JP4710323B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP4710323B2
JP4710323B2 JP2005004104A JP2005004104A JP4710323B2 JP 4710323 B2 JP4710323 B2 JP 4710323B2 JP 2005004104 A JP2005004104 A JP 2005004104A JP 2005004104 A JP2005004104 A JP 2005004104A JP 4710323 B2 JP4710323 B2 JP 4710323B2
Authority
JP
Japan
Prior art keywords
fuel cell
power
output
efficiency
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005004104A
Other languages
Japanese (ja)
Other versions
JP2006196221A (en
Inventor
朋範 今村
信也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005004104A priority Critical patent/JP4710323B2/en
Publication of JP2006196221A publication Critical patent/JP2006196221A/en
Application granted granted Critical
Publication of JP4710323B2 publication Critical patent/JP4710323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、水素と酸素との化学反応により電力を発生させる燃料電池を備える燃料電池システムに関するもので、車両、船舶及びポータブル発電機等の移動体発電機、あるいは家庭用小型発電機に好適に用いることできる。   The present invention relates to a fuel cell system including a fuel cell that generates electric power by a chemical reaction between hydrogen and oxygen, and is suitable for a mobile generator such as a vehicle, a ship and a portable generator, or a small household generator. Can be used.

従来より、燃料電池の出力電力と燃料電池に並列接続された2次電池の出力電力とが電気負荷(例えばインバータ)に供給される燃料電池システムが知られている。燃料電池の出力電力と2次電池の出力電力との配分方法として、燃料電池の電流−電圧特性から燃料電池の出力電力を算出し、燃料電池の出力電力と電気負荷の要求出力と2次電池充電量とに基づいて2次電池の出力電力を決定するものが提案されている(特許文献1参照)。
特開2002−141092号公報
Conventionally, there is known a fuel cell system in which output power of a fuel cell and output power of a secondary battery connected in parallel to the fuel cell are supplied to an electric load (for example, an inverter). As a method of allocating the output power of the fuel cell and the output power of the secondary battery, the output power of the fuel cell is calculated from the current-voltage characteristics of the fuel cell, the output power of the fuel cell, the required output of the electric load, and the secondary battery A battery that determines the output power of a secondary battery based on the amount of charge has been proposed (see Patent Document 1).
JP 2002-141092 A

しかしながら、燃料電池の発電特性は燃料電池内部の水分状態によって変化し、燃料電池内部の水分が不足すると内部抵抗が大きくなり、燃料電池の電流−電圧特性が悪化する。このように、燃料電池の発電効率は燃料電池の内部状態によって変化する。   However, the power generation characteristics of the fuel cell change depending on the moisture state inside the fuel cell. If the moisture inside the fuel cell is insufficient, the internal resistance increases and the current-voltage characteristics of the fuel cell deteriorate. Thus, the power generation efficiency of the fuel cell varies depending on the internal state of the fuel cell.

上記特許文献1では、定められた条件下における燃料電池の出力特性に基づいて燃料電池と2次電池との電力配分を決定しているので、燃料電池の動作条件が変化したことを把握できず、燃料電池と2次電池との間で必ずしも効率的な電力配分が行えない条件での運転がなされることとなる。   In Patent Document 1, since power distribution between the fuel cell and the secondary battery is determined based on the output characteristics of the fuel cell under a predetermined condition, it is impossible to grasp that the operating condition of the fuel cell has changed. Therefore, the operation is performed under the condition that the efficient power distribution cannot always be performed between the fuel cell and the secondary battery.

本発明は上記点に鑑み、燃料電池と2次電池との電力配分を決定する際に、燃料電池の発電状態が変化した場合においても最適な電力配分を行うことができるようにすることを目的とする。   SUMMARY OF THE INVENTION In view of the above points, the present invention has an object to enable optimal power distribution even when the power generation state of a fuel cell changes when determining power distribution between a fuel cell and a secondary battery. And

上記目的を達成するため、請求項1に記載の発明では、燃料ガスと酸化剤ガスとの化学反応により発電し、電気負荷(11)に対して電力供給可能な燃料電池(10)と、燃料電池(10)から電力供給を受けて充電可能であるとともに、電気負荷(11)に対して電力供給可能な電力貯蔵手段(12)と、燃料電池(10)の出力電圧を検出する電圧検出手段(14)と、燃料電池(10)の出力電流を検出する電流検出手段(15)と、燃料電池(10)の出力電圧と出力電流とから燃料電池(10)の発電電力を演算し、燃料電池(10)の発電電力と燃料電池(10)の発電電流との関係を演算する発電電力演算手段(40、S10)と、燃料電池(10)の作動に関与する電動式補機(21、33)を作動させるための補機動力と燃料電池(10)の発電電流との関係を演算する補機動力演算手段(40、S11)と、燃料電池(10)の発電電力から補機動力を引いた値であるとともに電気負荷(11)に供給可能な電力である燃料電池システム出力と燃料電池(10)の出力電流との関係を演算するシステム出力演算手段(40、S11)と、燃料電池システム出力および燃料電池(10)における燃料ガスの燃焼エネルギとに基づいて演算される燃料電池システム効率と、燃料電池システム出力との関係を演算するシステム効率演算手段(40、S12)と、電力貯蔵手段(12)に充電が行われる際のエネルギ効率である電力貯蔵手段エネルギ効率と、電力貯蔵手段(12)の出力電力との関係を演算する電力貯蔵手段エネルギ効率演算手段(40、S13)と、燃料電池システム効率と、燃料電池システム出力と、電力貯蔵手段出力電力と、燃料電池(10)に対する要求電力とに基づいて全体システム効率を演算する全体システム効率演算手段(40、S15)と、全体システム効率が最大となるように、燃料電池(10)からの電気負荷(11)に対する供給電力と電力貯蔵手段(12)からの電気負荷(11)に対する供給電力との配分を決定する電力配分決定手段(40、S17)とを備え、全体システム効率演算手段(40、S15)は、以下の数式1および数式2を用いて全体システム効率を演算し、電力貯蔵手段(12)の残存容量が所定の下限値を下回り、かつ、前記燃料電池システム効率が充電許可効率を上回っている場合に、電力貯蔵手段(12)を充電するように燃料電池(10)の発電を制御する充電制御手段(40、S22)を備えることを特徴としている。
(数式1)
全体システム効率=(燃料電池システム効率×燃料電池システム出力+2次電池エネルギ効率×電力貯蔵手段出力電力)/燃料電池に対する要求電力
(数式2)
電力貯蔵手段出力電力=燃料電池に対する要求電力−燃料電池システム出力
In order to achieve the above object, according to the first aspect of the present invention, there is provided a fuel cell (10) capable of generating electric power by a chemical reaction between a fuel gas and an oxidant gas and supplying electric power to an electric load (11); A power storage means (12) that can be charged by receiving power from the battery (10) and can supply power to the electric load (11), and a voltage detection means for detecting the output voltage of the fuel cell (10) (14), the current detection means (15) for detecting the output current of the fuel cell (10), the output voltage and the output current of the fuel cell (10), the generated power of the fuel cell (10) is calculated, and the fuel Generated power calculation means (40, S10) for calculating the relationship between the generated power of the battery (10) and the generated current of the fuel cell (10), and the electric auxiliary machine (21, which is involved in the operation of the fuel cell (10)) 33) auxiliary power for operating Auxiliary power calculation means (40, S11) for calculating the relationship with the generated current of the fuel cell (10), and a value obtained by subtracting the auxiliary power from the generated power of the fuel cell (10) and the electric load (11) System output calculation means (40, S11) for calculating the relationship between the output of the fuel cell system and the output current of the fuel cell (10), which is the power that can be supplied to the fuel cell, and the fuel gas in the fuel cell system output and the fuel cell (10) The system efficiency calculation means (40, S12) for calculating the relationship between the fuel cell system efficiency calculated based on the combustion energy of the fuel and the output of the fuel cell system, and the power storage means (12) are charged. Power storage means energy efficiency calculation means (40, S13) for calculating the relationship between the energy efficiency of the energy storage means and the output power of the power storage means (12); An overall system efficiency computing means (40, S15) for computing the overall system efficiency based on the fuel cell system efficiency, the fuel cell system output, the power storage means output power, and the required power for the fuel cell (10); Power distribution determination for determining the distribution between the power supplied to the electric load (11) from the fuel cell (10) and the power supplied to the electric load (11) from the power storage means (12) so that the system efficiency is maximized. Means (40, S17), and the overall system efficiency calculating means (40, S15) calculates the overall system efficiency using the following formulas 1 and 2, and the remaining capacity of the power storage means (12) is predetermined. Ri falls below the lower limit, and, when the fuel cell system efficiency is greater than the charging permission efficiency, fuel cell (1 to charge the electric power storage means (12) 0) charging control means (40, S22) for controlling power generation.
(Formula 1)
Overall system efficiency = (fuel cell system efficiency × fuel cell system output + secondary battery energy efficiency × power storage means output power) / required power for fuel cell (Formula 2)
Output power of power storage means = required power for fuel cell-fuel cell system output

これにより、リアルタイムで推定した燃料電池(10)の発電特性(電流−電圧特性)に基づいて燃料電池システム効率を推定し、さらに電力貯蔵手段(12)の充放電状態を経時的に監視して電力貯蔵手段エネルギ効率を推定し、最適な電力配分を決定することで、燃料電池の発電状態が変化した場合しても、その時点で最も効率の良い電力配分で燃料電池システムを動作させることができる。   Thereby, the fuel cell system efficiency is estimated based on the power generation characteristic (current-voltage characteristic) of the fuel cell (10) estimated in real time, and the charge / discharge state of the power storage means (12) is monitored over time. Even if the power generation state of the fuel cell changes, the fuel cell system can be operated with the most efficient power distribution at that time by estimating the energy efficiency of the power storage means and determining the optimal power distribution. it can.

またシステム出力演算手段(40)で燃料電池システム出力を演算する際に補機動力を考慮することで、正確に燃料電池システム出力を求めることができる。 In addition , when the fuel cell system output is calculated by the system output calculation means (40), the fuel cell system output can be accurately obtained by considering the auxiliary power.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

以下、本発明の一実施形態について図1〜図13に基づいて説明する。図1は本発明の実施形態に係る燃料電池システムの全体構成を示す図で、この燃料電池システムは、例えば燃料電池を電源として走行する電気自動車に適用される。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing an overall configuration of a fuel cell system according to an embodiment of the present invention, and this fuel cell system is applied to, for example, an electric vehicle that runs using a fuel cell as a power source.

図1に示すように、本実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して発電を行う燃料電池10を備えている。この燃料電池10は、電気負荷11、2次電池12、各種補機21、33等の電気機器に電力を供給するものである。因みに、電気自動車の場合、車両走行用の電動モータを駆動するインバータが電気負荷11に相当する。また、2次電池12は、燃料電池10と電気的に並列接続されており、燃料電池10から供給された電気エネルギーを蓄えると共に、蓄えた電気エネルギーを各種の電気負荷に供給するものである。2次電池12は本発明の電力貯蔵手段に相当する。2次電池12は、充電量に関する信号を後述の制御部40に出力する。   As shown in FIG. 1, the fuel cell system of the present embodiment includes a fuel cell 10 that generates electric power using an electrochemical reaction between hydrogen and oxygen. The fuel cell 10 supplies power to electrical devices such as the electrical load 11, the secondary battery 12, and various auxiliary machines 21 and 33. Incidentally, in the case of an electric vehicle, an inverter that drives an electric motor for traveling the vehicle corresponds to the electric load 11. The secondary battery 12 is electrically connected in parallel to the fuel cell 10 and stores the electrical energy supplied from the fuel cell 10 and supplies the stored electrical energy to various electric loads. The secondary battery 12 corresponds to the power storage means of the present invention. The secondary battery 12 outputs a signal related to the charge amount to the control unit 40 described later.

本実施形態では燃料電池10として固体高分子電解質型燃料電池を用いており、基本単位となるセルが複数個積層され、且つ電気的に直列接続されている。各セルは、電解質膜の両側面に電極が配置されたMEA(Membrane Electrode Assembly:電解質・電極接合体)と、このMEAを挟持する空気側セパレータおよび水素側セパレータから構成されている。燃料電池10では、水素および空気(酸素)が供給されることにより、以下の水素と酸素の電気化学反応が起こり電気エネルギが発生する。   In the present embodiment, a solid polymer electrolyte fuel cell is used as the fuel cell 10, and a plurality of cells serving as basic units are stacked and electrically connected in series. Each cell includes an MEA (Membrane Electrode Assembly) in which electrodes are arranged on both side surfaces of the electrolyte membrane, and an air-side separator and a hydrogen-side separator that sandwich the MEA. In the fuel cell 10, when hydrogen and air (oxygen) are supplied, the following electrochemical reaction between hydrogen and oxygen occurs and electric energy is generated.

(燃料極側)H2→2H++2e-
(空気極側)2H++1/2O2+2e-→H2
燃料電池10と2次電池12との間には、電圧変換を行うDC/DCコンバータ13が設けられている。また、燃料電池システムには、各セルの電圧を検出するセルモニタ14と、燃料電池10の発電電流を検出する電流センサ15が設けられている。なお、セルモニタ14は本発明の電圧検出手段に相当し、電流センサ15は本発明の電流検出手段に相当している。
(Fuel electrode side) H 2 → 2H + + 2e
(Air electrode side) 2H + + 1 / 2O 2 + 2e → H 2 O
A DC / DC converter 13 that performs voltage conversion is provided between the fuel cell 10 and the secondary battery 12. Further, the fuel cell system is provided with a cell monitor 14 for detecting the voltage of each cell and a current sensor 15 for detecting the generated current of the fuel cell 10. The cell monitor 14 corresponds to the voltage detection means of the present invention, and the current sensor 15 corresponds to the current detection means of the present invention.

図1に示すように、燃料電池システムには、燃料電池10の酸素極側に空気(酸化ガス)を供給するための空気供給経路20aと、燃料電池10からの空気を排出するための空気排出経路20bと、燃料電池10の水素極側に水素(燃料ガス)を供給するための水素供給経路30aと、燃料電池10から排出される未反応水素ガス等を含むオフガスを燃料電池10に再循環させるためのオフガス循環経路30bとが設けられている。なお、空気は本発明の酸化ガスに相当し、水素は本発明の燃料ガスに相当する。   As shown in FIG. 1, the fuel cell system includes an air supply path 20 a for supplying air (oxidizing gas) to the oxygen electrode side of the fuel cell 10, and an air discharge for discharging air from the fuel cell 10. The off-gas containing the unreacted hydrogen gas discharged from the fuel cell 10 is recirculated to the fuel cell 10 through the path 20b, the hydrogen supply path 30a for supplying hydrogen (fuel gas) to the hydrogen electrode side of the fuel cell 10. And an off-gas circulation path 30b. Air corresponds to the oxidizing gas of the present invention, and hydrogen corresponds to the fuel gas of the present invention.

空気供給経路20aの最上流部には、大気中から吸入した空気を燃料電池10に圧送するための電動式の空気ポンプ21と、空気を加湿するための加湿器22が設けられ、空気排出経路20bには背圧調整弁23が設けられている。空気ポンプ21は本発明の電動式補機の一例を示している。   The most upstream portion of the air supply path 20a is provided with an electric air pump 21 for pumping air sucked from the atmosphere to the fuel cell 10 and a humidifier 22 for humidifying the air. A back pressure adjusting valve 23 is provided at 20b. The air pump 21 is an example of the electric auxiliary machine of the present invention.

水素供給経路30aには、水素ガスが充填された水素ボンベ31、燃料電池10に供給される水素の圧力を調整する水素調圧弁32が設けられている。オフガス循環経路30bには、オフガスを循環させるためのオフガス循環ポンプ33が設けられている。循環ポンプ33は本発明の電動式補機の一例を示している。   The hydrogen supply path 30 a is provided with a hydrogen cylinder 31 filled with hydrogen gas and a hydrogen pressure regulating valve 32 that adjusts the pressure of hydrogen supplied to the fuel cell 10. An off-gas circulation pump 33 for circulating off-gas is provided in the off-gas circulation path 30b. The circulation pump 33 shows an example of the electric auxiliary machine of the present invention.

燃料電池システムには、制御部(ECU)40が設けられている。制御部40は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種演算などの処理を実行する。制御部40には、電気負荷11や補機22、からの要求電力信号、2次電池12からの充電量の関する信号、セルモニタ14からの電圧信号、電流センサ15からの電流信号が入力される。なお、本実施形態の制御部40は、本発明の発電電力演算手段、システム出力演算手段、システム効率演算手段、電力貯蔵手段エネルギ効率演算手段、全体システム効率演算手段、電力配分決定手段、補機動力演算手段に相当している。   The fuel cell system is provided with a control unit (ECU) 40. The control unit 40 is configured by a known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and executes processing such as various calculations according to a program stored in the ROM. The control unit 40 receives a required power signal from the electrical load 11 and the auxiliary machine 22, a signal related to the charge amount from the secondary battery 12, a voltage signal from the cell monitor 14, and a current signal from the current sensor 15. . The control unit 40 of the present embodiment includes the generated power calculation means, the system output calculation means, the system efficiency calculation means, the power storage means, the energy efficiency calculation means, the overall system efficiency calculation means, the power distribution determination means, and the auxiliary machine operation according to the present invention. It corresponds to the force calculation means.

次に、本実施形態の燃料電池システムの電力分配制御について図2〜図13に基づいて説明する。図2は、本実施形態の制御部50が行う電力分配制御の内容を示すフローチャートである。   Next, power distribution control of the fuel cell system according to the present embodiment will be described with reference to FIGS. FIG. 2 is a flowchart showing the contents of the power distribution control performed by the control unit 50 of the present embodiment.

まず、燃料電池10の電流−電圧特性(発電特性)を演算する(S10)。ここでは、燃料電池10の無負荷時における電圧Voを予め調べておき、さらにセルモニタ14で燃料電池10の電圧Vmを測定し、電流センサ15で燃料電池10の電流Imを測定する。   First, the current-voltage characteristic (power generation characteristic) of the fuel cell 10 is calculated (S10). Here, the voltage Vo when the fuel cell 10 is not loaded is checked in advance, the cell monitor 14 measures the voltage Vm of the fuel cell 10, and the current sensor 15 measures the current Im of the fuel cell 10.

図3は、燃料電池10の電流−電圧特性を示している。図3に示すように、燃料電池10の無負荷時における電圧Voと現在の動作点Vm、Imとを直線補完することで、現在の燃料電池10の電流−電圧特性を演算することができる。なお、過去数点の動作点から最小二乗法によって燃料電池10の電流−電圧特性を演算してもよい。   FIG. 3 shows the current-voltage characteristics of the fuel cell 10. As shown in FIG. 3, the current-voltage characteristics of the current fuel cell 10 can be calculated by linearly complementing the voltage Vo when the fuel cell 10 is unloaded and the current operating points Vm and Im. Note that the current-voltage characteristics of the fuel cell 10 may be calculated from the past several operating points by the least square method.

次に、燃料電池システム出力を演算する(S11)。ここでは燃料電池10の出力電流に対する燃料電池システム出力の特性を求める。燃料電池システム出力は、電気負荷11に出力可能な電力であり、燃料電池10の出力と補機21、33を作動させるのに必要な補機動力との差分から求めることができる。   Next, the fuel cell system output is calculated (S11). Here, the characteristics of the fuel cell system output with respect to the output current of the fuel cell 10 are obtained. The fuel cell system output is electric power that can be output to the electric load 11 and can be obtained from the difference between the output of the fuel cell 10 and the auxiliary machine power required to operate the auxiliary machines 21 and 33.

図4は、燃料電池電力および燃料電池10の出力電流との関係と、補機動力および燃料電池10の出力電流との関係と、燃料電池システム出力および燃料電池10の出力電流との関係とを示している。S10で求めた燃料電池10の電流−電圧特性(図3)から、図4に示す電力−電流特性を求めることができる。また、燃料電池10の出力電流と補機動力とは比例関係にあり、図4に示す燃料電池10の出力電流と補機動力との関係を予め求めておくことができる。燃料電池電力と電流との関係から、予め定められた補機動力および燃料電池10の出力電流との関係を用いて燃料電池システム出力−電流特性を得ることができる。   FIG. 4 shows the relationship between the fuel cell power and the output current of the fuel cell 10, the relationship between the auxiliary power and the output current of the fuel cell 10, and the relationship between the fuel cell system output and the output current of the fuel cell 10. Show. The power-current characteristic shown in FIG. 4 can be obtained from the current-voltage characteristic (FIG. 3) of the fuel cell 10 obtained in S10. Further, the output current of the fuel cell 10 and the auxiliary power are in a proportional relationship, and the relationship between the output current of the fuel cell 10 and the auxiliary power shown in FIG. 4 can be obtained in advance. From the relationship between the fuel cell power and the current, the fuel cell system output-current characteristic can be obtained using a predetermined relationship between the auxiliary machine power and the output current of the fuel cell 10.

次に、燃料電池システム効率を演算する(S12)。燃料電池システム効率は、燃料電池システム出力と燃料電池10の水素燃焼エネルギを用い、次の数式3で求めることができる。
(数式3)
燃料電池システム効率=燃料電池システム出力/水素燃焼エネルギ
また、水素燃焼エネルギは、次の数式4で求めることができる。
(数式4)
水素燃焼エネルギ=水素燃焼熱〔kJ/mol〕×発電電流〔A〕×セル枚数/(2×ファラデー定数〔C/mol〕)
以上の数式3、4から燃料電池システム効率を求めることができる。図5は、燃料電池システム効率と燃料電池10の発電電流との関係を示している。図5に示すように、燃料電池システム効率は電流によって変動する。
Next, the fuel cell system efficiency is calculated (S12). The fuel cell system efficiency can be obtained by the following Equation 3 using the fuel cell system output and the hydrogen combustion energy of the fuel cell 10.
(Formula 3)
Fuel cell system efficiency = fuel cell system output / hydrogen combustion energy The hydrogen combustion energy can be obtained by the following equation 4.
(Formula 4)
Hydrogen combustion energy = hydrogen combustion heat [kJ / mol] × generated current [A] × number of cells / (2 × Faraday constant [C / mol])
The fuel cell system efficiency can be obtained from the above formulas 3 and 4. FIG. 5 shows the relationship between the fuel cell system efficiency and the generated current of the fuel cell 10. As shown in FIG. 5, the fuel cell system efficiency varies with current.

図6は、燃料電池システム効率と燃料電池システム出力との関係を示している。図4に示す燃料電池システム出力と燃料電池10の発電電流との関係と、図5に示す燃料電池システム効率と燃料電池10の発電電流との関係とから、図6に示す燃料電池システム効率と燃料電池システム出力との関係が得られる。   FIG. 6 shows the relationship between the fuel cell system efficiency and the fuel cell system output. From the relationship between the fuel cell system output shown in FIG. 4 and the power generation current of the fuel cell 10, and the relationship between the fuel cell system efficiency shown in FIG. 5 and the power generation current of the fuel cell 10, the fuel cell system efficiency shown in FIG. A relationship with the fuel cell system output is obtained.

次に、2次電池12のエネルギ効率を演算する(S13)。図7は2次電池エネルギ効率と2次電池12の出力電力との関係を示している。2次電池エネルギ効率は、2次電池12に充電する際の経時的なエネルギ効率であり、2次電池12の瞬時における効率を経時的に監視することで求めることができる。2次電池12の瞬時における効率は、以下の数式5で求めることができる。
(数式5)
瞬時の2次電池効率=(充電時の燃料電池システム効率)×(2次電池12の充電効率)
さらに、2次電池エネルギ効率は、以下の数式6で求めることができる。
(数式6)
2次電池エネルギ効率=Σ瞬時の2次電池効率×(充電電流×Δt)/2次電池容量
次に、アクセル開度等に基づいて車両要求電力を演算し(S14)、全体システム効率を演算する(S15)。全体システム効率は、車両要求電力に対する燃料電池10からの出力と2次電池12からの出力との電力分配を演算する際に、燃料電池システム効率および2次電池エネルギ効率とを考慮した燃料電池システム全体の効率である。全体システム効率は以下の数式7で求めることができる。
(数式7)
全体システム効率=(燃料電池システム効率×燃料電池システム出力+2次電池エネルギ効率×2次電池アシスト電力)/車両要求電力
ここで、2次電池アシスト電力は以下の数式8で求めることができる。
(数式8)
2次電池アシスト電力=車両要求電力−燃料電池システム出力
次に、2次電池12の残存容量を検出する(S16)。そして、最適な2次電池アシスト電力を演算する(S17)。図8は、図6で示した燃料電池システム出力と図7で示した2次電池エネルギ効率との関係を示している。本実施形態における2次電池12の出力電力の最大値が25kW程度であるので、2次電池エネルギ効率は25kW程度まで実線で表示し、25kW程度より出力が大きい領域では2次電池エネルギ効率と燃料電池システム効率との比較のために破線を表示している。
Next, the energy efficiency of the secondary battery 12 is calculated (S13). FIG. 7 shows the relationship between the secondary battery energy efficiency and the output power of the secondary battery 12. The secondary battery energy efficiency is the energy efficiency over time when the secondary battery 12 is charged, and can be obtained by monitoring the instantaneous efficiency of the secondary battery 12 over time. The instantaneous efficiency of the secondary battery 12 can be obtained by the following formula 5.
(Formula 5)
Instantaneous secondary battery efficiency = (fuel cell system efficiency during charging) x (charging efficiency of secondary battery 12)
Further, the secondary battery energy efficiency can be obtained by the following Equation 6.
(Formula 6)
Secondary battery energy efficiency = Σinstantaneous secondary battery efficiency × (charging current × Δt) / secondary battery capacity Next, the vehicle required power is calculated based on the accelerator opening (S14), and the overall system efficiency is calculated. (S15). The overall system efficiency is a fuel cell system that takes into account the fuel cell system efficiency and the secondary battery energy efficiency when calculating the power distribution between the output from the fuel cell 10 and the output from the secondary battery 12 with respect to the vehicle required power. It is the overall efficiency. The overall system efficiency can be calculated by the following formula 7.
(Formula 7)
Overall system efficiency = (Fuel cell system efficiency × Fuel cell system output + Secondary battery energy efficiency × Secondary battery assist power) / Vehicle required power Here, the secondary battery assist power can be obtained by the following Expression 8.
(Formula 8)
Secondary battery assist power = vehicle required power-fuel cell system output Next, the remaining capacity of the secondary battery 12 is detected (S16). Then, the optimal secondary battery assist power is calculated (S17). FIG. 8 shows the relationship between the fuel cell system output shown in FIG. 6 and the secondary battery energy efficiency shown in FIG. Since the maximum value of the output power of the secondary battery 12 in the present embodiment is about 25 kW, the secondary battery energy efficiency is indicated by a solid line up to about 25 kW, and the secondary battery energy efficiency and fuel in a region where the output is larger than about 25 kW. A broken line is shown for comparison with the battery system efficiency.

図9は、燃料電池10の電流−電圧特性を示している。図9中の実線は燃料電池10の発電状態が正常である場合の発電特性を示し、図9中の破線は燃料電池10の発電状態が悪化した場合の発電特性を示している。制御電圧Voで燃料電池10を運転する際、実線上の目標動作点で燃料電池10を発電させるために必要な発電電流I1を発電するように運転するが、燃料電池10の発電状態が悪化した場合、燃料電池10の発電電流がI1からI2に低下し、燃料電池10は破線上の実動作点で動作することとなる。   FIG. 9 shows the current-voltage characteristics of the fuel cell 10. A solid line in FIG. 9 indicates power generation characteristics when the power generation state of the fuel cell 10 is normal, and a broken line in FIG. 9 indicates power generation characteristics when the power generation state of the fuel cell 10 deteriorates. When operating the fuel cell 10 at the control voltage Vo, the fuel cell 10 is operated to generate the generated current I1 necessary for generating power at the target operating point on the solid line, but the power generation state of the fuel cell 10 has deteriorated. In this case, the generated current of the fuel cell 10 decreases from I1 to I2, and the fuel cell 10 operates at the actual operating point on the broken line.

このため、図8においても燃料電池10の発電状態が悪化した場合には燃料電池システム効率が低下する。例えば出力が40kWの場合、燃料電池10の発電状態が正常な場合には、燃料電池システム効率が2次電池エネルギ効率より高くなっており、燃料電池10の発電状態が悪化した場合には、燃料電池システム効率と2次電池エネルギ効率とがほぼ同等になっている。   For this reason, also in FIG. 8, when the power generation state of the fuel cell 10 deteriorates, the fuel cell system efficiency decreases. For example, when the output is 40 kW, the fuel cell system efficiency is higher than the secondary battery energy efficiency when the power generation state of the fuel cell 10 is normal, and when the power generation state of the fuel cell 10 deteriorates, the fuel cell system efficiency is higher. The battery system efficiency and the secondary battery energy efficiency are almost equal.

図10と図11は、出力が40kWの場合の全体システム効率と2次電池12のアシスト電力との関係を示している。図10は燃料電池10の発電状態が正常な場合であり、図11は燃料電池10の発電状態が悪化した場合である。図10、図11において、2次電池12のアシスト電力が0kWの場合の電力配分は、燃料電池システム出力が100%で2次電池12のアシスト電力が0%となり、2次電池12のアシスト電力が20kWの場合の電力配分は、燃料電池システム出力が50%で2次電池12のアシスト電力が50%となり、2次電池12のアシスト電力が40kWの場合の電力配分は、燃料電池システム出力が0%で2次電池12のアシスト電力が100%となる。   10 and 11 show the relationship between the overall system efficiency and the assist power of the secondary battery 12 when the output is 40 kW. FIG. 10 shows a case where the power generation state of the fuel cell 10 is normal, and FIG. 11 shows a case where the power generation state of the fuel cell 10 deteriorates. 10 and 11, when the assist power of the secondary battery 12 is 0 kW, the power distribution of the fuel cell system is 100%, the assist power of the secondary battery 12 is 0%, and the assist power of the secondary battery 12 is Is 20 kW, the fuel cell system output is 50%, the assist power of the secondary battery 12 is 50%, and the power distribution when the assist power of the secondary battery 12 is 40 kW is the fuel cell system output At 0%, the assist power of the secondary battery 12 becomes 100%.

図10に示すように、燃料電池10の発電状態が正常な場合の全体システム効率が最高となる電力配分は、2次電池12のアシスト電力が8kW程度の場合である。この場合の燃料電池システム出力の電力配分は残りの32kW程度となる。燃料電池10の発電状態が悪化した場合には、燃料電池システム効率が低くなる。このため図11に示すように、燃料電池10の発電状態が悪化した場合の全体システム効率が最高となる電力配分は、2次電池12のアシスト電力が17kW程度の場合である。この場合の燃料電池システム出力の電力配分は残りの23kW程度となる。このように燃料電池の特性をリアルタイムに監視することにより、常に車両効率を最大化できる。   As shown in FIG. 10, the power distribution that maximizes the overall system efficiency when the power generation state of the fuel cell 10 is normal is when the assist power of the secondary battery 12 is about 8 kW. In this case, the power distribution of the fuel cell system output is about the remaining 32 kW. When the power generation state of the fuel cell 10 deteriorates, the fuel cell system efficiency is lowered. Therefore, as shown in FIG. 11, the power distribution that maximizes the overall system efficiency when the power generation state of the fuel cell 10 deteriorates is when the assist power of the secondary battery 12 is about 17 kW. In this case, the remaining power distribution of the fuel cell system output is about 23 kW. Thus, by monitoring the characteristics of the fuel cell in real time, the vehicle efficiency can always be maximized.

次に、車両要求電力が変動した場合について説明する。以下、燃料電池の発電状態が悪化した場合の燃料電池システム効率を前提に説明する。   Next, a case where the required vehicle power fluctuates will be described. Hereinafter, the description will be made on the assumption of the fuel cell system efficiency when the power generation state of the fuel cell deteriorates.

図12は出力が50kWの場合の全体システム効率と2次電池12のアシスト電力との関係を示し、図13は出力が20kWの場合の全体システム効率と2次電池12のアシスト電力との関係を示している。   FIG. 12 shows the relationship between the overall system efficiency when the output is 50 kW and the assist power of the secondary battery 12, and FIG. 13 shows the relationship between the overall system efficiency and the assist power of the secondary battery 12 when the output is 20 kW. Show.

図8において出力が50kWの場合には、燃料電池システム効率が2次電池エネルギ効率より低くなっている。このため、図12に示すように、全体システム効率が最高となる電力配分は、2次電池12のアシスト電力が27kW程度の場合である。このときの燃料電池システム出力の電力配分は残りの23kW程度となる。   In FIG. 8, when the output is 50 kW, the fuel cell system efficiency is lower than the secondary battery energy efficiency. For this reason, as shown in FIG. 12, the power distribution with the highest overall system efficiency is when the assist power of the secondary battery 12 is about 27 kW. The power distribution of the fuel cell system output at this time is the remaining 23 kW.

図8において出力が20kWの場合には、燃料電池システム効率が2次電池エネルギ効率より高なっている。このため、図13に示すように、全体システム効率が最高となる電力配分は、2次電池12のアシスト電力が0kW程度の場合である。このときの燃料電池システム出力の電力配分は残りの20kW程度となる。この場合には、燃料電池システム効率が良好なため、FCシステムのみで電力供給した方が全体システム効率がよくなる。   In FIG. 8, when the output is 20 kW, the fuel cell system efficiency is higher than the secondary battery energy efficiency. For this reason, as shown in FIG. 13, the power distribution with the highest overall system efficiency is when the assist power of the secondary battery 12 is about 0 kW. At this time, the power distribution of the output of the fuel cell system is about the remaining 20 kW. In this case, since the fuel cell system efficiency is good, the overall system efficiency is improved when power is supplied only by the FC system.

次に、2次電池12の残存容量が下限値を下回っているか否かを判定する(S18)。この結果、2次電池12の残存容量が下限値を下回っていない場合には、上記S17で演算した燃料電池システム出力と2次電池アシスト電力の最適配分となるように、燃料電池10の発電を制御する(S19)。   Next, it is determined whether or not the remaining capacity of the secondary battery 12 is below a lower limit value (S18). As a result, when the remaining capacity of the secondary battery 12 does not fall below the lower limit value, the fuel cell 10 generates power so that the fuel cell system output calculated in S17 and the secondary battery assist power are optimally distributed. Control (S19).

一方、2次電池12の残存容量が下限値を下回っている場合には、燃料電池システム効率が充電許可効率を上回っているか否かを判定する(S20)。この結果、燃料電池システム効率が充電許可効率を上回っていない場合には、燃料電池システム効率=車両要求電力となるように燃料電池10の発電を制御する(S21)。一方、燃料電池システム効率が充電許可効率を上回っている場合には、燃料電池システム効率=車両要求電力+2次電池充電電力となるように燃料電池10の発電を制御する(S22)。   On the other hand, when the remaining capacity of the secondary battery 12 is below the lower limit value, it is determined whether or not the fuel cell system efficiency exceeds the charge permission efficiency (S20). As a result, when the fuel cell system efficiency does not exceed the charge permission efficiency, the power generation of the fuel cell 10 is controlled so that the fuel cell system efficiency = the required vehicle power (S21). On the other hand, when the fuel cell system efficiency exceeds the charge permission efficiency, the power generation of the fuel cell 10 is controlled so that fuel cell system efficiency = vehicle required power + secondary battery charging power (S22).

以上のように、リアルタイムで推定した燃料電池10の発電特性(電流−電圧特性)に基づいて燃料電池システム効率を推定し、さらに2次電池12の充放電状態を経時的に監視してリアルタイムに2次電池エネルギ効率を推定し、これらの燃料電池システム効率と2次電池エネルギ効率に基づいてリアルタイムに最適な電力配分を決定することで、その時点で最も効率の良い電力配分で燃料電池システムを動作させることができる。   As described above, the fuel cell system efficiency is estimated based on the power generation characteristics (current-voltage characteristics) of the fuel cell 10 estimated in real time, and the charge / discharge state of the secondary battery 12 is monitored over time in real time. Estimate the secondary battery energy efficiency, and determine the optimal power distribution in real time based on these fuel cell system efficiency and secondary battery energy efficiency. It can be operated.

上記実施形態の燃料電池システムの全体構成を示す概念図である。It is a conceptual diagram which shows the whole structure of the fuel cell system of the said embodiment. 上記実施形態の電力分配制御の内容を示すフローチャートである。It is a flowchart which shows the content of the power distribution control of the said embodiment. 燃料電池の電流−電圧特性を示す特性図である。It is a characteristic view which shows the current-voltage characteristic of a fuel cell. 燃料電池電力および燃料電池の出力電流との関係と、補機動力および燃料電池の出力電流との関係と、燃料電池システム出力および燃料電池の出力電流との関係とを示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between fuel cell power and fuel cell output current, the relationship between auxiliary power and fuel cell output current, and the relationship between fuel cell system output and fuel cell output current. 燃料電池システム効率と燃料電池の発電電流との関係を示す特性図である。It is a characteristic view which shows the relationship between fuel cell system efficiency and the electric power generation current of a fuel cell. 燃料電池システム効率と燃料電池システム出力との関係を示す特性図である。It is a characteristic view which shows the relationship between fuel cell system efficiency and a fuel cell system output. 2次電池エネルギ効率と2次電池12の出力電力との関係を示す特性図である。It is a characteristic view which shows the relationship between secondary battery energy efficiency and the output electric power of the secondary battery. 燃料電池システム出力と2次電池エネルギ効率との関係を示す特性図である。It is a characteristic view which shows the relationship between a fuel cell system output and a secondary battery energy efficiency. 燃料電池の電流−電圧特性を示す特性図である。It is a characteristic view which shows the current-voltage characteristic of a fuel cell. 全体システム効率と2次電池アシスト電力との関係を示す特性図である(出力40kW)。It is a characteristic view which shows the relationship between whole system efficiency and secondary battery assist electric power (output 40kW). 全体システム効率と2次電池アシスト電力との関係を示す特性図である(出力40kW)。It is a characteristic view which shows the relationship between whole system efficiency and secondary battery assist electric power (output 40kW). 全体システム効率と2次電池アシスト電力との関係を示す特性図である(出力50kW)。It is a characteristic view which shows the relationship between whole system efficiency and secondary battery assist electric power (output 50kW). 全体システム効率と2次電池アシスト電力との関係を示す特性図である(出力20kW)。It is a characteristic view which shows the relationship between the whole system efficiency and secondary battery assist electric power (output 20kW).

符号の説明Explanation of symbols

10…燃料電池、11…電気負荷、12…2次電池、13…DC/DCコンバータ、14…セルモニタ、15…電流センサ、40…制御部。   DESCRIPTION OF SYMBOLS 10 ... Fuel cell, 11 ... Electric load, 12 ... Secondary battery, 13 ... DC / DC converter, 14 ... Cell monitor, 15 ... Current sensor, 40 ... Control part.

Claims (1)

燃料ガスと酸化剤ガスとの化学反応により発電し、電気負荷(11)に対して電力供給可能な燃料電池(10)と、
前記燃料電池(10)から電力供給を受けて充電可能であるとともに、前記電気負荷(11)に対して電力供給可能な電力貯蔵手段(12)と、
前記燃料電池(10)の出力電圧を検出する電圧検出手段(14)と、
前記燃料電池(10)の出力電流を検出する電流検出手段(15)と、
前記燃料電池(10)の出力電圧と出力電流とから前記燃料電池(10)の発電電力を演算し、前記燃料電池(10)の発電電力と前記燃料電池(10)の発電電流との関係を演算する発電電力演算手段(40、S10)と、
前記燃料電池(10)の作動に関与する電動式補機(21、33)を作動させるための補機動力と前記燃料電池(10)の発電電流との関係を演算する補機動力演算手段(40、S11)と、
前記燃料電池(10)の発電電力から前記補機動力を引いた値であるとともに前記電気負荷(11)に供給可能な電力である燃料電池システム出力と前記燃料電池(10)の出力電流との関係を演算するシステム出力演算手段(40、S11)と、
前記燃料電池システム出力および前記燃料電池(10)における燃料ガスの燃焼エネルギとに基づいて演算される燃料電池システム効率と、前記燃料電池システム出力との関係を演算するシステム効率演算手段(40、S12)と、
前記電力貯蔵手段(12)に充電が行われる際のエネルギ効率である電力貯蔵手段エネルギ効率と、前記電力貯蔵手段(12)の出力電力との関係を演算する電力貯蔵手段エネルギ効率演算手段(40、S13)と、
前記燃料電池システム効率と、前記燃料電池システム出力と、前記電力貯蔵手段出力電力と、前記燃料電池(10)に対する要求電力とに基づいて全体システム効率を演算する全体システム効率演算手段(40、S15)と、
前記全体システム効率が最大となるように、前記燃料電池(10)からの前記電気負荷(11)に対する供給電力と前記電力貯蔵手段(12)からの前記電気負荷(11)に対する供給電力との配分を決定する電力配分決定手段(40、S17)とを備え、
前記全体システム効率演算手段(40、S15)は、以下の数式1および数式2を用いて前記全体システム効率を演算し、
前記電力貯蔵手段(12)の残存容量が所定の下限値を下回り、かつ、前記燃料電池システム効率が充電許可効率を上回っている場合に、前記電力貯蔵手段(12)を充電するように前記燃料電池(10)の発電を制御する充電制御手段(40、S22)を備えることを特徴とする燃料電池システム。
(数式1)
全体システム効率=(燃料電池システム効率×燃料電池システム出力+2次電池エネルギ効率×電力貯蔵手段出力電力)/燃料電池に対する要求電力
(数式2)
電力貯蔵手段出力電力=燃料電池に対する要求電力−燃料電池システム出力
A fuel cell (10) capable of generating electric power by a chemical reaction between a fuel gas and an oxidant gas and supplying electric power to an electric load (11)
Power storage means (12) capable of being charged by receiving power from the fuel cell (10) and capable of supplying power to the electric load (11);
Voltage detection means (14) for detecting the output voltage of the fuel cell (10);
Current detection means (15) for detecting the output current of the fuel cell (10);
The generated power of the fuel cell (10) is calculated from the output voltage and output current of the fuel cell (10), and the relationship between the generated power of the fuel cell (10) and the generated current of the fuel cell (10) is calculated. Generated power calculation means (40, S10) for calculating;
Auxiliary power calculation means for calculating the relationship between the auxiliary power for operating the electric auxiliary machines (21, 33) involved in the operation of the fuel cell (10) and the generated current of the fuel cell (10) ( 40, S11),
A value obtained by subtracting the auxiliary power from the generated power of the fuel cell (10) and power that can be supplied to the electric load (11) and an output current of the fuel cell (10) System output calculation means (40, S11) for calculating the relationship;
System efficiency calculation means (40, S12) for calculating the relationship between the fuel cell system output calculated based on the fuel cell system output and the combustion energy of the fuel gas in the fuel cell (10) and the fuel cell system output. )When,
Power storage means energy efficiency calculation means (40) for calculating the relationship between the power storage means energy efficiency, which is the energy efficiency when the power storage means (12) is charged, and the output power of the power storage means (12). , S13),
Overall system efficiency calculating means (40, S15) for calculating the overall system efficiency based on the fuel cell system efficiency, the fuel cell system output, the power storage means output power, and the required power for the fuel cell (10). )When,
Distribution of power supplied to the electric load (11) from the fuel cell (10) and power supplied to the electric load (11) from the power storage means (12) so that the overall system efficiency is maximized. Power distribution determining means (40, S17) for determining
The overall system efficiency calculating means (40, S15) calculates the overall system efficiency using the following formula 1 and formula 2,
Wherein Ri remaining capacity of the power storage means (12) drops below a predetermined lower limit value, and, when the fuel cell system efficiency is greater than the charging permission efficiency, so as to charge the electric power storage means (12) A fuel cell system comprising charge control means (40, S22) for controlling power generation of the fuel cell (10).
(Formula 1)
Overall system efficiency = (fuel cell system efficiency × fuel cell system output + secondary battery energy efficiency × power storage means output power) / required power for fuel cell (Formula 2)
Power storage means output power = required power for fuel cell-fuel cell system output
JP2005004104A 2005-01-11 2005-01-11 Fuel cell system Expired - Fee Related JP4710323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004104A JP4710323B2 (en) 2005-01-11 2005-01-11 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004104A JP4710323B2 (en) 2005-01-11 2005-01-11 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006196221A JP2006196221A (en) 2006-07-27
JP4710323B2 true JP4710323B2 (en) 2011-06-29

Family

ID=36802132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004104A Expired - Fee Related JP4710323B2 (en) 2005-01-11 2005-01-11 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4710323B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2001070B1 (en) 2007-05-28 2011-06-22 Honda Motor Co., Ltd. Electric power supply system
JP5427379B2 (en) * 2007-08-30 2014-02-26 ヤマハ発動機株式会社 Fuel cell system and control method thereof
JP6125750B2 (en) * 2011-12-28 2017-05-10 学校法人幾徳学園 Fuel cell power generation system and control method thereof
JP7010069B2 (en) 2018-03-07 2022-02-10 トヨタ自動車株式会社 Fuel cell system, vehicle equipped with fuel cell system, and control method of fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044807A (en) * 2000-07-27 2002-02-08 Yamaha Motor Co Ltd Power supply for electric vehicle
JP2002141092A (en) * 2000-11-01 2002-05-17 Equos Research Co Ltd Control method of fuel cell device
JP2003303605A (en) * 2002-04-11 2003-10-24 Toyota Motor Corp Power supply system and its control method
JP2004253152A (en) * 2003-02-18 2004-09-09 Toyota Motor Corp Power supply system and its control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044807A (en) * 2000-07-27 2002-02-08 Yamaha Motor Co Ltd Power supply for electric vehicle
JP2002141092A (en) * 2000-11-01 2002-05-17 Equos Research Co Ltd Control method of fuel cell device
JP2003303605A (en) * 2002-04-11 2003-10-24 Toyota Motor Corp Power supply system and its control method
JP2004253152A (en) * 2003-02-18 2004-09-09 Toyota Motor Corp Power supply system and its control method

Also Published As

Publication number Publication date
JP2006196221A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4905182B2 (en) Fuel cell system
JP5041010B2 (en) Fuel cell system
US9184456B2 (en) Fuel cell system and method for limiting current thereof
US8227123B2 (en) Fuel cell system and current control method with PI compensation based on minimum cell voltage
JP5120594B2 (en) Fuel cell system and operation method thereof
US8546033B2 (en) Fuel cell apparatus comprising a high potential avoidance voltage setting device
US8268501B2 (en) Fuel cell system, control method therefor, and movable body
KR101053991B1 (en) Fuel cell system and power control method
JP4577625B2 (en) Fuel cell system
US9225028B2 (en) Fuel cell system
WO2007004732A1 (en) Fuel cell system and method for measuring ac impedance
US20130189596A1 (en) Fuel cell system, method and program of determining cause of negative voltage, and storage medium storing program
JP2004164909A (en) Fuel cell system
US9985305B2 (en) Output control apparatus for fuel cell
JP7056171B2 (en) Fuel cell system
JP4710323B2 (en) Fuel cell system
CN108987769B (en) Fuel cell system start-up using voltage profile control
CN107452974B (en) Hydrogen deficiency judgment method and hydrogen deficiency judgment device
US8349508B2 (en) Fuel cell control unit for limiting power output
JP2006351421A (en) Fuel cell system and control method
JP4831437B2 (en) Fuel cell system and control method thereof
JP2013171682A (en) Fuel cell system and method for controlling fuel cell
JP2021028886A (en) Fuel cell system control method
JP2007066845A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R151 Written notification of patent or utility model registration

Ref document number: 4710323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees