JP4707969B2 - Multistage fluid machinery - Google Patents

Multistage fluid machinery Download PDF

Info

Publication number
JP4707969B2
JP4707969B2 JP2004149381A JP2004149381A JP4707969B2 JP 4707969 B2 JP4707969 B2 JP 4707969B2 JP 2004149381 A JP2004149381 A JP 2004149381A JP 2004149381 A JP2004149381 A JP 2004149381A JP 4707969 B2 JP4707969 B2 JP 4707969B2
Authority
JP
Japan
Prior art keywords
return guide
rotating shaft
impeller
diffuser
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004149381A
Other languages
Japanese (ja)
Other versions
JP2005330878A (en
Inventor
章弘 和田
貴司 原
敏明 金元
政文 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2004149381A priority Critical patent/JP4707969B2/en
Publication of JP2005330878A publication Critical patent/JP2005330878A/en
Application granted granted Critical
Publication of JP4707969B2 publication Critical patent/JP4707969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、多段流体機械に関する。特に、本発明は、発電プラント、水処理プラント等における高圧給水用の多段ポンプや多段圧縮機等に好適に適用される。   The present invention relates to a multistage fluid machine. In particular, the present invention is suitably applied to a multistage pump, a multistage compressor, and the like for high pressure water supply in a power plant, a water treatment plant, and the like.

この種の多段流体機械は、例えば特許文献1に開示されている。   This type of multi-stage fluid machine is disclosed in, for example, Patent Document 1.

図6(A),(B)を参照して従来の多段流体機械を説明する。回転軸1に固定された複数の羽根車2は、出口2bが入口2aよりも回転軸1の径方向(矢印Aで示す。)の外側に位置している。ステージケーシング3とディヒューザ4により羽根車2の出口2bから次段の羽根車2の入口2aに至る流路、すなわちディヒューザ流路6と戻り流路7が形成されている。ディヒューザ4は羽根車2の出口2b近傍のディヒューザ流路6に配置されたディヒューザ羽根8と、ディヒューザ流路6から次段の羽根車2の入口2bに向かって回転軸1の径方向Aに延びる戻り流路7に配置された戻り案内羽根9を備える。羽根車2の出口2bを出た水等の流体はディヒューザ流路6においてディヒューザ羽根8により静圧回復した後、戻り案内羽根9で整流されつつ戻り流路7を通って次段の羽根車2の入口2aに流入する。図6(B)に示すように、戻り案内羽根9は回転軸1の軸線Lに対して放射状に配置されている。   A conventional multistage fluid machine will be described with reference to FIGS. 6 (A) and 6 (B). In the plurality of impellers 2 fixed to the rotating shaft 1, the outlet 2 b is positioned outside the inlet 2 a in the radial direction of the rotating shaft 1 (indicated by an arrow A). The stage casing 3 and the diffuser 4 form a flow path from the outlet 2 b of the impeller 2 to the inlet 2 a of the next stage impeller 2, that is, a diffuser flow path 6 and a return flow path 7. The diffuser 4 extends in the radial direction A of the rotary shaft 1 from the diffuser flow path 6 toward the inlet 2b of the next stage impeller 2 from the diffuser flow path 6 in the diffuser flow path 6 near the outlet 2b of the impeller 2. A return guide vane 9 disposed in the return flow path 7 is provided. The fluid such as water exiting the outlet 2b of the impeller 2 recovers static pressure by the diffuser blade 8 in the diffuser flow path 6, and then is rectified by the return guide blade 9 and passes through the return flow path 7 to the next impeller 2 Into the inlet 2a. As shown in FIG. 6B, the return guide vanes 9 are arranged radially with respect to the axis L of the rotating shaft 1.

図6の多段流体機械では、戻り案内羽根9は例えば最高効率点で後縁9aにおける流体の旋回成分が零となるように設計されている。また、戻り案内羽根の後縁9aの径方向Aの位置(戻り案内羽根9の径方向Aの長さ)は、羽根車2の羽根5の前縁5aの径方向Aの最も内側の端部5bとほぼ一致するように設定されている。戻り案内羽根9の長さをこのように設定することで、部分流量域において次段の羽根車2からの逆流を抑制し、良好な全揚程−流量特性を得ることができる。具体的には、図8の全揚程−流量特性Hを参照すると、最高効率点(流量Qhe)よりも流量の少ない部分量領域において、流量Qの減少に伴って全揚程Hが増加している。なお、図8において、ηとSPはそれぞれ図6の多段流体機械の効率−流量特性と軸動力−流量特性を示している。 In the multistage fluid machine of FIG. 6, the return guide vane 9 is designed so that the swirl component of the fluid at the trailing edge 9a becomes zero at the highest efficiency point, for example. Further, the position in the radial direction A of the rear edge 9a of the return guide vane (the length of the return guide vane 9 in the radial direction A) is the innermost end in the radial direction A of the front edge 5a of the blade 5 of the impeller 2. It is set so as to substantially match 5b. By setting the length of the return guide vane 9 in this way, it is possible to suppress the backflow from the next stage impeller 2 in the partial flow rate region, and to obtain a good total head-flow rate characteristic. Specifically, referring to the total head-flow rate characteristic H 0 in FIG. 8, the total head H increases as the flow rate Q decreases in the partial amount region where the flow rate is lower than the maximum efficiency point (flow rate Q he ). ing. In FIG. 8, η 0 and SP 0 indicate the efficiency-flow rate characteristic and the shaft power-flow rate characteristic of the multistage fluid machine of FIG. 6, respectively.

しかし、前述のように戻り案内羽根9の後縁9aの径方向Aの位置が羽根車2の羽根5の前縁5aの径方向Aの最も内側の端部5bとほぼ一致しているので、最高効率点での運転中、戻り案内羽根9の後縁9aよりも径方向Aの外側の領域αでは、戻り案内羽根9を通過しても旋回成分が残ったままで次段の羽根車2の入口2bに流体が流入する。この旋回成分の残留は羽根車2の羽根5の形状によっては最高効率を低下させる要因となる。   However, since the position in the radial direction A of the rear edge 9a of the return guide vane 9 substantially coincides with the innermost end portion 5b in the radial direction A of the front edge 5a of the vane 5 of the impeller 2 as described above, During operation at the maximum efficiency point, in the region α outside the radial direction A from the trailing edge 9a of the return guide vane 9, the swirl component remains even after passing through the return guide vane 9, and the next stage impeller 2 A fluid flows into the inlet 2b. The remaining swirl component may cause a reduction in the maximum efficiency depending on the shape of the blade 5 of the impeller 2.

最高効率を向上するためには、図7(A),(B)に示すように戻り案内羽根9の径方向Aの長さを縮小し、戻り案内羽根9の後縁9aを羽根車2の羽根5の前縁5aよりも回転軸1の径方向A外側に配置すればよい。図8の効率−流量特性ηを参照すると、図7の多段流体機械の最高効率η1hは、図6の多段流体機械の最高効率η0hよりも高い。 In order to improve the maximum efficiency, as shown in FIGS. 7A and 7B, the length of the return guide vane 9 in the radial direction A is reduced, and the rear edge 9 a of the return guide vane 9 is attached to the impeller 2. What is necessary is just to arrange | position to the radial direction A outer side of the rotating shaft 1 rather than the front edge 5a of the blade | wing 5. FIG. Referring to the efficiency-flow rate characteristic η 1 in FIG. 8, the maximum efficiency η 1h of the multistage fluid machine in FIG. 7 is higher than the maximum efficiency η0h of the multistage fluid machine in FIG.

しかし、図7のように戻り案内羽根9の径方向Aの長さを短く設定すると、部分流量域において次段の羽根車2からの逆流を抑制する効果が得られず、良好な全揚程−流量特性が得られない。具体的には、図8の全揚程−流量特性Hを参照すると、流量Qの減少に伴って全揚程Hが低下する領域があるために、部分量領域において全揚程−流量特性Hは山なりの特性(山形特性)を示し、かつ締切全揚程も図6の場合と比較して低下している。なお、図8において、SPはそれぞれ図7の多段流体機械の軸動力−流量特性を示している。 However, if the length of the return guide vane 9 in the radial direction A is set short as shown in FIG. 7, the effect of suppressing the backflow from the impeller 2 at the next stage in the partial flow rate region cannot be obtained, and a good total head− The flow characteristics cannot be obtained. Specifically, referring to the total lift-flow rate characteristic H 1 in FIG. 8, since there is a region where the total lift H 1 decreases as the flow rate Q decreases, the total lift-flow rate characteristic H 1 in the partial amount region. Indicates a mountain-like characteristic (mountain characteristic), and the total lifting height is also lower than in the case of FIG. In FIG. 8, SP 1 indicates the shaft power-flow rate characteristic of the multistage fluid machine of FIG.

以上のように、戻り案内羽根9の径方向Aの長さが長いと(図6)、最高効率を十分に向上させることができない。逆に、戻り案内羽根9の径方向Aの長さが短いと(図7)、部分流量域での全揚程−流量特性が良好でない。   As described above, when the length of the return guide blade 9 in the radial direction A is long (FIG. 6), the maximum efficiency cannot be sufficiently improved. Conversely, if the length of the return guide blade 9 in the radial direction A is short (FIG. 7), the total head-flow rate characteristic in the partial flow rate region is not good.

特許第3,299,638号Patent 3,299,638

本発明は、最高効率が高く、かつ部分流量域で良好な全揚程−流量特性が得られる多段流体機械を提供することを課題とする。   It is an object of the present invention to provide a multistage fluid machine that has the highest efficiency and that can obtain a good total head-flow rate characteristic in a partial flow rate region.

本明細書において、羽根に関して「前縁」とは流体の流れ方向上流側ないしはその羽根への入口側の縁部をいい、「後縁」とは流体の流れ方向下流側ないしはその羽根からの出口側の縁部をいう。   In this specification, with respect to the blade, the “front edge” refers to the upstream side in the fluid flow direction or the edge on the inlet side to the blade, and the “rear edge” refers to the downstream side in the fluid flow direction or the outlet from the blade. The side edge.

本発明は、回転軸に固定され、かつ出口が入口よりも前記回転軸の径方向外側に位置している複数の羽根車と、前記羽根車の前記出口から次段の前記羽根車の前記入口に向かって前記回転軸の径方向に延びる戻り流路と、この戻り流路に配置された複数の戻り案内羽根とを備える多段流体機械において、前記羽根車の出口に位置された複数のディヒューザ羽根と前記複数の戻り案内羽根を備えるディヒューザと、前記回転軸が挿通されると共に前記ディヒューザに固定されたブッシュに設けられた、前記回転軸の軸線に対して放射状に延びる複数の整流板とを備え、前記複数の戻り案内羽根の後縁が、前記羽根車の羽根の前縁よりも前記回転軸の径方向外側に位置し、前記整流板は、一つ置きの前記戻り案内羽根に対して前縁が前記戻り案内羽根の後縁に沿って延び、かつ前記戻り流路内において前記戻り案内羽根の前記後縁から前記回転軸に向かって延びるように設けられていることを特徴とする多段流体機械を提供する。 The present invention includes a plurality of impellers that are fixed to a rotating shaft and whose outlets are positioned radially outside the rotating shaft with respect to the inlet, and the inlets of the impellers in the next stage from the outlets of the impellers A plurality of diffuser blades positioned at an outlet of the impeller in a multi-stage fluid machine including a return flow path extending in a radial direction of the rotation shaft toward the rotation path and a plurality of return guide blades disposed in the return flow path And a diffuser comprising the plurality of return guide vanes, and a plurality of rectifying plates that extend through the axis of the rotating shaft and that are provided on a bush that is inserted through the rotating shaft and is fixed to the diffuser. The trailing edges of the plurality of return guide vanes are positioned radially outward of the rotating shaft with respect to the leading edges of the impeller blades, and the rectifying plates are arranged in front of every other return guide vane. The edge is the return guide Extending along the trailing edge of the root, and to provide a multistage fluid machine, characterized in that provided from the trailing edge of the return guide vanes in the return flow path so as to extend toward the rotating shaft.

まず、戻り案内羽根の後縁は羽根車の羽根の前縁よりも回転軸の径方向外側に位置する。換言すれば、戻り案内羽根は回転軸の径方向の長さが短い。そのため、最高効率を含む流量域において、個々の羽根車の入口において前段の羽根車による旋回成分は極めて小さくなる。従って、最高効率を含む流量域における効率が向上する。   First, the trailing edge of the return guide vane is positioned on the outer side in the radial direction of the rotating shaft with respect to the leading edge of the vane of the impeller. In other words, the return guide vane has a short length in the radial direction of the rotating shaft. Therefore, in the flow rate range including the highest efficiency, the swirl component due to the preceding stage impeller is extremely small at the entrance of each impeller. Therefore, the efficiency in the flow rate region including the highest efficiency is improved.

次に、戻り案内羽根の後縁から回転軸に向かって延びる整流板を設けているので、部分流量域における次段の羽根車からの逆流が整流される。換言すると、次段の羽根車の入口における旋回成分が前段の羽根車の出口側における流体の挙動に与える影響を低減できる。そのため、前述のように戻り案内羽根の回転軸の径方向の長さが短いにもかかわらず、部分流量域において良好な全揚程−流量特性が得られる。具体的には、流量の減少に伴って全揚程が低下することに起因する全揚程−流量曲線の山なりの特性(山形特性)が改善され、かつ締切全揚程の低下も防止することができる。   Next, since the rectifying plate extending from the rear edge of the return guide vane toward the rotating shaft is provided, the backflow from the next stage impeller in the partial flow rate region is rectified. In other words, the influence of the swirling component at the inlet of the next stage impeller on the behavior of the fluid on the outlet side of the preceding stage impeller can be reduced. Therefore, although the radial length of the rotating shaft of the return guide vane is short as described above, good total head-flow rate characteristics can be obtained in the partial flow rate region. Specifically, the peak-like characteristic (mountain shape characteristic) of the total head-flow rate curve resulting from the reduction of the total head with a decrease in the flow rate can be improved, and the reduction of the total lifting height can be prevented. .

また、整流板は戻り案内羽根の一部に設けている。換言すれば、整流板の枚数は戻り案内羽根の枚数よりも少ない。従って、部分流量域以外の流量域では整流板を設けたことの影響は最小限に抑制され、前述のように戻り案内羽根の回転軸の径方向の長さを短くしたことにより最高効率を含む流量域での効率が向上する。整流板は規則的に、すなわち1枚又は複数枚の戻り案内羽根毎に設けることが好ましい。   The rectifying plate is provided in a part of the return guide vane. In other words, the number of rectifying plates is smaller than the number of return guide vanes. Therefore, the influence of providing the rectifying plate is minimized in the flow rate region other than the partial flow rate region, and the maximum efficiency is achieved by shortening the radial length of the rotating shaft of the return guide vane as described above. Efficiency in the flow area is improved. The rectifying plate is preferably provided regularly, that is, for each of one or a plurality of return guide vanes.

さらに、整流板は戻り案内羽根の後縁から前記回転軸に向かって延びており、戻り案内羽根よりも回転軸の径方向内側に位置している。従って、整流板を設けたことによって、回転軸の軸線方向の多段流体機械の寸法が増加しない。   Further, the current plate extends from the rear edge of the return guide vane toward the rotation shaft, and is located on the radially inner side of the rotation shaft with respect to the return guide vane. Therefore, by providing the current plate, the dimension of the multistage fluid machine in the axial direction of the rotating shaft does not increase.

以上のように、本発明の多段流体機械によれば、最高効率を含む流量域において高効率を実現しつつ、部分流量域において良好な全揚程−流量特性を得ることができ、かつ回転軸の軸線方向に多段流体機械が大型化することもない。   As described above, according to the multistage fluid machine of the present invention, it is possible to obtain a good total head-flow rate characteristic in the partial flow rate range while achieving high efficiency in the flow rate range including the maximum efficiency, and The multistage fluid machine does not increase in size in the axial direction.

整流板によって部分流量域における次段の羽根車からの逆流を整流する効果を高めるために、前記整流板の前縁は前記戻り案内羽根の後縁に沿って延びる。 To increase the effect of rectifying the backflow from the next stage of the impeller in the partial throughput area by the rectifying plate, the front edge of the rectifier plate is Ru extends along the trailing edge of the return guide vanes.

整流板は、三次元曲面等の複雑な形状でなく、厚みが一定の単なる平板状であ。また、整流板は回転軸の軸線に対して放射状に配置されてい。従って、製造が容易である。 Rectifying plate is not complicated shape such as a three-dimensional curved surface, Ru mere flat der is constant thickness. Also, the rectifying plate that is disposed radially relative to the axis of the rotary shaft. Therefore, manufacture is easy.

前記複数の整流板は、前記羽根車の出口に位置された複数のディヒューザ羽根と前記複数の戻り案内羽根を備えるディヒューザに対して固定されている。   The plurality of rectifying plates are fixed to a diffuser including a plurality of diffuser blades located at an outlet of the impeller and the plurality of return guide blades.

転軸が挿通されたブッシュに複数の整流板を設け、このブッシュをディヒューザに固定している。このようなブッシュを設けることで多段流体機械の製造ないしは組立が一層容易になる。 A plurality of rectifying plates bush rotating shaft is inserted, and fixing the bushing to the diffuser. Providing such a bush makes it easier to manufacture or assemble a multistage fluid machine.

本発明の多段流体機械では、戻り案内羽根の後縁が羽根車の羽根の前縁よりも回転軸の径方向外側に位置し、複数の戻り案内羽根の一部に設けられた整流板が設けられ、かつ整流板は戻り案内羽根の後縁から回転軸に向かって延びているので、回転軸の軸方向に多段流体機械を大型化することなく、最高効率点を含む流量域における効率を向上し、かつ部分流量域において良好な全揚程−流量特性を得ることができる。整流板は、三次元曲面等の複雑な形状でなく、厚みが一定の単なる平板状である。また、整流板は回転軸の軸線に対して放射状に配置されている。従って、製造が容易である。回転軸が挿通されたブッシュに複数の整流板を設け、このブッシュをディヒューザに固定している。このようなブッシュを設けることで多段流体機械の製造ないしは組立が一層容易になる。 In the multistage fluid machine of the present invention, the trailing edge of the return guide vane is located on the radially outer side of the rotating shaft with respect to the leading edge of the impeller blade, and a rectifying plate provided on a part of the plurality of return guide vanes is provided. In addition, the flow straightening plate extends from the trailing edge of the return guide vane toward the rotating shaft, improving the efficiency in the flow rate range including the highest efficiency point without increasing the size of the multistage fluid machine in the axial direction of the rotating shaft. In addition, good total head-flow rate characteristics can be obtained in the partial flow rate region. The current plate is not a complicated shape such as a three-dimensional curved surface, but a simple flat plate with a constant thickness. The rectifying plates are arranged radially with respect to the axis of the rotating shaft. Therefore, manufacture is easy. A plurality of rectifying plates are provided on the bush through which the rotating shaft is inserted, and the bush is fixed to the diffuser. Providing such a bush makes it easier to manufacture or assemble a multistage fluid machine.

次に、添付図面を参照して本発明の実施形態を詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(実施形態)
図1及び図2は、本発明の実施形態に係る多段ポンプを示す。
(Implementation form)
1 and 2 show a multistage pump according to an embodiment of the present invention.

図1を参照すると、この多段ポンプのケーシング11は、それぞれリング状で互いに重ね合わせられた複数のステージケーシング12、これらステージケーシング12の一端(図において右側の端部)の吸込側ケーシング13及び吸込側リング14、並びにステージケーシング12の他端(図において左側の端部)の吐出側ケーシング15及び吐出側リング16を備える。ステーボルト17によって吸込側ケーシング13と吐出側ケーシング15が複数のステージケーシング12を回転軸19の軸線Lの方向(矢印Bで示す)に締め付け、それによってケーシング11が一体に保持されている。また、回転軸19に固定された複数の羽根車20はそれぞれ1個のステージケーシング12内に収容されている。さらに、ステージケーシング12毎にリング状のディヒューザ21が設けられている。回転軸19はケーシング11を貫通して図において水平方向に延びている。回転軸19は、吸込側及び吐出側リング14,16に固定されたパッキンボックス22A,22Bに収容された軸封装置23A,23Bにより、両端が軸封されている。また、回転軸19は、パッキンボックス22A,22Bに固定されたブラケット24A,24Bに取り付けた軸受25A,25Bにより、両端が回転自在に支持されている。ブラケット25Aから突出する回転軸19の図において右側の端部が図示しない原動機に機械的に連結される。回転軸19に作用する軸線L方向の圧力の釣り合いのために、バランスディスク26とバランスシート27が設けられている。   Referring to FIG. 1, a casing 11 of this multistage pump includes a plurality of stage casings 12 that are respectively overlapped in a ring shape, a suction side casing 13 and a suction side of one end (right end in the figure) of these stage casings 12. A side ring 14 and a discharge side casing 15 and a discharge side ring 16 at the other end (the left end in the figure) of the stage casing 12 are provided. The suction side casing 13 and the discharge side casing 15 fasten the plurality of stage casings 12 in the direction of the axis L of the rotating shaft 19 (indicated by the arrow B) by the stay bolts 17, whereby the casing 11 is held integrally. A plurality of impellers 20 fixed to the rotating shaft 19 are accommodated in one stage casing 12, respectively. Further, a ring-shaped diffuser 21 is provided for each stage casing 12. The rotary shaft 19 extends through the casing 11 in the horizontal direction in the drawing. The rotating shaft 19 is sealed at both ends by shaft sealing devices 23A and 23B housed in packing boxes 22A and 22B fixed to the suction side and discharge side rings 14 and 16, respectively. Further, both ends of the rotating shaft 19 are rotatably supported by bearings 25A and 25B attached to brackets 24A and 24B fixed to the packing boxes 22A and 22B. In the drawing of the rotary shaft 19 protruding from the bracket 25A, the right end is mechanically connected to a motor (not shown). In order to balance the pressure in the direction of the axis L acting on the rotary shaft 19, a balance disk 26 and a balance sheet 27 are provided.

原動機により回転軸19が回転駆動されると、吸込側ケーシング13に設けられた吸込口13aから吸い込まれた水等の流体は、回転軸19と共に回転する各段の羽根車20で加圧された後、吐出側ケーシング15に形成された吐出口15aから吐出される。
When the rotary shaft 19 is rotationally driven by the prime mover, the fluid such as water sucked from the suction port 13 a provided in the suction side casing 13 is pressurized by the impeller 20 of each stage rotating together with the rotary shaft 19. Thereafter, the ink is discharged from a discharge port 15 a formed in the discharge side casing 15.

図2(A),(B)を併せて参照すると、回転軸19に固定された複数の羽根車20は、出口20bが入口20aよりも回転軸19の径方向(矢印Aで示す)の外側に位置している。ステージケーシング12とディヒューザ21により羽根車20の出口20bから次段の羽根車20の入口20aに至る流路、すなわちディヒューザ流路31と戻り流路32が形成されている。ディヒューザ21には複数のディヒューザ羽根34と複数の戻り案内羽根35が設けられている。これらディヒューザ羽根34と戻り案内羽根35は、羽根車20の羽根36とは異なり、回転軸19の回転中も静止している固定羽根ないしは静止翼である。ディヒューザ羽根34は羽根車20の出口20b近傍のディヒューザ流路31に配置されている。   2 (A) and 2 (B), the plurality of impellers 20 fixed to the rotating shaft 19 are arranged such that the outlet 20b is outside the radial direction of the rotating shaft 19 (indicated by the arrow A) than the inlet 20a. Is located. The stage casing 12 and the diffuser 21 form a flow path from the outlet 20 b of the impeller 20 to the inlet 20 a of the next stage impeller 20, that is, a diffuser flow path 31 and a return flow path 32. The diffuser 21 is provided with a plurality of diffuser blades 34 and a plurality of return guide blades 35. Unlike the blades 36 of the impeller 20, the diffuser blades 34 and the return guide blades 35 are fixed blades or stationary blades that are stationary even during rotation of the rotary shaft 19. The diffuser blade 34 is disposed in the diffuser flow path 31 near the outlet 20 b of the impeller 20.

戻り案内羽根35は、ディヒューザ流路31から次段の羽根車20の入口20aに向けて回転軸19の径方向Aに延びる戻り流路32に配置されている。図2(B)に示すように、戻り案内羽根35は回転軸19の軸線Lの方向から見ると翼形であり、かつ軸線Lに対して放射状に配置されている。本実施形態では戻り案内羽根35の枚数は18枚である。図2(A)を参照すると、メリディアン断面における戻り案内羽根35の前縁35aと後縁35bは軸線Lの方向Bに延びる互いに平行な直線状である。また、案内羽根35の後縁35bは、羽根車20の羽根36の前縁36aの最も回転軸19の径方向A外側の端部36bよりも、回転軸19の径方向A外側に位置している。   The return guide vane 35 is disposed in the return channel 32 extending in the radial direction A of the rotary shaft 19 from the diffuser channel 31 toward the inlet 20a of the next stage impeller 20. As shown in FIG. 2B, the return guide vanes 35 are airfoil when viewed from the direction of the axis L of the rotary shaft 19 and are arranged radially with respect to the axis L. In the present embodiment, the number of return guide blades 35 is 18. Referring to FIG. 2A, the front edge 35a and the rear edge 35b of the return guide vane 35 in the Meridian section are straight lines extending in the direction B of the axis L and parallel to each other. Further, the rear edge 35b of the guide vane 35 is located on the outer side in the radial direction A of the rotary shaft 19 from the end 36b on the outermost side of the rotary shaft 19 in the radial direction A of the front edge 36a of the vane 36 of the impeller 20. Yes.

複数枚の戻り案内羽根35の一部に対して整流板37が設けられている。図2(B)に示すように、本実施形態では、放射状に配置された18枚の戻り案内羽根35に対して1枚置きに整流板37が設けられ、整流板37の枚数は9枚である。換言すれば、整流板37は戻り案内羽根35よりも疎に設けられている。   A rectifying plate 37 is provided for a part of the plurality of return guide blades 35. As shown in FIG. 2 (B), in the present embodiment, every other rectifying plate 37 is provided for 18 return guide vanes 35 arranged radially, and the number of rectifying plates 37 is nine. is there. In other words, the rectifying plate 37 is provided sparser than the return guide vane 35.

図2(A),(B)を参照すると、整流板37は厚みが一定な平板状であり、回転軸19の軸線Lに対して放射状に配置されている。整流板37は対応する戻り案内羽根35の後縁35bから回転軸19に向かって径方向Aに延びている。換言すれば、整流板37は戻り案内羽根35よりも径方向A内側に設けられている。   Referring to FIGS. 2A and 2B, the rectifying plate 37 has a flat plate shape with a constant thickness, and is arranged radially with respect to the axis L of the rotating shaft 19. The rectifying plate 37 extends in the radial direction A from the rear edge 35 b of the corresponding return guide vane 35 toward the rotary shaft 19. In other words, the current plate 37 is provided on the inner side in the radial direction A than the return guide vane 35.

また、整流板37は、ディヒューザ羽根34及び戻り案内羽根35と同様に、固定羽根ないしは静止翼であり、ディヒューザ21に対して固定されている。詳細には、図3及び図4を併せて参照すると、回転軸19が挿通されたブッシュ38に整流板37が設けられており、このブッシュ38の一端に設けられたフランジ38aがディヒューザ21に対してボルトで固定されている。個々の整流板37を別々にディヒューザ21に固定する必要がなく、ブッシュ38をディヒューザ21に対して固定すればよいので、多段ポンプの製造ないしは組立を容易に行うことができる。   Further, like the diffuser blade 34 and the return guide blade 35, the rectifying plate 37 is a fixed blade or a stationary blade and is fixed to the diffuser 21. Specifically, referring to FIGS. 3 and 4 together, a rectifying plate 37 is provided on a bush 38 through which the rotary shaft 19 is inserted, and a flange 38 a provided at one end of the bush 38 is connected to the diffuser 21. It is fixed with bolts. It is not necessary to fix the individual rectifying plates 37 to the diffuser 21 separately, and the bush 38 only has to be fixed to the diffuser 21, so that the multistage pump can be easily manufactured or assembled.

図2(A)に示すように、メリディアン断面において整流板37の前縁37aは回転軸19の軸線方向Bに延びており、羽根車20の羽根36の後縁36cに沿って延びている。整流板37の前縁37aと戻り案内羽根35の後縁35bは互い当接しており、戻り案内羽根35とそれに対応する整流板37は、ほぼ一つの流体要素を構成している。一方、整流板37の後縁37bは回転軸19の径方向Aに延びている。整流板37のいずれの部分も戻り案内羽根35よりも羽根車20側に配置されている。還元すれば、整流板37は戻り案内羽根35を超えて次段の羽根車20側に突出していない。 As shown in FIG. 2A, the front edge 37 a of the rectifying plate 37 extends in the axial direction B of the rotating shaft 19 and extends along the rear edge 36 c of the blade 36 of the impeller 20 in the Meridian section. The front edge 37a of the rectifying plate 37 and the rear edge 35b of the return guide vane 35 are in contact with each other, and the return guide vane 35 and the corresponding rectifying plate 37 constitute almost one fluid element. On the other hand, the trailing edge 37 b of the rectifying plate 37 extends in the radial direction A of the rotating shaft 19. Any part of the rectifying plate 37 is disposed closer to the impeller 20 than the return guide vane 35. In other words, the rectifying plate 37 does not protrude beyond the return guide vane 35 to the impeller 20 side of the next stage.

次に、前記構成の作用を説明する。まず、前述のように戻り案内羽根35の後縁35bは羽根車20の羽根36の前縁36aよりも回転軸19の径方向A外側に位置する。換言すれば、戻り案内羽根35は回転軸19の径方向Aの長さが短い。そのため、最高効率点を含む流量域では、個々の羽根車20の入口において前段の羽根車20による旋回成分は極めて小さくなり、この流量域における効率が向上する。図8において、H、η、及びSPはそれぞれ本実施形態の多段ポンプの全揚程−流量特性、効率−流量特性、及び軸動力−流量特性を示している。本実施形態と戻り案内羽根の長さが長い場合(図6(A),(B)参照)とで効率−流量特性η,ηを比較すると、本実施形態における最高効率点(流量Qhe)での効率η2hは、戻り案内羽根の長さが長い場合の効率η0hよりも高い。 Next, the operation of the above configuration will be described. First, as described above, the rear edge 35b of the return guide vane 35 is located on the outer side in the radial direction A of the rotary shaft 19 with respect to the front edge 36a of the vane 36 of the impeller 20. In other words, the return guide vane 35 has a short length in the radial direction A of the rotating shaft 19. Therefore, in the flow rate region including the highest efficiency point, the swirl component due to the preceding impeller 20 becomes extremely small at the inlet of each impeller 20, and the efficiency in this flow rate region is improved. In FIG. 8, H 2 , η 2 , and SP 2 indicate the total head-flow rate characteristic, the efficiency-flow rate characteristic, and the shaft power-flow rate characteristic of the multistage pump of this embodiment, respectively. When the efficiency-flow rate characteristics η 0 and η 2 are compared between the present embodiment and the case where the return guide vane is long (see FIGS. 6A and 6B), the highest efficiency point (flow rate Q in the present embodiment) The efficiency η 2h at he ) is higher than the efficiency η 0h when the length of the return guide vane is long.

次に、戻り案内羽根35の後縁35bから回転軸19に向かって延びる整流板37を設けているので、部分流量域における次段の羽根車20からの逆流が整流される。換言すると、次段の羽根車20の入口20aにおける旋回成分が前段の羽根車20の出口20b側における流体の挙動に与える影響を低減できる。そのため、前述のように戻り案内羽根35の回転軸19の径方向Aの長さが短いにもかかわらず、部分流量域において良好な全揚程−流量特性が得られる。図8を参照すると、単に戻り案内羽根の長さを短くした場合(図7(A),(B))には全揚程−流量特性Hは山なりの特性(山形特性)を示すが、本実施形態の全揚程−流量特性Hは山形特性が改善され、締切全揚程の低下も十分抑制されている。 Next, since the rectifying plate 37 extending from the rear edge 35b of the return guide vane 35 toward the rotating shaft 19 is provided, the backflow from the next stage impeller 20 in the partial flow rate region is rectified. In other words, the influence of the swirling component at the inlet 20a of the next stage impeller 20 on the behavior of the fluid on the outlet 20b side of the previous stage impeller 20 can be reduced. Therefore, although the length in the radial direction A of the rotating shaft 19 of the return guide vane 35 is short as described above, a good total head-flow rate characteristic can be obtained in the partial flow rate region. Referring to FIG. 8, when the length of the return guide vane is simply shortened (FIGS. 7A and 7B), the total head-flow rate characteristic H 1 shows a mountain-like characteristic (mountain characteristic). total head of the present embodiment - flow characteristics H 2 may be improved chevron characteristics, reduction of deadlines total head is also sufficiently suppressed.

また、すべての戻り案内羽根35に整流板37を設けるのではなく、戻り案内羽根35の一部についてのみ整流板37を設けている。従って、整流板37を設けたことによる最高効率点を含む流量域における効率低下等の影響は最小限に抑制され、前述のように戻り案内羽根35の回転軸19の径方向Aの長さを短くしたことによって最高効率点を含む流量域での効率が向上する。   Further, not all the return guide vanes 35 are provided with the rectifying plates 37, but the rectifying plates 37 are provided only for a part of the return guide vanes 35. Therefore, the influence of the efficiency reduction in the flow rate region including the highest efficiency point due to the provision of the flow regulating plate 37 is minimized, and the length of the return guide vane 35 in the radial direction A of the rotating shaft 19 is reduced as described above. By shortening, the efficiency in the flow rate region including the highest efficiency point is improved.

さらに、整流板37は戻り案内羽根35の径方向A内側に設けられ、戻り案内羽根35を超えて次段の羽根車20側に突出していない。従って、整流板37を設けたことによる回転軸19の軸線方向Bの多段ポンプの寸法の増加を抑制することができる。   Further, the rectifying plate 37 is provided on the inner side in the radial direction A of the return guide vane 35 and does not protrude beyond the return guide vane 35 toward the next stage impeller 20. Therefore, an increase in the dimension of the multistage pump in the axial direction B of the rotating shaft 19 due to the provision of the rectifying plate 37 can be suppressed.

参考例
図5(A),(B)に示す本発明の参考例では、9枚の整流板37をそれぞれ別個にディヒューザ21に直接固定している。参考例のその他の構成及び作用は実施形態と同様であるので、同一の要素には同一の符号を付して説明を省略する。
( Reference example )
In the reference example of the present invention shown in FIGS. 5A and 5B, nine rectifying plates 37 are directly fixed to the diffuser 21 separately. Since other structures and functions of the reference example is the same as the implementation form, the same elements will not be described are denoted by the same reference numerals.

多段ポンプを例に本発明を説明したが、本発明の多段流体機械は多段遠心圧縮機にも適用できる。また、整流板は複数枚置きの戻り案内羽根に設けてもよい。   Although the present invention has been described by taking a multistage pump as an example, the multistage fluid machine of the present invention can also be applied to a multistage centrifugal compressor. Moreover, you may provide a baffle plate in the return guide blade | wing of every several sheets.

本発明の実施形態に係る多段ポンプを示す断面図。Sectional view showing a multi-stage pump according to the implementation embodiments of the present invention. (A)は図1の要部拡大図、(B)は回転軸の軸線方向から見た戻り案内羽根及び整流板を示す図。(A) is a principal part enlarged view of FIG. 1, (B) is a figure which shows the return guide blade and the baffle plate seen from the axial direction of the rotating shaft. 整流板固定用のブッシュの正面図。The front view of the bush for baffle plate fixation. 図3のIV−IV線での部分断面図。FIG. 4 is a partial cross-sectional view taken along line IV-IV in FIG. 3. (A)は本発明の参考例に係る多段ポンプの要部拡大断面図、(B)は回転軸の軸線方向から見た戻り案内羽根及び整流板を示す図。(A) is a principal part expanded sectional view of the multistage pump which concerns on the reference example of this invention, (B) is a figure which shows the return guide blade and the baffle plate seen from the axial direction of the rotating shaft. 従来の多段ポンプの一例を示し、(A)は要部拡大断面図、(B)は回転軸の軸線方向から見た戻り案内羽根及び整流板を示す図。An example of the conventional multistage pump is shown, (A) is a principal part expanded sectional view, (B) is a figure which shows the return guide blade and the baffle plate seen from the axial direction of the rotating shaft. 従来の多段ポンプの他の一例を示し、(A)は要部拡大断面図、(B)は回転軸の軸線方向から見た戻り案内羽根及び整流板を示す図。The other example of the conventional multistage pump is shown, (A) is a principal part expanded sectional view, (B) is a figure which shows the return guide blade and the baffle plate seen from the axial direction of the rotating shaft. 従来の多段流体機械及び本発明の実施形態に係る多段ポンプにおける流量と全揚程、軸動力、及び効率との関係を示す線図。Flow and total head in a multi pump according to implementation form of a conventional multistage fluid machine and the present invention, the diagram showing the relationship between the shaft power, and efficiency.

符号の説明Explanation of symbols

11 ケーシング
12 ステージケーシング
13 吸込側ケーシング
13a 吸込口
14 吸込側リング
15 吐出側ケーシング
15a 吐出口
16 吐出側リング
17 ステーボルト
19 回転軸
20 羽根車
20a 入口
20b 出口
21 ディヒューザ
22A,22B パッキンボックス
23A,23B 軸封装置
24A,24B ブラケット
25A,25B 軸受
26 バランスディスク
27 バランスシート
31 ディヒューザ流路
32 戻り流路
34 ディヒューザ羽根
35 戻り案内羽根
35a 前縁
35b 後縁
36 羽根車の羽根
36a 前縁
36b 端部
36c 後縁
37 整流板
37a 前縁
37b 後縁
38 ブッシュ
38a フランジ
11 Casing 12 Stage casing 13 Suction side casing 13a Suction port 14 Suction side ring 15 Discharge side casing 15a Discharge port 16 Discharge side ring 17 Stay bolt 19 Rotating shaft 20 Impeller 20a Inlet 20b Outlet 21 Diffuser 22A, 22B Packing box 23A, 23B Shaft seal device 24A, 24B Bracket 25A, 25B Bearing 26 Balance disk 27 Balance sheet 31 Diffuser flow path 32 Return flow path 34 Diffuser blade 35 Return guide blade 35a Front edge 35b Rear edge 36 Impeller blade 36a Front edge 36b End 36c Rear edge 37 Current plate 37a Front edge 37b Rear edge 38 Bush 38a Flange

Claims (1)

回転軸に固定され、かつ出口が入口よりも前記回転軸の径方向外側に位置している複数の羽根車と、前記羽根車の前記出口から次段の前記羽根車の前記入口に向かって前記回転軸の径方向に延びる戻り流路と、この戻り流路に配置された複数の戻り案内羽根とを備える多段流体機械において、
前記羽根車の出口に位置された複数のディヒューザ羽根と前記複数の戻り案内羽根を備えるディヒューザと、
前記回転軸が挿通されると共に前記ディヒューザに固定されたブッシュに設けられた、前記回転軸の軸線に対して放射状に延びる複数の整流板とを備え、
前記複数の戻り案内羽根の後縁が、前記羽根車の羽根の前縁よりも前記回転軸の径方向外側に位置し、
前記整流板は、一つ置きの前記戻り案内羽根に対して前縁が前記戻り案内羽根の後縁に沿って延び、かつ前記戻り流路内において前記戻り案内羽根の前記後縁から前記回転軸に向かって延びるように設けられていることを特徴とする多段流体機械。
A plurality of impellers fixed to the rotating shaft and having outlets positioned radially outside the rotating shaft with respect to the inlet; and from the outlet of the impeller toward the inlet of the next stage of the impeller In a multistage fluid machine including a return flow path extending in the radial direction of the rotation shaft and a plurality of return guide vanes arranged in the return flow path,
A diffuser comprising a plurality of diffuser blades located at the exit of the impeller and the plurality of return guide vanes;
A plurality of rectifying plates extending radially with respect to the axis of the rotating shaft, provided on a bush that is inserted through the rotating shaft and fixed to the diffuser;
The rear edges of the plurality of return guide vanes are located on the radially outer side of the rotating shaft with respect to the front edges of the vanes of the impeller,
The rectifying plate has a leading edge extending along the trailing edge of the return guide blade with respect to every other return guide blade, and the rotation shaft extends from the rear edge of the return guide blade in the return flow path. A multi-stage fluid machine, wherein the multi-stage fluid machine is provided so as to extend toward the center .
JP2004149381A 2004-05-19 2004-05-19 Multistage fluid machinery Expired - Fee Related JP4707969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149381A JP4707969B2 (en) 2004-05-19 2004-05-19 Multistage fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149381A JP4707969B2 (en) 2004-05-19 2004-05-19 Multistage fluid machinery

Publications (2)

Publication Number Publication Date
JP2005330878A JP2005330878A (en) 2005-12-02
JP4707969B2 true JP4707969B2 (en) 2011-06-22

Family

ID=35485726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149381A Expired - Fee Related JP4707969B2 (en) 2004-05-19 2004-05-19 Multistage fluid machinery

Country Status (1)

Country Link
JP (1) JP4707969B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872456B2 (en) * 2006-05-24 2012-02-08 パナソニック電工株式会社 Pump and liquid supply device
US7905703B2 (en) * 2007-05-17 2011-03-15 General Electric Company Centrifugal compressor return passages using splitter vanes
DE102007042529A1 (en) * 2007-09-07 2009-03-12 Man Turbo Ag Turbomachine and manufacturing method for such a turbomachine
IT1399881B1 (en) * 2010-05-11 2013-05-09 Nuova Pignone S R L CONFIGURATION OF BALANCING DRUM FOR COMPRESSOR ROTORS
JP5613006B2 (en) 2010-10-18 2014-10-22 株式会社日立製作所 Multistage centrifugal compressor and its return channel
JP5889622B2 (en) * 2010-12-14 2016-03-22 株式会社クボタ Multistage pump
ITFI20120290A1 (en) 2012-12-21 2014-06-22 Nuovo Pignone Srl "MULTI-STAGE COMPRESSOR AND METHOD FOR OPERATING A MULTI-STAGE COMPRESSOR"
CN105370626B (en) * 2014-08-07 2019-02-19 重庆美的通用制冷设备有限公司 Return channel for centrifugal compressor and the centrifugal compressor with it
CN104500454A (en) * 2014-12-25 2015-04-08 珠海格力电器股份有限公司 Refluxing device and centrifugal compressor
CN106812726A (en) * 2016-12-29 2017-06-09 西安航天泵业有限公司 A kind of multistage centrifugal pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771797U (en) * 1980-10-21 1982-05-01
JPS59200089A (en) * 1983-04-27 1984-11-13 Hitachi Ltd Multi-stage pump
JPH07293478A (en) * 1993-10-04 1995-11-07 Ingersoll Dresser Pump Co Centrifugal pump with integral type guide-return vane flow -path ring member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771797U (en) * 1980-10-21 1982-05-01
JPS59200089A (en) * 1983-04-27 1984-11-13 Hitachi Ltd Multi-stage pump
JPH07293478A (en) * 1993-10-04 1995-11-07 Ingersoll Dresser Pump Co Centrifugal pump with integral type guide-return vane flow -path ring member

Also Published As

Publication number Publication date
JP2005330878A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP5316365B2 (en) Turbo fluid machine
JP5608062B2 (en) Centrifugal turbomachine
JP5233436B2 (en) Centrifugal compressor with vaneless diffuser and vaneless diffuser
WO2011007467A1 (en) Impeller and rotary machine
JP6140736B2 (en) Centrifugal rotating machine
JP5029024B2 (en) Centrifugal compressor
WO2011007466A1 (en) Impeller and rotary machine
EP2453139B1 (en) Flow vector control for high speed centrifugal pumps
JP4707969B2 (en) Multistage fluid machinery
WO2018181343A1 (en) Centrifugal compressor
JP2010124534A (en) Mixed flow fan for electric motors and motor equipped with this mixed flow fan
JP2009133267A (en) Impeller of compressor
EP3096022A1 (en) Impeller and rotating machine provided with same
WO2014122819A1 (en) Centrifugal compressor
JP7429810B2 (en) Multi-stage centrifugal fluid machine
JP4703578B2 (en) Francis turbine
JP5232721B2 (en) Centrifugal compressor
JP4146371B2 (en) Centrifugal compressor
RU2699860C2 (en) Improved scroll for turbomachine, turbomachine comprising such scroll and method of operation
JP2004150404A (en) Vaned diffuser and radial flow turbo machine equipped with the diffuser
JP2003090279A (en) Hydraulic rotating machine vane
WO2022064751A1 (en) Centrifugal compressor
JP6078303B2 (en) Centrifugal fluid machine
JP7433261B2 (en) multistage centrifugal compressor
JP2000291593A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4707969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees