JP4716537B2 - How to store powder detergent - Google Patents

How to store powder detergent Download PDF

Info

Publication number
JP4716537B2
JP4716537B2 JP2000020639A JP2000020639A JP4716537B2 JP 4716537 B2 JP4716537 B2 JP 4716537B2 JP 2000020639 A JP2000020639 A JP 2000020639A JP 2000020639 A JP2000020639 A JP 2000020639A JP 4716537 B2 JP4716537 B2 JP 4716537B2
Authority
JP
Japan
Prior art keywords
gas
container
water
substance
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000020639A
Other languages
Japanese (ja)
Other versions
JP2001206311A (en
Inventor
一敏 井手
弘 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000020639A priority Critical patent/JP4716537B2/en
Publication of JP2001206311A publication Critical patent/JP2001206311A/en
Application granted granted Critical
Publication of JP4716537B2 publication Critical patent/JP4716537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vacuum Packaging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水嫌忌性物質の保存方法、及び水嫌忌性物質保存用容器に関する。
【0002】
【従来の技術】
水嫌忌性物質を保存するための包装技術として、脱ガス包装(真空パック)、除湿ガス置換充填包装、シリカゲルや生石灰等の乾燥剤を同封した密閉包装等が知られている。
【0003】
脱ガス包装の場合、包装の対象物は、圧縮や包装表面に加わった力等により変形が生じない物、又は変形があっても商品価値が変わらない物に限られる。
【0004】
除湿ガス置換充填包装の場合、包装容器が水蒸気非透過性であることが要求される。通常用いられる合成樹脂ボトル、合成樹脂フィルム包装等では水蒸気を透過するため、かかる手段によって包装する場合、金属層を設けたり、接合部を水蒸気非透過性にする必要がある。
【0005】
乾燥剤を同封した密閉包装の場合、包装時の容器内の水蒸気や容器を透過してくる水蒸気を乾燥剤により捕捉するが、容器内水蒸気量は一定量以下にはならないため、乾燥には限界がある。また、水嫌忌性物質の吸水能以上の乾燥剤を選定する必要がある。
このように、従来技術では水嫌忌性物質を保存する方法が十分とは言えなかった。
【0006】
【発明が解決しようとする課題】
本発明の課題は、保存容器内を低湿度に維持することができる、優れた粉末洗剤の保存方法を提供することにある。
【0007】
【課題を解決するための手段】
即ち、本発明の要旨は、
〔1〕 水嫌忌性物質及びガス発生源を同じ容器内に収納する水嫌忌性物質の保存方法、並びに
〔2〕 ガス発生源が内部に収納され、かつ容器シール部(以下、単にシール部ともいう)を具備する水嫌忌性物質保存用容器に関するものである。
【0008】
【発明の実施の形態】
保存対象となる水嫌忌性物質とは、吸湿、吸水により商品価値が低下する物質であり、例えば、シリカゲル等の乾燥剤、菓子、削り節等の食品、粉末洗剤、電子器機、鉄加工物品、水の存在により酸化する金属又は物品、水の存在により反応し変化する物質、電子回路を含む製品等が挙げられる。
【0009】
本発明において、水嫌忌性物質及びガス発生源を同じ容器内に収納することにより、水嫌忌性物質を保存する。具体的な収納手段としては、脱ガス包装(真空パック)、除湿ガス置換充填包装、密閉包装等の包装技術を用いて水嫌忌性物質等を収納する手段が挙げられる。
【0010】
容器の材料はガス遮断性が高いほど良く、特に炭酸ガス透過度、酸素ガス透過度、透湿度が低い程良い。炭酸ガス透過度が100 cc/m2・24hrs ・atm (25℃、50%RH)以下、酸素ガス透過度が50cc/m2・24hrs ・atm (25℃、50%RH)以下、透湿度が200 g/m2・24hrs (40℃、90%RH)以下がより好ましい。透過度、透湿度の測定は、それぞれJIS K 7126、JIS K 7129による。
【0011】
容器の材料に使用される素材としては、アルミ複合フィルム、アルミニウム蒸着フィルム、酸化ケイ素蒸着フィルム、酸化アルミ蒸着フィルム、ビニロン系フィルム、ラッカーコートフィルム、ポリ塩化ビニリデンコートフィルム等が挙げられ、アルミ複合フィルム、アルミニウム蒸着フィルム、酸化ケイ素蒸着フィルム、酸化アルミ蒸着フィルム、ビニロン系フィルムが好ましく、アルミ複合フィルム、アルミニウム蒸着フィルム、酸化ケイ素蒸着フィルム、酸化アルミ蒸着フィルムが特に好ましい。
【0012】
本発明の水嫌忌性物質保存用容器は、ガス発生源が内部に収納され、かつ容器シール部を具備する容器である。
容器内圧力を容器外圧力よりも高く保ち、かつ容器内ガスを外部に流出させる構造が好ましく、容器シール部から容器内ガスを外部に流出させる構造がより好ましい。
【0013】
容器の形状としては、脱ガス包装(真空パック)、ガス置換充填包装、密閉包装等の包装技術に用いられるものであれば、特に限定はなく、袋状(スタンディングパウチ、ピロー、ガセット等)、箱状、カップ状等が挙げられる。中でも、シール部を設け易いという観点から、袋状が好ましい。また、容器の大きさとしては、特に限定はない。
【0014】
シール部の形状としては、容器の形状や大きさにより一概に限定できないが、ヒートシール等が挙げられる。また、シール部の容器における位置や数も一概に限定できない。
【0015】
ガス発生源とは、保存中に容器内において水蒸気以外のガスを発生させる物質をいう。好ましくは、アゾ化合物、過酸化物、ガス保持物質、分解ガス発生物であり、更に好ましくは、ガス保持物質、分解ガス発生物である。具体的には、アゾビスイソブチロニトリル等のアゾ化合物、過酸化ジラウロイル、ジターシャリーブチルパーオキシド等の過酸化物、ショウノウ、ナフタリン等の昇華性物質、炭酸ガス吸蔵ゼオライト、窒素ガス吸蔵ゼオライト等のガス保持物質、さらし粉、塩化イソシアヌル酸塩等の分解ガス発生物等が挙げられる。
【0016】
炭酸ガス吸蔵ゼオライト、窒素ガス吸蔵ゼオライトとして用いられるアルミノケイ酸は、無定型、部分結晶型、結晶型のいずれでも使用できるが、結晶型のものが好適である。具体的には、方沸石、斜方沸石等の天然アルミノケイ酸塩、ゼオライトA、X、Y等の名称で指称される合成ゼオライト等が使用される。取り分け、不純物等夾雑物が少ない下記一般式で表される合成ゼオライトが好ましい。
(M2 /mO)x ・Al2 3 ・(SiO2 y ・(H2 O)z
(式中、Mは原子価mの金属原子を、xは0.7〜1.5、yは0.8〜1.0、zは0以上の数を示す。)
【0017】
一般式の合成ゼオライトのうち、Mで示される金属原子としては、ナトリウム、カリウム、カルシウム、マグネシウム等が挙げられ、zとしては0、即ち実質的に水分を含有しないものが好ましい。ガス吸蔵ゼオライトの大きさは、粒径で0.5〜100μmが好ましく、1〜40μmがより好ましい。ガス吸蔵ゼオライトの使用形態は、上記粒径の微粉末のまま若しくは顆粒状、ペレット等が挙げられるが、効果の点から微粉末が好ましい。
【0018】
ガス吸蔵ゼオライトに炭酸ガスや窒素ガスを吸着させて炭酸ガス吸蔵ゼオライト、窒素ガス吸蔵ゼオライトを得る。吸着方法としては、例えばガス吸蔵ゼオライトと、炭酸ガス又は窒素ガスとを接触させる方法が挙げられる。ここで用いられるガス吸蔵ゼオライト、例えばアルミノケイ酸塩は、好ましくは加熱処理により脱水して最適には実質的に水分を含有しないものを用いることが好ましい。当該吸着は好ましくは無水条件下に、ガス圧力0.1kg/cm2 以上、好適には1〜10kg/cm2 で行われる。温度は30℃以下、好ましくは20℃以下で、時間は特に制限されないが、好ましくは平衡に達するまで行われる。
【0019】
ガスのゼオライトへの吸着量は、2gガス/100gゼオライト以上が好ましく、5gガス/100gゼオライト以上がより好ましい。
【0020】
ガス発生源を容器内に収納することにより、ガスが発生する。ガスの発生のメカニズムは特に限定されず、例えば水と反応することにより、自己崩壊(分解)により、酸、アルカリ等により、昇華により、又はガス保持物質からの放出によりガスを発生させ得る。
【0021】
発生させるガスとしては、水蒸気以外のガスであれば特に限定されず、水嫌忌性物質の品質を劣化させないものがより好ましい。具体的には、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、二酸化炭素ガス、酸素ガス、水素ガス、混合ガス(除湿空気)等が挙げられる。ガスは単独であっても良く、二種類以上の混合物であっても良い。好ましくは、窒素ガス、ヘリウムガスであり、特に好ましくは窒素ガスである。
【0022】
収納される内容物の体積は、固化の抑制及び保存安定性の観点から容器の最大充填体積の50〜95%が好ましく、60〜95%がより好ましく、70〜95%が更に好ましい。ここで、「容器の最大充填体積」とは、容器の表面積に等しい表面積を有する真球の体積をいう。また、「内容物」とは、容器内に存在するガス以外の物をいい、具体的には、水嫌忌性物質、ガス発生源等を全て含めたものをいう。なお、内容物の体積は、1気圧20℃にてガス置換法により求めることができる。
