JP4713362B2 - Genetic modification device - Google Patents

Genetic modification device Download PDF

Info

Publication number
JP4713362B2
JP4713362B2 JP2006039876A JP2006039876A JP4713362B2 JP 4713362 B2 JP4713362 B2 JP 4713362B2 JP 2006039876 A JP2006039876 A JP 2006039876A JP 2006039876 A JP2006039876 A JP 2006039876A JP 4713362 B2 JP4713362 B2 JP 4713362B2
Authority
JP
Japan
Prior art keywords
pulse laser
modification device
genetic modification
ultrashort pulse
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006039876A
Other languages
Japanese (ja)
Other versions
JP2007215774A (en
Inventor
米喜 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graduate School for the Creation of New Photonics Industries
Original Assignee
Graduate School for the Creation of New Photonics Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graduate School for the Creation of New Photonics Industries filed Critical Graduate School for the Creation of New Photonics Industries
Priority to JP2006039876A priority Critical patent/JP4713362B2/en
Publication of JP2007215774A publication Critical patent/JP2007215774A/en
Application granted granted Critical
Publication of JP4713362B2 publication Critical patent/JP4713362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Radiation-Therapy Devices (AREA)

Description

本発明は、超短パルスレーザを利用して加速した電子ビームを被照射体の遺伝子に照射して、その遺伝子を切断するように構成した遺伝子改変装置に関するものである。   The present invention relates to a genetic modification device configured to irradiate a gene of an irradiated object with an electron beam accelerated using an ultrashort pulse laser and cut the gene.

従来から、加速器からの陽子線や重量子線を用いた治療装置は、エネルギーに応じてある深さで急に強くなるがその前後は弱いといった陽子線や重量子線の特性を利用することで、ピークの部分を癌の患部に合わせれば正常の組織の障害を少なくしながら有効な治療効果を得られることから、身体表面近くで最も強く深く進むにつれて減弱するといった特性を有するx線、ガンマ線、中性子線を用いた治療装置に代えて用いられるようになっている。   Conventionally, a treatment device using proton beams or proton beams from an accelerator makes use of the characteristics of proton beams or weight beams that suddenly become strong at a certain depth depending on energy but weak before and after that. Since the effective therapeutic effect can be obtained while reducing the damage of normal tissues by matching the peak part with the affected part of cancer, x-rays, gamma rays, etc. having the characteristics that the intensity decreases as it advances most strongly near the body surface, It is used in place of a treatment device using a neutron beam.

具体的にこの種の治療装置は、加速器からの陽子ビームを受けるビームラインと、このビームラインを搭載した回転ガントリーとを具備するものであって、ビームラインは、陽子ビームを加速器側から被検者側に向けて偏向させる偏向電磁石と、この偏向電磁石を介してビームの照射野を被検者の治療部に応じて形成する照射野形成装置とを備えて成る一方、回転ガントリーは、被検者の回りで略90度の回転角を有する半径方向の照射位置に偏向電磁石及び照射野形成装置を含むビームラインを空間的に回転させる回転手段(回転用フレーム、及び回転機構(突出体、ガイド))を備えて成るように構成されている(例えば、特許文献1参照。)。
特開平10−94617号公報
Specifically, this type of treatment apparatus includes a beam line that receives a proton beam from an accelerator, and a rotating gantry equipped with the beam line. The beam line detects the proton beam from the accelerator side. The rotating gantry includes a deflecting electromagnet that deflects toward the patient and an irradiation field forming device that forms a beam irradiation field according to the treatment area of the subject via the deflecting magnet. Rotating means (rotating frame and rotating mechanism (projecting body, guide) that spatially rotates the beam line including the deflecting electromagnet and the irradiation field forming device at a radial irradiation position having a rotation angle of approximately 90 degrees around the person. ))) (See, for example, Patent Document 1).
JP-A-10-94617

しかしながら従来の構成では、その装置の巨大さから例えば多くの専従操作員が必要であり、放射線防御管理が大変であるといった問題点を有している。しかも、最低でも全国都道府県規模で、安価、安定、安全な無痛治療装置が備えられなければ、健全な保険医療とはならない。また、従来型パルスレーザは、励起光源とレーザ本体との結合効率が%以下という悪さであり、大掛かりな冷却系を必要とする上、システム要素間の伝搬経路を確保するためには、部屋全体の防振、空調が不可欠であり、非常にコスト高になるといった問題点を有している。また、超高強度レーザ装置を用いたとしても、チャープパルス増幅法が一般的に用いられるため、上述した問題が技術的にさらに深刻である。   However, the conventional configuration has a problem that, for example, a large number of full-time operators are required due to the size of the device, and radiation protection management is difficult. Moreover, sound medical care will not be possible unless there is a low-cost, stable, and safe pain-free treatment device at least on a nationwide scale. In addition, the conventional pulse laser has a poor coupling efficiency between the excitation light source and the laser body of less than%, and requires a large cooling system, and in order to secure a propagation path between system elements, Vibration isolation and air conditioning are indispensable, and the cost is very high. Even if an ultra-high-intensity laser device is used, since the chirped pulse amplification method is generally used, the above-described problem is technically more serious.

そこで本発明は、経済性、安全性、操作性にそれぞれ優れ、また、副作用の心配も殆ど無く、癌細胞等の遺伝子を好適に切断できるといった遺伝子改変装置を提供することをその主たる課題としたものである。   Therefore, the main object of the present invention is to provide a genetic modification device that is excellent in economic efficiency, safety, and operability, has almost no worry of side effects, and can suitably cleave genes such as cancer cells. Is.

すなわち、本発明に係る遺伝子改変装置は、超短パルスレーザを導入する導入口真空または希ガスを封入して成り前記導入口から導入した超短パルスレーザにより電子を加速させる細孔、及び前記細孔で加速された電子ビームを被照射体の遺伝子を切断するために該遺伝子に対して射出する射出口を有するキャピラリー部を具備し、前記キャピラリー部が、両端に開口を有する中空細管と、この中空細管の両端開口を超短パルスレーザを通過可能としながら気密的に閉塞する気密部とを具備し、前記中空細管の一方の開口を前記導入口に設定し、他方の開口を前記射出口に設定し、各開口を繋ぐ中空細管内部の貫通孔を前記細孔に設定していることを特徴とするThat is, the genetic modification device according to the present invention includes an introduction port for introducing an ultrashort pulse laser , a vacuum or a rare gas sealed therein, a pore for accelerating electrons by the ultrashort pulse laser introduced from the introduction port , and the above A capillary part having an injection port for injecting an electron beam accelerated in the pores into the gene of the irradiated object in order to cut the gene of the irradiated object, the capillary part having a hollow capillary having openings at both ends; An airtight portion that hermetically closes both ends of the hollow thin tube while allowing an ultrashort pulse laser to pass therethrough, one opening of the hollow thin tube is set as the introduction port, and the other opening is the injection port And the through-holes in the hollow thin tubes connecting the openings are set as the pores .

ここで、「被照射体」とは、動物・植物・微生物など生命をもつ狭義の生物に限らず、例えば、ウイルスをも含む広い概念である。また、この被照射体は、例えば、パレットで培養しているもの等、生体外にあるものであっても良い。また、「電子ビームを遺伝子に射出する」とは、電子ビームを遺伝子に直接射出することを含むのは無論のこと、電子ビームを利用して得られるイオンビーム等を遺伝子に射出することをも含む概念である。   Here, the “irradiated object” is not limited to living organisms in a narrow sense such as animals, plants, and microorganisms, but is a broad concept including, for example, viruses. In addition, the irradiated body may be outside the living body, for example, one cultured on a pallet. In addition, “injecting an electron beam into a gene” includes, of course, directly injecting an electron beam into a gene, and also includes injecting an ion beam or the like obtained by using an electron beam into a gene. It is a concept that includes.

このようなものによれば、導入口から超短パルスレーザを細孔に導入すれば、該細孔内で加速された癌治療に有効な数MeV以上の電子ビームを、射出口から射出することができるので、この電子ビームを被照射体の癌細胞に射出すれば、癌細胞の遺伝子を切断でき、良好な治療効果を期待することができる。しかも、細孔を、例えば、内径が60μmで長さが10mm程度のものとすれば、人体に対して無用な負荷を与えることなく、射出口を、直接腫瘍付近に接近することができるので、余分な部位への照射がなくなり、従来の放射線治療装置に比べ、数十Gyの線量を一桁以上減少することが可能となる。また、例えば、シンクロトロン炭素線治療装置に比べ、装置の省スペース化及び低価格化を実現できるため、治療現場への導入の促進を図ることができる上、植物の遺伝子を改変するといった治療目的以外の用途への活用も、容易に行うことができる。   According to such a configuration, when an ultrashort pulse laser is introduced into the pore from the introduction port, an electron beam of several MeV or more effective for cancer treatment accelerated in the pore can be emitted from the emission port. Therefore, if this electron beam is emitted to the cancer cell of the irradiated body, the gene of the cancer cell can be cleaved and a good therapeutic effect can be expected. Moreover, if the pore is, for example, one having an inner diameter of 60 μm and a length of about 10 mm, the injection port can be directly approached to the vicinity of the tumor without giving unnecessary load to the human body. Irradiation to an extra site is eliminated, and a dose of several tens of Gy can be reduced by one digit or more as compared with a conventional radiotherapy apparatus. In addition, for example, compared to a synchrotron carbon beam therapy apparatus, it is possible to realize space saving and cost reduction of the apparatus, so that introduction to a treatment site can be promoted and a plant gene is modified. It can be easily used for other purposes.

すなわち、経済性、安全性、操作性にそれぞれ優れ、また、副作用の心配も殆ど無く、癌細胞等の遺伝子を好適に切断できるといった遺伝子改変装置を提供することができる。   That is, it is possible to provide a genetic modification device that is excellent in economic efficiency, safety, and operability, and that can be suitably cleaved from a gene such as a cancer cell with almost no side effects.

装置を安価に構成するには、前記中空細管および前記気密部を、ガラスにより一体的に形成していることが好ましい。   In order to configure the device at low cost, it is preferable that the hollow thin tube and the airtight portion are integrally formed of glass.

装置自体の小型化を図りつつ、細孔内での電子ビームの加速及び輻射の高効率化を図るには、前記超短パルスレーザを発生する超短パルスレーザ発生部を具備して成ることが望ましい。   In order to increase the efficiency of electron beam acceleration and radiation within the pores while reducing the size of the device itself, the apparatus itself may include an ultrashort pulse laser generator that generates the ultrashort pulse laser. desirable.

超短パルスレーザの導入口への導光効率を向上させるためには、前記超短パルスレーザを前記導入口へ光学的または形状的に集光する集光部を設けていることが好ましい。   In order to improve the light guide efficiency to the introduction port of the ultrashort pulse laser, it is preferable to provide a condensing part that condenses the ultrashort pulse laser optically or in shape to the introduction port.

前記集光部が、略コーン形状を有するものであれば、簡単な構成でありながら、超短パルスレーザを、導入口に効果的に導光することができる。   If the light condensing part has a substantially cone shape, the ultrashort pulse laser can be effectively guided to the introduction port with a simple configuration.

前記電子ビームを衝突させることにより、反衝突面側に前記遺伝子に照射可能なイオンビームを発生する薄膜を具備して成るのであれば、イオンビームによって、例えば、螺旋構造をなす2本のDNA鎖を、一度に切断することができる。   If a thin film that generates an ion beam that can irradiate the gene on the anti-collision surface side by colliding with the electron beam is provided, for example, two DNA strands forming a spiral structure by the ion beam Can be cut at a time.

この場合には、前記射出口と前記薄膜との間の空間を真空にしていることが望ましい。このように構成すれば、該空間での無用な照射ロスを防止できるからである。   In this case, it is desirable that the space between the injection port and the thin film is evacuated. This is because such a configuration can prevent unnecessary irradiation loss in the space.

前記細孔の少なくとも射出口側を、前記被照射体の内部に配して使用するのであれば、例えば、被照射体としての身体内部の深い位置へ電子ビームを照射することができ、しかも、身体を無用に傷つけることを防止できる。   If at least the injection port side of the pore is used inside the irradiated body, for example, an electron beam can be irradiated to a deep position inside the body as the irradiated body, It can prevent hurting your body unnecessarily.

このように本発明に係る遺伝子改変装置は、導入口から超短パルスレーザを細孔に導入すれば、該細孔内で加速された癌治療に有効な数MeV以上の電子ビームを、射出口から射出することができるので、この電子ビームを被照射体の癌細胞に射出すれば、癌細胞の遺伝子を切断でき、良好な治療効果を期待することができる。しかも、細孔を、例えば、内径が60μmで長さが10mm程度のものとすれば、人体に対して無用な負荷を与えることなく、射出口を、直接腫瘍付近に接近することができるので、余分な部位への照射がなくなり、従来の放射線治療装置に比べ、数十Gyの線量を一桁以上減少することが可能となる。また、例えば、シンクロトロン炭素線治療装置に比べ、装置の省スペース化及び低価格化を実現できるため、治療現場への導入の促進を図ることができる上、植物の遺伝子を改変するといった治療目的以外の用途への活用も、容易に行うことができる。   As described above, when the ultrashort pulse laser is introduced into the pore from the introduction port, the genetic modification device according to the present invention generates an electron beam of several MeV or more effective for cancer treatment accelerated in the pore. Therefore, if this electron beam is emitted to the cancer cells of the irradiated body, the gene of the cancer cells can be cleaved and a good therapeutic effect can be expected. Moreover, if the pore is, for example, one having an inner diameter of 60 μm and a length of about 10 mm, the injection port can be directly approached to the vicinity of the tumor without giving unnecessary load to the human body. Irradiation to an extra site is eliminated, and a dose of several tens of Gy can be reduced by one digit or more as compared with a conventional radiotherapy apparatus. In addition, for example, compared to a synchrotron carbon beam therapy apparatus, it is possible to realize space saving and cost reduction of the apparatus, so that introduction to a treatment site can be promoted and a plant gene is modified. It can be easily used for other purposes.

すなわち、経済性、安全性、操作性にそれぞれ優れ、また、副作用の心配も殆ど無く、癌細胞等の遺伝子を好適に切断できるといった遺伝子改変装置を提供することができる。   That is, it is possible to provide a genetic modification device that is excellent in economic efficiency, safety, and operability, and that can be suitably cleaved from a gene such as a cancer cell with almost no side effects.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態の遺伝子改変装置Aは、内部照射型治療器として用いられるものであって、図1、図2、図3に示すように、電源1に接続され超短パルスレーザPを発生する超短パルスレーザ発生部2と、この超短パルスレーザ発生部2で発生した超短パルスレーザPを集光する集光部3と、この集光部3で集光した超短パルスレーザPを導入し加速された電子ビームQ1を射出するキャピラリー部4とを具備し、患者Mを載置する載置台Bと、この載置台Bの上面側に設けたガントリーC等とともに使用される。以下、各部を具体的に説明する。   The genetic modification device A of the present embodiment is used as an internal irradiation type treatment device, and is connected to a power source 1 and generates an ultrashort pulse laser P as shown in FIGS. Introduction of a short pulse laser generator 2, a condensing unit 3 for condensing the ultrashort pulse laser P generated by the ultrashort pulse laser generator 2, and an ultrashort pulse laser P condensed by the condensing unit 3 And a capillary unit 4 for emitting the accelerated electron beam Q1, and used together with a mounting table B on which the patient M is mounted and a gantry C provided on the upper surface side of the mounting table B. Hereinafter, each part is demonstrated concretely.

超短パルスレーザ発生部2は、図示しない半導体レーザ励起固体素子と、ファイバー増幅およびパルス幅圧縮を兼ねるファイバー伝送系21とを具備し、繰返し1kHz、ピーク出力1TW、平均出力100Wの超短パルスを発生するものであって、本実施形態では、畳1畳に収まる安定、可搬型のものとしている。   The ultrashort pulse laser generator 2 includes a semiconductor laser pumped solid state element (not shown) and a fiber transmission system 21 that performs both fiber amplification and pulse width compression, and outputs an ultrashort pulse with a repetition of 1 kHz, a peak output of 1 TW, and an average output of 100 W. In this embodiment, a stable and portable type that fits in one tatami mat is assumed.

集光部3は、両端部にそれぞれ開成する小口部31及び大口部32を備えるとともに、これら小口部31から大口部32にかけて漸次拡大する内部導光空間3aを備えた略切頭円錐形状(換言すると略コーン形状)を成す金属製のものであって、大口部32から導入する超短パルスレーザPを小口部31に集光し、集光した超短パルスレーザPを、後述するキャピラリー部4の導入口41xに対して射出し得るように、該小口部31とキャピラリー部4の導入口41xとを接続している。なお、本実施形態では、小口部31の内径を60μm、大口部32の内径を500μmで、全長を900μmとしているが、各寸法は、これに限られるものではなく、実施態様に応じて適宜変更することができる。   The condensing unit 3 includes a small-mouthed portion 31 and a large-sized mouth portion 32 that are formed at both ends, respectively, and a substantially truncated conical shape (in other words, an internal light guide space 3a that gradually expands from the small-mouthed portion 31 to the large-mouthed portion 32 Then, it is made of a metal having a substantially cone shape), and the ultrashort pulse laser P introduced from the large opening 32 is condensed on the small opening 31, and the condensed ultrashort pulse laser P is converted into a capillary section 4 described later. The small mouth portion 31 and the introduction port 41x of the capillary portion 4 are connected so that the injection port 41x can be injected. In the present embodiment, the inner diameter of the small mouth portion 31 is 60 μm, the inner diameter of the large mouth portion 32 is 500 μm, and the total length is 900 μm. However, each dimension is not limited to this, and is appropriately changed according to the embodiment. can do.

キャピラリー部4は、内部に希ガスを充填したガス封入型のものであって、外径が100μmで、内径が60μmで、全長が10mmの中空細管41と、この中空細管41の両端開口を超短パルスレーザPを通過可能としながら気密的に閉塞する気密部42とを具備し、これら各部をガラスにより一体的に形成している。そして、前記中空細管41における超短パルスレーザ発生部2側の開口を、超短パルスレーザPを導入する導入口41xに設定する一方、患者M側の開口を、前記細孔41zで加速された電子ビームQ1を患者Mの遺伝子Maを切断するために該遺伝子Maに対して射出する射出口41yに設定し、これら各開口を繋ぐ中空細管41内部の貫通孔を、前記導入口41xから導入した超短パルスレーザPにより電子を加速させる細孔41zに設定している。なお、中空細管41の内径を100μmとし、全長を100mmとするなど、各部の寸法は、実施態様に応じて適宜変更することができる。   The capillary section 4 is a gas-filled type filled with a rare gas inside, and has a hollow tubule 41 having an outer diameter of 100 μm, an inner diameter of 60 μm, and a total length of 10 mm, and both ends of the hollow tubule 41 extending beyond both ends. An airtight portion 42 that hermetically closes while allowing passage of the short pulse laser P is provided, and these portions are integrally formed of glass. Then, the opening on the ultrashort pulse laser generator 2 side in the hollow capillary 41 is set to the introduction port 41x for introducing the ultrashort pulse laser P, while the opening on the patient M side is accelerated by the pore 41z. The electron beam Q1 is set to the injection port 41y that injects the gene Ma in order to cut the gene Ma of the patient M, and the through hole in the hollow thin tube 41 that connects these openings is introduced from the introduction port 41x. It is set to the pore 41z for accelerating electrons by the ultrashort pulse laser P. In addition, the dimension of each part can be suitably changed according to the embodiment, such that the inner diameter of the hollow thin tube 41 is 100 μm and the total length is 100 mm.

次に上記構成の遺伝子改変装置Aの動作について説明する。   Next, the operation of the genetic modification device A having the above configuration will be described.

まず、載置台Bに横臥させた患者Mに対してキャピラリー部4の先端側を挿入し、導入口41xを患部M1(例えば、癌細胞)に近接または患部M1内に位置付ける。なお、キャピラリー部4は、図示しない支持部材を利用して、載置台Bに固定しても良いしガントリーCに固定しても良い。また、患者Mを利用して固定することを妨げない。   First, the distal end side of the capillary part 4 is inserted into the patient M lying on the mounting table B, and the introduction port 41x is positioned close to or within the affected part M1 (for example, cancer cells). The capillary unit 4 may be fixed to the mounting table B or the gantry C using a support member (not shown). Moreover, it does not prevent fixing using the patient M.

そして、超短パルスレーザ発生部2で発生した超短パルスレーザPを、集光部3を介して導入口41xに対して射出すると、細孔41z内に、プラズマ波が発生する。このプラズマ波によって、電子は高エネルギー(図4に示すように、全長1.2mmの中空細管に比べ、当該実施形態の全長10mmの中空細管が、エネルギーに広がりがあり、最大で100MeV(1億電子ボルト)ものエネルギーを有する。)まで加速され、10MeV電子10/shot程度の電子ビームQ1およびγ線を射出口41yから射出することができる。 When the ultrashort pulse laser P generated by the ultrashort pulse laser generator 2 is emitted to the introduction port 41x via the condenser 3, a plasma wave is generated in the pore 41z. Due to this plasma wave, the electrons have high energy (as shown in FIG. 4, compared with the hollow tubule having a total length of 1.2 mm, the hollow tubule having a total length of 10 mm has a broader energy, and a maximum of 100 MeV (100 million The electron beam Q1 and γ rays of about 10 MeV electrons 10 9 / shot can be emitted from the emission port 41y.

そしてこのようにして射出口41yから射出する電子ビームQ1を、患部M1に対して照射すれば、図5に示すように、患部M1の遺伝子Maを好適に切断することができる。このとき、電子ビームQ1の強度などを調整すれば、螺旋をなす二本鎖Ma1、Ma2のうち一本のみを切断することもできるし、或いは、両方を一度に切断することもできる。   If the affected part M1 is irradiated with the electron beam Q1 emitted from the exit port 41y in this way, the gene Ma of the affected part M1 can be suitably cut as shown in FIG. At this time, by adjusting the intensity of the electron beam Q1 or the like, only one of the spiral double strands Ma1 and Ma2 can be cut, or both can be cut at once.

したがって、このような遺伝子改変装置Aによれば、患部M1の遺伝子Maを好適に切断し、患部M1を治療することができる。また、外科療法などに比べ、切開の必要がないので深部の腫瘍治療に優位性があるのに加え、従来の加速器を用いた放射線治療装置に比べても副作用および呼吸運動による照射不安定の問題も殆ど無い。   Therefore, according to such a gene modification device A, the gene Ma of the affected part M1 can be appropriately cut to treat the affected part M1. In addition, there is no need for incision compared to surgical treatment, etc., so there is an advantage in deep tumor treatment, as well as side effects and radiation instability due to respiratory motion compared to conventional radiotherapy devices using accelerators. There is almost no.

すなわち、経済性、安全性、操作性にそれぞれ優れ、また、副作用の心配も殆ど無く、癌細胞等の遺伝子Maを好適に切断できるといった、優れた遺伝子改変装置Aを提供することができる。   That is, it is possible to provide an excellent genetic modification device A that is excellent in economic efficiency, safety, and operability, has almost no fear of side effects, and can suitably cleave a gene Ma such as cancer cells.

中空細管41および前記気密部42を、ガラスにより一体的に形成しているため、装置を安価に構成することができる。   Since the hollow thin tube 41 and the airtight portion 42 are integrally formed of glass, the apparatus can be configured at low cost.

超短パルスレーザPを発生する超短パルスレーザ発生部2を具備して成るので、装置自体の小型化を図りつつ、細孔41z内での電子ビームQ1の加速及び輻射の高効率化を図ることができる。   Since the ultrashort pulse laser generator 2 for generating the ultrashort pulse laser P is provided, the acceleration of the electron beam Q1 in the pore 41z and the high efficiency of radiation are achieved while reducing the size of the apparatus itself. be able to.

超短パルスレーザPを前記導入口41xへ集光する略コーン形状の集光部3を設けているため、簡単な構成でありながら、超短パルスレーザPを、導入口41xに効果的に導光することができる。   Since the substantially cone-shaped condensing part 3 for condensing the ultrashort pulse laser P to the introduction port 41x is provided, the ultrashort pulse laser P is effectively guided to the introduction port 41x with a simple configuration. Can be light.

前記細孔41zの少なくとも射出口41y側を、患者Mの内部に配して使用するようにしているので、例えば、患者Mの深い位置へ電子ビームQ1を照射することができ、しかも、患者Mを無用に傷つけることを防止できる。   Since at least the injection port 41y side of the pore 41z is arranged and used inside the patient M, for example, the electron beam Q1 can be irradiated to a deep position of the patient M, and the patient M Can be prevented from being damaged unnecessarily.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、集光部3に、略コーン形状のものを用いることでその形状を利用して集光するようにしているが、例えば、レンズを用いて光学的に集光するようにしてもよい。   For example, by using a substantially cone-shaped condensing unit 3 for condensing light using the shape, for example, it may be optically condensed using a lens.

また、図6(a)に示すように、射出口41yと対向する位置に、例えば、金属製の薄膜5を設け、この薄膜5に電子ビームQ1を衝突させることにより、反衝突面側に前記遺伝子Maに照射可能なイオンビームQ2を発生させるといった実施態様も考えられる。そして、この場合には、前記射出口41yと前記薄膜5との間の空間を、真空シール部6とすることが好ましい。このように構成すれば、イオンビームQ2によって、螺旋構造をなす2本のDNA鎖を、一度に切断するに有用であるからである。   Further, as shown in FIG. 6A, for example, a metal thin film 5 is provided at a position facing the injection port 41y, and the electron beam Q1 is caused to collide with the thin film 5 so that the anti-collision surface side is An embodiment in which an ion beam Q2 that can irradiate the gene Ma is generated is also conceivable. In this case, the space between the injection port 41y and the thin film 5 is preferably a vacuum seal portion 6. This is because such a configuration is useful for cutting two DNA strands having a helical structure at once by the ion beam Q2.

また、図6(b)に示すように、集光部3を備えない実施態様とすることもできるし、図6(c)に示すように、集光部3を備えずに、前記薄膜5を備えるといった実施態様とすることもできる。   Moreover, as shown in FIG.6 (b), it can also be set as the embodiment which is not equipped with the condensing part 3, and as shown in FIG.6 (c), it is not provided with the condensing part 3, but the said thin film 5 is provided. It can also be set as the embodiment of providing.

また、キャピラリー部4の構成(形状や材質など)も、本実施形態に限られるものではない。   Further, the configuration (shape, material, etc.) of the capillary section 4 is not limited to this embodiment.

また、本実施形態では、被照射体を患者(人体)としているが、被照射体はこれに限らず、他の動物やマウス白血病由来突然変異株などの培養細胞とすることもできるし、また、植物、微生物、ウイルスなどであってもよい。   In this embodiment, the irradiated body is a patient (human body), but the irradiated body is not limited to this, and can be a cultured cell such as another animal or a murine leukemia-derived mutant strain. It may be a plant, a microorganism, a virus or the like.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態に係る遺伝子改変装置を示す全体図。1 is an overall view showing a genetic modification device according to an embodiment of the present invention. 同実施形態における電子ビームの照射態様を説明するための説明図。Explanatory drawing for demonstrating the irradiation aspect of the electron beam in the embodiment. 同実施形態における主要部を示す模式図。The schematic diagram which shows the principal part in the embodiment. 同実施形態における中空細管内の電子エネルギーとMeV単位当たり電子個数との関係を示す図。The figure which shows the relationship between the electron energy in the hollow thin tube in the same embodiment, and the number of electrons per MeV unit. 同実施形態における電子ビーム等による遺伝子の切断態様を示す模式図。The schematic diagram which shows the cutting | disconnection aspect of the gene by the electron beam etc. in the embodiment. 本発明の他の実施形態における主要部を示す模式図。The schematic diagram which shows the principal part in other embodiment of this invention.

A・・・・・遺伝子改変装置
M・・・・・被照射体(患者)
P・・・・・超短パルスレーザ
Q1・・・・電子ビーム
Q2・・・・イオンビーム
2・・・・・超短パルスレーザ発生部
3・・・・・集光部
5・・・・・薄膜
41・・・・中空細管
41x・・・開口(導入口)
41z・・・貫通孔(細孔)
41y・・・開口(射出口)
42・・・・気密部
A: Genetic modification device M: Subject to be irradiated (patient)
P ... Ultrashort pulse laser Q1 ... Electron beam Q2 ... Ion beam 2 ... Ultrashort pulse laser generator 3 ... Focusing unit 5 ... · Thin film 41 ··· Hollow tubule 41x ··· Opening (inlet)
41z ... through hole (pore)
41y ... Opening (injection port)
42 ... Airtight part

Claims (9)

超短パルスレーザを導入する導入口真空または希ガスを封入して成り前記導入口から導入した超短パルスレーザにより電子を加速させる細孔、及び前記細孔で加速された電子ビームを被照射体の遺伝子を切断するために該遺伝子に対して射出する射出口を有するキャピラリー部を具備し、
前記キャピラリー部が、両端に開口を有する中空細管と、この中空細管の両端開口を超短パルスレーザを通過可能としながら気密的に閉塞する気密部とを具備し、前記中空細管の一方の開口を前記導入口に設定し、他方の開口を前記射出口に設定し、各開口を繋ぐ中空細管内部の貫通孔を前記細孔に設定していることを特徴とする遺伝子改変装置。
Inlet for introducing the ultra-short pulse laser, the pores to accelerate the electrons by ultrashort pulse laser introduced from the inlet port comprises encapsulating a vacuum or inert gas, and the irradiated with accelerated electron beams in the pores Comprising a capillary part having an injection port for injecting the gene to cut the gene of the body ,
The capillary part includes a hollow capillary having openings at both ends, and an airtight part that hermetically closes the openings at both ends of the hollow capillary while allowing the ultrashort pulse laser to pass therethrough. A genetic modification device, characterized in that the introduction port is set, the other opening is set as the injection port, and a through hole in a hollow thin tube connecting the openings is set as the pore.
前記細孔に入射した超短パルスレーザにより前記細孔内でプラズマ波が発生するとともに、このプラズマ波によって電子を加速させるものである請求項1記載の遺伝子改変装置。  2. The genetic modification device according to claim 1, wherein an ultrashort pulse laser incident on the pore generates a plasma wave in the pore and accelerates electrons by the plasma wave. 前記中空細管および前記気密部を、ガラスにより一体的に形成していることを特徴とする請求項1又は2記載の遺伝子改変装置。 The genetic modification device according to claim 1 or 2, wherein the hollow thin tube and the airtight part are integrally formed of glass. 前記超短パルスレーザを発生する超短パルスレーザ発生部を具備して成ることを特徴とする請求項1乃至3いずれか記載の遺伝子改変装置。   The gene modification device according to any one of claims 1 to 3, further comprising an ultrashort pulse laser generator that generates the ultrashort pulse laser. 前記超短パルスレーザを前記導入口へ光学的または形状的に集光する集光部を設けていることを特徴とする請求項1乃至4いずれか記載の遺伝子改変装置。   The genetic modification device according to any one of claims 1 to 4, further comprising a condensing unit that optically or geometrically condenses the ultrashort pulse laser at the introduction port. 前記集光部が、略コーン形状を有するものであることを特徴とする請求項5記載の遺伝子改変装置。   The genetic modification device according to claim 5, wherein the light collecting portion has a substantially cone shape. 前記電子ビームを衝突させることにより、反衝突面側に前記遺伝子に照射可能なイオンビームを発生する薄膜を具備して成ることを特徴とする請求項1乃至6いずれか記載の遺伝子改変装置。   7. The genetic modification device according to claim 1, further comprising a thin film that generates an ion beam that can irradiate the gene on the anti-collision surface side by colliding the electron beam. 前記射出口と前記薄膜との間の空間を真空にしていることを特徴とする請求項7記載の遺伝子改変装置。   The genetic modification device according to claim 7, wherein a space between the injection port and the thin film is evacuated. 前記細孔の少なくとも射出口側を、前記被照射体の内部に配して使用することを特徴とする請求項1乃至8いずれか記載の遺伝子改変装置。   The genetic modification device according to any one of claims 1 to 8, wherein at least an injection port side of the pore is disposed inside the irradiated body.
JP2006039876A 2006-02-16 2006-02-16 Genetic modification device Expired - Fee Related JP4713362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039876A JP4713362B2 (en) 2006-02-16 2006-02-16 Genetic modification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039876A JP4713362B2 (en) 2006-02-16 2006-02-16 Genetic modification device

Publications (2)

Publication Number Publication Date
JP2007215774A JP2007215774A (en) 2007-08-30
JP4713362B2 true JP4713362B2 (en) 2011-06-29

Family

ID=38493651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039876A Expired - Fee Related JP4713362B2 (en) 2006-02-16 2006-02-16 Genetic modification device

Country Status (1)

Country Link
JP (1) JP4713362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3941353A4 (en) * 2019-03-18 2022-12-14 The Regents of the University of California Systems and methods for compact laser wakefield accelerated electrons and x-rays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582300A (en) * 1991-09-21 1993-04-02 Nec Eng Ltd Laser plasma accelerator
JPH08215324A (en) * 1995-02-16 1996-08-27 Hitachi Medical Corp Treatment device equipped with small x-ray tube
JP2002107494A (en) * 2000-09-27 2002-04-10 Central Res Inst Of Electric Power Ind Method and device for inducing nuclear reaction
JP2004101219A (en) * 2002-09-05 2004-04-02 Foundation For Advancement Of International Science Radiation generator using laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582300A (en) * 1991-09-21 1993-04-02 Nec Eng Ltd Laser plasma accelerator
JPH08215324A (en) * 1995-02-16 1996-08-27 Hitachi Medical Corp Treatment device equipped with small x-ray tube
JP2002107494A (en) * 2000-09-27 2002-04-10 Central Res Inst Of Electric Power Ind Method and device for inducing nuclear reaction
JP2004101219A (en) * 2002-09-05 2004-04-02 Foundation For Advancement Of International Science Radiation generator using laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3941353A4 (en) * 2019-03-18 2022-12-14 The Regents of the University of California Systems and methods for compact laser wakefield accelerated electrons and x-rays

Also Published As

Publication number Publication date
JP2007215774A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
CN104001270B (en) Extrahigh energy electron beam or photon beam radiation treatment robot system
US6906338B2 (en) Laser driven ion accelerator
EP1909907B1 (en) Device and method for creating a spatial dose distribution in a medium volume
US9782606B2 (en) Integrated target structure for generating charged particle and driving method of medical appliance using the same
US20100094266A1 (en) Laser activated micro accelerator platform
JP5978125B2 (en) Particle beam therapy system
US20240090112A1 (en) Linear accelerator for generating high x-ray doses
US11154729B2 (en) High brightness electron beam based precise radiation therapy method and system
CN212347217U (en) Disinfection apparatus
JP4713362B2 (en) Genetic modification device
Sulieman An overview of the use of lasers in general dental practice: 1. Laser physics and tissue interactions
ES2525335T3 (en) Source of short pulses of high energy photons and method of generating a short pulse of high energy photons
JP2004101219A (en) Radiation generator using laser
JP2004229698A (en) Slender type x-ray irradiation equipment
US20220117075A1 (en) Systems and methods for compact laser wakefield accelerated electrons and x-rays
CZ36217U1 (en) Robotic gantries for radiation therapy incorporating a tunable compact focusing system
US20130281999A1 (en) Method of performing microbeam radiosurgery
KR20210131778A (en) Magnetic field generating apparatus and control method thereof
CN115671576A (en) BNCT-related low-energy charged particle beam transport system and charged particle beam transport method
LT6816B (en) Laser-driven high-dose-rate generating device of ionizing radiation
Tajima Targeted Electron Radiation Theranostics of COVID-19 by Laser Wakefield Accelerators (LFWA)
JPS60165030A (en) Target for generating brake radiation x-rays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees