JP5020476B2 (en) Method for manufacturing piezoelectric / electrostrictive element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees