JP4707519B2 - Method and apparatus for evaluating rock permeability - Google Patents

Method and apparatus for evaluating rock permeability Download PDF

Info

Publication number
JP4707519B2
JP4707519B2 JP2005281744A JP2005281744A JP4707519B2 JP 4707519 B2 JP4707519 B2 JP 4707519B2 JP 2005281744 A JP2005281744 A JP 2005281744A JP 2005281744 A JP2005281744 A JP 2005281744A JP 4707519 B2 JP4707519 B2 JP 4707519B2
Authority
JP
Japan
Prior art keywords
tracer
injection
hole
water
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005281744A
Other languages
Japanese (ja)
Other versions
JP2007092353A (en
Inventor
泰宏 須山
博行 渥美
克 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005281744A priority Critical patent/JP4707519B2/en
Publication of JP2007092353A publication Critical patent/JP2007092353A/en
Application granted granted Critical
Publication of JP4707519B2 publication Critical patent/JP4707519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は岩盤の透水性評価方法及び装置に関し、とくに岩盤内の水みちを詳細に解析するための透水性評価方法及び装置に関する。   The present invention relates to a rock permeability evaluation method and apparatus, and more particularly, to a water permeability evaluation method and apparatus for analyzing in detail a water channel in the rock.

地下構造物の設計・施工では、地下の地盤や岩盤(以下、岩盤という)の構造や特性を把握することが求められる。例えば原子力発電所から生じる高レベル放射性廃棄物(放射性核種を含む)を人間環境から隔離して処分するため、人間が容易に接近できない地下深部の安定した岩盤内に構築した坑道に放射性廃棄物を閉じ込める地層処分が計画されている。地下深部の岩盤は一般に安定であるが、放射性核種は千年を超える長期にわたり減衰しつつも存在し続けるため、地層処分では長期の信頼性・安全性を確保する必要がある。とくに放射性核種は地下水の流れによって移行し得るので、地層処分場周辺の岩盤内の地下水の経路や水理特性を詳細に解析することが重要な課題となっている。なお岩盤内の地下水の経路や水理特性の評価は、地層処分場以外の地下構造物を設計・施工する際にも必要となる場合がある。   In the design and construction of underground structures, it is required to understand the structure and characteristics of underground ground and bedrock (hereinafter referred to as “rock”). For example, in order to dispose of high-level radioactive waste (including radionuclides) generated from nuclear power plants from the human environment and dispose of it, radioactive waste is put into a tunnel built in a stable rock in the deep underground that humans cannot easily access. Containment geological disposal is planned. The rocks in the deep underground are generally stable, but radionuclides continue to exist while decaying over a long period of more than a thousand years, so it is necessary to ensure long-term reliability and safety in geological disposal. In particular, since radionuclides can be transferred by the flow of groundwater, it is important to analyze the route and hydraulic characteristics of groundwater in the rock around the geological disposal site. In addition, the evaluation of groundwater path and hydraulic characteristics in the bedrock may be necessary when designing and constructing underground structures other than geological disposal sites.

地下水は岩盤内の亀裂中を移行するが、全ての亀裂に均等に移行するのではなく、主として「水みち」と呼ばれる一部の亀裂(地下水流れが支配的な部分)を経路として移行する。このため従来から岩盤内の地下水経路を解析する場合は、パッカーシステムを用いた現場水理試験が実施されている(特許文献1及び2参照)。例えば特許文献1では、図5に示すように、岩盤1中に穿孔したボーリング孔41内に試験区間を閉塞するためのダブルパッカー42、42を設け、試験区間に圧力計44を設けると共に試験区間近傍に揚水ポンプ43を設け、地表部に設けた圧力計測機器45、揚水量計測機器46等で試験区間内の揚水量及び揚水圧力を測定して透水性(例えば透水量係数)を検出する。また、パッカー42、42をボーリング孔41内の異なる試験区間に移動させ、試験区間毎に揚水量及び揚水圧力を測定することにより、ボーリング孔41の全体的な水みちの透水性を解析する。   Groundwater migrates through cracks in the rock, but does not migrate evenly to all cracks, but migrates mainly through a part of the crack (the part where the groundwater flow is dominant) called “water path”. For this reason, in the past, when analyzing the groundwater path in the rock mass, an on-site hydraulic test using a packer system has been performed (see Patent Documents 1 and 2). For example, in Patent Document 1, as shown in FIG. 5, double packers 42 and 42 for closing a test section are provided in a borehole 41 drilled in the rock mass 1, a pressure gauge 44 is provided in the test section, and a test section A pumping pump 43 is provided in the vicinity, and the water permeability (for example, the water permeability coefficient) is detected by measuring the pumping amount and pumping pressure in the test section with the pressure measuring device 45, the pumping amount measuring device 46, etc. provided on the ground surface. Further, the overall water permeability of the borehole 41 is analyzed by moving the packers 42 and 42 to different test sections in the borehole 41 and measuring the pumping amount and pumping pressure for each test section.

しかし、特許文献1及び2のようにパッカーシステムを用いた水理試験は、パッカー42、42を設けたボーリング孔41内の離散的な試験区間毎の透水性しか検出することができず、ボーリング孔41内の深さ方向に連続的な透水性を把握できないので、ボーリング孔41に繋がる全ての水みちを抽出することが難しい。また、パッカー42、42で閉塞された試験区間は一定の大きさを有しており、その試験区間の平均的な透水性しか把握できないので、水みち毎の透水性を個別に把握することも困難である。   However, the hydraulic test using the packer system as in Patent Documents 1 and 2 can only detect the water permeability of each discrete test section in the bore hole 41 provided with the packers 42 and 42, Since continuous water permeability cannot be grasped in the depth direction in the hole 41, it is difficult to extract all the water channels connected to the boring hole 41. In addition, the test section closed by the packers 42, 42 has a certain size, and since only the average water permeability of the test section can be grasped, it is possible to grasp the water permeability of each water channel individually. Have difficulty.

これに対し、例えば非特許文献1のように、電気伝導度検層や温度検層等の流体検層技術を用いて岩盤内の水みちを解析する方法が提案されている。非特許文献1では、例えば図4に示すように、岩盤1に穿孔した垂直ボーリング孔30内に注入用チューブ32を孔底付近まで挿入し、チューブ32を介して本来の地下水(非特許文献1では古海水)と異なる電気伝導度の水(非特許文献1では脱イオン水)を注入してボーリング孔30内を置換したのち、孔上部に設置した揚水ポンプ35で所定量ずつ揚水しながら孔内壁に沿って地下水検出子33(電気伝導度計)を上昇させて孔沿いの電気伝導度のプロファイル(以下、分布という)を測定する。この方法によれば、ボーリング孔30内の深さ方向に連続した電気伝導度分布を測定することができ、地下水の流入箇所が電気伝導度の明瞭なピークとして現れることから、電気伝導度分布のピークとしてボーリング孔30内の全ての水みちの位置を個別に抽出することができる。   On the other hand, for example, as in Non-Patent Document 1, a method of analyzing a water channel in a rock using a fluid logging technique such as electrical conductivity logging or temperature logging has been proposed. In Non-Patent Document 1, for example, as shown in FIG. 4, an injection tube 32 is inserted into the vertical boring hole 30 drilled in the rock mass 1 to the vicinity of the hole bottom, and the original groundwater (Non-Patent Document 1) is inserted through the tube 32. After injecting water with a conductivity different from that of paleo seawater (deionized water in Non-Patent Document 1) to replace the inside of the borehole 30, the pumping pump 35 installed at the top of the hole is pumped by a predetermined amount. The groundwater detector 33 (electric conductivity meter) is raised along the inner wall, and the electrical conductivity profile (hereinafter referred to as distribution) along the hole is measured. According to this method, a continuous electrical conductivity distribution in the depth direction in the borehole 30 can be measured, and the inflow location of groundwater appears as a clear peak in the electrical conductivity. As a peak, the positions of all the water paths in the borehole 30 can be extracted individually.

また非特許文献1は、電気伝導度分布の測定を一定時間間隔(例えば1時間間隔)で繰り返し、分布の経時的変化を測定している。電気伝導度分布のピーク値は水みちの地下水流入量(流入塩分濃度)に応じて変化するので、電気伝導度分布のピーク値の経時的変化から各水みちの透水性(例えば地下水流量)を求めることができる。更に非特許文献1は、揚水ポンプ35の揚水流量を変更しながら電気伝導度の分布測定を繰り返し、異なる揚水流量での測定結果の整合性を確認することにより、地下水流量の異なる大小の水みちの検出精度を高めている。すなわち非特許文献1の方法によれば、パッカーシステムを用いた水理試験に比し、ボーリング孔41内の水みちの位置や透水性を個別に精度よく把握することが可能である。   Further, Non-Patent Document 1 repeatedly measures the electrical conductivity distribution at a constant time interval (for example, 1 hour interval) and measures the temporal change of the distribution. Since the peak value of the electrical conductivity distribution changes according to the amount of groundwater inflow (inflow salinity) of the water path, the water permeability (for example, groundwater flow rate) of each water path is determined from the change over time of the peak value of the electrical conductivity distribution. Can be sought. Furthermore, Non-Patent Document 1 repeats the measurement of electrical conductivity distribution while changing the pumping flow rate of the pump 35, and confirms the consistency of the measurement results at different pumping flow rates. The detection accuracy is improved. That is, according to the method of Non-Patent Document 1, it is possible to accurately grasp the position and water permeability of the water channel in the borehole 41 individually as compared with the hydraulic test using the packer system.

特開平6−294116号公報JP-A-6-294116 特開平6−294117号公報JP-A-6-294117 竹内真司他「電気伝導度検層による深部花崗岩中の水みちの抽出と水理特性の評価」第33回岩盤力学に関するシンポジウム講演論文集、社団法人土木学会発行、2004年1月Shinji Takeuchi et al. “Extraction of water in deep granite by electrical conductivity logging and evaluation of hydraulic properties” Proceedings of the 33rd Symposium on Rock Mechanics, Published by Japan Society of Civil Engineers, January 2004 核燃料サイクル開発機構「わが国における高レベル放射性廃棄物地層処分の技術的信頼性(地層処分研究開発第2次取りまとめ)報告書、分冊3 地層処分システムの安全評価」平成11年11月Nuclear Fuel Cycle Development Organization “Technical Reliability of High Level Radioactive Waste Geological Disposal in Japan (Second Survey of Geological Disposal Research and Development) Report, Volume 3 Safety Evaluation of Geological Disposal System” November 1999

しかし非特許文献1の方法は、岩盤内の本来の地下水の電気伝導度とボーリング孔30内の置換水の電気伝導度との差が小さいと、水みちの検出精度が低下する問題点がある。非特許文献1は孔内水を脱イオン水で置換することにより海水である地下水と2桁程度の電気伝導度の差異をつけているが、ボーリング孔40内の孔内水の電気伝導度は置換により調整できるものの、岩盤内の地下水の電気伝導度を調整することは困難であるため、地下水の種類によって置換水との電気伝導度の差異を大きくすることができない場合も考えられる。地下水の種類に拘らず、岩盤内の水みちを精度よく解析できる技術の開発が望まれている。   However, the method of Non-Patent Document 1 has a problem that the detection accuracy of the water path is lowered when the difference between the electrical conductivity of the groundwater in the bedrock and the electrical conductivity of the replacement water in the borehole 30 is small. . Non-Patent Document 1 gives a difference in electric conductivity of about two orders of magnitude from groundwater, which is seawater, by substituting the water in the hole with deionized water, but the electric conductivity of the water in the hole in the borehole 40 is Although it can be adjusted by replacement, it is difficult to adjust the electrical conductivity of groundwater in the rock, so the difference in electrical conductivity from the replacement water cannot be increased depending on the type of groundwater. Regardless of the type of groundwater, the development of technology that can accurately analyze the water path in the rock is desired.

また、非特許文献1の方法は単孔式であるため、ボーリング孔30の近傍の水みちを把握することしかできず、水みちの空間的な分布や繋がり(連続性)に関する評価が難しい問題点がある。岩盤内の水みちは、単一の亀裂として存在するだけでなく、複数の亀裂に複雑に広がっていると考えられる。とくに岩盤内における放射性核種の移行経路を解析するような場合は、亀裂の1本1本を流れる地下水(核種が含まれる地下水)の評価を行う必要があり、岩盤内に複雑に広がる水みちの連続性を解析することが望まれている(非特許文献2参照)。   In addition, since the method of Non-Patent Document 1 is a single hole type, it is only possible to grasp the water channel in the vicinity of the boring hole 30, and it is difficult to evaluate the spatial distribution and connection (continuity) of the water channel. There is a point. It is thought that the water channel in the rock mass not only exists as a single crack but also spreads in multiple cracks. Especially when analyzing the migration path of radionuclides in the rock mass, it is necessary to evaluate the groundwater flowing through each crack (groundwater containing nuclides). It is desired to analyze continuity (see Non-Patent Document 2).

そこで本発明の目的は、岩盤内の個別の水みちの連続性を詳細に検出できる透水性評価方法及び装置を提供することにある。   Therefore, an object of the present invention is to provide a water permeability evaluation method and apparatus capable of detecting in detail the continuity of individual water paths in the rock.

図1の実施例を参照するに、本発明による岩盤の透水性評価方法は、岩盤1に一対のボーリング孔10、20を並列に穿ち、一方のボーリング孔10の所定深さの注入区画AにトレーサPを注入し、他方のボーリング孔20において所定流量で孔内水を揚水しながらトレーサ検出子26を上昇又は下降させて深さ方向に連続したトレーサPの分布又はその経時的変化を検出し、トレーサPの注入深さとトレーサPの分布又はその変化とから岩盤1内の水みちの位置又は透水性を求めてなるものである。   Referring to the embodiment of FIG. 1, the rock permeability evaluation method according to the present invention includes a pair of drilling holes 10 and 20 drilled in parallel in the rock mass 1, and an injection section A having a predetermined depth in one borehole 10. The tracer P is injected, and the tracer detector 26 is raised or lowered while pumping up the bore water at a predetermined flow rate in the other bore hole 20 to detect the distribution of the tracer P continuous in the depth direction or its change with time. From the injection depth of the tracer P and the distribution of the tracer P or its change, the position of the water channel or the water permeability in the rock mass 1 is obtained.

また図1の実施例を参照するに、本発明による岩盤の透水性評価装置は、岩盤1に並列に穿ったボーリング孔対10、20の一方のボーリング孔10の所定深さ部位に注入区画Aを画成するパッカーシステム11、注入区画AにトレーサPを注入するトレーサ注入装置13、他方のボーリング孔20から所定流量で孔内水を揚水する揚水ポンプ24、他方のボーリング孔20内にトレーサ検出子26を上昇又は下降させて深さ方向に連続したトレーサPの分布又はその経時的変化を検出するトレーサ検出装置25、及びトレーサPの注入深さとトレーサPの分布又はその変化とから岩盤1内の水みちの位置又は透水性を算出する演算装置28を備えてなるものである。   Further, referring to the embodiment of FIG. 1, the rock permeability evaluation apparatus according to the present invention is an injection section A at a predetermined depth of one of the boreholes 10 of the pair of boreholes 10, 20 drilled in parallel to the rock mass 1. The packer system 11 for defining the tracer, the tracer injection device 13 for injecting the tracer P into the injection section A, the pumping pump 24 for pumping the water in the hole at a predetermined flow rate from the other borehole 20, and the tracer detection in the other borehole 20 The tracer detection device 25 for detecting the distribution of the tracer P continuous in the depth direction by raising or lowering the child 26 or its change with time, and the injection depth of the tracer P and the distribution of the tracer P or its change in the bedrock 1 The calculation device 28 for calculating the position or water permeability of the water channel is provided.

好ましくは、他方のボーリング孔20内に所定電気伝導度の液体Qを充填する充填装置21を設け、トレーサ注入装置13により注入区画Aに液体Qと異なる電気伝導度のトレーサPを注入し、トレーサ検出装置25により他方のボーリング孔20内の深さ方向に連続した電気伝導度の分布を検出する。または、充填装置21により他方のボーリング孔20内に所定温度の液体Qを充填し、トレーサ注入装置13により注入区画Aにその液体Qと異なる温度のトレーサPを注入し、トレーサ検出装置25により他方のボーリング孔20内の深さ方向に連続した温度の分布を検出してもよい。更に好ましくは、一方のポーリング孔20内をパッカーシステム11により3以上の注入区画A1、A2、A3、……に仕切り、トレーサ注入装置13にトレーサPを何れかの注入区画A1、A2、A3、……へ選択的に注入する注入区画選択手段15を含める。   Preferably, the other boring hole 20 is provided with a filling device 21 for filling the liquid Q having a predetermined electric conductivity, and the tracer injection device 13 injects a tracer P having an electric conductivity different from that of the liquid Q into the injection section A. A detection device 25 detects a distribution of electrical conductivity that is continuous in the depth direction in the other boring hole 20. Alternatively, the other boring hole 20 is filled with the liquid Q at a predetermined temperature by the filling device 21, the tracer P having a temperature different from that of the liquid Q is injected into the injection section A by the tracer injection device 13, and the other is supplied by the tracer detection device 25. A continuous temperature distribution in the depth direction in the borehole 20 may be detected. More preferably, one polling hole 20 is divided into three or more injection sections A1, A2, A3,... By the packer system 11, and the tracer P is connected to the tracer injection apparatus 13 in any one of the injection sections A1, A2, A3,. Include injection section selection means 15 for selectively injecting.

本発明による岩盤の透水性評価方法及び装置は、一方のボーリング孔10の所定深さ部位の注入区画AにトレーサPを注入し、他方のボーリング孔20において所定流量で孔内水を揚水しながらトレーサ検出子26を上昇又は下降させて深さ方向に連続したトレーサPの分布又はその経時的変化を検出し、トレーサPの注入深さとトレーサPの分布又はその変化とから岩盤1内の水みちの位置又は透水性を求めるので、次の顕著な効果を奏する。   The rock mass permeability evaluation method and apparatus according to the present invention injects a tracer P into an injection section A at a predetermined depth of one boring hole 10 and pumps water in the hole at a predetermined flow rate in the other boring hole 20. The tracer detector 26 is raised or lowered to detect the continuous distribution of the tracer P in the depth direction or its change over time. From the injection depth of the tracer P and the distribution of the tracer P or its change, the water channel in the rock mass 1 is detected. Since the position or water permeability is obtained, the following remarkable effects are obtained.

(イ)一方のボーリング孔10から注入したトレーサPの分布を他方のボーリング孔20において検出するので、地下水の種類に拘らず岩盤1内の水みちの位置及び/又は透水性を個別に解析することができる。
(ロ)また、個別に解析した各水みちについて、一方のボーリング孔10の注入区画Aと他方のボーリング孔20の流入位置との間の連続性を解析することができる。
(ハ)一方のボーリング孔の注入区画Aにおける水みちの流出位置及び透水性を予め把握しておくことにより、各水みちの両端の位置及び透水性を考慮して水みちの連続性を更に詳細に解析することができる。
(ニ)他方のボーリング孔20内の孔内水をトレーサPと識別容易な液体Qで置換することにより、岩盤内の水みちの位置及び/又は透水性の解析精度を更に高めることができる。
(ホ)一方のボーリング孔10における注入区画Aを深さに変えながら他方のボーリング孔20においてトレーサ分布の検出を繰り返すことにより、ボーリング孔10、20間に広がる水みちの連続性を更に詳細に解析することができる。
(B) Since the distribution of the tracer P injected from one borehole 10 is detected in the other borehole 20, the position and / or permeability of the water channel in the rock mass 1 are individually analyzed regardless of the type of groundwater. be able to.
(B) For each water path analyzed individually, the continuity between the injection section A of one boring hole 10 and the inflow position of the other boring hole 20 can be analyzed.
(C) By knowing in advance the outflow position and water permeability of the water channel in the injection section A of one borehole, the continuity of the water channel is further increased in consideration of the position and water permeability of both ends of each water channel. It can be analyzed in detail.
(D) By replacing the water in the hole in the other bore hole 20 with the liquid Q that can be easily discriminated from the tracer P, the position of the water channel in the bedrock and / or the accuracy of water permeability analysis can be further enhanced.
(E) By repeating the detection of the tracer distribution in the other bore hole 20 while changing the injection section A in one bore hole 10 to a depth, the continuity of the water channel extending between the bore holes 10 and 20 is further detailed. Can be analyzed.

図1は、地層処分場等の地下坑道3の周囲岩盤1に適用した本発明の透水性評価装置の実施例を示す。一般に地中に掘削した坑道3の近傍には亀裂頻度が比較的高い掘削影響領域1aが存在し、その外側に地下水の飽和領域1bが分布していると想定される。図示例では、地下坑道3の内側から覆工コンクリート又は埋め戻し層4を介して周囲岩盤1内に、掘削影響領域1aを貫き飽和領域1bに至る一対のボーリング孔10、20を並列に穿ち、両ボーリング孔10、20を介して掘削影響領域1a及び飽和領域1bに複雑に広がる坑道3周囲の水みちを解析する。ボーリング孔10(以下、注入孔10ということがある)とボーリング孔20(以下、観測孔20ということがある)との間隔は、あまり離れると水みちの連続性の解析が難しくなるので、連続性が解析できる程度に近づけることが望ましい。ただし、本発明は地下坑道3への適用に限定されるものではなく、ボーリング孔10、20の深さや間隔は目的に応じて適宜に選択することができる。   FIG. 1 shows an embodiment of the water permeability evaluation apparatus of the present invention applied to a surrounding rock mass 1 of an underground mine 3 such as a geological disposal site. Generally, it is assumed that there is an excavation affected area 1a having a relatively high crack frequency in the vicinity of the tunnel 3 excavated in the ground, and a saturated area 1b of groundwater is distributed on the outside thereof. In the illustrated example, a pair of bored holes 10 and 20 are drilled in parallel from the inside of the underground mine 3 through the lining concrete or backfill layer 4 into the surrounding rock mass 1 through the excavation affected area 1a to the saturated area 1b. The water channel around the mine shaft 3 that extends in a complicated manner to the excavation-affected area 1a and the saturated area 1b through both bore holes 10 and 20 is analyzed. If the distance between the boring hole 10 (hereinafter sometimes referred to as the injection hole 10) and the boring hole 20 (hereinafter also referred to as the observation hole 20) is too far away, it becomes difficult to analyze the continuity of the water path. It is desirable to bring it close to a degree that can be analyzed. However, the present invention is not limited to the application to the underground tunnel 3, and the depth and interval of the bore holes 10 and 20 can be appropriately selected according to the purpose.

注入孔10には、その所定深さ部位に注入区画Aを画成するパッカーシステム11と、その注入区画AにトレーサPを注入するトレーサ注入装置13とを設ける。図示例のトレーサ注入装置13はトレーサ貯留槽14とトレーサ注入管12とを有し、貯留槽14に貯えたトレーサPを注入管12経由で注入区画Aへ注入する。トレーサPの注入範囲を限定するため、注入区画Aはできるだけ短区間とすることが望ましい。トレーサPとして、観測孔20において孔内水中のトレーサ濃度を検出できるように、後述するトレーサ検出装置25が検出すべき特定の属性値が観測孔20内の孔内水と異なる流体、例えば観測孔20内の孔内水と電気伝導度又は温度が異なる流体を用いることができる。   The injection hole 10 is provided with a packer system 11 that defines an injection section A at a predetermined depth, and a tracer injection device 13 that injects a tracer P into the injection section A. The illustrated tracer injection device 13 has a tracer storage tank 14 and a tracer injection pipe 12, and injects the tracer P stored in the storage tank 14 into the injection section A via the injection pipe 12. In order to limit the injection range of the tracer P, it is desirable that the injection section A be as short as possible. As the tracer P, a fluid whose specific attribute value to be detected by the tracer detection device 25 described later is different from the in-hole water in the observation hole 20 such as the observation hole so that the tracer concentration in the in-hole water can be detected in the observation hole 20. A fluid having a different electrical conductivity or temperature from the pore water in 20 can be used.

好ましくは、図示例のように、パッカーシステム11に注入孔10の孔内を3以上(図示例では5つ)の注入区画A1、A2、A3、……に仕切るパッカー群を含め、トレーサ注入装置13にトレーサPの注入区画A1、A2、A3、……を選択する注入区画選択手段15を含める。注入区画選択手段15によってトレーサPの注入区画A1、A2、A3、……を順次切り替え、切り替えた注入区画にトレーサ注入装置13によってトレーサPを注入する。注入孔10と観測孔20との間に広がる水みちを詳細に解析するためには、できるだけ多くの注入区画Aを設けて切り替えることが望ましい。ただし、切り替えの迅速性が要求されない場合は、パッカーシステム11により単一の注入区画Aを画成し、特許文献1及び2と同様にパッカーシステム11を移動させることにより注入区画Aの深さを切り替えることも可能である。切り替えた注入区画Aの深さ(注入位置)は、後述する演算装置28に記憶しておく。   Preferably, as shown in the illustrated example, the packer system 11 includes a packer group that divides the inside of the injection hole 10 into three or more (five in the illustrated example) injection sections A1, A2, A3,. 13 includes injection section selection means 15 for selecting the injection sections A1, A2, A3,. The injection sections A1, A2, A3,... Of the tracer P are sequentially switched by the injection section selection means 15, and the tracer injection device 13 injects the tracer P into the switched injection section. In order to analyze in detail the water channel extending between the injection hole 10 and the observation hole 20, it is desirable to provide as many injection sections A as possible and switch them. However, when quick switching is not required, a single injection section A is defined by the packer system 11, and the depth of the injection section A is adjusted by moving the packer system 11 as in Patent Documents 1 and 2. It is also possible to switch. The switched depth (injection position) of the injection section A is stored in the arithmetic unit 28 described later.

なお、注入孔10にパッカーシステム11を設置する前に、例えば非特許文献1の電気伝導度検層その他の流体検層技術を用いて注入孔10内の水みちの位置及び透水性を把握しておくことが望ましい。本発明は、注入孔10の注入区画A1、A2、A3、……毎にそこから流出する水みちの観測孔20における流入位置及び透水性を求めるが、各注入区画A1、A2、A3、……における水みちの流出位置及び透水性を予め把握しておくことにより、各水みちの両端の位置及び透水性を考慮して水みちの連続性を詳細に解析することが可能である。更に望ましくは、各注入区画A1、A2、A3、……をそれぞれ単独の水みちが存在するような短区間とする。   Before installing the packer system 11 in the injection hole 10, for example, the electrical conductivity logging and other fluid logging techniques disclosed in Non-Patent Document 1 are used to grasp the position and water permeability of the water channel in the injection hole 10. It is desirable to keep it. The present invention obtains the inflow position and water permeability in the observation hole 20 of the water channel flowing out from the injection sections A1, A2, A3,... Of the injection hole 10, but the injection sections A1, A2, A3,. By knowing in advance the outflow position and water permeability of the water path in ..., it is possible to analyze the continuity of the water path in detail in consideration of the positions and water permeability at both ends of each water path. More preferably, each injection section A1, A2, A3,... Is a short section where there is a single water channel.

観測孔20には、流量制御装置23に接続された揚水ポンプ24と、孔内の深さ方向に連続したトレーサPの分布を検出するトレーサ検出装置25とを設ける。トレーサ検出装置25は、観測孔20の孔内水中のトレーサ濃度を検出するトレーサ検出子26を有し、観測孔20内にトレーサ検出子26を深さ方向に移動させる(図示例では上昇又は下降させる)ことにより、観測孔20内の深さ方向に連続的なトレーサPの分布を検出する。例えば観測孔20内の孔内水と電気伝導度又は温度が異なるトレーサPを用いる場合は、トレーサ検出子26を電気伝導度計又は感温体付きゾンデとすることができる。また、流量制御装置23により揚水ポンプ24の揚水量を一定に制御し、観測孔20内に一定の上昇流を形成しながらトレーサ検出装置25によるトレーサPの分布検出を所定時間間隔(例えば1時間間隔)で繰り返すことにより、トレーサPの経時的な分布変化を検出する。検出したトレーサPの分布及びその経時的変化を演算装置28に入力し、演算装置28においてトレーサPの注入深さとトレーサPの分布及びその変化とから岩盤1内の水みちの位置又は透水性を算出する。演算装置28の一例は、水みちの位置及び透水性の算出プログラムを内蔵したコンピュータである。   The observation hole 20 is provided with a pumping pump 24 connected to the flow rate control device 23 and a tracer detection device 25 for detecting the distribution of the tracer P continuous in the depth direction in the hole. The tracer detection device 25 has a tracer detector 26 for detecting the tracer concentration in the water in the observation hole 20, and moves the tracer detector 26 in the observation hole 20 in the depth direction (in the illustrated example, ascending or descending). By doing so, the continuous distribution of the tracer P in the depth direction in the observation hole 20 is detected. For example, when a tracer P having a different electrical conductivity or temperature from the water in the observation hole 20 is used, the tracer detector 26 can be an electric conductivity meter or a temperature-sensing sonde. In addition, the flow control device 23 controls the pumping amount of the pump 24 to be constant, and the tracer detection device 25 detects the distribution of the tracer P at a predetermined time interval (for example, one hour) while forming a constant upward flow in the observation hole 20. By repeating at intervals, the distribution change of the tracer P over time is detected. The detected distribution of the tracer P and its change over time are input to the calculation device 28, and the calculation device 28 determines the position or water permeability of the water channel in the rock mass 1 from the injection depth of the tracer P and the distribution and change of the tracer P. calculate. An example of the computing device 28 is a computer having a built-in program for calculating the position and water permeability of the water path.

好ましくは、図示例に示すように観測孔20に液体Qの充填装置21を設け、注入孔10からトレーサPを注入する前に、孔底付近まで挿入した注入用チューブ22を介して観測孔20内の孔内水を液体Qで置換する。液体Qとして、トレーサ検出装置25が検出すべき特定の属性値がトレーサPと大きく異なる流体、例えばトレーサPと電気伝導度又は温度の差(ギャップ)が大きな液体を用いることができる。観測孔20の孔内水を液体Qで置換することにより、トレーサ検出装置25によるトレーサPの分布検出を容易にし、水みちの解析精度を高めることが期待できる。ただし、トレーサPを用いる本発明では液体Qによる置換は必須のものではなく、トレーサPと観測孔20の孔内水との特定属性値の差が大きければ液体Qによる置き換えを省略してもよい。   Preferably, as shown in the illustrated example, a liquid Q filling device 21 is provided in the observation hole 20, and before the tracer P is injected from the injection hole 10, the observation hole 20 is inserted through the injection tube 22 inserted to the vicinity of the hole bottom. The water in the hole is replaced with liquid Q. As the liquid Q, a fluid whose specific attribute value to be detected by the tracer detection device 25 is greatly different from that of the tracer P, for example, a liquid having a large electric conductivity or temperature difference (gap) from the tracer P can be used. By replacing the water in the observation hole 20 with the liquid Q, it is possible to facilitate the detection of the distribution of the tracer P by the tracer detection device 25 and to improve the analysis accuracy of the water channel. However, in the present invention using the tracer P, replacement with the liquid Q is not essential, and replacement with the liquid Q may be omitted if there is a large difference in specific attribute values between the tracer P and the water in the observation hole 20. .

次に図1を参照して、高電気伝導度又は低電気伝導度のトレーサPを用いて岩盤1の透水性の解析する場合の本発明による評価方法を説明する。先ず、充填装置21により観測孔20内の孔内水を低電気伝導度又は高電気伝導度の液体(例えば真水又は塩水)Qで置換したのち、注入孔10のパッカーシステム11の最上部の注入区画A1から高電気伝導度又は低電気伝導度のトレーサP(例えば塩水又は真水)を注入する。次いで、観測孔20の孔底部までトレーサ検出装置25のトレーサ検出子26を挿入し、揚水ポンプ24による揚水開始直後(時刻=t1)にトレーサ検出子26を上昇させながら観測孔20内の深さ方向に連続したトレーサPの分布を検出する。更に、揚水ポンプ24による揚水を継続しつつ、所定時間間隔(時刻=t2、t3)でトレーサ検出子26を観測孔20内に繰り返し上昇又は下降させてトレーサPの分布を検出し、検出したトレーサPの分布をそれぞれ演算装置28に入力する。   Next, with reference to FIG. 1, the evaluation method by this invention in the case of analyzing the water permeability of the rock mass 1 using the tracer P of high electrical conductivity or low electrical conductivity is demonstrated. First, the filling device 21 replaces the water in the observation hole 20 with a liquid Q having a low or high electrical conductivity (for example, fresh water or salt water) Q, and then injects the uppermost portion of the packer system 11 in the injection hole 10. A tracer P (for example, salt water or fresh water) having high or low electrical conductivity is injected from the section A1. Next, the tracer detector 26 of the tracer detector 25 is inserted to the bottom of the observation hole 20, and the depth inside the observation hole 20 is raised while raising the tracer detector 26 immediately after the start of pumping by the pump 24 (time = t1). The distribution of the tracer P continuous in the direction is detected. Further, while continuing pumping by the pump 24, the tracer detector 26 is repeatedly raised or lowered into the observation hole 20 at predetermined time intervals (time = t2, t3) to detect the distribution of the tracer P, and the detected tracer Each distribution of P is input to the arithmetic unit 28.

図2(A)は、トレーサ検出装置25で検出した時刻=t1、t2、t3におけるトレーサPの分布のグラフの一例を示す。非特許文献1を参照して上述したように、観測孔20におけるトレーサPの流入箇所が電気伝導度のピークとして現れることから、演算装置28において同図(A)の分布ピークが検出された深さL3〜L6を観測孔20の水みちの流入位置として算出することができる。また、トレーサPの流入量に応じて電気伝導度のピーク値が変化することから、揚水ポンプ24の揚水流量に対する各水みちの流入量を同図(A)の分布の経時的変化量と一致するように設定する数値解析により、演算装置28において同図(B)に示すように深さL3〜L6の水みちの透水量係数を算出することができる。更に演算装置28は、注入区画がA1であることから、この水みちが注入孔10の注入区画A1の深さ位置と観測孔20のL3〜L6の深さ位置との間に繋がっていること(連続性)を検知することができる。   FIG. 2A shows an example of a graph of the distribution of the tracer P at the times detected by the tracer detection device 25 = t1, t2, and t3. As described above with reference to Non-Patent Document 1, since the inflow portion of the tracer P in the observation hole 20 appears as a peak of electrical conductivity, the depth at which the distribution peak of FIG. L3 to L6 can be calculated as the inflow positions of the water holes in the observation hole 20. In addition, since the peak value of the electrical conductivity changes according to the inflow amount of the tracer P, the inflow amount of each water channel with the pumping flow rate of the pump 24 matches the change over time of the distribution in FIG. By the numerical analysis set so as to be performed, it is possible to calculate the water permeability coefficient of the water channel having the depths L3 to L6 as shown in FIG. Furthermore, since the calculation device 28 has the injection section A1, this water channel is connected between the depth position of the injection section A1 of the injection hole 10 and the depth positions of L3 to L6 of the observation hole 20. (Continuity) can be detected.

なお、同図は観測孔20内に注入区画A1と繋がる水みちが1つ存在する場合を示しているが、注入区画A1と繋がる複数の水みちが存在する場合はトレーサPの分布変化に複数のピークが現れるので、それらのピークの位置及び値から各水みちの流入位置及び透水量係数を演算装置28において個別に算出することができる。また、注入孔10において注入区画A1に存在する水みちの流出位置及び透水量係数を予め把握しておけば、注入孔10における水みちの透水量係数と観測孔20における複数の水みちの透水量係数とから、注入孔10と観測孔20との間の水みちの繋がりを詳細に解析することができる。   This figure shows a case where there is one water channel connected to the injection section A1 in the observation hole 20, but when there are a plurality of water channels connected to the injection section A1, a plurality of changes in the distribution of the tracer P occur. Therefore, the inflow position and the water permeability coefficient of each water channel can be calculated individually by the arithmetic unit 28 from the positions and values of these peaks. In addition, if the outflow position and the water permeability coefficient of the water channel existing in the injection section A1 in the injection hole 10 are known in advance, the water permeability coefficient of the water channel in the injection hole 10 and the water permeability of the plurality of water paths in the observation hole 20 Based on the quantity coefficient, it is possible to analyze in detail the water channel connection between the injection hole 10 and the observation hole 20.

例えば、注入区画A1の水みちの透水量係数(流出量)と観測孔20における各水みちの透水量係数の合計(流入量)とが等しい場合は、注入区画A1の水みちが分岐して観測孔20の複数位置に流入していると推定できる。また、注入区画A1の水みちの流出量が観測孔20における水みちの流入量より大きい場合は、その両者の間に観測孔20に至る以外の他の分岐が存在すると推定できる。逆に、注入区画A1の水みちの流出量が観測孔20の水みちの流入量より小さい場合は、注入区画A1からの水みち以外に観測孔20に至る他の水みちが存在する可能性が示唆される。   For example, if the water permeability coefficient (outflow) of the water path in the injection section A1 is equal to the sum of the water permeability coefficients (inflow volume) of each water path in the observation hole 20, the water path in the injection section A1 branches. It can be estimated that it flows into a plurality of positions of the observation hole 20. Further, when the outflow amount of the water channel in the injection section A1 is larger than the inflow amount of the water channel in the observation hole 20, it can be estimated that there is another branch other than that reaching the observation hole 20 between them. Conversely, if the outflow amount of the water channel in the injection zone A1 is smaller than the inflow rate of the water channel in the observation hole 20, there may be other water channels that reach the observation hole 20 in addition to the water channel from the injection zone A1. Is suggested.

更に本発明の評価方法では、注入孔10のパッカーシステム11を注入区画A2、A3、A4、……に切り替えながら、上述した観測孔20における所定時間間隔のトレーサ分布の検出を繰り返す。図3は、注入区画A1、A2、A3、A4への切り替え時に観測孔20で検出された水みちの位置及び透水量係数を表わしたグラフの一例である。同図(A1)は注入孔10の注入区画A1が観測孔20の深さL1〜L3と繋がっていることを示している。また同図(A2)及び(A3)は、注入孔10の注入区画A2及びA3が何れも観測孔20の深さL5〜L7と繋がっていること、すなわち注入区画A2及びA3の水みちが合流して観測孔20の深さL5〜L7に流入していることを示している。更に同図(A4)は、注入孔10の注入区画A4が観測孔20の深さL8〜L10と繋がっていることを示している。   Further, in the evaluation method of the present invention, the detection of the tracer distribution at predetermined time intervals in the observation hole 20 is repeated while switching the packer system 11 of the injection hole 10 to the injection sections A2, A3, A4,. FIG. 3 is an example of a graph showing the position of the water channel and the water permeability coefficient detected in the observation hole 20 when switching to the injection sections A1, A2, A3, and A4. FIG. 3A shows that the injection section A1 of the injection hole 10 is connected to the depths L1 to L3 of the observation hole 20. Also, (A2) and (A3) in the figure show that the injection sections A2 and A3 of the injection hole 10 are both connected to the depths L5 to L7 of the observation hole 20, that is, the water paths of the injection sections A2 and A3 merge. As a result, it flows into the depth L5 to L7 of the observation hole 20. Further, (A4) in the figure shows that the injection section A4 of the injection hole 10 is connected to the depths L8 to L10 of the observation hole 20.

図3のように注入孔10の注入区画A1、A2、A3、……毎に観測孔20の水みちの流入位置及び透水量係数を求めることにより、注入孔10と観測孔20との間における各水みちの繋がりを詳細に解析することができる。また、注入孔10の各注入区画A1、A2、A3、……に存在する水みちの流出位置及び透水量係数を予め把握しておけば、例えば注入区画A1及びA2の水みちの流出量とその水みちの観測孔20の流入量とを比較することにより、各水みちの分岐や合流についても詳細に解析することができる。更に、注入孔10と観測孔20との間の水みちの繋がりだけでなく、注入孔10以外から観測孔20に繋がる水みちや、注入孔10から観測孔20に至る以外の水みちが存在する可能性を推定することもできる。そのような水みちの存在が推定された場合は、例えば注入孔10と観測孔20との間に新たなボーリング孔を並列に穿ち、注入孔10又は観測孔20と新たなボーリング孔との間に本発明を適用することにより、水みちを更に詳細に解析することができる。   As shown in FIG. 3, by calculating the inflow position and the water permeability coefficient of the observation hole 20 for each of the injection sections A1, A2, A3,. The connection of each water path can be analyzed in detail. Also, if the outflow position and the water permeability coefficient of the water channel existing in each injection section A1, A2, A3,... Of the injection hole 10 are known in advance, for example, the outflow amount of the water path in the injection sections A1 and A2 By comparing the amount of water flowing into the observation hole 20 of the water path, branching and merging of each water path can be analyzed in detail. Furthermore, not only the water channel between the injection hole 10 and the observation hole 20, but also the water channel connected to the observation hole 20 from other than the injection hole 10 and the water channel other than the connection from the injection hole 10 to the observation hole 20 exist. It is also possible to estimate the possibility of doing. When the presence of such a water channel is estimated, for example, a new boring hole is formed in parallel between the injection hole 10 and the observation hole 20, and the gap between the injection hole 10 or the observation hole 20 and the new boring hole is determined. By applying the present invention to the above, the water path can be analyzed in more detail.

本発明は、観測孔20において深さ方向に連続したトレーサPの分布又はその変化を検出するので、観測孔20における全ての水みちの位置及び透水性を個別に解析することができると共に、抽出した水みち毎に注入孔10の注入位置Aとの間の連続性を解析することができる。また、注入孔10から注入したトレーサPの分布を観測孔20において検出するので、地下水の種類に拘らず精度の高い解析を行うことが期待できる。すなわち、岩盤1内に複雑に広がる1本1本の水みちの透水性を高い精度で詳細に解析することが可能である。例えば放射性核種は、岩盤1内の透水性が高い水みちを移行し、透水性が比較的高い場合には亀裂中だけでなく粒子間隙中にも移行することが知られている(非特許文献2参照)。本発明は、このような水みちの透水性に応じて変化する放射性核種の移行を詳細に検討する際に有効に利用することができる。   Since the present invention detects the distribution of the tracer P continuous in the depth direction in the observation hole 20 or its change, the position and water permeability of all the water paths in the observation hole 20 can be individually analyzed and extracted. The continuity with the injection position A of the injection hole 10 can be analyzed for each water channel. In addition, since the distribution of the tracer P injected from the injection hole 10 is detected in the observation hole 20, it is expected to perform a highly accurate analysis regardless of the type of groundwater. That is, it is possible to analyze in detail the water permeability of each water channel that spreads in the rock mass 1 with high accuracy. For example, it is known that a radionuclide migrates through a water path with high water permeability in the bedrock 1 and, when the water permeability is relatively high, migrates not only into a crack but also into a particle gap (non-patent document). 2). The present invention can be used effectively when examining the migration of radionuclides that change in accordance with the water permeability of such a water channel.

こうして本発明の目的である「岩盤内の個別の水みちの連続性を詳細に検出できる透水性評価方法及び装置」の提供が達成できる。   Thus, it is possible to provide the “permeability evaluation method and apparatus capable of detecting in detail the continuity of individual water paths in the rock” which is the object of the present invention.

以上、岩盤1に一対のボーリング孔10、20を設けた実施例について説明したが、岩盤1に3以上のボーリング孔を並列に穿ち、隣接するボーリング孔にそれぞれ本発明を適用してボーリン孔間に広がる水みちの位置及び透水性を求めることにより、比較的広い岩盤1内における放射性核種の移行を評価することも可能である。   As described above, the embodiment in which the rock mass 1 is provided with the pair of bore holes 10 and 20 has been described. However, the rock mass 1 is formed with three or more bore holes in parallel, and the present invention is applied to adjacent bore holes to form a space between the bore holes. It is also possible to evaluate the migration of the radionuclide in the relatively large bedrock 1 by determining the position of the water path and the water permeability.

また、高電気伝導度のトレーサPを用いた透水性の評価方法について上述したが、本発明では高温又は低温のトレーサP等を用いた他の流体検層技術を用いることも可能であり、高電気伝導度のトレーサPを用いた場合と同様の手順で透水性を評価することが可能である。ただし高温又は低温のトレーサP等を用いた場合は、図2のようにトレーサPの流入箇所がトレーサ分布のピークとして現れるのではなく、温度分布の傾きのズレ等として現れるので、そのズレを観測孔20の各水みちの流入位置として抽出し、そのズレと一致するように揚水ポンプ24の揚水流量に対する各水みちの流入量を数値解析で設定することにより各水みちの透水量係数を求めることとなる。   Moreover, although the water permeability evaluation method using the tracer P with high electrical conductivity has been described above, in the present invention, it is also possible to use other fluid logging techniques using a high-temperature or low-temperature tracer P. It is possible to evaluate the water permeability by the same procedure as in the case of using the tracer P with electrical conductivity. However, when a high-temperature or low-temperature tracer P is used, the inflow location of the tracer P does not appear as a peak of the tracer distribution as shown in FIG. 2, but the deviation of the temperature distribution is observed. Extracted as the inflow position of each water channel in the hole 20, and by determining the inflow rate of each water channel with respect to the pumping flow rate of the pump 24 by numerical analysis so as to match the deviation, obtain the permeability coefficient of each water channel It will be.

本発明の一実施例の説明図である。It is explanatory drawing of one Example of this invention. 本発明によるトレーサ分布の検出結果の一例を示す説明図である。It is explanatory drawing which shows an example of the detection result of the tracer distribution by this invention. 本発明による岩盤内の水みち検出結果の一例を示す説明図である。It is explanatory drawing which shows an example of the water path detection result in the bedrock by this invention. 従来の岩盤に対する電気伝導度検層の一例の説明図である。It is explanatory drawing of an example of the electrical conductivity logging with respect to the conventional rock mass. 従来の岩盤に対する透水性評価方法の一例の説明図である。It is explanatory drawing of an example of the water-permeable evaluation method with respect to the conventional bedrock.

符号の説明Explanation of symbols

1…岩盤 1a…掘削影響領域
1b…飽和領域 3…地下坑道
4…覆工コンクリート又は埋め戻し層
10…ボーリング孔(注入孔) 11…注入用パッカーシステム
12…トレーサ注入管 13…トレーサ注入装置
14…トレーサ貯留槽 15…注入区画選択手段
20…ボーリング孔(観測孔) 21…充填装置
22…チューブ 23…流量制御装置
24…揚水ポンプ 25…トレーサ検出装置
26…トレーサ検出子 27…ケーブル
28…演算装置(コンピュータ)
30…ボーリング孔 31…ケーシング
32…注入用チューブ 33…地下水検出子(電気伝導度計)
34…ケーブル 35…揚水ポンプ
41…ボーリング孔 42…パッカー
43…揚水ポンプ 44…圧力計
45…圧力計測器 46…揚水量計測器
47…給排気機器 48…水位計測機器
49…ポンプ制御機器 50…気体室
51…差圧計 52…フロートタイプチェック弁
P…トレーサ Q…液体
1 ... Bedrock 1a ... Excavation affected area
1b ... saturation region 3 ... underground mine 4 ... concrete concrete or backfill layer
10 ... boring hole (injection hole) 11 ... packer system for injection
12 ... Tracer injection tube 13 ... Tracer injection device
14 ... Tracer reservoir 15 ... Injection section selection means
20 ... Boring hole (observation hole) 21 ... Filling device
22… Tube 23… Flow control device
24 ... pumping pump 25 ... tracer detector
26 ... Tracer detector 27 ... Cable
28 ... Arithmetic unit (computer)
30 ... boring hole 31 ... casing
32… Injection tube 33… Groundwater detector (electric conductivity meter)
34 ... Cable 35 ... Pumping pump
41 ... Boring hole 42 ... Packer
43 ... Pumping pump 44 ... Pressure gauge
45… Pressure meter 46… Pumped water meter
47 ... Air supply / exhaust equipment 48 ... Water level measuring equipment
49… Pump control device 50… Gas chamber
51 ... Differential pressure gauge 52 ... Float type check valve P ... Tracer Q ... Liquid

Claims (8)

岩盤に一対のボーリング孔を並列に穿ち、一方のボーリング孔の所定深さの注入区画にトレーサを注入し、他方のボーリング孔において所定流量で孔内水を揚水しながらトレーサ検出子を上昇又は下降させて深さ方向に連続した前記トレーサの分布又はその経時的変化を検出し、前記トレーサの注入深さと前記トレーサの分布又はその変化とから岩盤内の水みちの位置又は透水性を求めてなる岩盤の透水性評価方法。   A pair of boring holes are drilled in parallel in the bedrock, a tracer is injected into an injection section of a predetermined depth in one of the boring holes, and the tracer detector is raised or lowered while pumping water in the hole at a predetermined flow rate in the other boring hole. Then, the distribution of the tracer continuous in the depth direction or its change over time is detected, and the position or water permeability of the water channel in the rock is obtained from the injection depth of the tracer and the distribution of the tracer or change thereof. Method for evaluating permeability of rock mass. 請求項1の評価方法において、前記他方のボーリング孔内に所定電気伝導度の液体を充填し、前記一方のボーリング孔の注入区間に前記液体と異なる電気伝導度のトレーサを注入し、前記他方のボーリング孔内において深さ方向に連続した電気伝導度の分布を検出してなる岩盤の透水性評価方法。   2. The evaluation method according to claim 1, wherein a liquid having a predetermined electric conductivity is filled in the other boring hole, a tracer having an electric conductivity different from that of the liquid is injected into an injection section of the one boring hole, and the other boring hole is injected. A method for evaluating the permeability of rock mass by detecting the distribution of electrical conductivity continuous in the depth direction in the borehole. 請求項1の評価方法において、前記他方のボーリング孔内に所定温度の液体を充填し、前記一方のボーリング孔の注入区間に前記液体と異なる温度のトレーサを注入し、前記他方のボーリング孔内において深さ方向に連続した温度の分布を検出してなる岩盤の透水性評価方法。   2. The evaluation method according to claim 1, wherein a liquid at a predetermined temperature is filled in the other boring hole, a tracer having a temperature different from that of the liquid is injected into an injection section of the one boring hole, and the other boring hole is filled with the liquid. Permeability evaluation method for rock mass by detecting continuous temperature distribution in the depth direction. 請求項1から3の何れかの評価方法において、前記一方のボーリング孔の注入区画の深さを変えながら前記他方のボーリング孔内におけるトレーサ分布の検出を繰り返し、前記トレーサの注入深さに応じた前記トレーサの分布又はその変化から前記岩盤内の水みちの位置又は透水性を求めてなる岩盤の透水性評価方法。   4. The evaluation method according to claim 1, wherein the detection of the tracer distribution in the other boring hole is repeated while changing the depth of the pouring section of the one boring hole, and according to the pouring depth of the tracer. A method for evaluating the permeability of a rock mass, wherein the position of the water path in the rock mass or the permeability is obtained from the distribution of the tracer or a change thereof. 岩盤に並列に穿ったボーリング孔対の一方のボーリング孔の所定深さ部位に注入区画を画成するパッカーシステム、前記注入区画にトレーサを注入するトレーサ注入装置、前記他方のボーリング孔から所定流量で孔内水を揚水する揚水ポンプ、前記他方のボーリング孔内にトレーサ検出子を上昇又は下降させて深さ方向に連続した前記トレーサの分布又はその経時的変化を検出するトレーサ検出装置、及び前記トレーサの注入深さと前記トレーサの分布又はその変化とから前記岩盤内の水みちの位置又は透水性を算出する演算装置を備えてなる岩盤の透水性評価装置。   A packer system that defines an injection section at a predetermined depth of one of the bore holes of the pair of bore holes drilled in parallel with the rock, a tracer injection device that injects a tracer into the injection section, and a predetermined flow rate from the other bore hole. A pump for pumping up the water in the hole, a tracer detection device for detecting the distribution of the tracer continuously in the depth direction or its change over time by raising or lowering a tracer detector in the other borehole, and the tracer A rock mass permeability evaluation apparatus comprising an arithmetic unit for calculating the position or water permeability of a water channel in the rock mass from the injection depth of the tracer and the distribution or change of the tracer. 請求項5の評価装置において、前記他方のボーリング孔内に所定電気伝導度の液体を充填する充填装置を設け、前記トレーサ注入装置により注入区画に前記液体と異なる電気伝導度のトレーサを注入し、前記トレーサ検出装置により他方のボーリング孔内の深さ方向に連続した電気伝導度の分布を検出してなる岩盤の透水性評価装置。   The evaluation apparatus according to claim 5, wherein a filling device for filling a liquid having a predetermined electric conductivity in the other bore hole is provided, and a tracer having an electric conductivity different from that of the liquid is injected into the injection section by the tracer injection device, An apparatus for evaluating permeability of rock mass, wherein the tracer detection device detects a distribution of electrical conductivity continuous in the depth direction in the other borehole. 請求項5の評価装置において、前記他方のボーリング孔内に所定温度の液体を充填する充填装置を設け、前記トレーサ注入装置により注入区画に前記液体と異なる温度のトレーサを注入し、前記トレーサ検出装置により他方のボーリング孔内の深さ方向に連続した温度の分布を検出してなる岩盤の透水性評価装置。   6. The evaluation apparatus according to claim 5, wherein a filling device for filling a liquid at a predetermined temperature in the other bore hole is provided, and a tracer having a temperature different from that of the liquid is injected into an injection section by the tracer injection device. A rock mass permeability evaluation device that detects a continuous temperature distribution in the depth direction in the other borehole. 請求項5から7の何れかの評価装置において、前記一方のポーリング孔内をパッカーシステムにより3以上の注入区画に仕切り、前記トレーサ注入装置にトレーサを何れかの注入区画へ選択的に注入する注入区画選択手段を含めてなる岩盤の透水性評価装置。   8. The evaluation apparatus according to claim 5, wherein the one polling hole is partitioned into three or more injection sections by a packer system, and the tracer injection apparatus selectively injects a tracer into any of the injection sections. Rock bed permeability evaluation device including section selection means.
JP2005281744A 2005-09-28 2005-09-28 Method and apparatus for evaluating rock permeability Expired - Fee Related JP4707519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281744A JP4707519B2 (en) 2005-09-28 2005-09-28 Method and apparatus for evaluating rock permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281744A JP4707519B2 (en) 2005-09-28 2005-09-28 Method and apparatus for evaluating rock permeability

Publications (2)

Publication Number Publication Date
JP2007092353A JP2007092353A (en) 2007-04-12
JP4707519B2 true JP4707519B2 (en) 2011-06-22

Family

ID=37978379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281744A Expired - Fee Related JP4707519B2 (en) 2005-09-28 2005-09-28 Method and apparatus for evaluating rock permeability

Country Status (1)

Country Link
JP (1) JP4707519B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398006B2 (en) * 2010-02-26 2014-01-29 大成建設株式会社 Block sampling method and tracer test method using the same
JP5565751B2 (en) * 2010-06-03 2014-08-06 株式会社大林組 Water channel detection system and method in bedrock
CN102650207A (en) * 2012-05-09 2012-08-29 中国石油天然气股份有限公司 Interwell layered tracking monitoring method
KR101427155B1 (en) 2013-10-08 2014-08-07 한국지질자원연구원 System for detecting fracture of ground in excavation hole
CN108106687B (en) * 2018-02-08 2023-05-26 济南大学 Method for exploring bedrock underground water flow net containing soft interlayer and double-capsule water stopper
CN108444868A (en) * 2018-04-07 2018-08-24 四川省地质工程勘察院 Artesian aquifer Dispersion Test device and its test method
CN111173495B (en) * 2018-10-23 2023-09-26 中国石油化工股份有限公司 Fracture-cavity type oil reservoir fracture-cavity unit communication condition evaluation method
CN113089631A (en) * 2021-04-25 2021-07-09 刘立国 Novel civil engineering foundation bearing capacity test device
CN114659734B (en) * 2022-03-02 2022-12-02 河海大学 Method for detecting dam leakage by combining high-density electrical method and comprehensive tracing method
CN115793090B (en) * 2023-02-10 2023-05-05 肥城新查庄地质勘查有限公司 Trace test method for checking borehole communication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355310A (en) * 1989-07-25 1991-03-11 Oyo Corp Water permeability testing for cracked rockbed
JP2000121657A (en) * 1998-10-15 2000-04-28 Ohbayashi Corp Visualizing method for ground
JP3763400B2 (en) * 2001-02-21 2006-04-05 鹿島建設株式会社 Continuous electromagnetic wave tomography and apparatus thereof
JP3808712B2 (en) * 2001-02-26 2006-08-16 鹿島建設株式会社 Tracer test apparatus and single hole tracer test method
JP2002285535A (en) * 2001-03-27 2002-10-03 Kansai Electric Power Co Inc:The Vertical profile measuring method of coefficient of horizontal permeability

Also Published As

Publication number Publication date
JP2007092353A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4707519B2 (en) Method and apparatus for evaluating rock permeability
CN103544361B (en) CO in a kind of oil-gas field development2The evaluation methodology of geological storage potentiality
CN106437844B (en) Method for forecasting tunnel water burst position in advance
Lisa et al. A hard rock tunnel case study: Characterization of the water-bearing fracture system for tunnel grouting
Zhou et al. A semi-empirical model for water inflow into a tunnel in fractured-rock aquifers considering non-Darcian flow
Usmani et al. Seepage behavior and grouting effects for large rock caverns
Dong et al. Delineation of leakage pathways in an earth and rockfill dam using multi-tracer tests
Ofterdinger et al. Hydraulic subsurface measurements and hydrodynamic modelling as indicators for groundwater flow systems in the Rotondo granite, Central Alps (Switzerland)
Wan et al. Field measurement by fully grouted vibrating wire piezometers
Kresic Hydraulic methods
Richard et al. Detecting a defective casing seal at the top of a bedrock aquifer
Sawada et al. Non-sorbing tracer migration experiments in fractured rock at the Kamaishi Mine, Northeast Japan
Vinsot et al. Pumping tests in a low permeability rock: Results and interpretation of a four-year long monitoring of water production flow rates in the Callovo-Oxfordian argillaceous rock
Singh et al. Analytical techniques for the estimation of mine water inflow
Rhén et al. Hydrogeological site descriptive model-a strategy for its development during site investigations
Hartmann et al. A multi-directional tracer test in the fractured Chalk aquifer of E. Yorkshire, UK
Busse et al. Field performance of the heat pulse flow meter: Experiences and recommendations
JIANG et al. Prediction of water inflow in water-sealed oil storage caverns based on fracture seepage effect
Paterson et al. 17. CO2CRC Otway Stage 2B Residual Saturation and Dissolution Test
Lee et al. Characterisation of hydraulically-active fractures in a fractured granite aquifer
Wang et al. Height measurement of the water-conducting fracture zone based on stress monitoring
Tao et al. Frequency distributions of effective permeability and gas flux in leaky wellbores
Doughty et al. Hydrological and geochemical monitoring for a CO2 sequestration pilot in a brine formation
Alam et al. Carbon Capture and Storage (CCS) subsurface modeling for risk identification
Maldaner Discrete-depth measurements of natural gradient groundwater flow in fractures using borehole tracer methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4707519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees