JP4710433B2 - LAMINATED METAL CAN, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING LAMINATED METAL PLATE - Google Patents

LAMINATED METAL CAN, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING LAMINATED METAL PLATE Download PDF

Info

Publication number
JP4710433B2
JP4710433B2 JP2005189135A JP2005189135A JP4710433B2 JP 4710433 B2 JP4710433 B2 JP 4710433B2 JP 2005189135 A JP2005189135 A JP 2005189135A JP 2005189135 A JP2005189135 A JP 2005189135A JP 4710433 B2 JP4710433 B2 JP 4710433B2
Authority
JP
Japan
Prior art keywords
resin
resin layer
less
diameter
substantially spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005189135A
Other languages
Japanese (ja)
Other versions
JP2007008495A (en
Inventor
啓 久保
安秀 大島
克己 小島
良彦 安江
浩樹 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005189135A priority Critical patent/JP4710433B2/en
Publication of JP2007008495A publication Critical patent/JP2007008495A/en
Application granted granted Critical
Publication of JP4710433B2 publication Critical patent/JP4710433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、ビール・発泡酒用ラミネート金属缶、その製造方法及びビール・発泡酒用ラミネート金属缶用金属板の製造方法に関するものである。   The present invention relates to a laminated metal can for beer and sparkling liquor, a method for producing the same, and a method for producing a metal plate for a laminated metal can for beer and sparkling liquor.

近年、泡を意識したビール・発泡酒商品が市中に出回っている。注ぐとクリーミーな泡が発生するグラスや、家庭用サーバーなどである。ビール・発泡酒の泡は、ビール・発泡酒という商品に大きな魅力を付与している。ビール・発泡酒用金属缶分野においても泡に対して工夫を凝らした商品が見受けられる。例えば、注ぎ口に工夫があり、注いだ時に泡が発生しやすくなる缶や、開缶時に発泡が誘発されるようなアイテムを封入した缶などである。   In recent years, froth-conscious beer and sparkling liquor products are on the market. For example, a glass that produces creamy foam when poured or a server for home use. The foam of beer and happoshu has given great appeal to products called beer and happoshu. In the metal can field for beer and sparkling liquor, there are some products that are devised for foam. For example, there is a device with a spout that can easily generate bubbles when poured, and a can filled with an item that induces foaming when opened.

金属缶には、内容物を保存する機能と、そのままグラスとして活用する機能があるが、これら機能は内容物を飲むまでの1回限りで、飲んだ後はリサイクルへと回され、缶としての役目を終える。従って、缶にかかるコストは安価なものがより好まれる。   Metal cans have the function of preserving the contents and the function of using them as glasses, but these functions are limited to one time until the contents are drunk. Finish the role. Therefore, an inexpensive can is more preferred.

泡立ち性を付与したビール・発泡酒缶において、発泡誘発アイテムを封入した缶は、一般的には普及せず特定の内容物に対してのみ適用されている。一方、注ぐ時に泡が発生しやすくなる缶は、注ぎ口の形状を工夫しただけであるので、安価であり、それなりに普及もしているが、この機能を使用する場合、缶のグラスとしての機能を放棄しているばかりでなく、注ぐ容器や注ぎ方にも大きく影響を受ける為、安定して良好な泡立ち性が得られない。   In a beer / sparkling liquor can with foaming properties, a can in which a foam-inducing item is enclosed is generally not widespread and is applied only to specific contents. On the other hand, cans that easily generate bubbles when pouring are only cheaply devised because the shape of the spout is devised, but if you use this function, the function of the can as a glass In addition to being abandoned, since it is greatly affected by the pouring container and the pouring method, a stable and good foaming property cannot be obtained.

缶コストの大幅な増大を生ずることなく、泡立ち性を付与する技術として、特許文献1には、アルミ缶の内面に粒体を添加した塗料を焼き付けることで多数の凸部を設け、これらの凸部どうしの間の稜線によって、または塗料を塗布した後に突起物を押し付けることで、断面が略V字状をなす多数の凹部を形成することで、炭酸飲料の泡立ち性を向上させる技術が開示されている。   As a technique for imparting foaming properties without causing a significant increase in can cost, Patent Document 1 provides a large number of convex portions by baking a paint added with granules on the inner surface of an aluminum can. Disclosed is a technique for improving the foaming property of carbonated beverages by forming a large number of recesses having a substantially V-shaped cross section by pressing protrusions by applying ridge lines between portions or after applying paint. ing.

また、特許文献2には、2層以上の二軸延伸積層ポリエステルフィルムで、非金属板側層のポリエステル中に比較的球形に近い粒子を含有させて表面に均一な凹凸をもたせてその表面粗度を均一化することで、ラミネート金属缶の泡立ち性を向上させる技術が開示されている。   Further, Patent Document 2 discloses a biaxially stretched laminated polyester film having two or more layers, in which polyester of the non-metal plate side layer contains particles that are relatively close to a spherical shape, and has a uniform roughness on the surface to provide a rough surface. A technique for improving the foamability of a laminated metal can by making the degree uniform is disclosed.

しかし、本発明者らが、特許文献1、2の実施例の記載に基いて、実使用環境を考慮した条件でビール・発泡酒の泡立ち性を評価したところ、良好な泡立ち性は得られなかった。
特開平05−97149号公報 特開平11−254625号公報
However, when the present inventors evaluated the foaming properties of beer / happoshu based on the description of Examples in Patent Documents 1 and 2, considering the actual use environment, good foaming properties were not obtained. It was.
Japanese Patent Laid-Open No. 05-97149 JP-A-11-254625

本発明の課題は、缶コストを大幅に増大させることなく、ビール・発泡酒を充填したときに、実使用環境で、良好な泡立ち性が発現されるラミネート金属缶、該金属缶の製造方法及び該金属缶用金属板の製造方法を提供することである。   An object of the present invention is to provide a laminated metal can that exhibits good foaming properties in an actual use environment when filled with beer and sparkling liquor without significantly increasing the can cost, a method for producing the metal can, and It is providing the manufacturing method of this metal plate for metal cans.

上記課題を解決する本発明の手段は次の通りである。   Means of the present invention for solving the above problems are as follows.

[1]缶内面側の金属板上にラミネート樹脂層を有する金属缶であって、ラミネート樹脂表面に、直径0.5μm以上3μm以下の略球状物が、その球体部の直径の1/3以下が下地樹脂層に埋没して存在し、ラミネート樹脂層表面における前記埋没して存在する略球状物の個数密度は、500個/mm以上3000個/mm以下であることを特徴とするラミネート金属缶。 [1] A metal can having a laminate resin layer on a metal plate on the inner surface of the can, wherein a substantially spherical object having a diameter of 0.5 μm or more and 3 μm or less is 1/3 or less of the diameter of the sphere on the surface of the laminate resin. Embedded in the base resin layer, and the number density of the substantially spherical objects existing in the surface of the laminate resin layer is 500 / mm 2 or more and 3000 / mm 2 or less. Metal cans.

[2]前記ラミネート樹脂層は、少なくとも最表層が熱可塑性ポリエステルを主成分とする樹脂からなることを特徴とする[1]に記載のラミネート金属缶。   [2] The laminated metal can according to [1], wherein at least the outermost layer of the laminated resin layer is made of a resin mainly composed of a thermoplastic polyester.

[3]前記熱可塑性ポリエステル樹脂が、ジカルボン酸成分とジオール成分の縮重合で得られ、ジカルボン酸成分がテレフタル酸、またはテレフタル酸及びイソフタル酸からなり、ジオール成分がエチレングリコール及び/またはブチレングリコールからなり、かつ、エチレンテレフタレートまたはブチレンテレフタレートからなる繰り返し単位がモル%比率で85%以上である下記(1)〜(5)のうちから選ばれるいずれかの樹脂であることを特徴とする[2]に記載のラミネート金属缶。
(1)ポリエチレンテレフタレート−ポリエチレンイソフタレート共重合体
(2)ポリエチレンテレフタレート
(3)ポリブチレンテレフタレート−ポリエチレンテレフタレート共重合体
(4)ポリエチレンテレフタレート−ポリエチレンイソフタレート−ポリブチレンテレフタレート共重合体
(5)ポリブチレンテレフタレート
[4] [2]のラミネート樹脂層は、少なくとも最表層が、主相が請求項3に記載の樹脂を基本骨格とする熱可塑性ポリエステルを主成分とする樹脂であり、副相がポリオレフィンからなる混合樹脂からなることを特徴とする[2]に記載のラミネート金属缶。
[3] The thermoplastic polyester resin is obtained by condensation polymerization of a dicarboxylic acid component and a diol component, the dicarboxylic acid component is composed of terephthalic acid, or terephthalic acid and isophthalic acid, and the diol component is composed of ethylene glycol and / or butylene glycol. And a repeating unit composed of ethylene terephthalate or butylene terephthalate is any resin selected from the following (1) to (5) having a molar ratio of 85% or more [2] A laminated metal can described in 1.
(1) Polyethylene terephthalate-polyethylene isophthalate copolymer (2) Polyethylene terephthalate (3) Polybutylene terephthalate-polyethylene terephthalate copolymer (4) Polyethylene terephthalate-polyethylene isophthalate-polybutylene terephthalate copolymer (5) Polybutylene The laminated resin layer of terephthalate [4] [2] has at least the outermost layer as a main component of a thermoplastic polyester whose main phase is the resin of claim 3 as a main skeleton, and the subphase is made of polyolefin. The laminated metal can according to [2], which comprises a mixed resin.

[5]前記ポリオレフィンが、ポリエチレン、ポリプロピレン、アイオノマーのうちの1種以上からなることを特徴とする[4]に記載のラミネート金属缶。   [5] The laminated metal can according to [4], wherein the polyolefin comprises one or more of polyethylene, polypropylene, and ionomer.

[6]前記ラミネート樹脂層は押し出し法により形成されてなるものまたは無延伸フィルムを熱圧着して形成されてなるものであることを特徴とする[1]〜[5]のうちのいずれかに記載のラミネート金属缶。
前記ラミネート樹脂層は押し出し法により形成されてなるものまたは無延伸フィルムを熱圧着して形成されてなるものであることを特徴とする[1]に記載のラミネート金属缶。
[6] Any one of [1] to [5], wherein the laminate resin layer is formed by an extrusion method or is formed by thermocompression bonding of an unstretched film. The laminated metal can described.
The laminate metal can according to [1], wherein the laminate resin layer is formed by an extrusion method or is formed by thermocompression bonding of an unstretched film.

[7]金属板上に樹脂フィルム層を有するラミネート金属板上に直径が0.5μm以上3.0μm以下の略球状物を散布した後、熱処理を施して、略球状物をその球体部の直径の1/3以下を下地樹脂層に埋没させて該下地樹脂層に接着させることを特徴とする[1]に記載のラミネート缶用金属板の製造方法。   [7] A substantially spherical material having a diameter of 0.5 μm or more and 3.0 μm or less is sprayed on a laminated metal plate having a resin film layer on the metal plate, and then heat treatment is performed, so that the substantially spherical material has a diameter of the sphere part. 1/3 or less of the above is embedded in the base resin layer and adhered to the base resin layer. The method for producing a metal plate for a laminate can according to [1].

[8]金属缶体の内面側表面に直径が0.5μm以上3.0μm以下の略球状物を散布した後、熱処理を施して、略球状物をその球体部の直径の1/3以下を下地樹脂層に埋没させて下地樹脂層に接着させることを特徴とする[1]に記載のラミネート金属缶の製造方法。   [8] After a substantially spherical object having a diameter of 0.5 μm or more and 3.0 μm or less is sprayed on the inner surface of the metal can body, heat treatment is performed to reduce the approximately spherical object to 1/3 or less of the diameter of the spherical part. The method for producing a laminated metal can according to [1], wherein the method is embedded in a base resin layer and adhered to the base resin layer.

[9]直径が0.5μm以上3.0μm以上の略球状物を樹脂層に含有させたラミネート金属板を用い、缶成形工程において略球状物の周囲の樹脂の変形により、略球状物の球体部の直径の2/3以上をその周囲の樹脂面より突起させることを特徴とする[1]に記載のラミネート金属缶の製造方法。   [9] Using a laminated metal plate in which a resin layer contains a substantially spherical product having a diameter of 0.5 μm or more and 3.0 μm or more, and by deforming the resin around the substantially spherical product in a can molding process, The method for producing a laminated metal can according to [1], wherein 2/3 or more of the diameter of the part is projected from the resin surface around the part.

本発明によれば、缶コストを大幅に増大させることなく、ビール・発泡酒を開封しただけで良好な泡立ち性が発現されるラミネート金属缶が得られる。   According to the present invention, it is possible to obtain a laminated metal can that exhibits good foaming properties simply by opening beer / happoshu without significantly increasing the can cost.

以下、発明に至った経緯と併せて本発明について説明する。   The present invention will be described below together with the background to the invention.

ビール・発泡酒缶において、蓋開封前の缶内部は陽圧状態となっており、この状態において気液平衡が保たれている。ところが、蓋を開放すると大気圧となり、平衡が崩れ、液中に溶けている過飽和な二酸化炭素が炭酸ガスとなり大気中に一散していく。これが泡のもととなる。しかしながら、通常、蓋を開放しただけでは炭酸ガスの発生速度は緩やかで、十分な発泡に至らない。この為、泡の発生を顕著にする為には、工夫が必要となる。   In the beer / happoshu can, the inside of the can before opening the lid is in a positive pressure state, and the vapor-liquid equilibrium is maintained in this state. However, when the lid is opened, the pressure becomes atmospheric pressure, the equilibrium is lost, and supersaturated carbon dioxide dissolved in the liquid becomes carbon dioxide and diffuses into the atmosphere. This is the source of bubbles. However, normally, just by opening the lid, the rate of carbon dioxide gas generation is slow and sufficient foaming cannot be achieved. For this reason, in order to make generation | occurrence | production of a bubble remarkable, a device is needed.

発明者らは、様々な注ぎ方で、グラスにビール・発泡酒を注いで、様々な泡を発生させ、泡の発生量と、そのサイズについて調査を行った。ビール・発泡酒をコップに勢いよく注ぐと大きな泡が大量に発生したが、泡は直ぐに消滅した。次に、適度にゆっくり注ぐと直径1mm以下の細かい泡が上層に堆積し理想的な泡部を形成した。更にゆっくり注ぐと、上層への泡の堆積は観察されず、しばらく放置しても泡の堆積は認められなかった。観察した範囲においては、勢いよく注ぐと泡サイズは大きくなり、ゆっくり注ぐと泡サイズは小さくなる傾向にあり、上層部での泡の堆積は、勢いが良すぎても、ゆっくり過ぎても認められないことから、上層部への泡の堆積に対して適切な泡サイズがあると考えられた。即ち、泡発生点から泡が液中にリリースされる時には適切な泡サイズがあるものと考えられた。   The inventors poured beer / happoshu into a glass by various pouring methods to generate various bubbles, and investigated the amount of foam generated and its size. When beer / happoshu was poured into a glass vigorously, a large amount of large foam was generated, but the foam immediately disappeared. Next, when moderately slowly poured, fine bubbles having a diameter of 1 mm or less were deposited on the upper layer to form an ideal bubble portion. When poured more slowly, no bubble accumulation was observed on the upper layer, and no bubble accumulation was observed even after standing for a while. In the observed range, the bubble size tends to increase when pouring vigorously, and the bubble size tends to decrease when pouring slowly, and the accumulation of bubbles in the upper layer is observed whether it is too vigorous or too slow. From this, it was considered that there was an appropriate bubble size for the deposition of bubbles on the upper layer. That is, it was considered that there was an appropriate bubble size when the bubbles were released into the liquid from the bubble generation point.

泡の発生点については、壁部、特に孔部が有利であるといわれている。それは、泡の生成に際して、新たに生ずる気液界面の表面エネルギーが液中よりも壁部が、壁部よりも孔部が少なくて済むためである。泡の堆積に適したサイズの気泡を得る為に、孔のサイズを種々調整すれば、良好な発泡性を得られる可能性がある。そこで、発明者らは、サブミクロンからミリオーダーサイズの半球状の孔をラミネート鋼板の表面に形成させ、ビール・発泡酒における発泡性を調査した。   As for the generation point of bubbles, it is said that the wall portion, particularly the hole portion, is advantageous. This is because, when bubbles are generated, the surface energy of the newly generated gas-liquid interface is smaller in the wall than in the liquid and requires fewer holes than in the wall. In order to obtain bubbles having a size suitable for foam accumulation, various foam sizes may be adjusted to obtain good foamability. Therefore, the inventors formed hemispherical holes of sub-micron to millimeter order size on the surface of the laminated steel plate, and investigated the foaming property in beer / happoshu.

しかしながら、結果はどのサイズにおいても十分な泡立ち性を得ることができなかった。更に、フィルム表面に半球状でないサブミクロン以下の微細な凹凸をつけたフィルムでも発泡性を調査したが発泡性の向上を認めることはできなかった。   However, as a result, sufficient foamability could not be obtained at any size. Furthermore, although the foamability of a film having a sub-micron or smaller sub-micron surface that was not hemispherical on the film surface was investigated, no improvement in foamability was observed.

上記の調査は、広範囲の孔サイズについての調査であったにもかかわらず、上層に1mm程度の泡層の形成に適したな孔の大きさや凹凸の大きさは見いだせなかった。発明者らは、この理由は、上層への堆積に適した大きさの泡が発生したが、その大きさの泡の発生数が少なかったため、上層への泡の堆積は不十分であったためと考えた。   Although the above-mentioned investigation was an investigation on a wide range of pore sizes, it was not possible to find a hole size or irregularity size suitable for forming a foam layer of about 1 mm in the upper layer. The inventors reasoned that this was because bubbles of a size suitable for deposition on the upper layer were generated, but because the number of bubbles of that size was small, the deposition of bubbles on the upper layer was insufficient. Thought.

そこで、発明者らは、上層への堆積に適した大きさの泡を多数に発生させる手法について種々検討した。その結果、泡の発生起点において、上層への堆積に適した泡の大きさよりも小さな泡を発生させ、この泡を上層への堆積に適した大きさの泡に成長させた後液中にリリースさせるという新規な着想を得た。微小な泡の発生起点は多数存在させることが可能であるので、この着想によれば、泡の発生起点で微小な泡を多数発生させ、その泡を上層への堆積に適した大きさの泡に成長させた後液中にリリースすることで、上層への泡の堆積に適した大きさの泡を多数発生させることが可能になる。   Therefore, the inventors examined various methods for generating a large number of bubbles having a size suitable for deposition on the upper layer. As a result, bubbles that are smaller than the size of the bubbles suitable for deposition on the upper layer are generated at the starting point of the bubbles, and the bubbles are grown into bubbles of a size suitable for deposition on the upper layer and then released into the liquid. I got a new idea to make it happen. Since it is possible to have a large number of generation points of fine bubbles, according to this idea, a large number of fine bubbles are generated at the generation point of bubbles, and the bubbles are of a size suitable for deposition on the upper layer. It is possible to generate a large number of bubbles having a size suitable for the deposition of the bubbles on the upper layer by releasing them into the liquid after they are grown.

壁面に存在する凹部は泡の発生起点となりうることに着目し、球体をフィルム表面に付着させた場合を検討した。球体を表面が平坦なフィルム表面に点接触させると、球体とフィルム面との間に狭い隙間ができる。この隙間は球体とフィルム面との接触点に近づくほど狭く、遠ざかるに従って徐々に大きくなるから、球体の大きさを適宜選択すれば、球体とフィルム面との間の空隙部分で、微小な泡を多数発生させ、さらにその泡を堆積に適した大きさの泡に成長させた後液中にリリースすることができ、良好な発泡性が期待できる可能性があると考えた。現実的には、球体をフィルム表面に点接触で付着させることは難しいので、球体がフィルム面にある程度の接触面積を有するようにして接着させることが必要である。このような接着状態であっても、球体がフィルム面に対して深く埋没しなければ球体とフィルム面との間に、球体とフィルム面との接触点に近づくほど狭く、遠ざかるに従って徐々に大きくなる隙間が生じるので問題ないと考えた。   Paying attention to the fact that the recesses present on the wall surface can be the starting point of bubbles, the case of attaching a sphere to the film surface was examined. When the sphere is brought into point contact with the film surface having a flat surface, a narrow gap is formed between the sphere and the film surface. This gap becomes narrower as it approaches the contact point between the sphere and the film surface, and gradually increases as it moves further away.If the size of the sphere is appropriately selected, minute bubbles are generated in the space between the sphere and the film surface. A large number of bubbles were generated, and the bubbles were grown into bubbles of a size suitable for deposition, and then released into the liquid. Thus, it was considered that good foamability could be expected. Actually, since it is difficult to attach the sphere to the film surface by point contact, it is necessary to adhere the sphere so that it has a certain contact area on the film surface. Even in such an adhesive state, if the sphere is not deeply embedded in the film surface, the distance between the sphere and the film surface becomes narrower as it approaches the contact point between the sphere and the film surface, and gradually increases with increasing distance. I thought that there was no problem because of the gap.

試みに、ラミネート鋼板表面に1μmφのシリカ粒を付着させたサンプルを作製した。具体的には、シリカ粒をラミネート鋼板表面に散布し、次いでフィルムの融点近傍までラミネート鋼板を加熱し、次いで一対のロール間を通過させてシリカ粒の一部をフィルムに埋没させて、球体とフィルム面との間に、球体とフィルム面との接触点に近づくほど狭く、遠ざかるに従って徐々に大きくなる隙間を生成させた後、水で急冷した。水中においては、十分に濯いで未接着のシリカ粒を落とした。このサンプルを溶接缶に成形して、発泡性の調査を行ったところ、開放直後にクリーミーな泡が液上層を覆い、発明者らが期待した良好な発泡性が得られることがわかった。   As a trial, a sample was prepared in which silica particles of 1 μmφ were adhered to the surface of the laminated steel plate. Specifically, the silica particles are dispersed on the surface of the laminated steel plate, then the laminated steel plate is heated to near the melting point of the film, and then passed between a pair of rolls so that part of the silica particles are buried in the film, A gap was formed between the film surface and the contact point between the sphere and the film surface that became narrower and gradually increased with distance from the film surface, and then rapidly cooled with water. In water, it was rinsed well to remove unadhered silica particles. When this sample was molded into a welded can and examined for foamability, it was found that the creamy foam covered the liquid upper layer immediately after opening, and the good foamability expected by the inventors was obtained.

また、1μmφの酸化亜鉛粒をフィルム中に添加しておき、このフィルムを鋼板にラミネートし、熱処理を施した後に深絞り加工を施すと、加工度の厳しい部分では酸化亜鉛粒が露出した。酸化亜鉛粒が露出した部分では、酸化亜鉛粒とフィルムが点接触に近い状態で付着しており、酸化亜鉛とフィルムの接触部に近づくほど狭く、遠ざかるに従って徐々に大きくなる隙間が形成されていた。この缶を用いて発泡試験を行ったところ良好な発泡性が確認された。   Further, when zinc oxide grains having a diameter of 1 μm were added to the film, this film was laminated on a steel plate, and after heat treatment, deep drawing was performed, the zinc oxide grains were exposed in the severely processed portion. In the exposed part of the zinc oxide particles, the zinc oxide particles and the film are attached in a state close to point contact, and a gap is formed that becomes narrower as it gets closer to the contact part between the zinc oxide and the film, and gradually increases as it goes away. . When a foaming test was conducted using this can, good foamability was confirmed.

引き続き、調査検討を行い、本発明に到った。以下、発明とその限定理由について説明する。まず、ビール・発泡酒用ラミネート金属缶について説明する。   Subsequently, investigation and examination were conducted to arrive at the present invention. The invention and the reasons for limitation will be described below. First, a laminated metal can for beer / happoshu will be described.

本発明のビール・発泡酒用ラミネート金属缶は、缶内面側の金属板上にラミネート樹脂層を有する金属缶であって、ラミネート樹脂表面に、直径0.5μm以上3μm以下の略球状物が、その球体部の直径の1/3以下の深さで下地面に埋没して存在し、前記埋没して存在する略球状物の個数は、ラミネート樹脂表面に、500個/mm以上3000個/mm以下の密度で存在することが必要である。 The laminated metal can for beer and sparkling liquor of the present invention is a metal can having a laminate resin layer on a metal plate on the inner surface side of the can, and on the surface of the laminate resin, a substantially spherical product having a diameter of 0.5 μm or more and 3 μm or less, The number of the substantially spherical objects that are embedded in the base surface at a depth of 1/3 or less of the diameter of the sphere is 500 / mm 2 to 3000 / It must be present at a density of mm 2 or less.

略球状物の直径を0.5μm以上3μm以下と規定したのは、直径が0.5μm未満では、気泡が発生したとしても、適切なサイズになるまでの十分な空間がないことで適切なサイズの泡を供給できないためであり、直径が3μm超になると製造工程において表面から脱離しやすくなる為である。略球状物の個数を500個/mm以上、3000個/mm以下と規定したのは、500個/mm未満では良好な発泡性が発現されず、3000個/mmを超えると内容物を缶体に充填する時に発泡量が多くなりすぎて実用上問題となるからである。 The reason why the diameter of the substantially spherical object is defined as 0.5 μm or more and 3 μm or less is that if the diameter is less than 0.5 μm, even if bubbles are generated, there is not enough space to reach an appropriate size. This is because when the diameter exceeds 3 μm, it is easily detached from the surface in the manufacturing process. The reason why the number of substantially spherical objects is defined as 500 / mm 2 or more and 3000 / mm 2 or less is that the foamability is not expressed when the number is less than 500 / mm 2 and the content is more than 3000 / mm 2. This is because the amount of foaming becomes too large when a product is filled in a can, which causes a practical problem.

また、略球状物が、その球体部の直径の1/3を超えて下地面に埋没すると良好な発泡性が得られなくなる。これは、球体部と下地界面とが形成する空間が狭くなる為、気泡が十分な大きさに育たないためであると推定される。略球状物が、その球体部の直径の1/3以下埋没したものと1/3を超えて埋没したものとして共存する場合、その球体部の直径の1/3以下埋没したものの個数密度が500個/mm以上3000個/mm以下であれば、1/3を超えて埋没したものが共存しても良好な発泡性が得られる。尚、本発明において、略球状物と規定したのは、樹脂表面の突起物と下地面との間に前述の狭い空間が存在し、且つ、泡が適切な大きさに成長する空間があれば、球体でなくても本発明の効果が発現されるためである。従って、略球状物とは、突起物とフィルム面との間に、突起物とフィルム面との接触点に近づくほど狭く、ここで発生した泡が十分に成長する空間が形成されるような形状の突起物が含まれることを意味する。このような形状の突起物としては、例えば、0.1μm程度の球体が凝集して略球状の凝集体を形成する凝集シリカなどが例示できる。また、略球状物の直径とは、突起物を同体積の球体として換算した場合の直径である。更に、下地が平坦でない場合でも突起物との間に狭い空間が存在し、かつ、泡サイズが適切なサイズに育つ十分な空間があれば良い。例えば、ポリエステル中にオレフィン粒を分散させた構造を有するフィルムに加工を施すと、表層に露出しているオレフィン粒とそれを取り囲むようなポリエステルの母層との間に隙間ができ、良好な発泡性が発現する。ただし、この場合のオレフィン粒の径や密度は本発明の規定の範囲に定めるものとする。 In addition, if the substantially spherical object is embedded in the base surface exceeding 1/3 of the diameter of the sphere, good foamability cannot be obtained. This is presumed to be because bubbles do not grow to a sufficient size because the space formed by the sphere and the base interface becomes narrow. When a substantially spherical object coexists as a material that is buried 1/3 or less of the diameter of the sphere and a material that is buried more than 1/3, the number density of the material that is buried 1/3 or less of the diameter of the sphere is 500. if pieces / mm 2 or more 3000 / mm 2 or less, good foamability can be obtained even coexist those buried beyond the 1/3. In the present invention, the reason for defining the substantially spherical object is that the above-mentioned narrow space exists between the protrusion on the resin surface and the base surface, and there is a space in which bubbles grow to an appropriate size. This is because the effect of the present invention is exhibited even if it is not a sphere. Therefore, a substantially spherical object is a shape that forms a space between the protrusion and the film surface that is narrower as it approaches the contact point between the protrusion and the film surface, and in which bubbles generated here are sufficiently grown. This means that the protrusion is included. Examples of the projection having such a shape include agglomerated silica in which spheres of about 0.1 μm aggregate to form a substantially spherical aggregate. The diameter of the substantially spherical object is a diameter when the protrusion is converted as a sphere having the same volume. Furthermore, even when the groundwork is not flat, it is sufficient if there is a narrow space between the protrusions and sufficient space for the bubble size to grow to an appropriate size. For example, when a film having a structure in which olefin grains are dispersed in polyester is processed, a gap is formed between the olefin grains exposed on the surface layer and the polyester base layer surrounding the olefin grains, and good foaming is achieved. Sex is expressed. However, the diameter and density of the olefin particles in this case are determined within the prescribed range of the present invention.

略球状物は、無機系、有機系のいずれでもよい。無機系としては亜鉛末、シリカなどを例示できる。有機系としてはポリプロピレン、ポリエチレンなどを例示できる。これらの内で亜鉛末、シリカなどを好適に使用できる。   The substantially spherical material may be either inorganic or organic. Examples of inorganic materials include zinc powder and silica. Examples of the organic system include polypropylene and polyethylene. Of these, zinc powder, silica and the like can be suitably used.

樹脂層は、表面の修飾性の観点、粒状物を付着させやすいなどの点から、少なくとも最表層が熱可塑性ポリエステルを主成分とする樹脂からなるものが好ましい。   The resin layer is preferably one in which at least the outermost layer is made of a resin having a thermoplastic polyester as a main component from the viewpoint of surface modification and easy adhesion of particulate matter.

また、コスト、食品衛生上の観点から、以下がより好ましい。なお、エチレンテレフタレートまたはブチレンテレフタレートからなる繰り返し単位を85%以上と規定したのは、これ未満ではフィルム製膜が困難となり製造コストが高くなるためである。   Moreover, the following are more preferable from a viewpoint on cost and food hygiene. The reason why the repeating unit composed of ethylene terephthalate or butylene terephthalate is defined as 85% or more is that film formation becomes difficult and the production cost is increased below this.

(あ)前記熱可塑性ポリエステルは、ジカルボン酸成分とジオール成分の縮重合で得られ、ジカルボン酸成分がテレフタル酸、またはテレフタル酸及びイソフタル酸からなり、ジオール成分がエチレングリコール及び/またはブチレングリコールからなり、かつ、エチレンテレフタレートまたはブチレンテレフタレートからなる繰り返し単位がモル%比率で85%以上である下記(1)〜(5)のうちから選ばれるいずれかの樹脂が好ましい。
(1)ポリエチレンテレフタレート−ポリエチレンイソフタレート共重合体
(2)ポリエチレンテレフタレート
(3)ポリブチレンテレフタレート−ポリエチレンテレフタレート共重合体
(4)ポリエチレンテレフタレート−ポリエチレンイソフタレート−ポリブチレンテレフタレート共重合体
(5)ポリブチレンテレフタレート
(い)ラミネート樹脂層は、主相が前記(あ)の樹脂を基本骨格とする熱可塑性ポリエステルを主成分とする樹脂であり、副相がポリオレフィンからなる混合樹脂からなることが好ましい。
(A) The thermoplastic polyester is obtained by condensation polymerization of a dicarboxylic acid component and a diol component, the dicarboxylic acid component is made of terephthalic acid, or terephthalic acid and isophthalic acid, and the diol component is made of ethylene glycol and / or butylene glycol. In addition, any of the resins selected from the following (1) to (5) in which the repeating unit composed of ethylene terephthalate or butylene terephthalate is 85% or more by mole percentage is preferable.
(1) Polyethylene terephthalate-polyethylene isophthalate copolymer (2) Polyethylene terephthalate (3) Polybutylene terephthalate-polyethylene terephthalate copolymer (4) Polyethylene terephthalate-polyethylene isophthalate-polybutylene terephthalate copolymer (5) Polybutylene The terephthalate (ii) laminate resin layer is preferably a resin whose main phase is a thermoplastic polyester whose main component is the resin (a) as a basic skeleton, and whose secondary phase is a mixed resin made of polyolefin.

(う)前記ポリオレフィンが、ポリエチレン、ポリプロピレン、アイオノマーのうちの1種以上からなることが好ましい。   (Iii) It is preferable that the polyolefin comprises at least one of polyethylene, polypropylene, and ionomer.

樹脂層は、前述の樹脂からなる単層構造であってもよく、また複層構造で最表層が前述の樹脂で構成されていてもよい。複層構造の場合、最表層以外の樹脂は特に限定されない。また缶外面側の樹脂は限定されない。公知の樹脂層でよい。樹脂層の厚さは用途に応じて選択すれば良いが、一般的には15μm以上30μm以下のものが用いられる。金属板は鋼板、アルミニウム板を用いるのが良い。なお、樹脂中に配向結晶成分が増加すると、溝部の発生が抑制される傾向にあるので、ラミネート金属板の樹脂層は押し出し法により形成または無延伸フィルムを熱圧着して形成、あるいは延伸フィルムを用いてラミネートする際に十分に高い熱量を与えることで、十分に配向結晶を融解させることが好ましい。   The resin layer may have a single layer structure made of the aforementioned resin, or may have a multilayer structure and the outermost layer may be made of the aforementioned resin. In the case of a multilayer structure, the resin other than the outermost layer is not particularly limited. The resin on the outer surface side of the can is not limited. A known resin layer may be used. The thickness of the resin layer may be selected according to the application, but generally a thickness of 15 μm or more and 30 μm or less is used. The metal plate is preferably a steel plate or an aluminum plate. As the orientation crystal component increases in the resin, the generation of the groove tends to be suppressed. Therefore, the resin layer of the laminated metal plate is formed by an extrusion method or formed by thermocompression bonding of an unstretched film, or a stretched film. It is preferable to sufficiently melt the oriented crystals by giving a sufficiently high amount of heat when using and laminating.

次に、本発明の金属缶の製造方法について説明する。   Next, the manufacturing method of the metal can of this invention is demonstrated.

第1の方法は、ラミネート金属板上に、略球状物を散布し、しかる後に熱処理を施して略球状物の一部を樹脂層に埋没、接着させる方法である。本製造方法では、ラミネート金属板に、0.5μm以上3.0μm以下の略球状物を散布し、しかる後に熱処理を施して略球状物を下地樹脂に埋没、接着させ、樹脂面に直径0.5μm以上3μm以下の略球状物が、その球体部の直径の1/3以下の深さで下地面に埋没して存在し、前記埋没して存在する略球状物の個数は、ラミネート樹脂表面に、500個/mm以上3000個/mm以下の密度で存在させる。 The first method is a method in which a substantially spherical object is dispersed on a laminated metal plate, and then a heat treatment is performed so that a part of the approximately spherical object is buried and adhered in the resin layer. In this production method, a substantially spherical object of 0.5 μm or more and 3.0 μm or less is sprayed on a laminated metal plate, and then heat treatment is performed to embed and adhere the approximately spherical object in a base resin, and the resin surface has a diameter of 0. A substantially spherical object having a diameter of 5 μm or more and 3 μm or less is embedded in the base surface at a depth of 1/3 or less of the diameter of the sphere part. , 500 / mm 2 to 3000 / mm 2 in density.

ラミネート金属板は通常の方法で製造されたものでよい。ラミネート金属板上に0.5μm以上3.0μm以下の略球状物を散布した後、ラミネート鋼板を熱処理し、次いで一対のロール間を通過させて、略球状物をその直径の1/3以下の深さまで下地の樹脂面に埋没させ、略球状物と樹脂フィルムを接着させる。良接着と母層の融着防止の点から、熱処理条件は、樹脂の融点−30℃以上融点−10℃の範囲が好ましい。母層の融着防止の点から、一対のロールは冷却ロールが好ましく。またロール間を通過させた後直ちに水冷することが好ましく、また表面を流水等で洗浄して樹脂フィルムに接着していない略球状物を除去することが好ましい。熱処理工程の途中で略球状物を散布してもよい。   The laminated metal plate may be manufactured by a usual method. After the approximately spherical object of 0.5 μm or more and 3.0 μm or less is sprayed on the laminated metal plate, the laminated steel sheet is heat-treated, and then passed between a pair of rolls so that the approximately spherical object is 1/3 or less of its diameter. It is buried in the base resin surface to the depth, and the substantially spherical object and the resin film are bonded. From the viewpoint of good adhesion and prevention of fusion of the mother layer, the heat treatment conditions are preferably in the range of the melting point of the resin to −30 ° C. or higher and the melting point to −10 ° C. From the viewpoint of preventing fusion of the mother layer, the pair of rolls is preferably a cooling roll. Moreover, it is preferable to cool with water immediately after passing between the rolls, and it is preferable to remove the substantially spherical substance not adhered to the resin film by washing the surface with running water or the like. You may spray a substantially spherical thing in the middle of a heat treatment process.

熱処理条件、一対のロールのロール間隙を調整することで、略球状物の埋没深さを調整できる。また略球状物の散布量を調整することで、ラミネート金属板の略球状物の個数(密度)を調整できる。   By adjusting the heat treatment conditions and the roll gap between the pair of rolls, the burying depth of the substantially spherical object can be adjusted. Moreover, the number (density) of the substantially spherical thing of a laminated metal plate can be adjusted by adjusting the application | coating amount of a substantially spherical thing.

ラミネート金属板上への略球状物の散布工程は、金属板表面に樹脂層を形成するラミネート工程に引き続き行ってもよく、またラミネート工程を行う設備とは別の設備で行ってもよい。   The step of spraying the substantially spherical object on the laminated metal plate may be performed subsequent to the laminating step of forming the resin layer on the surface of the metal plate, or may be performed by equipment other than the equipment for performing the laminating process.

第2の方法は、前記の樹脂層表面に球状物の一部が埋まったラミネート金属板を用いないで、球状物を有しないラミネート金属板を所要形状の缶体に成形した製缶工程の後で、缶体を加熱し、缶内面側に、0.5μm以上3.0μm以下の略球状物を吹き付けて散布して樹脂フィルムに略球状物を埋没・接着させてもよい。この場合、缶体の加熱温度は樹脂の融点以上融点+10℃以下が好ましい。   The second method does not use a laminated metal plate in which a part of a sphere is embedded on the surface of the resin layer, but after a can manufacturing process in which a laminated metal plate having no sphere is formed into a can body having a required shape. Then, the can body may be heated, and a substantially spherical object of 0.5 μm or more and 3.0 μm or less may be sprayed and dispersed on the inner surface side of the can to embed and adhere the substantially spherical object to the resin film. In this case, the heating temperature of the can is preferably from the melting point of the resin to the melting point + 10 ° C. or less.

第3の方法は、予め0.5μm以上3.0μm以上の略球状物を混練した樹脂組成物を金属板にラミネートしてラミネート金属板を作製する。このラミネート金属板を用いて缶体を製造する際に、例えば、熱処理を施した後、絞り加工を行う。熱処理を行うことで、樹脂の柔軟性が低下し、絞り加工工程で、略球状物の周囲の樹脂が略球状物の形に合わせて変形し難くなることにより、略球状物の球体部の直径の2/3以上をその周囲の樹脂面より突起させることができ、若しくは、狭い空間と気泡が育つ十分な隙間を確保できる。   In the third method, a laminated metal plate is prepared by laminating a resin composition obtained by previously kneading a substantially spherical material of 0.5 μm or more and 3.0 μm or more onto a metal plate. When manufacturing a can body using this laminated metal plate, for example, after heat treatment, drawing is performed. The heat treatment reduces the flexibility of the resin, and in the drawing process, the resin around the substantially spherical object becomes difficult to deform in accordance with the shape of the approximately spherical object. 2/3 or more can be protruded from the surrounding resin surface, or a sufficient space in which a narrow space and bubbles grow can be secured.

あるいは、2軸延伸法によって作製されたフィルムの面配向係数を調整することでも同様の効果が得られる。この場合、面配向係数が高ければ、樹脂の柔軟な変形性が損なわれ、球状物が露出しやすい傾向にあるが、高すぎると下地金属板にまで及ぶフィルムの破断にいたる為、耐食性上好ましくない。この為、面配向係数は適宜調製する必要がある。更には、缶体の絞り比を調整する手段でも同様の効果が望める。すなわち、絞り比が高いほど球状体が露出しやすい傾向にあるが、高すぎると下地金属板にまで及ぶフィルムの破断にいたる可能性がある。   Or the same effect is acquired also by adjusting the plane orientation coefficient of the film produced by the biaxial stretching method. In this case, if the plane orientation coefficient is high, the flexible deformability of the resin is impaired, and the spherical object tends to be exposed, but if it is too high, the film reaches the base metal plate, which is preferable in terms of corrosion resistance. Absent. For this reason, it is necessary to adjust the plane orientation coefficient appropriately. Furthermore, the same effect can be expected by means for adjusting the aperture ratio of the can body. That is, the higher the aperture ratio, the more easily the spherical body is exposed.

略球状物の添加量は表面に露出する球状物の密度が本発明の規定の範囲に入るように適宜調製することが好ましい。熱処理はフィルムの結晶化が進む温度で行う必要がある。絞り加工は、少なくとも絞り比1.5以上の深絞りを行うことが好ましい。   The addition amount of the substantially spherical material is preferably appropriately adjusted so that the density of the spherical material exposed on the surface falls within the range specified in the present invention. The heat treatment needs to be performed at a temperature at which crystallization of the film proceeds. The drawing process is preferably deep drawing with a drawing ratio of 1.5 or more.

「ラミネート鋼板の作製」
(供試用ラミネート鋼板1〜18)
厚さ0.23mmのT4CA、TFS(金属クロム層:100〜120mg/m、クロム水和酸化物層:14〜18mg/m(金属クロム換算)の金属板表面に、押し出し法によって、エチレンテレフタレート−ブチレンテレフタレート共重合体(ブチレンテレフタレート比率60wt%、融点:247℃)の樹脂層を形成した。このラミネート金属板に0.1〜5.0μmの粒状シリカを散布した後樹脂の融点−30℃以上融点−5℃以下の温度になるように加熱し、直ちに冷却ロールで押圧冷却することでラミネート金属板表面上に、粒状シリカの一部部分を樹脂中に埋没せしめた供試用ラミネート鋼板1〜18を作製した。
"Production of laminated steel sheet"
(Test laminated steel sheets 1-18)
T4CA, TFS (metal chromium layer: 100 to 120 mg / m 2 , chromium hydrated oxide layer: 14 to 18 mg / m 2 (converted to metal chromium) having a thickness of 0.23 mm was extruded on the surface of a metal plate by an extrusion method. A resin layer of terephthalate-butylene terephthalate copolymer (butylene terephthalate ratio 60 wt%, melting point: 247 ° C.) was formed, and 0.1 to 5.0 μm of granular silica was sprayed on the laminated metal plate, and the resin melting point-30. A laminated steel sheet for test 1 in which a part of the granular silica was embedded in a resin on the surface of the laminated metal plate by heating to a temperature of from ℃ to melting point to -5 ℃ and immediately cooling with a cooling roll. -18 were produced.

前記で作製したラミネート鋼板の面配向係数を測定したところ、面配向係数は、0.01であった。なお、面配向係数を以下の手順で測定した。   When the plane orientation coefficient of the laminated steel plate produced above was measured, the plane orientation coefficient was 0.01. The plane orientation coefficient was measured by the following procedure.

アッベ屈折計を用い、光源:ナトリウム/D線、中間液:ヨウ化メチレン、温度:25℃の条件で、フィルム面の縦方向の屈折率Nx、フィルム面の横方向の屈折率Ny、フィルムの厚み方向の屈折率Nzを各々測定し、下式により面配向係数Nsを算出した。
面配向係数(Ns)=(Nx+Ny)/2−Nz
この供試用ラミネート鋼板1〜18を樹脂に埋め込み断面研磨した後に、電子顕微鏡にて観察し、粒状体が下地平面にどの程度埋没しているかを調査した。この時、10個の球体について測定を行いその算術平均を埋没深さとした。また、この供試用ラミネート鋼板1〜18の平面観察を電子顕微鏡にて行い、×2000の倍率で観察し、粒状体の個数密度を測定した。任意の5視野について測定を行い、その算術平均を個数密度とした。
熱処理温度及び粒状体の測定結果を表1に記載する。
Using an Abbe refractometer, light source: sodium / D line, intermediate solution: methylene iodide, temperature: 25 ° C., longitudinal refractive index Nx of the film surface, lateral refractive index Ny of the film surface, The refractive index Nz in the thickness direction was measured, and the plane orientation coefficient Ns was calculated by the following formula.
Planar orientation coefficient (Ns) = (Nx + Ny) / 2−Nz
The laminated steel plates 1 to 18 for test were embedded in a resin and subjected to cross-sectional polishing, and then observed with an electron microscope to investigate how much the granular material was buried in the ground plane. At this time, 10 spheres were measured, and the arithmetic average was taken as the burial depth. In addition, planar observation of the test laminated steel sheets 1 to 18 was performed with an electron microscope, and observed at a magnification of × 2000, and the number density of the granular materials was measured. Measurement was performed for any five visual fields, and the arithmetic average was taken as the number density.
The heat treatment temperature and the measurement results of the granular materials are shown in Table 1.

Figure 0004710433
Figure 0004710433

(供試用ラミネート鋼板19)
厚さ0.23mmのT4CA、TFS(金属クロム層:100〜120mg/m、クロム水和酸化物層:14〜18mg/m(金属クロム換算)の金属板表面に、フィルムラミネート法によって、ポリエチレンテレフタレート(融点257℃)の樹脂層を形成した。
(Test laminated steel sheet 19)
On the surface of a metal plate having a thickness of 0.23 mm, T4CA, TFS (metal chromium layer: 100 to 120 mg / m 2 , chromium hydrated oxide layer: 14 to 18 mg / m 2 (converted to metal chromium), by a film lamination method, A resin layer of polyethylene terephthalate (melting point 257 ° C.) was formed.

前記で作製したラミネート鋼板の面配向係数を前記と同様の手順で測定したところ、面配向係数は「0」であった。   When the plane orientation coefficient of the laminated steel sheet produced above was measured in the same procedure as described above, the plane orientation coefficient was “0”.

前記で作製したラミネート鋼板の表面を#400の研磨紙で研磨し、表面に略V字型の溝を多数形成させた供試用ラミネート鋼板19を作製した。供試用ラミネート鋼板19の溝部の寸法形状および溝部の全長(溝部密度)を測定した。測定にはエリオニクス社の電子線三次元粗さ解析装置ERA−8800FEを用いた。測定は加速電圧5kV、WD15mmにておこない、測定時の面内方向のサンプリング間隔は4nmとした。尚、本装置を用いた高さ方向の校正には、米国の国立研究機関であるNISTにトレーサブルなVLSIスタンダード社の触針式、光学式表面粗さ測定機を対象としたSHS薄膜段差スタンダード(段差18nm、88nm、450nmの3種)を用いた。この測定法に基づき溝部の断面形状を求め、各溝巾を測定した。
溝の測定結果を表2に記載する。
The surface of the laminated steel plate produced above was polished with # 400 abrasive paper to produce a test laminated steel plate 19 in which a number of substantially V-shaped grooves were formed on the surface. The dimension and shape of the groove of the laminated steel sheet 19 for test and the total length (groove density) of the groove were measured. For the measurement, an electron beam three-dimensional roughness analyzer ERA-8800FE manufactured by Elionix was used. Measurement was performed at an acceleration voltage of 5 kV and a WD of 15 mm, and the sampling interval in the in-plane direction during measurement was 4 nm. For the calibration in the height direction using this device, the SHS thin film level standard for stylus type and optical surface roughness measuring instruments of VLSI Standard, traceable to NIST, a national research institution in the United States ( Steps of 18 nm, 88 nm, and 450 nm were used. Based on this measurement method, the cross-sectional shape of the groove was determined, and each groove width was measured.
The measurement results of the grooves are shown in Table 2.

Figure 0004710433
Figure 0004710433

「製缶加工」
前記で作製した供試用ラミネート鋼板1〜19の各々に曲げ加工とシーム溶接を施し、底蓋を巻締め、350ccの溶接缶を作製した。
"Can manufacturing"
Each of the test laminated steel plates 1 to 19 produced above was subjected to bending and seam welding, and the bottom lid was tightened to produce a 350 cc welding can.

「泡立ち性試験」
前記で得た金属缶について、次のようにして泡立ち性を評価した。
歪取り熱処理を施した缶体の内面を洗浄し、ビール(キリンラガー)を充填後、炭酸ガスを内圧1kg/cmになるように充填し、実使用環境を考慮した条件して、5℃で120時間冷却した後、20℃の室内で開缶し、15秒後のビール表面の泡立ち性を以下の基準で評価した。
試験結果 :評価
泡が液面を完全に覆わない :×
泡が液面を完全に覆う :○
調査結果を表3に記載した。
"Bubbling test"
About the metal can obtained above, foaming property was evaluated as follows.
The inner surface of the can body subjected to the heat treatment for strain relief is washed and filled with beer (Kirin lager), and then filled with carbon dioxide gas so that the internal pressure becomes 1 kg / cm 2. After cooling for 120 hours, the container was opened in a room at 20 ° C., and the foamability of the beer surface after 15 seconds was evaluated according to the following criteria.
Test result: Evaluation foam does not completely cover the liquid level: ×
Foam completely covers the liquid level: ○
The survey results are shown in Table 3.

Figure 0004710433
Figure 0004710433

請求項1に係る発明の構成を満足する供試缶A1〜A12は、全て良好な発泡性を得ることできた。これに対して、請求項1に係る発明の構成を満足しない供試缶A13〜A19は発泡性が劣った。   All the test cans A1 to A12 satisfying the configuration of the invention according to claim 1 were able to obtain good foamability. On the other hand, the test cans A13 to A19 that do not satisfy the configuration of the invention according to claim 1 have poor foamability.

「ラミネート鋼板の作製」
(供試用ラミネート鋼板21〜25)
厚さ0.23mmのT4CA、TFS(金属クロム層:100〜120mg/m、クロム水和酸化物層:14〜18mg/m(金属クロム換算)の金属板表面に、フィルムラミネート法によって、フィルムに酸化亜鉛を添加したポリエチレンテレフタレートフィルム(融点254℃)をラミネートし、重量比率で10wt%の酸化亜鉛含有樹脂層を有する供試用ラミネート鋼板21〜25を作製した。なお、金属板を樹脂の融点−30℃以上融点+15℃以下の温度になるように加熱し、その表面に樹脂フィルムを冷却ロールで押圧冷却しながらラミネートした。
"Production of laminated steel sheet"
(Laminated steel plates for test 21-25)
On the surface of a metal plate having a thickness of 0.23 mm, T4CA, TFS (metal chromium layer: 100 to 120 mg / m 2 , chromium hydrated oxide layer: 14 to 18 mg / m 2 (in terms of metal chromium), The film was laminated with a polyethylene terephthalate film (melting point 254 ° C.) to which zinc oxide was added, to prepare test laminated steel plates 21 to 25 having a zinc oxide-containing resin layer with a weight ratio of 10 wt%. It heated so that it might become melting | fusing point -30 degreeC or more and melting | fusing point +15 degreeC or less, and it laminated | stacked, pressing and cooling the resin film on the surface with a cooling roll.

前記で作製したラミネート鋼板の面配向係数を前記と同様の手順で測定したところ、面配向係数はいずれも0.01であった。   When the plane orientation coefficient of the laminated steel plate produced above was measured in the same procedure as described above, the plane orientation coefficient was 0.01.

樹脂層に含有される酸化亜鉛の粒径を表4に記載する。   Table 4 shows the particle size of zinc oxide contained in the resin layer.

Figure 0004710433
Figure 0004710433

「製缶加工」
前記で作製した供試用ラミネート鋼板21〜25に180℃×10分の熱処理を施した後、絞り加工を施し、缶体径67mmの絞り缶を作製した。目標とする絞り比の缶を得る為に、1〜3回の絞り加工を連続して施した。
ブランク径:112〜186mm
最終絞り比:1.67〜2.74
供試用ラミネート鋼板21〜25を用いた缶体から採取したラミネート鋼板を樹脂に埋め込み断面研磨した後に、電子顕微鏡にて観察し、粒状体が下地平面にどの程度埋没しているかを調査した。この時、10個の球体について測定を行いその算術平均を埋没深さとした。また、作製した缶体から採取したラミネート鋼板の平面観察を電子顕微鏡にて行い、×2000の倍率で観察し、粒状体の個数密度を測定した。任意の5視野について測定を行い、その算術平均を個数密度とした。作製した缶体の絞り比及び測定結果を表5に記載した。
"Can manufacturing"
The test laminated steel plates 21 to 25 prepared above were subjected to heat treatment at 180 ° C. for 10 minutes and then subjected to drawing to produce a drawn can having a can diameter of 67 mm. In order to obtain a can with a target drawing ratio, one to three drawing processes were continuously performed.
Blank diameter: 112-186mm
Final aperture ratio: 1.67-2.74
Laminated steel sheets collected from cans using the test laminated steel sheets 21 to 25 were embedded in resin and subjected to cross-sectional polishing, and then observed with an electron microscope to investigate how much the granular material was buried in the ground plane. At this time, 10 spheres were measured, and the arithmetic average was taken as the burial depth. Moreover, the plane observation of the laminated steel plate extract | collected from the produced can was performed with the electron microscope, it observed with the magnification of * 2000, and the number density of the granular material was measured. Measurement was performed for any five visual fields, and the arithmetic average was taken as the number density. Table 5 shows the drawing ratios and measurement results of the manufactured cans.

「泡立ち性試験」
前記で得た金属缶について、次のようにして泡立ち性を評価した。
歪取り熱処理を施した缶体の内面を洗浄し、ビール(キリンラガー)を充填後、炭酸ガスを内圧1kg/cmになるように充填し、実使用環境を考慮した条件して、5℃で120時間冷却した後、20℃の室内で開缶し、15秒後のビール表面の泡立ち性を以下の基準で評価した。
試験結果 :評価
泡が液面を完全に覆わない :×
泡が液面を完全に覆う :○
製缶加工条件と調査結果を表5に記載した。
"Bubbling test"
About the metal can obtained above, foaming property was evaluated as follows.
The inner surface of the can body subjected to the heat treatment for strain relief is washed and filled with beer (Kirin lager), and then filled with carbon dioxide gas so that the internal pressure becomes 1 kg / cm 2. After cooling for 120 hours, the container was opened in a room at 20 ° C., and the foamability of the beer surface after 15 seconds was evaluated according to the following criteria.
Test result: Evaluation foam does not completely cover the liquid level: ×
Foam completely covers the liquid level: ○
Table 5 shows canning process conditions and survey results.

Figure 0004710433
Figure 0004710433

請求項1に係る発明の構成を満足する供試缶A21〜A26は、全て良好な発泡性を得ることできた。これに対して、請求項1に係る発明の構成を満足しない供試缶A27〜A29は発泡性が劣った。   All of the test cans A21 to A26 satisfying the configuration of the invention according to claim 1 were able to obtain good foamability. On the other hand, the test cans A27 to A29 not satisfying the configuration of the invention according to claim 1 were inferior in foamability.

本発明の金属缶は、ビール・発泡酒を充填したときに、良好な泡立ち性を発現できるビール・発泡酒用金属缶として利用することができる。本発明の金属缶の製造方法は、前記金属缶を製造する方法として利用することができる。本発明のラミネート金属板の製造方法は前記金属板を製造する方法として利用することができる。
The metal can of the present invention can be used as a metal can for beer / happoshu that can exhibit good foaming properties when filled with beer / happoshu. The manufacturing method of the metal can of this invention can be utilized as a method of manufacturing the said metal can. The manufacturing method of the laminated metal plate of this invention can be utilized as a method of manufacturing the said metal plate.

Claims (9)

缶内面側の金属板上にラミネート樹脂層を有する金属缶であって、ラミネート樹脂表面に、直径0.5μm以上3μm以下の略球状物が、その球体部の直径の1/3以下が下地樹脂層に埋没して存在し、ラミネート樹脂層表面における前記埋没して存在する略球状物の個数密度は、500個/mm以上3000個/mm以下であることを特徴とするラミネート金属缶。 A metal can having a laminate resin layer on a metal plate on the inner surface of the can, the surface of the laminate resin having a substantially spherical product having a diameter of 0.5 μm or more and 3 μm or less, and 1/3 or less of the diameter of the sphere is a base resin A laminated metal can characterized by being embedded in a layer and having a number density of substantially spherical objects embedded in the surface of the laminate resin layer of 500 / mm 2 to 3000 / mm 2 . 前記ラミネート樹脂層は、少なくとも最表層が熱可塑性ポリエステルを主成分とする樹脂からなることを特徴とする請求項1に記載のラミネート金属缶。   2. The laminated metal can according to claim 1, wherein at least the outermost layer of the laminate resin layer is made of a resin mainly composed of a thermoplastic polyester. 前記熱可塑性ポリエステル樹脂が、ジカルボン酸成分とジオール成分の縮重合で得られ、ジカルボン酸成分がテレフタル酸、またはテレフタル酸及びイソフタル酸からなり、ジオール成分がエチレングリコール及び/またはブチレングリコールからなり、かつ、エチレンテレフタレートまたはブチレンテレフタレートからなる繰り返し単位がモル%比率で85%以上である下記(1)〜(5)のうちから選ばれるいずれかの樹脂であることを特徴とする請求項2に記載のラミネート金属缶。
(1)ポリエチレンテレフタレート−ポリエチレンイソフタレート共重合体
(2)ポリエチレンテレフタレート
(3)ポリブチレンテレフタレート−ポリエチレンテレフタレート共重合体
(4)ポリエチレンテレフタレート−ポリエチレンイソフタレート−ポリブチレンテレフタレート共重合体
(5)ポリブチレンテレフタレート
The thermoplastic polyester resin is obtained by condensation polymerization of a dicarboxylic acid component and a diol component, the dicarboxylic acid component is composed of terephthalic acid, or terephthalic acid and isophthalic acid, the diol component is composed of ethylene glycol and / or butylene glycol, and The repeating unit consisting of ethylene terephthalate or butylene terephthalate is any resin selected from the following (1) to (5) having a molar ratio of 85% or more. Laminated metal can.
(1) Polyethylene terephthalate-polyethylene isophthalate copolymer (2) Polyethylene terephthalate (3) Polybutylene terephthalate-polyethylene terephthalate copolymer (4) Polyethylene terephthalate-polyethylene isophthalate-polybutylene terephthalate copolymer (5) Polybutylene Terephthalate
請求項2のラミネート樹脂層は、少なくとも最表層が、主相が請求項3に記載の樹脂を基本骨格とする熱可塑性ポリエステルを主成分とする樹脂であり、副相がポリオレフィンからなる混合樹脂からなることを特徴とする請求項2に記載のラミネート金属缶。   The laminate resin layer according to claim 2 is a resin whose main phase is a resin whose main phase is a thermoplastic polyester whose main skeleton is the resin according to claim 3 and whose subphase is a mixed resin made of polyolefin. The laminated metal can according to claim 2, wherein 前記ポリオレフィンが、ポリエチレン、ポリプロピレン、アイオノマーのうちの1種以上からなることを特徴とする請求項4に記載のラミネート金属缶。   The laminated metal can according to claim 4, wherein the polyolefin is one or more of polyethylene, polypropylene, and ionomer. 前記ラミネート樹脂層は押し出し法により形成されてなるものまたは無延伸フィルムを熱圧着して形成されてなるものであることを特徴とする請求項1〜5のうちのいずれかの項に記載のラミネート金属缶。   The laminate according to any one of claims 1 to 5, wherein the laminate resin layer is formed by an extrusion method or is formed by thermocompression bonding of an unstretched film. Metal cans. 金属板上に樹脂フィルム層を有するラミネート金属板上に直径が0.5μm以上3.0μm以下の略球状物を散布した後、熱処理を施して、該直径が0.5μm以上3.0μm以下の略球状物をその球体部の直径の1/3以下を下地樹脂層に埋没して存在する個数密度がラミネート樹脂層表面において500個/mm 以上3000個/mm 以下となるように下地樹脂層に埋没させて該下地樹脂層に接着させることを特徴とする請求項1に記載のラミネート金属缶用金属板の製造方法。 After a substantially spherical material having a diameter of 0.5 μm or more and 3.0 μm or less is sprayed on a laminated metal plate having a resin film layer on the metal plate, heat treatment is performed, and the diameter is 0.5 μm or more and 3.0 μm or less. the substantially spherical objects, so the number density present buried 1/3 or less of the diameter of the spherical portion to the base resin layer is 500 / mm 2 or more 3000 / mm 2 or less in the laminated resin layer surface preparation The method for producing a metal plate for a laminated metal can according to claim 1, wherein the metal plate is embedded in a resin layer and adhered to the underlying resin layer. 金属缶体の内面側表面に直径が0.5μm以上3.0μm以下の略球状物を散布した後、熱処理を施して、該直径が0.5μm以上3.0μm以下の略球状物をその球体部の直径の1/3以下を下地樹脂層に埋没して存在する個数密度がラミネート樹脂層表面において500個/mm 以上3000個/mm 以下となるように下地樹脂層に埋没させて下地樹脂層に接着させることを特徴とする請求項1に記載のラミネート金属缶の製造方法。 After a substantially spherical object having a diameter of 0.5 μm or more and 3.0 μm or less is sprayed on the inner surface of the metal can body, heat treatment is performed to obtain a substantially spherical object having a diameter of 0.5 μm or more and 3.0 μm or less. 1/3 or less of the diameter of the sphere is embedded in the base resin layer so that the number density existing in the base resin layer is 500 / mm 2 or more and 3000 / mm 2 or less on the surface of the laminate resin layer. The method for producing a laminated metal can according to claim 1, wherein the laminated metal can is adhered to a base resin layer. 直径が0.5μm以上3.0μm以上の略球状物を樹脂層に含有させたラミネート金属板を用い、缶成形工程において略球状物の周囲の樹脂の変形により、該直径が0.5μm以上3.0μm以下の略球状物の球体部の直径の2/3以上をその周囲の樹脂面より突起させ、その球体部の直径の1/3以下を下地樹脂層に埋没して存在する個数密度がラミネート樹脂層表面において500個/mm 以上3000個/mm 以下となるようにすることを特徴とする請求項1に記載のラミネート金属缶の製造方法。 With diameter laminated metal sheet which contains a 3.0μm or more substantially spherical object than 0.5μm in the resin layer, the deformation of the resin around the substantially spherical product in can forming step, the diameter of 0.5μm or more 3 The number density of the sphere portion of a substantially spherical object having a diameter of 0.0 μm or less protrudes from the resin surface around the sphere portion and 1/3 or less of the diameter of the sphere portion is buried in the base resin layer. The method for producing a laminated metal can according to claim 1, wherein the surface of the laminated resin layer is 500 pieces / mm 2 or more and 3000 pieces / mm 2 or less .
JP2005189135A 2005-06-29 2005-06-29 LAMINATED METAL CAN, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING LAMINATED METAL PLATE Expired - Fee Related JP4710433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189135A JP4710433B2 (en) 2005-06-29 2005-06-29 LAMINATED METAL CAN, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING LAMINATED METAL PLATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189135A JP4710433B2 (en) 2005-06-29 2005-06-29 LAMINATED METAL CAN, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING LAMINATED METAL PLATE

Publications (2)

Publication Number Publication Date
JP2007008495A JP2007008495A (en) 2007-01-18
JP4710433B2 true JP4710433B2 (en) 2011-06-29

Family

ID=37747500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189135A Expired - Fee Related JP4710433B2 (en) 2005-06-29 2005-06-29 LAMINATED METAL CAN, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING LAMINATED METAL PLATE

Country Status (1)

Country Link
JP (1) JP4710433B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021414652B2 (en) * 2020-12-28 2023-11-16 Asahi Breweries, Ltd. Can for effervescent beverage and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123836U (en) * 1990-03-28 1991-12-16
JPH08252159A (en) * 1995-03-15 1996-10-01 Mino Nendo Kk Beer mug and its manufacture
JPH10234549A (en) * 1997-02-28 1998-09-08 Satoru Ikeda Glass for sparkling beverage
JPH11254625A (en) * 1998-03-13 1999-09-21 Toray Ind Inc Polyester film for laminating molding of metal plate
JP2002045288A (en) * 2000-05-24 2002-02-12 Shiga Pref Gov Container for foaming drink
JP2005041217A (en) * 2003-07-08 2005-02-17 Jfe Steel Kk Resin film clad metal sheet and resin film clad metal can

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123836U (en) * 1990-03-28 1991-12-16
JPH08252159A (en) * 1995-03-15 1996-10-01 Mino Nendo Kk Beer mug and its manufacture
JPH10234549A (en) * 1997-02-28 1998-09-08 Satoru Ikeda Glass for sparkling beverage
JPH11254625A (en) * 1998-03-13 1999-09-21 Toray Ind Inc Polyester film for laminating molding of metal plate
JP2002045288A (en) * 2000-05-24 2002-02-12 Shiga Pref Gov Container for foaming drink
JP2005041217A (en) * 2003-07-08 2005-02-17 Jfe Steel Kk Resin film clad metal sheet and resin film clad metal can

Also Published As

Publication number Publication date
JP2007008495A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
EP0685509B1 (en) Transparent film for lamination coating of metallic can
EP0646455B1 (en) Laminated polyester film for use as film with which metal plate is to be laminated
JP2010254377A (en) Non-adhesive container and manufacturing method thereof
TW309530B (en) Metallized film structure
JPH07145252A (en) Covering transparent film for sticking to cover of metal can
EP1086979B1 (en) Biaxially oriented polyester film for fabrication in lamination with metal plate
US5705240A (en) Coated metal plate for cans and seamless cans formed therefrom
JP6123196B2 (en) Lid material
JP3020731B2 (en) Metal can lid lamination coated transparent film
JP4710433B2 (en) LAMINATED METAL CAN, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING LAMINATED METAL PLATE
WO1998001301A1 (en) Composite resin film and metallic sheet coated with same
JP5920621B2 (en) Polyester film for 3 piece can lamination
JP4411960B2 (en) Polypropylene-based multilayer sealant film and laminate film using the sealant film
JP4687198B2 (en) Laminated metal can, method for producing the same, and method for producing the film
JP2001219464A (en) Polyester film for container
PT1914064E (en) Laminate steel sheet for can body of two-piece can and two-piece can comprising laminate steel sheet
EP1191053A1 (en) Biaxially oriented polyester film for metal sheet laminating molding
JP3601165B2 (en) Polyester film, laminated metal plate and metal container
JP3747743B2 (en) Resin film for laminating metal plate, laminated metal plate and method for producing the same
JPH1044354A (en) Polyester film, laminate metal plate, its manufacture and metal container
JP2001172405A (en) Polyethylene film and packaging container using the same
JP3796110B2 (en) Polyester film laminate metal plate and metal container
JP3858140B2 (en) Resin film for laminating metal plate, laminated metal plate and method for producing the same
WO1996002387A1 (en) Laminated polyester film for metallic lamination
WO2023176850A1 (en) Multilayer film, lid material for food packaging container, and food packaging container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

LAPS Cancellation because of no payment of annual fees