【0023】
ガス発生源の量は、水嫌忌性物質100重量部に対して0.1〜20重量部が好ましく、0.5〜10重量部がより好ましく、0.5〜5重量部が特に好ましい。水嫌忌性物質の安定保存の観点から0.1重量部以上が好ましく、経済性の観点から20重量部以下が好ましい。
【0024】
本発明においては、容器内圧力を容器外圧力よりも高く保ち、かつ容器内ガスを外部に流出させながら保存することがより好ましい。容器内圧力を容器外圧力よりも高く保つことにより、外部の水蒸気が容器内へ侵入するのを防ぐという効果が発揮されるからである。さらに、容器内ガスを外部に流出させながら保存することにより、内部の水蒸気を外部へ排出するという効果が発揮されるため、好ましい。
【0025】
容器内圧力と容器外圧力との差は、10〜1000hPaが好ましく、50〜800hPaがより好ましく、100〜500hPaが特に好ましい。水嫌忌性物質の安定保存の観点から10hPa以上が好ましく、容器の強度、シール部の接着強度、経済性等の観点から1000hPa以下が好ましい。
【0026】
通常、収納されたガス発生源より、ガスが発生する。したがって、容器内圧力を容器外圧力よりも高くするためには、例えばガス発生量≧ガス流出量となるようにガス発生源の量や容器の透過性等を適宜設定すれば良い。
【0027】
容器内ガスの外部への流出方法としては、容器の透過性を利用して容器全面から流出させても良く、容器の一部に他の部分よりも容易にガスが流出する部分を設けても良い。
後者の場合、選択的なガス透過も可能であり、例えば容器シール部を具備する容器を用いて、容器シール部をガスが流出し易いシール方法にすることにより、達成できる。容器の材料のガス透過度が低く、ガス流出部がシール部又は容器の一部であることが好ましく、ガス流出部がシール部であることがより好ましい。シール部をガス流出部とする場合、不完全なシールとして、ガスを流出させてもよい。シール部の具体的な構造としては、ガス透過度の高い材をはさんでシールした構造が挙げられる。ガス透過度の高い材としては、低密度ポリエチレン、高密度ポリエチレン、無延伸ポリプロピレン、ポリエステル、ポリカーボネート、ポリ塩化ビニル、ポリスチレン等が好ましい。ここで「ガス透過度の高い材」とは、炭酸ガス透過度が100 cc/m2・24hrs ・atm (25℃、50%RH)を越える材及び/又は酸素ガス透過度が50cc/m2・24hrs ・atm (25℃、50%RH)を越える材をいう。
【0028】
本発明においては、水嫌忌性物質及びガス発生源をガス充填包装して保存することが好ましい。ガス充填包装とは、水嫌忌性物質を充填する際に同時に充填される空気を不活性ガスと置換して充填する包装である。ガス充填包装の方法としては、ノズル式、チャンバー式、ガスフラッシュ式等が挙げられる。この中で、チャンバー式及びガスフラッシュ式が好ましい。水嫌忌性物質をガス充填包装することにより、香調の接続、固化及び変色の抑制、不溶物発生の抑制ができ、その結果水嫌忌性物質を長期間安定して保存することができるため、好ましい。
【0029】
充填するガスとしては、ガス発生源により発生させるガスと同じものが挙げられる。ここで、水嫌忌性物質の安定性の点から、ガス置換率は80体積%以上が好ましく、90体積%以上がより好ましく、95体積%以上が更に好ましく、99体積%以上が特に好ましい。
【0030】
【実施例】
実施例1
表1に示す組み合わせにて、水嫌忌性物質とガス発生源を窒素ガス充填包装して容器内に収納した。容器の材質は無延伸ナイロン50μmであり、炭酸ガス透過度は90cc/m2・24hrs ・atm (25℃、50%RH)、酸素ガス透過度は20cc/m2・24hrs ・atm (25℃、50%RH)、透湿度は150 g/m2・24hrs (40℃、90%RH)、窒素ガス透過度は7cc/m2・24hrs ・atm (25℃、50%RH)であった。包装方法はピロー包装とし、シール部にガス流出部を設けた。そして、温度40℃、湿度80%、圧力1hPaの恒温恒湿槽にて3ヵ月間保存し、水嫌忌性物質の保存後水分量と保存前水分量を比較した。保存により水分量が増加した例を×、変化がほとんどない例を○、減少した例を◎とした。結果を表1に示す。
また、シール部のガス流出部の構造は、低密度ポリエチレン25μmをはさんでシールし、シール部からガスが流出するようにした。
【0031】
水嫌忌性物質の水分量は、試料3gを取り、105℃、3時間で乾燥させた後の試料の重量変化を求めた。
【0032】
比較例1
水嫌忌性物質と、ガス発生源の代わりにシリカゲルを用いて、実施例1と同じ方法でこれらを容器内に収納した。そして、実施例1と同じ評価方法にて水分量の変化を調べた。結果を表1に示す。
【0033】
【表1】

Figure 0004716537
【0034】
表1より、水嫌忌性物質とガス発生源を同じ容器内に収納する場合は、3ヵ月間保存後においても水分量が増加しないことが分かる。
なお、10A型ゼオライトに窒素ガスを4kg/cm2 の圧力をかけて、窒素ガスを吸着させたところ、窒素ガス吸蔵ゼオライトの窒素ガス吸着量は20gN2 /100gゼオライトであった。また、10A型ゼオライトに炭酸ガスを4kg/cm2 の圧力をかけて、炭酸ガスを吸着させたところ、炭酸ガス吸蔵ゼオライトの炭酸ガス吸着量は19gCO2 /100gゼオライトであった。過酸化物としては、過酸化ジラウロイルを使用した。水嫌忌性物質及び比較例で使用したシリカゲルは、片山化学工業(株)製、シリカゲル(青、中粒、5〜10mesh)を用いた。
【0035】
【発明の効果】
本発明の水嫌忌性物質の保存方法により、水嫌忌性物質を低湿度に維持することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preserving a water aversion substance and a container for storing a water aversion substance.
[0002]
[Prior art]
As a packaging technique for preserving water-apathic substances, degassing packaging (vacuum pack), dehumidifying gas replacement filling packaging, sealed packaging enclosing a desiccant such as silica gel or quicklime is known.
[0003]
In the case of degassing packaging, the objects to be packaged are limited to those that do not deform due to compression or force applied to the packaging surface, or those that do not change the commercial value even if there is deformation.
[0004]
In the case of dehumidified gas replacement filled packaging, the packaging container is required to be water vapor impermeable. Normally used synthetic resin bottles, synthetic resin film packaging, and the like transmit water vapor, so when packaging by such means, it is necessary to provide a metal layer or to make the joint water vapor impermeable.
[0005]
In the case of airtight packaging with a desiccant enclosed, the water vapor in the container at the time of packaging and water vapor that permeates the container are captured by the desiccant, but the amount of water vapor in the container does not fall below a certain amount, so drying is limited. There is. In addition, it is necessary to select a desiccant that is more than the water-absorbing ability of the water-apathic substance.
Thus, in the prior art, a method for preserving a water aversion substance was not sufficient.
[0006]
[Problems to be solved by the invention]
An object of the present invention can maintain the storage container to the low humidity is to provide a storage how excellent powder detergent.
[0007]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
[1] A method of storing a water aversion substance containing a water aversion substance and a gas generation source in the same container, and [2] a gas generation source stored inside and a container seal portion (hereinafter simply referred to as a seal) It is related with the container for water aquaterious substance preservation | save which comprises.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Water aversion to be stored is a substance whose commercial value decreases due to moisture absorption and water absorption, such as desiccants such as silica gel, foods such as confectionery, shavings, powder detergents, electronic equipment, iron processed articles, Examples include metals or articles that oxidize in the presence of water, substances that react and change in the presence of water, products that include electronic circuits, and the like.
[0009]
In the present invention, the water aversion substance is stored by storing the water aversion substance and the gas generation source in the same container. Specific examples of the storage means include means for storing a water-apathic substance or the like using a packaging technique such as degassing packaging (vacuum pack), dehumidifying gas replacement filling packaging, and sealed packaging.
[0010]
The material of the container is better as the gas barrier property is higher. In particular, the lower the carbon dioxide gas permeability, the oxygen gas permeability, and the moisture permeability, the better. Carbon dioxide gas permeability is 100 cc / m 2 · 24hrs · atm (25 ° C, 50% RH) or less, oxygen gas permeability is 50cc / m 2 · 24hrs · atm (25 ° C, 50% RH) or less, and moisture permeability is 200 g / m 2 · 24 hrs (40 ° C., 90% RH) or less is more preferable. The measurement of permeability and moisture permeability is in accordance with JIS K 7126 and JIS K 7129, respectively.
[0011]
Examples of the material used for the container material include aluminum composite film, aluminum vapor deposition film, silicon oxide vapor deposition film, aluminum oxide vapor deposition film, vinylon-based film, lacquer coat film, polyvinylidene chloride coat film and the like, and aluminum composite film An aluminum vapor-deposited film, a silicon oxide vapor-deposited film, an aluminum oxide vapor-deposited film and a vinylon film are preferred, and an aluminum composite film, an aluminum vapor-deposited film, a silicon oxide vapor-deposited film and an aluminum oxide vapor-deposited film are particularly preferred.
[0012]
The container for preserving water-repellent substances according to the present invention is a container in which a gas generation source is housed and a container seal portion is provided.
A structure in which the internal pressure of the container is kept higher than the external pressure of the container and the gas in the container flows out to the outside is preferable, and a structure in which the gas in the container flows out from the container seal portion is more preferable.
[0013]
The shape of the container is not particularly limited as long as it is used for degassing packaging (vacuum pack), gas replacement filling packaging, hermetic packaging, and the like, and is in the form of a bag (standing pouch, pillow, gusset, etc.) Box shape, cup shape, etc. are mentioned. Among these, a bag shape is preferable from the viewpoint of easily providing a seal portion. Further, the size of the container is not particularly limited.
[0014]
The shape of the seal portion cannot be generally limited depending on the shape and size of the container, but examples thereof include heat sealing. In addition, the position and number of the seal portion in the container cannot be generally limited.
[0015]
A gas generation source refers to a substance that generates a gas other than water vapor in a container during storage. Preferred are azo compounds, peroxides, gas holding substances, and cracked gas products, and more preferred are gas holding substances and cracked gas products. Specifically, azo compounds such as azobisisobutyronitrile, peroxides such as dilauroyl peroxide and ditertiary butyl peroxide, sublimable substances such as camphor and naphthalene, carbon dioxide storage zeolite, nitrogen gas storage zeolite, etc. Gas-retaining substances, bleaching powder, decomposition gas generators such as chloroisocyanurate, and the like.
[0016]
The aluminosilicate used as the carbon dioxide storage zeolite and the nitrogen gas storage zeolite can be used in any of amorphous, partially crystalline, and crystalline types, but a crystalline one is preferred. Specifically, natural aluminosilicates such as zeolitic and orthopyroxene, synthetic zeolites designated by names such as zeolite A, X, and Y are used. In particular, a synthetic zeolite represented by the following general formula with few impurities such as impurities is preferable.
(M 2 / mO) x · Al 2 O 3 · (SiO 2 ) y · (H 2 O) z
(In the formula, M represents a metal atom having a valence m, x represents 0.7 to 1.5, y represents 0.8 to 1.0, and z represents a number of 0 or more.)
[0017]
Among the synthetic zeolites of the general formula, examples of the metal atom represented by M include sodium, potassium, calcium, magnesium and the like, and z is preferably 0, that is, substantially free of water. The size of the gas storage zeolite is preferably 0.5 to 100 μm and more preferably 1 to 40 μm in terms of particle size. The gas storage zeolite may be used in the form of fine powder having the above particle size, or in the form of granules, pellets, etc., but fine powder is preferred from the viewpoint of effects.
[0018]
Carbon dioxide or nitrogen gas is adsorbed on the gas storage zeolite to obtain carbon dioxide storage zeolite or nitrogen gas storage zeolite. Examples of the adsorption method include a method in which a gas storage zeolite is brought into contact with carbon dioxide gas or nitrogen gas. The gas storage zeolite used here, for example, aluminosilicate, is preferably dehydrated by heat treatment and optimally substantially free of moisture. The adsorption is preferably under anhydrous conditions, the gas pressure of 0.1 kg / cm 2 or more, preferably carried out at 1 to 10 kg / cm 2. The temperature is 30 ° C. or lower, preferably 20 ° C. or lower, and the time is not particularly limited, but it is preferably performed until equilibrium is reached.
[0019]
The amount of gas adsorbed on zeolite is preferably 2 g gas / 100 g zeolite or more, and more preferably 5 g gas / 100 g zeolite or more.
[0020]
By storing the gas generation source in the container, gas is generated. The mechanism of gas generation is not particularly limited. For example, the gas can be generated by reacting with water, by self-decomposition (decomposition), by acid, alkali, or the like, by sublimation, or released from a gas holding substance.
[0021]
The gas to be generated is not particularly limited as long as it is a gas other than water vapor, and a gas that does not deteriorate the quality of the water-apathic substance is more preferable. Specific examples include nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas, carbon dioxide gas, oxygen gas, hydrogen gas, and mixed gas (dehumidified air). The gas may be a single gas or a mixture of two or more. Nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable.
[0022]
The volume of the contents to be stored is preferably 50 to 95%, more preferably 60 to 95%, and still more preferably 70 to 95% of the maximum filling volume of the container from the viewpoint of suppression of solidification and storage stability. Here, the “maximum filling volume of the container” refers to the volume of a true sphere having a surface area equal to the surface area of the container. Further, the “content” refers to a substance other than the gas present in the container, and specifically includes a substance that includes all water-apathic substances, gas generation sources, and the like. The volume of the contents can be determined by a gas replacement method at 1 atm and 20 ° C.
[0023]
The amount of the gas generation source is preferably from 0.1 to 20 parts by weight, more preferably from 0.5 to 10 parts by weight, particularly preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of the water-apathic substance. 0.1 parts by weight or more is preferable from the viewpoint of stable storage of the water-apathic substance, and 20 parts by weight or less is preferable from the viewpoint of economy.
[0024]
In the present invention, it is more preferable that the container internal pressure is kept higher than the container external pressure and the container internal gas is stored while flowing out. This is because by keeping the internal pressure of the container higher than the external pressure of the container, an effect of preventing external water vapor from entering the container is exhibited. Furthermore, it is preferable to store the gas in the container while flowing it out, because the effect of discharging the water vapor inside is exhibited.
[0025]
The difference between the container internal pressure and the container external pressure is preferably 10 to 1000 hPa, more preferably 50 to 800 hPa, and particularly preferably 100 to 500 hPa. 10 hPa or more is preferable from the viewpoint of the stable storage of the water-repellent substance, and 1000 hPa or less is preferable from the viewpoint of the strength of the container, the adhesive strength of the seal portion, the economy, and the like.
[0026]
Normally, gas is generated from a stored gas generation source. Therefore, in order to make the internal pressure of the container higher than the external pressure of the container, for example, the amount of gas generation source, the permeability of the container, etc. may be set appropriately so that the amount of gas generation ≧ the amount of gas outflow.
[0027]
As a method of outflowing the gas in the container, the container may be allowed to flow out from the entire surface of the container using the permeability of the container, or a part of the container may be provided with a part where the gas flows out more easily than other parts. good.
In the latter case, selective gas permeation is also possible, and can be achieved, for example, by using a container equipped with a container seal part and making the container seal part a sealing method that allows gas to easily flow out. The gas permeability of the material of the container is low, the gas outflow part is preferably a seal part or a part of the container, and the gas outflow part is more preferably a seal part. When the seal part is a gas outflow part, the gas may be outflowed as an incomplete seal. As a specific structure of the seal portion, a structure in which a material having a high gas permeability is sandwiched between them is used. As the material having high gas permeability, low density polyethylene, high density polyethylene, unstretched polypropylene, polyester, polycarbonate, polyvinyl chloride, polystyrene, and the like are preferable. Here, “a material having high gas permeability” means a material having a carbon dioxide gas permeability exceeding 100 cc / m 2 · 24 hrs · atm (25 ° C., 50% RH) and / or an oxygen gas permeability being 50 cc / m 2.・ 24hrs ・ Materials that exceed atm (25 ℃, 50% RH).
[0028]
In the present invention, it is preferable to store the water-apathic substance and the gas generation source in a gas-filled package. Gas-filled packaging is packaging in which air that is filled at the same time as filling with a water-apathic substance is replaced with an inert gas. Examples of the gas filling packaging method include a nozzle type, a chamber type, and a gas flash type. Among these, the chamber type and the gas flash type are preferable. By gas-filling and packaging water-apathic substances, incense tone connection, solidification and discoloration can be suppressed, and insoluble matter generation can be suppressed, and as a result, water-apathic substances can be stably stored for a long period of time. Therefore, it is preferable.
[0029]
Examples of the gas to be filled include the same gas as that generated by the gas generation source. Here, from the viewpoint of the stability of the water-repellent substance, the gas substitution rate is preferably 80% by volume or more, more preferably 90% by volume or more, still more preferably 95% by volume or more, and particularly preferably 99% by volume or more.
[0030]
【Example】
Example 1
In the combinations shown in Table 1, the water aversion substance and the gas generation source were packed with nitrogen gas and stored in a container. Container material is unstretched nylon 50μm, carbon dioxide permeability is 90cc / m 2 · 24hrs · atm (25 ° C, 50% RH), oxygen gas permeability is 20cc / m 2 · 24hrs · atm (25 ° C, 50% RH), moisture permeability was 150 g / m 2 · 24 hrs (40 ° C., 90% RH), and nitrogen gas permeability was 7 cc / m 2 · 24 hrs · atm (25 ° C., 50% RH). The packaging method was pillow packaging, and a gas outflow part was provided in the seal part. And it preserve | saved for three months in the constant temperature and humidity chamber of temperature 40 degreeC, humidity 80%, and pressure 1 hPa, and compared the moisture content before storage with the moisture content before storage of a water aversion property substance. An example in which the amount of water increased due to storage was indicated as x, an example in which there was almost no change, and an example in which the amount decreased decreased as ◎. The results are shown in Table 1.
In addition, the structure of the gas outflow part of the seal part was sealed with 25 μm of low density polyethylene so that the gas could flow out of the seal part.
[0031]
The water content of the water aversion substance was determined by measuring the weight change of the sample after taking 3 g of the sample and drying at 105 ° C. for 3 hours.
[0032]
Comparative Example 1
These were housed in a container in the same manner as in Example 1 using a water aversion substance and silica gel instead of the gas generation source. And the change of the moisture content was investigated by the same evaluation method as Example 1. The results are shown in Table 1.
[0033]
[Table 1]
Figure 0004716537
[0034]
From Table 1, it can be seen that the water content does not increase even after storage for 3 months when the water aversion substance and the gas generation source are stored in the same container.
Incidentally, by applying a pressure of 10A type zeolite 4 kg / cm 2 with nitrogen gas, where nitrogen gas is adsorbed, the nitrogen gas adsorption amount of nitrogen gas storage zeolite was 20gN 2 / 100g zeolite. Further, the carbon dioxide gas 10A type zeolite by applying a pressure of 4 kg / cm 2, was adsorbed carbon dioxide gas, carbon dioxide gas adsorption amount of carbon dioxide gas absorbing zeolite was 19gCO 2 / 100g zeolite. As the peroxide, dilauroyl peroxide was used. Silica gel (blue, medium grain, 5 to 10 mesh) manufactured by Katayama Chemical Industry Co., Ltd. was used as the silica gel used in the water-repellent substance and the comparative example.
[0035]
【The invention's effect】
By the method for preserving a water-repellent substance of the present invention, the water-repellent substance can be maintained at a low humidity.

Claims (3)

粉末洗剤並びに炭酸ガス吸蔵ゼオライト、窒素ガス吸蔵ゼオライト及び過酸化物からなる群より選択される1種以上のガス発生源を、容器シール部を具備する同じ容器内に収納し、容器内圧力を容器外圧力よりも10〜1000hPa高く保ち、かつ容器内ガスを該容器シール部から外部に流出させながら保存する、粉末洗剤の保存方法。 One or more kinds of gas generation sources selected from the group consisting of powder detergent, carbon dioxide storage zeolite, nitrogen gas storage zeolite and peroxide are housed in the same container having a container seal , and the container pressure is stored in the container. A method for preserving a powder detergent , wherein the preservative is stored while being kept 10 to 1000 hPa higher than the external pressure, and the gas in the container is discharged from the container seal portion to the outside. 前記粉末洗剤及びガス発生源を容器内にガス充填包装する請求項1記載の保存方法。The storage method according to claim 1 Symbol mounting the powder detergent and a gas-filled packed into the container gas source. 前記粉末洗剤及びガス発生源を不活性ガスによりガス充填包装して保存する、請求項1又は2に記載の保存方法。The storage method according to claim 1 or 2, wherein the powder detergent and the gas generation source are stored in a gas-filled package with an inert gas.
JP2000020639A 2000-01-28 2000-01-28 How to store powder detergent Expired - Fee Related JP4716537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020639A JP4716537B2 (en) 2000-01-28 2000-01-28 How to store powder detergent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020639A JP4716537B2 (en) 2000-01-28 2000-01-28 How to store powder detergent

Publications (2)

Publication Number Publication Date
JP2001206311A JP2001206311A (en) 2001-07-31
JP4716537B2 true JP4716537B2 (en) 2011-07-06

Family

ID=18547167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020639A Expired - Fee Related JP4716537B2 (en) 2000-01-28 2000-01-28 How to store powder detergent

Country Status (1)

Country Link
JP (1) JP4716537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069394A (en) * 2014-09-26 2016-05-09 ライオン株式会社 Granular detergent, method for producing the same and detergent product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504500A (en) * 1987-08-06 1990-12-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Packaging container with tearing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504500A (en) * 1987-08-06 1990-12-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Packaging container with tearing device

Also Published As

Publication number Publication date
JP2001206311A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
EP0036575B1 (en) A method for storing roasted coffee or beans
AU765665B2 (en) Carbon dioxide atmosphere modifiers for packaging
US8029842B2 (en) Low water activity oxygen scavenger and methods of using
US6436872B2 (en) Oxygen absorber
US20060003057A1 (en) Gas-release packet with frangible sub-packet
US3346398A (en) Method of preserving perishable material
HU225284B1 (en) Packaging for meat and other foodstuff
KR0130460B1 (en) Oxygen absorber and method for producing same
JP3052317B2 (en) Oxygen scavenger
US6331333B1 (en) Storage stabilized oxygen degradable polymer
JP4716537B2 (en) How to store powder detergent
US4444316A (en) Gas scavenger agents for containers of solid chloroisocyanurates
US20040081727A1 (en) Gas-release packet with frangible sub-packet
JPH03284347A (en) Deoxidizing agent
JP3840120B2 (en) Packaged food
JPH03979B2 (en)
JPS5845081Y2 (en) laminated materials
JPH0130530B2 (en)
JP3391333B2 (en) Packaging method of zeolite adsorbent and filling method using the same
CN211544561U (en) Packing box (Chinese character' jiangsu
JPH03133368A (en) Freshness preservative agent
JPH11207177A (en) Deoxidizer
JPH089779A (en) Package for retaining freshness of natural flower
JPS626775B2 (en)
JPH0484853A (en) Method for retaining freshness of unripe ume

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100722

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees