JP4715930B2 - Optical subcutaneous fat thickness measuring device - Google Patents

Optical subcutaneous fat thickness measuring device Download PDF

Info

Publication number
JP4715930B2
JP4715930B2 JP2009022931A JP2009022931A JP4715930B2 JP 4715930 B2 JP4715930 B2 JP 4715930B2 JP 2009022931 A JP2009022931 A JP 2009022931A JP 2009022931 A JP2009022931 A JP 2009022931A JP 4715930 B2 JP4715930 B2 JP 4715930B2
Authority
JP
Japan
Prior art keywords
subcutaneous fat
fat thickness
light
unit
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009022931A
Other languages
Japanese (ja)
Other versions
JP2010178799A (en
Inventor
和宏 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2009022931A priority Critical patent/JP4715930B2/en
Priority to CN2010101135046A priority patent/CN101797157B/en
Publication of JP2010178799A publication Critical patent/JP2010178799A/en
Application granted granted Critical
Publication of JP4715930B2 publication Critical patent/JP4715930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、皮下脂肪厚を光学式に測定することができる光学式皮下脂肪厚測定装置に関する。   The present invention relates to an optical subcutaneous fat thickness measuring apparatus capable of optically measuring subcutaneous fat thickness.

従来より、光照射部から生体表面に向けて光を照射し、生体内部を伝播した光を受光部で受光することで生体内部の皮下脂肪厚を測定する光学式皮下脂肪厚測定装置が提案されている。このような光学式皮下脂肪厚測定装置において、特許文献1に開示の皮下脂肪測定装置は、皮膚の色の相違等の影響を受けることなく高精度に皮下脂肪厚の測定を可能にしている。特許文献1の皮下脂肪測定装置は、少なくとも1個の送光素子と複数個の受光素子と脂肪厚推定手段とを備えている。   Conventionally, there has been proposed an optical subcutaneous fat thickness measurement device that measures the subcutaneous fat thickness inside a living body by irradiating light from the light irradiating portion toward the surface of the living body and receiving the light propagated inside the living body by the light receiving portion. ing. In such an optical subcutaneous fat thickness measurement apparatus, the subcutaneous fat measurement apparatus disclosed in Patent Document 1 enables measurement of subcutaneous fat thickness with high accuracy without being affected by differences in skin color or the like. The subcutaneous fat measuring device of Patent Document 1 includes at least one light transmitting element, a plurality of light receiving elements, and fat thickness estimating means.

そして、皮下脂肪を透過して受光素子で受光した受光量を、受光量と皮下脂肪厚とのキャリブレーションカーブに適用して脂肪厚推定手段が脂肪厚を推定する。また、脂肪厚推定手段は、送光素子の直近の受光素子の受光量を用いて皮膚色素等による各受光素子の受光量を補正することで、高精度に皮下脂肪厚を測定することができるようになっている。   Then, the fat thickness estimation means estimates the fat thickness by applying the received light amount transmitted through the subcutaneous fat and received by the light receiving element to the calibration curve of the received light amount and the subcutaneous fat thickness. The fat thickness estimation means can measure the subcutaneous fat thickness with high accuracy by correcting the amount of light received by each light receiving element by skin pigment or the like using the amount of light received by the light receiving element closest to the light transmitting element. It is like that.

特許文献2の光式皮下脂肪厚測定装置は、生体に向けて光を照射する光源部と、生体内部を伝播して生体表面より出射した光を受光する受光部と、生体表面を所定の形状に成形する成形部と、成形部が生体表面に加える圧力が規定値に達したことを検出する圧力検出部と、受光部での受光量に基づき皮下脂肪厚を算出する演算部とを備えている。演算部には、生体に加わる複数の圧力に応じて受光量と皮下脂肪の厚みとの相関を示す一次回帰直線が予め複数記憶されている。そして、演算部は、生体に加わる圧力に応じた一次回帰直線を複数の中から選択して皮下脂肪厚の測定を行うことで、高精度に皮下脂肪厚を測定することができるようになっている。   The optical subcutaneous fat thickness measurement apparatus of Patent Document 2 includes a light source unit that irradiates light toward a living body, a light receiving unit that receives light emitted from the living body surface and propagating through the living body, and a living body surface having a predetermined shape. A molding part to be molded, a pressure detection part for detecting that the pressure applied to the living body surface by the molding part has reached a specified value, and a calculation part for calculating the subcutaneous fat thickness based on the amount of light received by the light receiving part. Yes. The arithmetic unit stores in advance a plurality of primary regression lines indicating the correlation between the amount of received light and the thickness of subcutaneous fat in accordance with a plurality of pressures applied to the living body. And the calculation part can measure the subcutaneous fat thickness with high accuracy by selecting the primary regression line corresponding to the pressure applied to the living body from a plurality of measurements and measuring the subcutaneous fat thickness. Yes.

特開2000−155091号公報JP 2000-155091 A 特開2003−310575号公報JP 2003-310575 A

ところで、従来の光学式皮下脂肪厚測定装置としては、皮下脂肪厚が異なる部位(例えば、二の腕、太もも、腹部)それぞれに対応して、受光量と皮下脂肪の厚さとの相関を示す一次回帰直線が設定されているものがある。このような光学式皮下脂肪厚測定装置においては、被験者は予め選択ボタンを操作して、その選択された部位の測定を行っている。このため、従来の光学式皮下脂肪厚測定装置においては、各部位毎の選択ボタンを操作しなければならず、操作が煩雑であるという問題があった。さらには、従来の光学式皮下脂肪厚測定装置においては、部位選択用の選択ボタンを装置に設けなければならず、装置の小型化、低コスト化が実現できなかった。   By the way, as a conventional optical subcutaneous fat thickness measuring apparatus, a linear regression line indicating the correlation between the amount of received light and the thickness of subcutaneous fat corresponding to each of the different parts of the subcutaneous fat thickness (for example, the second arm, thigh, and abdomen). Some are set. In such an optical subcutaneous fat thickness measuring apparatus, the subject operates the selection button in advance to measure the selected part. For this reason, in the conventional optical subcutaneous fat thickness measuring apparatus, there is a problem that the selection button for each part must be operated, and the operation is complicated. Furthermore, in the conventional optical subcutaneous fat thickness measuring apparatus, a selection button for selecting a region has to be provided on the apparatus, and the apparatus cannot be reduced in size and cost.

本発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、1つの入力部の操作であっても生体の異なる部位の皮下脂肪厚を測定することができ、操作が簡単であるとともに、装置を小型化し、かつ低コスト化することができる光学式皮下脂肪厚測定装置を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art, and its purpose is to measure the subcutaneous fat thickness of different parts of a living body even with the operation of one input unit. It is an object of the present invention to provide an optical subcutaneous fat thickness measuring device that can be operated and is easy to operate, and that can reduce the size and cost of the device.

上記問題点を解決するために、請求項1に記載の発明は、生体の表面に向けて光を照射する光照射部と、前記生体の内部を伝播した光を受光する受光部と、前記受光部での受光量に基づいて得られる受光パラメータ値と前記生体の各部位における皮下脂肪厚の値とを相関するものであり前記生体の各部位で共用する関数が格納されたデータベース部と、前記受光パラメータ値に基づいて前記データベース部の前記関数を参照し、前記皮下脂肪厚の値を推定する制御部と、前記皮下脂肪厚の測定開始を前記制御部に指示するための1つの入力部と、前記制御部によって推定された皮下脂肪厚の値を被験者に報知する報知部と、を備えることを要旨とする。   In order to solve the above problem, the invention according to claim 1 is a light irradiation unit that irradiates light toward the surface of a living body, a light receiving unit that receives light propagated inside the living body, and the light receiving unit. A database unit storing a function shared by each part of the living body and correlating a light receiving parameter value obtained based on the amount of light received at the part and a value of subcutaneous fat thickness in each part of the living body; A control unit that estimates the value of the subcutaneous fat thickness with reference to the function of the database unit based on a received light parameter value; and an input unit for instructing the control unit to start measurement of the subcutaneous fat thickness; And a notifying unit for notifying the subject of the value of the subcutaneous fat thickness estimated by the control unit.

これによれば、1つの入力部を操作すると、光学式皮下脂肪厚測定装置では皮下脂肪厚の測定を開始させる。そして、制御部は、得られた受光パラメータ値に基づいて生体の各部位で共用する関数を用いて皮下脂肪厚を推定する。よって、皮下脂肪厚の厚みが異なる部位であっても、各部位で共用する関数を用いることで、各部位それぞれの皮下脂肪厚を測定することができる。したがって、測定する部位毎に選択ボタンを操作する必要がある場合と異なり操作が簡単である。また、皮下脂肪厚を測定する際に操作する入力部は1つだけであるため、測定する部位毎に選択ボタンを必要とする場合と比べて光学式皮下脂肪厚測定装置を小型化し、かつ低コスト化することができる。   According to this, when one input unit is operated, the optical subcutaneous fat thickness measurement apparatus starts measurement of subcutaneous fat thickness. And a control part estimates subcutaneous fat thickness using the function shared in each site | part of a biological body based on the obtained light reception parameter value. Therefore, even if the thickness of the subcutaneous fat thickness is different, the subcutaneous fat thickness of each site can be measured by using a function shared by each site. Therefore, unlike the case where it is necessary to operate the selection button for each part to be measured, the operation is simple. In addition, since only one input unit is operated when measuring subcutaneous fat thickness, the optical subcutaneous fat thickness measuring apparatus can be downsized and reduced compared to the case where a selection button is required for each measurement site. Cost can be increased.

また、請求項に記載の発明は、前記関数は、前記受光パラメータ値が大きくなるほど傾きが大きくなる指数関数であることを要旨とする。これによれば、指数関数において、受光パラメータ値が大きくなるとは、皮下脂肪厚が厚くなることを示すため、指数関数を用いることで、厚みの薄い皮下脂肪厚から厚みの厚い皮下脂肪厚まで正確に測定することができる。 The invention of claim 1, prior Symbol function is summarized in that the light receiving parameter value is exponential slope increases as increases. According to this, in the exponential function, and the light receiving parameter value increases, to indicate that the subcutaneous fat thickness increases, the use of the exponential function, precisely a thin subcutaneous fat thickness thick to thick subcutaneous fat thickness thicker Can be measured.

請求項に記載の発明は、請求項1に記載の光学式皮下脂肪厚測定装置において、前記受光パラメータ値が、前記光照射部から第1距離だけ離れた位置に設けられた第1受光部での第1受光量と、前記第1距離より長い第2距離だけ前記光照射部から離れた位置に設けられた第2受光部での第2受光量との相対比であることを要旨とする。 According to a second aspect of the invention, in the optical subcutaneous fat thickness measuring apparatus according to claim 1, wherein the light receiving parameter values, a first light receiving portion provided at the first distance away from the light irradiation unit And the second received light amount at the second light receiving unit provided at a position separated from the light irradiation unit by a second distance longer than the first distance. To do.

これによれば、皮膚色素や吸光・散乱特性の違いによる影響を補正した受光パラメータ値を用いて皮下脂肪厚を算出することができ、高精度に皮下脂肪厚を測定することができる。   According to this, the subcutaneous fat thickness can be calculated using the light receiving parameter value in which the influence due to the difference between the skin pigment and the light absorption / scattering characteristics is corrected, and the subcutaneous fat thickness can be measured with high accuracy.

請求項に記載の発明は、請求項1又は請求項に記載の光学式皮下脂肪厚測定装置において、前記データベース部には、前記受光パラメータ値により係数が異なる複数の関数が格納され、前記制御部は前記受光パラメータ値に基づき複数の関数の中から一つを選択して前記皮下脂肪厚を推定することを要旨とする。 According to a third aspect of the present invention, in the optical subcutaneous fat thickness measurement apparatus according to the first or second aspect , the database unit stores a plurality of functions having different coefficients depending on the light reception parameter value, The gist of the present invention is that the control unit selects one of a plurality of functions based on the light receiving parameter value and estimates the subcutaneous fat thickness.

これによれば、生体の各部位それぞれの皮下脂肪厚を測定することができる。
請求項に記載の発明は、請求項1〜請求項のうちいずれか一項に記載の光学式皮下脂肪厚測定装置において、前記光照射部を生体の表面に押し当てたとき、該生体の表面に加わる圧力を検出する圧力検出部をさらに備え、前記制御部は、前記圧力検出部により所定値以上の圧力が検出されたことを契機に前記光照射部に光を照射させることを要旨とする。
According to this, the subcutaneous fat thickness of each part of the living body can be measured.
According to a fourth aspect of the present invention, in the optical subcutaneous fat thickness measurement device according to any one of the first to third aspects, when the light irradiation unit is pressed against the surface of the living body, the living body A pressure detection unit that detects a pressure applied to the surface of the light source, and the control unit causes the light irradiation unit to emit light when a pressure equal to or greater than a predetermined value is detected by the pressure detection unit. And

これによれば、生体の表面に所定値以上の圧力が加わることは、光照射部が生体の表面に確実に押し当てられた状態であり、この状態とは、光照射部の発光面と生体の表面との間に外光が侵入することが防止される状態である。そして、圧力検出部によって所定値以上の圧力が検出されたことを契機に光照射部に光を照射させることで、外光の影響を受けることなく皮下脂肪厚の測定を正確に行うことができる。   According to this, when a pressure equal to or higher than a predetermined value is applied to the surface of the living body, the light irradiating unit is reliably pressed against the surface of the living body, and this state refers to the light emitting surface of the light irradiating unit and the living body. It is in a state in which external light is prevented from entering between the surface and the surface. Then, by irradiating the light irradiator with light when a pressure equal to or higher than a predetermined value is detected by the pressure detector, it is possible to accurately measure the subcutaneous fat thickness without being affected by external light. .

本発明によれば、1つの入力部の操作であっても生体の異なる部位の皮下脂肪厚を測定することができ、操作が簡単であるとともに、装置を小型化し、かつ低コスト化することができる。   According to the present invention, it is possible to measure the subcutaneous fat thickness of different parts of a living body even with the operation of one input unit, and the operation is simple, and the apparatus can be reduced in size and cost. it can.

第1の実施形態の光学式皮下脂肪厚測定装置を示す模式図。The schematic diagram which shows the optical subcutaneous fat thickness measuring apparatus of 1st Embodiment. 光学式皮下脂肪厚測定装置の本体基板及び測定板を示す下面図。The bottom view which shows the main body board | substrate and measurement board of an optical subcutaneous fat thickness measuring apparatus. 光学式皮下脂肪厚測定装置の表面における表示部及び入力ボタンを示す図。The figure which shows the display part and input button in the surface of an optical subcutaneous fat thickness measuring apparatus. (a)は受光量と皮下脂肪厚との相関及び一次回帰直線を示すグラフ、(b)は受光量と皮下脂肪厚との相関及び指数関数を示すグラフ。(A) is a graph showing a correlation between the amount of received light and subcutaneous fat thickness and a linear regression line, and (b) is a graph showing a correlation between the amount of received light and subcutaneous fat thickness and an exponential function. (a)は受光量比と皮下脂肪厚との相関及び一次回帰直線を示すグラフ、(b)は受光量比と皮下脂肪厚との相関及び指数関数を示すグラフ。(A) is a graph showing the correlation between the received light amount ratio and the subcutaneous fat thickness and a linear regression line, and (b) is a graph showing the correlation between the received light amount ratio and the subcutaneous fat thickness and an exponential function. データベース部に格納した非線形関数及び受光量比と皮下脂肪厚との相関を示すグラフ。The graph which shows the correlation with the non-linear function stored in the database part, received light quantity ratio, and subcutaneous fat thickness. 太もも、二の腕、及び腹部の皮下脂肪厚と受光量比との相関及び一次回帰直線を示すグラフ。The graph which shows the correlation and the linear regression line of the subcutaneous fat thickness of the thigh, the upper arm, and the abdomen, and the received light amount ratio. 第2の実施形態の光学式皮下脂肪厚測定装置を示す模式図。The schematic diagram which shows the optical subcutaneous fat thickness measuring apparatus of 2nd Embodiment. 2つの一次回帰直線よりなる非線形関数を示すグラフ。The graph which shows the nonlinear function which consists of two linear regression lines.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1〜図7にしたがって説明する。
図1及び図2に示すように、光学式皮下脂肪厚測定装置10は、矩形板状の本体基板11を備えるとともに、この本体基板11の下面中央部には円板状をなす測定板12が設けられている。この測定板12は直径120mm程度の黒色ABSによって形成され、皮下脂肪厚の測定時には、測定板12の下面が生体20の表面に押し当てられる。なお、生体20は、表面に皮膚20a、皮膚20aの下の皮下脂肪20b、及び皮下脂肪20bの下の筋肉20cの3層からなる。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the optical subcutaneous fat thickness measuring apparatus 10 includes a rectangular plate-shaped main body substrate 11, and a disk-shaped measuring plate 12 is formed at the center of the lower surface of the main body substrate 11. Is provided. The measurement plate 12 is formed of black ABS having a diameter of about 120 mm, and the lower surface of the measurement plate 12 is pressed against the surface of the living body 20 when measuring the subcutaneous fat thickness. The living body 20 has three layers of skin 20a on the surface, subcutaneous fat 20b under the skin 20a, and muscle 20c under the subcutaneous fat 20b.

測定板12には光照射部としての発光素子13が設けられている。この発光素子13は、中心波長750ナノメートル(nm)のLEDよりなる。なお、発光素子13から照射される光の中心波長は500〜2500ナノメートル(nm)の近赤外領域であることが望ましく、また、発光素子13にレーザダイオードを用いてもよい。そして、発光素子13は、発光面が測定板12の下面に露出するとともに、測定板12の下面から生体20の皮膚20aに向けて光を照射可能になっている。   The measurement plate 12 is provided with a light emitting element 13 as a light irradiation unit. The light emitting element 13 is an LED having a center wavelength of 750 nanometers (nm). Note that the center wavelength of light emitted from the light emitting element 13 is preferably in the near infrared region of 500 to 2500 nanometers (nm), and a laser diode may be used for the light emitting element 13. The light emitting element 13 has a light emitting surface exposed on the lower surface of the measurement plate 12 and can emit light from the lower surface of the measurement plate 12 toward the skin 20a of the living body 20.

図2に示すように、測定板12には、発光素子13から第1距離k1だけ離れた位置に、第1受光部としての第1受光素子14が設けられている。第1受光素子14はフォトダイオードよりなる。第1受光素子14は、受光面が測定板12の下面に露出するように測定板12に設けられ、発光素子13から照射され、さらに生体20を透過した光を受光するとともにその受光量を検出するようになっている。また、測定板12には、発光素子13から第2距離k2だけ離れた位置に、第2受光部としての第2受光素子15が設けられている。第2受光素子15はフォトダイオードよりなる。第2受光素子15は、受光面が測定板12の下面に露出するように測定板12に設けられ、発光素子13から照射され、さらに生体20を透過した光を受光するとともにその受光量を検出するようになっている。   As shown in FIG. 2, the measurement plate 12 is provided with a first light receiving element 14 as a first light receiving unit at a position separated from the light emitting element 13 by a first distance k1. The first light receiving element 14 is formed of a photodiode. The first light receiving element 14 is provided on the measurement plate 12 so that the light receiving surface is exposed on the lower surface of the measurement plate 12, receives light emitted from the light emitting element 13 and further passes through the living body 20 and detects the amount of light received. It is supposed to be. The measurement plate 12 is provided with a second light receiving element 15 as a second light receiving portion at a position separated from the light emitting element 13 by a second distance k2. The second light receiving element 15 is made of a photodiode. The second light receiving element 15 is provided on the measurement plate 12 so that the light receiving surface is exposed on the lower surface of the measurement plate 12, receives light emitted from the light emitting element 13 and transmitted through the living body 20, and detects the amount of received light. It is supposed to be.

測定板12には、発光素子13、第1受光素子14、及び第2受光素子15が直線状に配置されている。そして、発光素子13と第1受光素子14との間の第1距離k1は、皮膚色素や吸光・散乱特性の違いによる影響を補正するために短いのが好ましく、例えば10〜50mmに設定されるのが好ましい。また、発光素子13と第2受光素子15との間の第2距離k2は、第1距離k1より長く設定され、20〜100mmに設定されるのが望ましい。   On the measurement plate 12, a light emitting element 13, a first light receiving element 14, and a second light receiving element 15 are linearly arranged. The first distance k1 between the light emitting element 13 and the first light receiving element 14 is preferably short in order to correct the influence due to the difference in skin pigment and light absorption / scattering characteristics, and is set to 10 to 50 mm, for example. Is preferred. The second distance k2 between the light emitting element 13 and the second light receiving element 15 is preferably set to be longer than the first distance k1 and set to 20 to 100 mm.

図3に示すように、光学式皮下脂肪厚測定装置10の表面には、報知部としての表示部10a、及び入力部としての入力ボタン10bが設けられている。入力ボタン10bの表面には「皮下脂肪厚」の表示がなされている。この入力ボタン10bを操作することにより皮下脂肪厚の測定開始が光学式皮下脂肪厚測定装置10に指示される。そして、光学式皮下脂肪厚測定装置10によって皮下脂肪厚が測定されると、測定された皮下脂肪厚が表示部10aに表示され、表示部10aの表示によって測定した皮下脂肪厚が被験者に報知されるようになっている。なお、表示部10aは液晶画面によって形成され、皮下脂肪厚を数値で表示する。   As shown in FIG. 3, on the surface of the optical subcutaneous fat thickness measuring apparatus 10, a display unit 10a as a notification unit and an input button 10b as an input unit are provided. “Subcutaneous fat thickness” is displayed on the surface of the input button 10b. By operating the input button 10b, the optical subcutaneous fat thickness measuring apparatus 10 is instructed to start measuring the subcutaneous fat thickness. When the subcutaneous fat thickness is measured by the optical subcutaneous fat thickness measuring apparatus 10, the measured subcutaneous fat thickness is displayed on the display unit 10a, and the measured subcutaneous fat thickness is notified to the subject by the display on the display unit 10a. It has become so. In addition, the display part 10a is formed with a liquid crystal screen, and displays subcutaneous fat thickness by a numerical value.

図1に示すように、光学式皮下脂肪厚測定装置10において、表示部10a及び入力ボタン10bは制御部16に電気的に接続され、制御部16によって表示部10aへの表示が制御されるとともに、入力ボタン10bの操作により皮下脂肪厚の測定開始が制御部16に指示されるようになっている。   As shown in FIG. 1, in the optical subcutaneous fat thickness measuring apparatus 10, the display unit 10a and the input button 10b are electrically connected to the control unit 16, and the display on the display unit 10a is controlled by the control unit 16. The control unit 16 is instructed to start measuring the subcutaneous fat thickness by operating the input button 10b.

また、発光素子13は制御部16に電気的に接続され、制御部16により発光素子13の点灯、消灯が制御される。また、第1受光素子14及び第2受光素子15は制御部16に電気的に接続されている。そして、第1受光素子14で検出された受光量、及び第2受光素子15で検出された受光量は制御部16に送られるようになっている。制御部16には、データベース部17が設けられている。このデータベース部17には、第1受光素子14及び第2受光素子15で得られた受光量に基づいて皮下脂肪厚の値を算出する際に用いられる関数が格納されている。   The light emitting element 13 is electrically connected to the control unit 16, and the control unit 16 controls lighting and extinguishing of the light emitting element 13. The first light receiving element 14 and the second light receiving element 15 are electrically connected to the control unit 16. The received light amount detected by the first light receiving element 14 and the received light amount detected by the second light receiving element 15 are sent to the control unit 16. The control unit 16 is provided with a database unit 17. The database unit 17 stores a function used when calculating the value of the subcutaneous fat thickness based on the amount of light received by the first light receiving element 14 and the second light receiving element 15.

ここで、皮下脂肪厚の値を算出する際に用いる関数について説明する。図4(a)及び図4(b)は、光学式皮下脂肪厚測定装置10を使って生体擬似モデルの皮下脂肪厚を測定したときの結果を示すものである。なお、図示しないが、生体疑似モデルは、皮下脂肪モデルの下に筋肉モデルを備えた2層よりなり、皮下脂肪モデルは500〜2500nmの近赤外領域において透過性の高い材料より形成され、筋肉モデルはABSなどの光吸収体より形成されている。   Here, a function used when calculating the value of the subcutaneous fat thickness will be described. 4 (a) and 4 (b) show the results when the subcutaneous fat thickness of the living body simulated model is measured using the optical subcutaneous fat thickness measuring apparatus 10. FIG. Although not shown in the drawings, the living body pseudo model is composed of two layers including a muscle model under the subcutaneous fat model. The subcutaneous fat model is formed of a material having high permeability in the near infrared region of 500 to 2500 nm, and is a muscle. The model is formed from a light absorber such as ABS.

図4(a)及び図4(b)のグラフは、縦軸に皮下脂肪モデルの厚さ(皮下脂肪厚)を示し、横軸に第2受光素子15の受光量を示している。図4(a)には、皮下脂肪厚と受光量との相関を示す関数たる一次回帰直線G4aが示されている。この一次回帰直線G4aにおける皮下脂肪厚と受光量との相関係数Rは0.93になっている。一方、図4(b)には、皮下脂肪厚と受光量との相関を示す関数たる指数関数G4bが示されている。この指数関数G4bにおける皮下脂肪厚と受光量との相関係数Rは0.98になっている。なお、一次回帰直線G4a及び指数関数G4bそれぞれは、超音波、X線、MRIなどを用いて予め測定された皮下脂肪厚と、その皮下脂肪厚での受光量との関係から最小二乗法等により得られる。   4A and 4B, the vertical axis indicates the thickness of the subcutaneous fat model (subcutaneous fat thickness), and the horizontal axis indicates the amount of light received by the second light receiving element 15. FIG. 4A shows a linear regression line G4a which is a function indicating the correlation between the subcutaneous fat thickness and the amount of received light. The correlation coefficient R between the subcutaneous fat thickness and the amount of received light in this linear regression line G4a is 0.93. On the other hand, FIG. 4B shows an exponential function G4b which is a function indicating the correlation between the subcutaneous fat thickness and the amount of received light. In this exponential function G4b, the correlation coefficient R between the subcutaneous fat thickness and the amount of received light is 0.98. Each of the linear regression line G4a and the exponential function G4b is obtained by the least square method or the like based on the relationship between the subcutaneous fat thickness measured in advance using ultrasonic waves, X-rays, MRI, etc. and the amount of light received at the subcutaneous fat thickness. can get.

そして、図4(a)及び図4(b)に示すように、一次回帰直線G4aを用いて得られる皮下脂肪厚の値は、指数関数G4bを用いて得られる皮下脂肪厚の値に比べて受光量が大きくなると誤差が大きくなる。よって、皮下脂肪厚の値をより正確に算出するためには、指数関数(非線形関数)を用いる方が好ましいことが示された。   As shown in FIGS. 4A and 4B, the value of the subcutaneous fat thickness obtained using the linear regression line G4a is compared with the value of the subcutaneous fat thickness obtained using the exponential function G4b. As the amount of received light increases, the error increases. Therefore, it was shown that it is preferable to use an exponential function (nonlinear function) in order to calculate the value of subcutaneous fat thickness more accurately.

図5(a)及び図5(b)は、光学式皮下脂肪厚測定装置10を使って上記生体擬似モデルの皮下脂肪厚を測定したときの結果を示すグラフである。
図5(a)及び図5(b)のグラフは、縦軸に皮下脂肪モデルの厚さ(皮下脂肪厚)を示し、横軸に、第1受光素子14の受光量と第2受光素子15の受光量との相対比である受光量比を示している。図5(a)には、皮下脂肪厚と受光量比との相関を示す関数たる一次回帰直線G5aが示されている。この一次回帰直線G5aにおける皮下脂肪厚と受光量比との相関係数Rは0.89になっている。一方、図5(b)には、皮下脂肪厚と受光量比との相関を示す関数たる指数関数G5bが示されている。この指数関数G5bにおける皮下脂肪厚と受光量比との相関係数Rは0.97になっている。なお、一次回帰直線G5a及び指数関数G5bそれぞれは、超音波、X線、MRIなどを用いて予め測定された皮下脂肪厚と、その皮下脂肪厚での受光量比との関係から最小二乗法等により得られる。
FIG. 5A and FIG. 5B are graphs showing the results when the subcutaneous fat thickness of the living body simulated model is measured using the optical subcutaneous fat thickness measuring apparatus 10.
In the graphs of FIGS. 5A and 5B, the vertical axis indicates the thickness of the subcutaneous fat model (subcutaneous fat thickness), and the horizontal axis indicates the amount of light received by the first light receiving element 14 and the second light receiving element 15. The received light amount ratio which is a relative ratio to the received light amount is shown. FIG. 5A shows a linear regression line G5a which is a function indicating the correlation between the subcutaneous fat thickness and the received light amount ratio. The correlation coefficient R between the subcutaneous fat thickness and the received light amount ratio in the linear regression line G5a is 0.89. On the other hand, FIG. 5B shows an exponential function G5b which is a function indicating the correlation between the subcutaneous fat thickness and the received light amount ratio. In this exponential function G5b, the correlation coefficient R between the subcutaneous fat thickness and the received light amount ratio is 0.97. Each of the linear regression line G5a and the exponential function G5b is based on the least square method or the like based on the relationship between the subcutaneous fat thickness measured in advance using ultrasonic waves, X-rays, MRI, etc. and the received light quantity ratio at the subcutaneous fat thickness. Is obtained.

そして、図5(a)及び図5(b)に示すように、一次回帰直線G5aを用いて得られる皮下脂肪厚の値は、受光量比が大きくなると誤差が大きくなる。よって、皮下脂肪厚の値をより正確に算出するためには、指数関数(非線形関数)を用いる方が好ましいことが示された。また、図示しないが、受光量比を用いて皮下脂肪厚を算出した場合の方が、算出に用いる関数に対する皮下脂肪厚の値のばらつきが収まることが示された。よって、第1受光素子14と第2受光素子15を用いることで、皮膚色素や吸光・散乱特性の違いによる影響を補正して皮下脂肪厚をより正確に算出することができる。   As shown in FIGS. 5 (a) and 5 (b), the value of the subcutaneous fat thickness obtained using the linear regression line G5a has a larger error as the received light amount ratio increases. Therefore, it was shown that it is preferable to use an exponential function (nonlinear function) in order to calculate the value of subcutaneous fat thickness more accurately. In addition, although not shown, it was shown that the variation in the value of the subcutaneous fat thickness with respect to the function used for the calculation is reduced when the subcutaneous fat thickness is calculated using the received light amount ratio. Therefore, by using the first light receiving element 14 and the second light receiving element 15, it is possible to more accurately calculate the subcutaneous fat thickness by correcting the influence due to the difference in skin pigment and light absorption / scattering characteristics.

本実施形態では、皮下脂肪厚の値を算出する関数として、図6に示す非線形関数G6を用いるとともに、皮下脂肪厚を算出するための受光パラメータ値として受光量比を用いた。非線形関数G6は、受光量比が大きくなるほど皮下脂肪厚への変換係数が大きくなるように作成されるとともに、皮下脂肪厚と受光量比との相関係数Rは0.84になっている。この非線形関数G6は、超音波、X線、MRIなどを用いて予め実際の皮下脂肪厚を測定し、その皮下脂肪厚と、皮下脂肪厚の測定場所における受光量比との関係から最小二乗法などにより近似することにより得られる。   In this embodiment, the nonlinear function G6 shown in FIG. 6 is used as a function for calculating the subcutaneous fat thickness value, and the received light amount ratio is used as the received light parameter value for calculating the subcutaneous fat thickness. The nonlinear function G6 is created so that the conversion coefficient to the subcutaneous fat thickness increases as the received light quantity ratio increases, and the correlation coefficient R between the subcutaneous fat thickness and the received light quantity ratio is 0.84. This non-linear function G6 measures the actual subcutaneous fat thickness in advance using ultrasonic waves, X-rays, MRI, etc., and uses the least squares method from the relationship between the subcutaneous fat thickness and the received light quantity ratio at the measurement location of the subcutaneous fat thickness. It is obtained by approximating by

さて、上記構成の光学式皮下脂肪厚測定装置10を用いて、生体20各部位としての太もも、二の腕、及び腹部の皮下脂肪厚を測定するには、まず、被験者は測定板12を、太もも、二の腕、又は腹部の表面に押し当て、次に、入力ボタン10bを操作して光学式皮下脂肪厚測定装置10をONさせると制御部16は、発光素子13を所定時間点灯させる。発光素子13から生体20の内部に照射された光は、太もも、二の腕、又は腹部の皮膚20a、皮下脂肪20b、及び筋肉20cを伝播して第1受光素子14及び第2受光素子15に受光される。制御部16は、第1受光素子14の受光量と、第2受光素子15の受光量との相対比(受光量比)を算出する。さらに、制御部16は、非線形関数G6を参照し、得られた受光量比に基づいて、太もも、二の腕、又は腹部の皮下脂肪厚を算出(推定)する。次に、制御部16は、算出した皮下脂肪厚を表示部10aに表示させる。   In order to measure the thickness of the thigh, the second arm, and the abdomen of each part of the living body 20 using the optical subcutaneous fat thickness measuring apparatus 10 having the above-described configuration, first, the subject first measures the measurement plate 12, the thigh, When the optical subcutaneous fat thickness measurement apparatus 10 is turned on by pressing the upper arm or the abdominal surface and then operating the input button 10b, the control unit 16 turns on the light emitting element 13 for a predetermined time. The light emitted from the light emitting element 13 to the inside of the living body 20 propagates through the skin 20a, subcutaneous fat 20b, and muscle 20c of the thigh, the upper arm or the abdomen, and is received by the first light receiving element 14 and the second light receiving element 15. The The control unit 16 calculates a relative ratio (light reception amount ratio) between the light reception amount of the first light receiving element 14 and the light reception amount of the second light receiving element 15. Furthermore, the control unit 16 refers to the nonlinear function G6, and calculates (estimates) the subcutaneous fat thickness of the thigh, the second arm, or the abdomen based on the obtained light reception amount ratio. Next, the control unit 16 displays the calculated subcutaneous fat thickness on the display unit 10a.

図6に、光学式皮下脂肪厚測定装置10によって算出された皮下脂肪厚(太もも、二の腕、及び腹部)の値を示す。太もも、二の腕、及び腹部を含めた全体の相関係数Rは0.84である。ここで、図7に、太もも、二の腕、及び腹部それぞれの皮下脂肪厚と受光量比との相関を示す関数たる一次回帰直線G7を示す。各一次回帰直線G7それぞれは、超音波、X線、MRIなどを用いて予め実際の皮下脂肪厚を測定し、その皮下脂肪厚と、皮下脂肪厚の測定場所における受光量比との関係から最小二乗法などにより近似することにより得られる。太ももの一次回帰直線G7における相関係数Rは0.75、二の腕の一次回帰直線G7における相関係数Rは0.81、腹部の一次回帰直線G7における相関係数Rは0.84である。   FIG. 6 shows values of subcutaneous fat thickness (thigh, second arm, and abdomen) calculated by the optical subcutaneous fat thickness measuring apparatus 10. The overall correlation coefficient R including the thigh, the second arm, and the abdomen is 0.84. Here, FIG. 7 shows a linear regression line G7 which is a function indicating the correlation between the subcutaneous fat thickness of the thigh, the upper arm, and the abdomen, and the received light amount ratio. Each linear regression line G7 measures the actual subcutaneous fat thickness in advance using ultrasonic waves, X-rays, MRI, etc., and the minimum is based on the relationship between the subcutaneous fat thickness and the received light quantity ratio at the location where the subcutaneous fat thickness is measured. It can be obtained by approximation by the square method or the like. The correlation coefficient R in the primary regression line G7 of the thigh is 0.75, the correlation coefficient R in the primary regression line G7 of the second arm is 0.81, and the correlation coefficient R in the primary regression line G7 of the abdomen is 0.84.

よって、図6に示す非線形関数G6と、各一次回帰直線G7とを比較しても、相関係数にほとんど差が見られない。したがって、非線形関数G6を用いることで、腹部、太もも、二の腕のように、皮下脂肪厚の異なる部位であっても入力ボタン10bを操作するだけで各部位の皮下脂肪厚を測定することができる。   Therefore, even if the nonlinear function G6 shown in FIG. 6 is compared with each primary regression line G7, there is almost no difference in the correlation coefficient. Therefore, by using the non-linear function G6, it is possible to measure the subcutaneous fat thickness of each part only by operating the input button 10b even in the part where the subcutaneous fat thickness is different, such as the abdomen, thigh, and the second arm.

上記実施形態によれば、以下のような効果を得ることができる。
(1)光学式皮下脂肪厚測定装置10は、1つの入力ボタン10bを備えるとともに、制御部16には1つの非線形関数G6が格納されている。そして、1つの非線形関数G6を用いることで、太もも、二の腕、及び腹部の皮下脂肪厚を測定することができる。よって、測定する部位毎に選択ボタンを操作する必要がある場合と異なり、簡単に操作することができる。
According to the above embodiment, the following effects can be obtained.
(1) The optical subcutaneous fat thickness measurement apparatus 10 includes one input button 10b, and one non-linear function G6 is stored in the control unit 16. By using one nonlinear function G6, the subcutaneous fat thickness of the thigh, the second arm, and the abdomen can be measured. Therefore, unlike the case where it is necessary to operate the selection button for each part to be measured, it can be easily operated.

(2)光学式皮下脂肪厚測定装置10においては、1つの入力ボタン10bを操作するだけで太もも、二の腕、及び腹部それぞれの皮下脂肪厚を測定することができる。よって、光学式皮下脂肪厚測定装置10には入力ボタン10bだけを設ければよく、測定する部位毎に選択ボタンを必要とした場合と比べて光学式皮下脂肪厚測定装置10を小型化することができるとともに、ボタンの数を減らして製造コストを低コスト化することができる。   (2) In the optical subcutaneous fat thickness measuring apparatus 10, the subcutaneous fat thicknesses of the thigh, the second arm, and the abdomen can be measured only by operating one input button 10b. Therefore, the optical subcutaneous fat thickness measuring apparatus 10 only needs to be provided with the input button 10b, and the optical subcutaneous fat thickness measuring apparatus 10 can be downsized as compared with the case where a selection button is required for each part to be measured. In addition, the manufacturing cost can be reduced by reducing the number of buttons.

(3)皮下脂肪厚の算出に用いる受光パラメータ値として、発光素子13から第1距離k1だけ離れた第1受光素子14の受光量と、第1距離k1より長い第2距離k2だけ発光素子13から離れた第2受光素子15の受光量との相対比である受光量比を用いた。このため、皮膚色素や吸光・散乱特性の違いによる影響を補正した受光パラメータ値を用いて皮下脂肪厚を算出することができ、高精度に皮下脂肪厚を測定することができる。   (3) As the light receiving parameter value used for calculating the subcutaneous fat thickness, the light receiving amount of the first light receiving element 14 separated from the light emitting element 13 by the first distance k1 and the light emitting element 13 by the second distance k2 longer than the first distance k1. The received light amount ratio, which is a relative ratio to the received light amount of the second light receiving element 15 away from the second light receiving element 15, was used. For this reason, the subcutaneous fat thickness can be calculated using the light receiving parameter value in which the influence due to the difference between the skin pigment and the light absorption / scattering characteristics is corrected, and the subcutaneous fat thickness can be measured with high accuracy.

(4)皮下脂肪厚を算出する関数として非線形関数G6を設定した。この非線形関数G6は、受光量比が大きくなるに従い傾きが大きくなるような関数である。そして、受光量比が大きくなるとは、皮下脂肪厚が厚くなることを示すため、非線形関数G6を用いることで、厚みの薄い皮下脂肪厚から厚みの厚い皮下脂肪厚まで正確に測定することができる。   (4) A nonlinear function G6 was set as a function for calculating the subcutaneous fat thickness. This non-linear function G6 is a function in which the slope increases as the received light amount ratio increases. The increase in the amount of received light indicates that the thickness of the subcutaneous fat is increased. Therefore, by using the nonlinear function G6, it is possible to accurately measure the thickness of the subcutaneous fat from the thin thickness to the thick subcutaneous fat thickness. .

(第2の実施形態)
次に、本発明の第2の実施形態を図8を用いて説明する。なお、以下の説明では、既に説明した第1の実施形態と同一構成について同一符号を付すなどし、その重複する説明を省略又は簡略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and redundant description thereof is omitted or simplified.

図8に示すように、第2の実施形態の光学式皮下脂肪厚測定装置10において、本体基板11の下面には収容凹所11aが形成されるとともに、この収容凹所11aには所定のヤング率を有する圧縮バネ31が収容されている。圧縮バネ31は一端(図8では上端)が収容凹所11aの内頂面に当接するとともに他端(図8では下端)が測定板12の表面(図8では上面)に当接している。そして、圧縮バネ31は、バネ力により測定板12を本体基板11から離れる方向へ付勢している。   As shown in FIG. 8, in the optical subcutaneous fat thickness measuring apparatus 10 of the second embodiment, an accommodation recess 11a is formed on the lower surface of the main body substrate 11, and a predetermined Young is placed in the accommodation recess 11a. A compression spring 31 having a rate is accommodated. One end (upper end in FIG. 8) of the compression spring 31 is in contact with the inner top surface of the housing recess 11a, and the other end (lower end in FIG. 8) is in contact with the surface (upper surface in FIG. 8). The compression spring 31 urges the measurement plate 12 away from the main body substrate 11 by a spring force.

また、圧縮バネ31には圧力検出部32が電気的に接続されるとともに、圧力検出部32は制御部16に電気的に接続されている。そして、測定板12が生体20表面に押し当てられると、圧縮バネ31が圧縮され、圧力検出部32によって生体20に加わる圧力が検出されるようになっている。さらに、制御部16は、圧力検出部32によって検出された圧力が所定値以上になると、発光素子13を所定時間点灯させる制御を行うようになっている。なお、圧力の所定値とは、測定板12の下面全体が生体20表面に確実に押し当てられるときに圧力検出部32に加わる値に設定されるのが好ましい。   In addition, a pressure detector 32 is electrically connected to the compression spring 31, and the pressure detector 32 is electrically connected to the controller 16. When the measurement plate 12 is pressed against the surface of the living body 20, the compression spring 31 is compressed, and the pressure applied to the living body 20 is detected by the pressure detection unit 32. Furthermore, when the pressure detected by the pressure detection unit 32 becomes a predetermined value or more, the control unit 16 performs control to turn on the light emitting element 13 for a predetermined time. The predetermined value of the pressure is preferably set to a value applied to the pressure detector 32 when the entire lower surface of the measurement plate 12 is reliably pressed against the surface of the living body 20.

したがって、上記第2の実施形態によれば、第1の実施形態に記載の(1)〜(4)の効果に加えて以下の効果を得ることができる。
(5)第2の実施形態における光学式皮下脂肪厚測定装置10は、圧縮バネ31及び圧力検出部32を備える。そして、圧力検出部32に所定値以上の圧力が検出されると制御部16は発光素子13を点灯させ、皮下脂肪厚の測定を開始させる。このため、生体20表面に測定板12の下面を確実に接触させた時点で皮下脂肪厚が測定されることとなり、測定中に、測定板12の下面と生体20表面との間を遮断して測定板12の下面に外光が入り込むことを防止することができる。その結果として、発光素子13からの光の散乱を防止して、発光素子13からの光を用いた皮下脂肪厚の測定を正確に行うことができる。
Therefore, according to the said 2nd Embodiment, in addition to the effect of (1)-(4) as described in 1st Embodiment, the following effects can be acquired.
(5) The optical subcutaneous fat thickness measurement apparatus 10 in the second embodiment includes a compression spring 31 and a pressure detection unit 32. And if the pressure detection part 32 detects the pressure more than predetermined value, the control part 16 will light the light emitting element 13, and will start the measurement of subcutaneous fat thickness. For this reason, the subcutaneous fat thickness is measured when the lower surface of the measurement plate 12 is reliably brought into contact with the surface of the living body 20, and the lower surface of the measurement plate 12 and the surface of the living body 20 are blocked during the measurement. It is possible to prevent external light from entering the lower surface of the measurement plate 12. As a result, scattering of light from the light emitting element 13 can be prevented, and subcutaneous fat thickness measurement using the light from the light emitting element 13 can be accurately performed.

なお、上記実施形態は以下のように変更してもよい。
○ 図9に示すように、データベース部17に格納する関数を、受光量比を所定の値より小さい領域で近似した一次回帰直線G8aと所定の値以上の領域で近似した一次回帰直線G8bとを結合してなるものとし、受光量比が大きくなるほど傾きが大きくなる非線形関数としてもよい。すなわち、データベース部17には、受光量比により係数の異なる一次回帰直線G8aと一次回帰直線G8bとが格納されている。なお、一次回帰直線G8aに比べて一次回帰直線G8bの傾きが大きくなるように近似している。そして、このような非線形関数を用いた場合、受光量比が小さい場合、制御部16は一次回帰直線G8aと一次回帰直線G8bのうち一次回帰直線G8aを選択して皮下脂肪厚を算出し、受光量比が大きい場合は、制御部16は一次回帰直線G8aと一次回帰直線G8bのうち一次回帰直線G8bを用いて皮下脂肪厚を算出する。このように構成しても、生体20の部位を区別することなく、一つの入力ボタン10bで皮下脂肪厚を測定することができる。
In addition, you may change the said embodiment as follows.
As shown in FIG. 9, the functions stored in the database unit 17 are: a linear regression line G8a that approximates a light reception amount ratio in a region smaller than a predetermined value and a primary regression line G8b that approximates a region that is equal to or greater than a predetermined value. A non-linear function in which the slope increases as the received light amount ratio increases may be used. That is, the database unit 17 stores a primary regression line G8a and a primary regression line G8b having different coefficients depending on the received light amount ratio. Note that the approximation is such that the slope of the primary regression line G8b is larger than that of the primary regression line G8a. When such a nonlinear function is used, when the ratio of received light quantity is small, the control unit 16 selects the primary regression line G8a from the primary regression line G8a and the primary regression line G8b, calculates the subcutaneous fat thickness, and receives light. When the quantity ratio is large, the control unit 16 calculates the subcutaneous fat thickness using the primary regression line G8b among the primary regression line G8a and the primary regression line G8b. Even if comprised in this way, subcutaneous fat thickness can be measured with one input button 10b, without distinguishing the site | part of the biological body 20. FIG.

なお、データベース部17に格納する関数は、複数格納するのであれば、一次回帰直線G8a,G8bのような一次回帰直線でなく、指数関数を複数格納してもよい。
○ なお、図8に示す一次回帰直線G8a,G8bがデータベース部17に格納された光学式皮下脂肪厚測定装置10において、受光パラメータ値を第1受光素子14又は第2受光素子15の受光量としてもよい。
If a plurality of functions are stored in the database unit 17, a plurality of exponential functions may be stored instead of the primary regression lines such as the primary regression lines G8a and G8b.
In the optical subcutaneous fat thickness measurement apparatus 10 in which the linear regression lines G8a and G8b shown in FIG. 8 are stored in the database unit 17, the light reception parameter value is used as the amount of light received by the first light receiving element 14 or the second light receiving element 15. Also good.

○ 本体基板11に設ける受光部は1つだけであってもよく、3つ以上設けてもよい。
○ 報知部として、音声やパラメータ表示等によって皮下脂肪厚を被験者に報知するようにしてもよい。
○ Only one light receiving portion may be provided on the main body substrate 11, or three or more light receiving portions may be provided.
As a notification unit, the subject may be notified of the subcutaneous fat thickness by voice, parameter display, or the like.

○ 各実施形態では、関数として非線形関数に指数関数を用いたが、二次関数、三次関数などとしてもよい。
○ 第2の実施形態において、圧力検出のために圧縮バネ31を用いたが、歪ゲージを用いて圧力検出を行うようにしてもよい。
In each embodiment, an exponential function is used as a nonlinear function as a function, but a quadratic function, a cubic function, or the like may be used.
In the second embodiment, the compression spring 31 is used for pressure detection. However, pressure detection may be performed using a strain gauge.

G4a,G5a,G8a,G8b…関数としての一次回帰直線、G4b,G5b…関数及び非線形関数としての指数関数、G6…非線形関数、k1…第1距離、k2…第2距離、10a…報知部としての表示部、10b…入力部としての入力ボタン、13…光照射部としての発光素子、14…第1受光部としての第1受光素子、15…第2受光部としての第2受光素子、16…制御部、17…データベース部、20…生体、32…圧力検出部。   G4a, G5a, G8a, G8b ... linear regression line as a function, G4b, G5b ... exponential function as a function and nonlinear function, G6 ... nonlinear function, k1 ... first distance, k2 ... second distance, 10a ... as a notification unit Display buttons, 10b... Input buttons as input units, 13... Light emitting elements as light irradiating units, 14... First light receiving elements as first light receiving units, 15. ... Control part, 17 ... Database part, 20 ... Living body, 32 ... Pressure detection part.

Claims (4)

生体の表面に向けて光を照射する光照射部と、
前記生体の内部を伝播した光を受光する受光部と、
前記受光部での受光量に基づいて得られる受光パラメータ値と前記生体の各部位における皮下脂肪厚の値とを相関するものであり前記生体の各部位で共用する関数が格納されたデータベース部と、
前記受光パラメータ値に基づいて前記データベース部の前記関数を参照し、前記皮下脂肪厚の値を推定する制御部と、
前記皮下脂肪厚の測定開始を前記制御部に指示するための1つの入力部と、
前記制御部によって推定された皮下脂肪厚の値を被験者に報知する報知部と、を備え
前記関数は、前記受光パラメータ値が大きくなるほど傾きが大きくなる指数関数であることを特徴とする光学式皮下脂肪厚測定装置。
A light irradiation unit for irradiating light toward the surface of the living body;
A light receiving unit that receives light propagating through the living body;
A database unit that correlates a light receiving parameter value obtained based on the amount of light received by the light receiving unit and a value of subcutaneous fat thickness at each part of the living body, and stores a function shared by each part of the living body; ,
A control unit that estimates the value of the subcutaneous fat thickness with reference to the function of the database unit based on the light reception parameter value;
One input unit for instructing the control unit to start measurement of the subcutaneous fat thickness;
A notification unit that notifies the subject of the value of subcutaneous fat thickness estimated by the control unit ,
The function optical subcutaneous fat thickness measuring apparatus according to claim exponential der Rukoto the inclination becomes larger as the light receiving parameter value increases.
前記受光パラメータ値が、前記光照射部から第1距離だけ離れた位置に設けられた第1受光部での第1受光量と、前記第1距離より長い第2距離だけ前記光照射部から離れた位置に設けられた第2受光部での第2受光量との相対比である請求項1に記載の光学式皮下脂肪厚測定装置。 The light receiving parameter value is separated from the light emitting unit by a first received light amount at a first light receiving unit provided at a position separated from the light emitting unit by a first distance and a second distance longer than the first distance. The optical subcutaneous fat thickness measuring apparatus according to claim 1, wherein the optical subcutaneous fat thickness measuring apparatus is a relative ratio to a second received light amount at a second light receiving unit provided at a predetermined position. 前記データベース部には、前記受光パラメータ値により係数が異なる複数の関数が格納され、前記制御部は前記受光パラメータ値に基づき複数の関数の中から一つを選択して前記皮下脂肪厚を推定する請求項1又は請求項に記載の光学式皮下脂肪厚測定装置。 The database unit stores a plurality of functions having different coefficients depending on the light reception parameter value, and the control unit selects one of the plurality of functions based on the light reception parameter value to estimate the subcutaneous fat thickness. The optical subcutaneous fat thickness measuring apparatus according to claim 1 or 2 . 前記光照射部を生体の表面に押し当てたとき、該生体の表面に加わる圧力を検出する圧力検出部をさらに備え、前記制御部は、前記圧力検出部により所定値以上の圧力が検出されたことを契機に前記光照射部に光を照射させる請求項1〜請求項のうちいずれか一項に記載の光学式皮下脂肪厚測定装置 When the light irradiation unit is pressed against the surface of the living body, the apparatus further includes a pressure detection unit that detects a pressure applied to the surface of the living body, and the control unit detects a pressure equal to or higher than a predetermined value by the pressure detection unit. The optical subcutaneous fat thickness measurement apparatus according to any one of claims 1 to 3 , wherein the light irradiation unit is irradiated with light when triggered by this fact .
JP2009022931A 2009-02-03 2009-02-03 Optical subcutaneous fat thickness measuring device Expired - Fee Related JP4715930B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009022931A JP4715930B2 (en) 2009-02-03 2009-02-03 Optical subcutaneous fat thickness measuring device
CN2010101135046A CN101797157B (en) 2009-02-03 2010-02-03 Optical subcutaneous fat thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022931A JP4715930B2 (en) 2009-02-03 2009-02-03 Optical subcutaneous fat thickness measuring device

Publications (2)

Publication Number Publication Date
JP2010178799A JP2010178799A (en) 2010-08-19
JP4715930B2 true JP4715930B2 (en) 2011-07-06

Family

ID=42593118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022931A Expired - Fee Related JP4715930B2 (en) 2009-02-03 2009-02-03 Optical subcutaneous fat thickness measuring device

Country Status (2)

Country Link
JP (1) JP4715930B2 (en)
CN (1) CN101797157B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198164A (en) * 2013-03-29 2014-10-23 富士通株式会社 Measuring device, measurement region determination method, and program
JP6270031B2 (en) 2014-01-20 2018-01-31 学校法人 久留米大学 MRI index estimation method and biometric apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189695A (en) * 1996-01-09 1997-07-22 Fuji Photo Film Co Ltd Method for analyzing sample, method for preparing calibration curve, and analytical device using these method
WO1998023916A1 (en) * 1996-11-26 1998-06-04 Omron Corporation Method and apparatus for measuring concentration of light absorbing material in living tissue and thickness of intercalary tissue
JP2000237195A (en) * 1998-12-24 2000-09-05 Matsushita Electric Ind Co Ltd Living body information measuring device, living body information measuring method, body fat measuring device, body fat measuring method and program recording medium
JP2001083081A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Method for preparing nonlinear calibration curve in automatic chemical analysis device
WO2001076485A1 (en) * 2000-04-05 2001-10-18 Matsushita Electric Industrial Co. Ltd. Biological information measuring instrument and biological information measuring method
JP2003144421A (en) * 2001-11-15 2003-05-20 Matsushita Electric Works Ltd Method and device for determining biocomponent
JP2003265440A (en) * 2002-03-12 2003-09-24 Matsushita Electric Ind Co Ltd Optical subcutaneous fat thickness measuring method and optical subcutaneous fat thickness measuring device
JP2003310575A (en) * 2002-04-26 2003-11-05 Matsushita Electric Ind Co Ltd Method for optically measuring skinfold fat thickness and apparatus used for the same
JP2004147787A (en) * 2002-10-29 2004-05-27 Matsushita Electric Ind Co Ltd Optical type subcutaneous fat thickness measuring method and apparatus for use in the same
JP2006081892A (en) * 2004-08-20 2006-03-30 Matsushita Electric Ind Co Ltd Living body information operating unit, living body information operating method, program, and recording medium
JP2008055163A (en) * 2006-08-31 2008-03-13 Samsung Electronics Co Ltd Body fat measurement apparatus and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396227A4 (en) * 2002-01-25 2009-04-08 Panasonic Corp Optical biological information measuring method and optical biological information measuring instrument
US20060041198A1 (en) * 2004-08-20 2006-02-23 Matsushita Electric Industrial Co., Ltd. Biological information arithmetic apparatus, biological information arithmetic method, computer-executable program, and recording medium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189695A (en) * 1996-01-09 1997-07-22 Fuji Photo Film Co Ltd Method for analyzing sample, method for preparing calibration curve, and analytical device using these method
WO1998023916A1 (en) * 1996-11-26 1998-06-04 Omron Corporation Method and apparatus for measuring concentration of light absorbing material in living tissue and thickness of intercalary tissue
JP2000237195A (en) * 1998-12-24 2000-09-05 Matsushita Electric Ind Co Ltd Living body information measuring device, living body information measuring method, body fat measuring device, body fat measuring method and program recording medium
JP2001083081A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Method for preparing nonlinear calibration curve in automatic chemical analysis device
WO2001076485A1 (en) * 2000-04-05 2001-10-18 Matsushita Electric Industrial Co. Ltd. Biological information measuring instrument and biological information measuring method
JP2003144421A (en) * 2001-11-15 2003-05-20 Matsushita Electric Works Ltd Method and device for determining biocomponent
JP2003265440A (en) * 2002-03-12 2003-09-24 Matsushita Electric Ind Co Ltd Optical subcutaneous fat thickness measuring method and optical subcutaneous fat thickness measuring device
JP2003310575A (en) * 2002-04-26 2003-11-05 Matsushita Electric Ind Co Ltd Method for optically measuring skinfold fat thickness and apparatus used for the same
JP2004147787A (en) * 2002-10-29 2004-05-27 Matsushita Electric Ind Co Ltd Optical type subcutaneous fat thickness measuring method and apparatus for use in the same
JP2006081892A (en) * 2004-08-20 2006-03-30 Matsushita Electric Ind Co Ltd Living body information operating unit, living body information operating method, program, and recording medium
JP2008055163A (en) * 2006-08-31 2008-03-13 Samsung Electronics Co Ltd Body fat measurement apparatus and method

Also Published As

Publication number Publication date
CN101797157B (en) 2012-04-25
CN101797157A (en) 2010-08-11
JP2010178799A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
US20150126865A1 (en) Ultrasonic probe and ultrasonic measuring device
JP4792540B1 (en) Pulse oximeter
JP6642421B2 (en) Measuring device and measuring method
WO2003063704A1 (en) Optical biological information measuring method and optical biological information measuring instrument
JP6878312B2 (en) Photoelectric volumetric pulse wave recording device
CN106793950B (en) Non-invasive in situ glucose level detection using electromagnetic radiation
CN101756695B (en) Bone density meter
US20080131315A1 (en) Color reaction detecting device and method for manufacturing same
JP2015089383A5 (en)
WO2014103165A1 (en) Calorie calculation device
JP4715930B2 (en) Optical subcutaneous fat thickness measuring device
JP2019516444A5 (en)
JP4367410B2 (en) Visceral fat measuring device, program, and recording medium
JP3928472B2 (en) Optical subcutaneous fat thickness measuring device
JP2008154873A (en) Optical measuring instrument
US20150011859A1 (en) Elastic modulus measuring apparatus and elastic modulus measuring method
WO2020008380A1 (en) Method for carrying out oxymetric tests and medical apparatus with an improved oxymetric device with a reflective sensor
JP2016219114A (en) Ultrasonic flow rate switch
WO2016052282A1 (en) Non-invasive in situ glucose level sensing using electromagnetic radiation
US8519352B1 (en) Radiation monitor and hand-foot cloth monitor including hand monitoring unit
KR102198092B1 (en) Height measuring apparatus
JP5236413B2 (en) Subcutaneous fat thickness measurement device
US20170112394A1 (en) Measurement apparatus and measurement method
JP5017224B2 (en) Subcutaneous fat thickness measurement device
JP2005287618A (en) Biological information measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees