JP4707370B2 - Processed object incineration system and processable object incineration method - Google Patents

Processed object incineration system and processable object incineration method Download PDF

Info

Publication number
JP4707370B2
JP4707370B2 JP2004334602A JP2004334602A JP4707370B2 JP 4707370 B2 JP4707370 B2 JP 4707370B2 JP 2004334602 A JP2004334602 A JP 2004334602A JP 2004334602 A JP2004334602 A JP 2004334602A JP 4707370 B2 JP4707370 B2 JP 4707370B2
Authority
JP
Japan
Prior art keywords
incineration
heat source
superheater
processed
absorption chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004334602A
Other languages
Japanese (ja)
Other versions
JP2006144633A (en
Inventor
丈夫 岸
恵一 池田
圭司 向井
靖浩 吉永
祐治 藤原
正明 塩野
裕嗣 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Tokyo Metropolitan Sewerage Service Corp
Tokyo Gas Co Ltd
Original Assignee
Takuma KK
Tokyo Metropolitan Sewerage Service Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK, Tokyo Metropolitan Sewerage Service Corp, Tokyo Gas Co Ltd filed Critical Takuma KK
Priority to JP2004334602A priority Critical patent/JP4707370B2/en
Publication of JP2006144633A publication Critical patent/JP2006144633A/en
Application granted granted Critical
Publication of JP4707370B2 publication Critical patent/JP4707370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は被処理物焼却システムと被処理物焼却方法に関し、詳しくは、下水汚泥のような、特に水分の多い被処理物を焼却処理する被処理物焼却システムと被処理物焼却方法に関する。   The present invention relates to an incineration system and an incineration method, and more particularly, to an incineration system and an incineration method for incinerating an especially high water content such as sewage sludge.

下水処理場などから発生する水分の多い下水汚泥は、減量減容化および無害化のため、一般に焼却処理されている。例えば、図4に示すように、予め脱水された下水汚泥は、焼却炉1に送給されて加熱焼却されることになるが、その際、水分(70〜80%程度)の多い下水汚泥は、発熱量が低いため、焼却炉1に対して都市ガスや重油などを補助燃料として使用し、燃焼しているのが現状である。そして、補助燃料の消費量を幾分でも低減するため、焼却炉1の後段に空気予熱器2を設置して、発生する排ガスからの熱回収を行うようにしている。   Sewage sludge with a high water content generated from a sewage treatment plant is generally incinerated for volume reduction and detoxification. For example, as shown in FIG. 4, sewage sludge dehydrated in advance is fed to the incinerator 1 and is heated and incinerated. At that time, sewage sludge having a high water content (about 70 to 80%) Since the calorific value is low, the incinerator 1 is burned using city gas, heavy oil, or the like as auxiliary fuel. In order to reduce the consumption of auxiliary fuel as much as possible, an air preheater 2 is installed at the rear stage of the incinerator 1 to recover heat from the generated exhaust gas.

しかし、この方式は補助燃料の消費量をかなり多く必要とするため、図5に示すように、焼却炉1の後段に廃熱ボイラ3を設置すると共に、廃熱ボイラ3から発生した排ガスを熱回収した蒸気を利用し、蒸気タービン4による発電を行ったり、熱供給したりするシステムが提案されている(例えば、特許文献1)。
特表2001−520360号公報
However, since this method requires a considerable amount of auxiliary fuel consumption, a waste heat boiler 3 is installed at the rear stage of the incinerator 1 and the exhaust gas generated from the waste heat boiler 3 is heated as shown in FIG. A system that uses the recovered steam to generate power by the steam turbine 4 or supply heat has been proposed (for example, Patent Document 1).
JP-T-2001-520360

しかしながら、上記従来技術の汚泥焼却システムによって廃熱ボイラから発生した排ガスを熱回収したとしても、発電量、熱利用率共に低い水準にあり、投じた設備コストの割に利点は少なく、実用性に乏しいのが現状である。また、熱利用についても、空調や温水プール等に使用されるが、これらの利用は季節による熱需要量に大きな変動があり、年間を通して稼働している下水汚泥焼却炉の熱利用用途しては限定されたものとなり、決して利用効率は高くない。   However, even if the exhaust gas generated from the waste heat boiler is recovered by the above-mentioned sludge incineration system, both the amount of power generation and heat utilization rate are low, and there are few advantages for the invested equipment cost, making it practical. The current situation is scarce. Heat use is also used for air conditioning and hot water pools, etc., but these uses vary greatly in seasonal heat demand, and as a heat use application for sewage sludge incinerators operating throughout the year. It will be limited and the usage efficiency will never be high.

そこで、本発明が解決しようとする課題は、上記従来技術の有する事情に鑑みて、下水汚泥のような水分の極めて多い被処理物焼却システムからの熱利用率を、一層高めた実用性の高い被処理物焼却システムと焼却方法を提供することにある。   Therefore, the problem to be solved by the present invention is high practicality in which the heat utilization rate from the incineration system having a very high water content such as sewage sludge is further increased in view of the circumstances of the above-described conventional technology. The object is to provide an incineration system and an incineration method.

上記課題は、各請求項記載の発明により達成される。すなわち、本発明に係る被処理物焼却システムの特徴構成は、被処理物を焼却する焼却設備と、この焼却設備から得られた高温蒸気を送給して電力と熱源を取り出すタービン装置とを有する被処理物焼却システムであって、前記焼却設備からの熱源を、過熱器を介して前記タービン装置に供給し、該タービン装置から熱源を吸収式冷凍機に送給し、この吸収式冷凍機から冷熱源を取り出し利用するとともに、ガスタービンが並設され、このガスタービンから排出される排ガスを前記過熱器と空気予熱器に送給することによって、前記過熱器の熱源を空気予熱器に送給し、この空気予熱器により予熱された空気を前記焼却設備に送給することにある。
The above-mentioned subject is achieved by the invention described in each claim. That is, the characteristic structure of the to-be-processed object incineration system which concerns on this invention has incineration equipment which incinerates to-be-processed object, and the turbine apparatus which supplies the high temperature steam obtained from this incineration equipment, and takes out an electric power and a heat source A to-be-treated product incineration system, wherein a heat source from the incineration facility is supplied to the turbine device via a superheater, and the heat source is supplied from the turbine device to an absorption refrigeration machine. A heat source is taken out and used, and a gas turbine is provided in parallel. The exhaust gas discharged from the gas turbine is sent to the superheater and the air preheater, so that the heat source of the superheater is sent to the air preheater. The air preheated by the air preheater is supplied to the incineration facility.

この構成によれば、季節による熱需要の変動の少ない冷凍設備などに、吸収式冷凍機から発生した冷熱源を利用することができ、恒常的に発生する被処理物の焼却による熱利用を高く維持することができて、年間を通じて熱の利用効率を高くすることができる。   According to this configuration, it is possible to use the cold heat source generated from the absorption chiller for refrigeration equipment with little fluctuation in seasonal heat demand, and to increase the heat utilization due to the incineration of the material to be processed that is constantly generated. It can be maintained and heat utilization efficiency can be increased throughout the year.

その結果、下水汚泥のような水分の極めて多い被処理物焼却システムからの熱利用率を、一層高めた実用性の高い被処理物焼却システムを提供することができた。   As a result, it was possible to provide a highly practical to-be-treated material incineration system in which the heat utilization rate from the to-be-treated material incineration system such as sewage sludge was extremely increased.

また、前記焼却設備からの熱源を、過熱器を介して前記タービン装置に供給し、該タービン装置からの熱源を吸収式冷凍機に送給すると共に、この過熱器の熱源を空気予熱器に送給し、この空気予熱器により予熱された空気を前記焼却設備に送給することが好ましい。 In addition, a heat source from the incineration facility is supplied to the turbine device via a superheater, and the heat source from the turbine device is supplied to an absorption chiller, and the heat source of the superheater is sent to an air preheater. It is preferable to feed the air preheated by the air preheater to the incineration facility .

この構成によれば、被処理物の焼却により生じた熱を焼却設備から蒸気として効率よく利用でき、焼却設備からの熱源を、過熱器を介してタービン装置に供給し、しかも、タービン装置からの熱源を吸収式冷凍機に送給し、この過熱器の熱源を空気予熱器に送給すると共に、更に予熱空気を焼却設備に送給することから、システム全体としての熱効率を極めて高いものにできる。 According to this configuration, can be efficiently utilized as a vapor from the heat incinerator generated by incineration of the object, the heat source from the incinerator is fed to the turbine system through the superheater, moreover, from the turbine unit The heat source is sent to the absorption chiller , the heat source of this superheater is sent to the air preheater, and further, the preheated air is sent to the incineration facility , so that the thermal efficiency of the entire system can be made extremely high. .

このとき、ガスタービンが並設されていると共に、このガスタービンから排出される排ガスを前記過熱器と空気予熱器に送給することが好ましい。
At this time, it is preferable that the gas turbines are arranged side by side, and the exhaust gas discharged from the gas turbines is supplied to the superheater and the air preheater.

この構成によれば、更に、システム全体の熱利用率を高めることができる。   According to this configuration, the heat utilization factor of the entire system can be further increased.

前記吸収式冷凍機がアンモニア吸収式冷凍機であり、このアンモニア吸収式冷凍機から冷熱源を冷凍施設に取り出し利用すると共に、前記アンモニア吸収式冷凍機から発生する温熱源を前記被処理物の乾燥装置に送給して、前記焼却設備に投入する前の前記被処理物の乾燥処理に利用することが好ましい。 The absorption chiller is an ammonia absorption chiller, and a cold heat source is taken out from the ammonia absorption chiller to a refrigeration facility and used, and a heat source generated from the ammonia absorption chiller is used to dry the object to be processed. It is preferable to use it for the drying process of the said to-be-processed object before supplying to an apparatus and throwing into the said incineration equipment .

この構成によれば、アンモニア吸収式冷凍機により一層省エネルギーを達成できると共に、被処理物の乾燥装置に利用して焼却設備に使用する補助燃料の使用量を一層低減できることになる。 According to this configuration, energy saving can be further achieved by the ammonia absorption refrigerator, and the amount of auxiliary fuel used in the incineration facility by being used in the processing object drying apparatus can be further reduced.

前記焼却設備とは別に、前記過熱器の上流側に補助ボイラを設けていて、この補助ボイラからの高温蒸気を前記過熱器あるいは吸収式冷凍機に送給・指示する制御装置が設けられていることが好ましい。 Separately from the incineration facility , an auxiliary boiler is provided upstream of the superheater, and a control device is provided for supplying / instructing the high-temperature steam from the auxiliary boiler to the superheater or absorption refrigerator . It is preferable.

この構成によれば、焼却設備の保守点検などにより一時的に焼却設備を休止したり、あるいは機能低下などが生じたりした場合などであっても、年間を通じて常時安定に電力、冷熱、あるいは温熱源を提供できる。 According to this configuration, even if the incineration facility is temporarily suspended due to maintenance or inspection of the incineration facility , or the function is deteriorated, etc., the power, cold, or heat source is always stable throughout the year. Can provide.

又、本発明に係る被処理物焼却方法の特徴構成は、焼却設備により被処理物を焼却し、この焼却設備による焼却によって得られた高温蒸気をタービン装置に送給して電力と熱源を取り出す焼却方法であって、前記焼却設備からの熱源を、過熱器を介して前記タービン装置に供給し、該タービン装置から熱源を吸収式冷凍機に送給し、この吸収式冷凍機から冷熱源を取り出し利用するとともに、ガスタービンが並設され、このガスタービンから排出される排ガスを前記過熱器と空気予熱器に送給することによって、前記過熱器の熱源を空気予熱器に送給し、この空気予熱器により予熱された空気を前記焼却設備に送給することにある。
Moreover, the characteristic structure of the to-be-processed object incineration method which concerns on this invention incinerates to-be-processed object by incineration equipment, supplies the high temperature steam obtained by incineration by this incineration equipment to a turbine apparatus, and takes out an electric power and a heat source. An incineration method, wherein a heat source from the incineration facility is supplied to the turbine device via a superheater, and the heat source is supplied from the turbine device to an absorption refrigerator, and a cold heat source is supplied from the absorption refrigerator. In addition to taking out and using the gas turbine, the exhaust gas discharged from the gas turbine is supplied to the superheater and the air preheater, thereby supplying the heat source of the superheater to the air preheater. It is to supply the air preheated by the air preheater to the incineration facility.

この構成によれば、下水汚泥のような水分の極めて多い被処理物焼却システムからの熱利用率を、一層高めた実用性の高い被処理物焼却方法を提供することができる。   According to this configuration, it is possible to provide a highly practical processing object incineration method in which the heat utilization rate from the processing object incineration system such as sewage sludge that is extremely high in water is further increased.

また、前記焼却設備からの熱源を、過熱器を介して前記タービン装置に供給し、該タービン装置からの熱源を吸収式冷凍機に送給すると共に、この過熱器の熱源を空気予熱器に送給し、この空気予熱器により予熱された空気を前記焼却設備に送給することが好ましい。 In addition, a heat source from the incineration facility is supplied to the turbine device via a superheater, and the heat source from the turbine device is supplied to an absorption chiller, and the heat source of the superheater is sent to an air preheater. It is preferable to feed the air preheated by the air preheater to the incineration facility .

この構成によれば、システム全体としての熱効率を一層高いものにできる。   According to this configuration, the thermal efficiency of the entire system can be further increased.

このとき、ガスタービンが並設されていると共に、このガスタービンから排出される排ガスを前記過熱器と空気予熱器に送給することが好ましい。 At this time, it is preferable that the gas turbines are arranged side by side, and the exhaust gas discharged from the gas turbines is supplied to the superheater and the air preheater.

この構成によれば、更に、システム全体としての熱効率を高いものにできる。   According to this configuration, the thermal efficiency of the entire system can be further increased.

前記吸収式冷凍機がアンモニア吸収式冷凍機であり、このアンモニア吸収式冷凍機から冷熱源を冷凍施設に取り出し利用すると共に、前記アンモニア吸収式冷凍機から発生する温熱源を前記被処理物の乾燥装置に送給して、前記焼却設備に投入する前の前記被処理物の乾燥処理に利用することが好ましい。 The absorption chiller is an ammonia absorption chiller, and a cold heat source is taken out from the ammonia absorption chiller to a refrigeration facility and used, and a heat source generated from the ammonia absorption chiller is used to dry the object to be processed. It is preferable to use it for the drying process of the said to-be-processed object before supplying to an apparatus and throwing into the said incineration equipment .

この構成によれば、システム全体としての熱効率を更に高くすることができる。   According to this configuration, the thermal efficiency of the entire system can be further increased.

前記焼却設備とは別に、前記過熱器の上流側に補助ボイラを設け、この補助ボイラからの高温蒸気を制御装置により前記過熱器あるいは吸収式冷凍機に送給・指示することが好ましい。 It is preferable that an auxiliary boiler is provided upstream of the superheater separately from the incineration facility, and high-temperature steam from the auxiliary boiler is supplied / instructed to the superheater or the absorption chiller by a control device.

この構成によれば、保守点検などにより焼却設備を一時的に停止する事態が生じたとしても、年間を通じて常時安定に電力、冷熱、あるいは温熱源を提供できる。 According to this configuration, even if a situation occurs in which the incineration facility is temporarily stopped due to maintenance inspection or the like, it is possible to provide power, cold energy, or a heat source stably at all times throughout the year.

本発明の実施形態を、図面を参照して詳細に説明する。図1は、本実施形態に係る被処理物焼却システムの概略構成を示す。必要に応じて、重力濃縮や機械濃縮。更には各主脱水機などを用いて予め脱水された被処理物である下水汚泥は、焼却設備の1種である流動層ボイラ10により加熱されつつ焼却される。流動層ボイラ10は、下部に砂などからなる流動層があり、上部に燃焼室が設けられていると共に、燃焼室に隣接してボイラ設備が配置されているため、燃焼室から発生する熱を蒸気として効率よく回収できる。このようにすることにより、従来技術のように焼却炉から熱を放散させるシステムに比べて、有効に熱利用を図れることになって好ましい。熱回収された蒸気は、配管11を通して独立の過熱器12に送給され、更に蒸気タービン13に送給されるようにしている。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration of a workpiece incineration system according to the present embodiment. Gravity concentration or mechanical concentration as required. Furthermore, the sewage sludge which is a to-be-processed object previously dehydrated using each main dehydrator etc. is incinerated while being heated by the fluidized bed boiler 10 which is one kind of incineration equipment. The fluidized bed boiler 10 has a fluidized bed made of sand or the like in the lower part, a combustion chamber is provided in the upper part, and a boiler facility is arranged adjacent to the combustion chamber, so that heat generated from the combustion chamber is generated. It can be efficiently recovered as steam. By doing in this way, compared with the system which dissipates heat from an incinerator like the prior art, heat utilization can be aimed at effectively, and it is preferable. The heat-recovered steam is sent to the independent superheater 12 through the pipe 11 and further sent to the steam turbine 13.

また、ガスタービン14が並設されており、このガスタービン14から排出される排ガスを独立過熱器12と、これに続く空気予熱器15に送給している。このようにして、独立過熱器12から蒸気タービン13に送給する蒸気を加熱することに利用し、蒸気タービン13の出力を高めるようにしていると共に、空気予熱器15に導入される空気の加熱に利用できるようにしている。排ガスは、空気予熱器15に熱交換した後、必要に応じて無害化処理され、煙突(図示略)などから大気に放出される。この空気予熱器15により予熱された空気は流動層ボイラ10に送給される。 Moreover, the gas turbine 14 is arranged in parallel, and the exhaust gas discharged | emitted from this gas turbine 14 is sent to the independent superheater 12 and the air preheater 15 following this. In this way, the steam supplied from the independent superheater 12 to the steam turbine 13 is used for heating, so that the output of the steam turbine 13 is increased and the air introduced into the air preheater 15 is heated. To make it available for use. The exhaust gas is heat-exchanged to the air preheater 15, detoxified as necessary, and discharged from the chimney (not shown) to the atmosphere. The air preheated by the air preheater 15 is supplied to the fluidized bed boiler 10.

蒸気タービン13から発生した高温蒸気(約200℃程度)は、更にアンモニア吸収式冷凍機16に送給されて、アンモニア吸収式冷凍機16を作動させる駆動源として利用される。もっとも、吸収式冷凍機としては、必ずしもアンモニア吸収式冷凍機に限定されるものではないが、アンモニア吸収式冷凍機を用いると、省エネルギーが図られて都合がよい。そして、アンモニア吸収式冷凍機16から発生した冷熱(−40℃程度)は、冷凍倉庫のような冷凍施設に供給されて利用され、熱利用率が高められている。このような施設であると、季節による需要変動がほとんどなく、恒常的に発生する下水汚泥の焼却時に発生する熱の利用が図れて都合がよい。   High-temperature steam (about 200 ° C.) generated from the steam turbine 13 is further supplied to the ammonia absorption refrigerator 16 and used as a drive source for operating the ammonia absorption refrigerator 16. Of course, the absorption refrigerator is not necessarily limited to the ammonia absorption refrigerator, but using an ammonia absorption refrigerator is advantageous in that it saves energy. And the cold heat (about -40 degreeC) which generate | occur | produced from the ammonia absorption refrigerating machine 16 is supplied and utilized for refrigeration facilities like a freezer warehouse, and the heat utilization rate is raised. Such a facility is convenient because there is almost no fluctuation in demand due to the season, and the heat generated during the incineration of the sewage sludge that is constantly generated can be used.

更に、ガスタービン14と蒸気タービン13に接続された発電機17から電力あるいは熱源を出力させて、この電力あるいは熱源を常時使用される下水処理場の駆動電源、熱源として利用する他、更に余剰の電力あるいは熱源を各種用途に利用するようになっている。特に、下水処理場は都市内の市街地、工場周辺などに立地していることが多いため、電力あるいは熱源を有効に利用し易い。   Furthermore, the power or heat source is output from the generator 17 connected to the gas turbine 14 and the steam turbine 13, and the power or heat source is used as a driving power source or heat source for a sewage treatment plant that is always used. Electric power or heat sources are used for various purposes. In particular, since sewage treatment plants are often located in urban areas, around factories, etc., it is easy to effectively use electric power or heat sources.

下水汚泥は、一般に有機物が主体であり、重金属類は少ないため、焼却された後(灰など)は、セメントに混入されたり、土壌中に埋設されたりして処分される。   In general, sewage sludge is mainly composed of organic substances and contains few heavy metals. Therefore, after being incinerated (ash, etc.), it is mixed with cement or buried in soil.

水分77%、固形物当たりの低位発熱量17,200kJ/kgの下水汚泥300t/日を、図1に示す焼却システムによって処理した。その際、使用した都市ガスは、約1,850Nm3/hであり、蒸気タービンにより得られた発電量は2,500kWであり、ガスタービンによる発電量は4,660kWであった。そして、アンモニア吸収式冷凍機を稼働して、7.6GJ/hの冷熱を得て、容量(約230,000m3)の冷凍冷蔵庫を−30〜−20℃に長期間保持することができた。 A sewage sludge of 300 t / day having a moisture content of 77% and a lower calorific value of 17,200 kJ / kg per solid was treated by the incineration system shown in FIG. At that time, the city gas used was about 1,850 Nm 3 / h, the amount of power generated by the steam turbine was 2,500 kW, and the amount of power generated by the gas turbine was 4,660 kW. Then, running the ammonia absorption refrigerator, with the cold of the 7.6GJ / h, it was able to hold a long time refrigerator capacity (approximately 230,000m 3) to -30 to-20 ° C. .

〔別実施の形態〕
(1)上記実施形態において、保守点検などにより流動層ボイラ10を一時的に停止する事態が生じることを考慮して、図2に示すように、流動層ボイラ10とは別に、独立過熱器12の上流側に補助ボイラ18を設けるようにしてもよい。すなわち、流動層ボイラ10の操業状態を把握すると共に、補助ボイラ18からの高温蒸気を独立過熱器12あるいは蒸気タービン13に送給すべく指示する制御装置Cを設けておき、システム全体を高効率で操業するようにする。このようにすることにより、流動層ボイラ10を休止したり、あるいは機能低下などが生じたりした場合などであっても、年間を通じて常時安定に電力、冷熱、あるいは温熱源を提供できることになる。
(2)更に、流動層ボイラ10に下水汚泥を投入するに先立って、脱水すると共に、あるいは単独で下水汚泥を乾燥機20により乾燥するようにし、その際、図3に示すように、アンモニア吸収式冷凍機16から発生する加温蒸気(約200℃程度)を乾燥機20に導入して乾燥用熱源として利用するようにしてもよい。これにより、流動層ボイラ10で消費される都市ガス等の補助燃料の使用量を一層低減でき、システム全体として一層熱利用効率が高められることになる。もとより、図3に示すシステムに、図2に示す補助ボイラを設けるようにしてもよい。
(3)上記実施形態では、被処理物として下水汚泥を例に挙げて説明したが、水分の多いものであれば、下水汚泥以外の焼却にも本発明を有効に適用することができる。
(4)上記実施形態では、被処理物を焼却するのに流動層ボイラを用いた例を示したが、焼却設備としてはこれに限定されるものではなく、ガス化溶融炉、その他の溶融炉などを用いてもよい。
[Another embodiment]
(1) In the above embodiment, in consideration of a situation in which the fluidized bed boiler 10 is temporarily stopped due to maintenance or the like, the independent superheater 12 is separated from the fluidized bed boiler 10 as shown in FIG. An auxiliary boiler 18 may be provided on the upstream side. In other words, a control device C is provided for grasping the operation state of the fluidized bed boiler 10 and instructing the high-temperature steam from the auxiliary boiler 18 to be supplied to the independent superheater 12 or the steam turbine 13, thereby making the entire system highly efficient. To operate at. By doing in this way, even if the fluidized bed boiler 10 is paused or a function is deteriorated, it is possible to provide power, cold energy, or a heat source stably at all times throughout the year.
(2) Further, prior to introducing the sewage sludge into the fluidized bed boiler 10, the dewatering is performed or the sewage sludge is dried by the dryer 20 alone. At that time, as shown in FIG. Heated steam (about 200 ° C.) generated from the type refrigerator 16 may be introduced into the dryer 20 and used as a heat source for drying. Thereby, the usage-amount of auxiliary fuels, such as city gas consumed by the fluidized bed boiler 10, can be reduced further, and the heat utilization efficiency is further improved as the whole system. Of course, the auxiliary boiler shown in FIG. 2 may be provided in the system shown in FIG.
(3) In the above embodiment, the sewage sludge is described as an example of the object to be treated. However, the present invention can be effectively applied to incineration other than sewage sludge as long as it has a lot of moisture.
(4) In the above embodiment, an example in which a fluidized bed boiler is used to incinerate an object to be treated has been shown, but the incineration equipment is not limited to this, but a gasification melting furnace, other melting furnaces Etc. may be used.

本発明の一実施形態に係る被処理物焼却システムの概略全体構成図1 is a schematic overall configuration diagram of an incineration system to be processed according to an embodiment of the present invention. 本発明の別実施形態に係る被処理物焼却システムの概略全体構成図Schematic whole block diagram of a to-be-processed object incineration system concerning another embodiment of the present invention 本発明の更に別実施形態に係る被処理物焼却システムの概略全体構成図Schematic whole block diagram of the to-be-processed object incineration system which concerns on another embodiment of this invention 従来技術に係る下水汚泥焼却処理システムを示す概略構成図Schematic configuration diagram showing a sewage sludge incineration treatment system according to the prior art 従来技術に係る他の下水汚泥焼却処理システムを示す概略構成図Schematic configuration diagram showing another sewage sludge incineration treatment system according to the prior art

符号の説明Explanation of symbols

10 焼却設備
12 過熱器
13 タービン装置
14 ガスタービン
15 空気予熱器
16 吸収式冷凍機
18 補助ボイラ
20 乾燥機
DESCRIPTION OF SYMBOLS 10 Incinerator 12 Superheater 13 Turbine apparatus 14 Gas turbine 15 Air preheater 16 Absorption-type refrigerator 18 Auxiliary boiler 20 Dryer

Claims (6)

被処理物を焼却する焼却設備と、この焼却設備から得られた高温蒸気を送給して電力と熱源を取り出すタービン装置とを有する被処理物焼却システムであって、前記焼却設備からの熱源を、過熱器を介して前記タービン装置に供給し、該タービン装置から熱源を吸収式冷凍機に送給し、この吸収式冷凍機から冷熱源を取り出し利用するとともに、ガスタービンが並設され、このガスタービンから排出される排ガスを前記過熱器と空気予熱器に送給することによって、前記過熱器の熱源を空気予熱器に送給し、この空気予熱器により予熱された空気を前記焼却設備に送給することを特徴とする被処理物焼却システム。 A to-be-processed incineration system comprising an incineration facility for incinerating an object to be processed, and a turbine device for supplying high-temperature steam obtained from the incineration facility to extract electric power and a heat source, wherein the heat source from the incineration facility , Supplying to the turbine device via a superheater, supplying a heat source from the turbine device to an absorption refrigeration machine, taking out and using a cold heat source from the absorption chiller, and arranging a gas turbine in parallel. By supplying the exhaust gas discharged from the gas turbine to the superheater and the air preheater, the heat source of the superheater is supplied to the air preheater, and the air preheated by the air preheater is sent to the incineration facility. A processing object incineration system characterized by feeding. 前記吸収式冷凍機がアンモニア吸収式冷凍機であり、このアンモニア吸収式冷凍機から冷熱源を冷凍施設に取り出し利用すると共に、前記アンモニア吸収式冷凍機から発生する温熱源を前記被処理物の乾燥装置に送給して、前記焼却設備に投入する前の前記被処理物の乾燥処理に利用する請求項に記載の被処理物焼却システム。 The absorption chiller is an ammonia absorption chiller, and a cold heat source is taken out from the ammonia absorption chiller to a refrigeration facility and used, and a heat source generated from the ammonia absorption chiller is used to dry the object to be processed. and feeding the apparatus, the object to be treated incineration system according to claim 1 to be used for drying in front of the object to be processed to be introduced into the incinerator. 前記焼却設備とは別に、前記過熱器の上流側に補助ボイラを設けていて、この補助ボイラからの高温蒸気を前記過熱器あるいは吸収式冷凍機に送給・指示する制御装置が設けられている請求項1または2に記載の被処理物焼却システム。 Separately from the incineration facility, an auxiliary boiler is provided upstream of the superheater, and a control device is provided for supplying / instructing the high-temperature steam from the auxiliary boiler to the superheater or absorption refrigerator. The to-be-processed object incineration system of Claim 1 or 2 . 焼却設備により被処理物を焼却し、この焼却設備による焼却によって得られた高温蒸気をタービン装置に送給して電力と熱源を取り出す被処理物焼却方法であって、前記焼却設備からの熱源を、過熱器を介して前記タービン装置に供給し、該タービン装置から熱源を吸収式冷凍機に送給し、この吸収式冷凍機から冷熱源を取り出し利用するとともに、ガスタービンが並設され、このガスタービンから排出される排ガスを前記過熱器と空気予熱器に送給することによって、前記過熱器の熱源を空気予熱器に送給し、この空気予熱器により予熱された空気を前記焼却設備に送給することを特徴とする被処理物焼却方法。 An incineration method for incinerating an object to be processed by an incineration facility, supplying high-temperature steam obtained by the incineration by the incineration facility to a turbine device, and extracting electric power and a heat source, wherein the heat source from the incineration facility , Supplying to the turbine device via a superheater, supplying a heat source from the turbine device to an absorption refrigeration machine, taking out and using a cold heat source from the absorption chiller, and arranging a gas turbine in parallel. By supplying the exhaust gas discharged from the gas turbine to the superheater and the air preheater, the heat source of the superheater is supplied to the air preheater, and the air preheated by the air preheater is sent to the incineration facility. A method for incinerating an object to be processed, characterized by feeding. 前記吸収式冷凍機がアンモニア吸収式冷凍機であり、このアンモニア吸収式冷凍機から冷熱源を冷凍施設に取り出し利用すると共に、前記アンモニア吸収式冷凍機から発生する温熱源を前記被処理物の乾燥装置に送給して、前記焼却設備に投入する前の前記被処理物の乾燥処理に利用する請求項に記載の被処理物焼却方法。 The absorption chiller is an ammonia absorption chiller, and a cold heat source is taken out from the ammonia absorption chiller to a refrigeration facility and used, and a heat source generated from the ammonia absorption chiller is used to dry the object to be processed. The to-be-processed object incineration method of Claim 4 utilized for the drying process of the said to-be-processed object before feeding to an apparatus and throwing in into the said incineration equipment. 前記焼却設備とは別に、前記過熱器の上流側に補助ボイラを設け、この補助ボイラからの高温蒸気を制御装置により前記過熱器あるいは吸収式冷凍機に送給・指示する請求項4または5に記載の被処理物焼却方法。
Apart from the incinerator, the auxiliary boiler arranged upstream of the superheater to claim 4 or 5 feeding and instructions to the superheater or absorption chiller by the controller of the high-temperature steam from the auxiliary boiler The method for incinerating the object to be treated.
JP2004334602A 2004-11-18 2004-11-18 Processed object incineration system and processable object incineration method Active JP4707370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334602A JP4707370B2 (en) 2004-11-18 2004-11-18 Processed object incineration system and processable object incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334602A JP4707370B2 (en) 2004-11-18 2004-11-18 Processed object incineration system and processable object incineration method

Publications (2)

Publication Number Publication Date
JP2006144633A JP2006144633A (en) 2006-06-08
JP4707370B2 true JP4707370B2 (en) 2011-06-22

Family

ID=36624623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334602A Active JP4707370B2 (en) 2004-11-18 2004-11-18 Processed object incineration system and processable object incineration method

Country Status (1)

Country Link
JP (1) JP4707370B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443331A (en) * 1977-09-12 1979-04-05 Hitachi Ltd Steam turbine plant
JPH05288327A (en) * 1992-04-07 1993-11-02 Kumagai Gumi Co Ltd Energy recycling device
JPH05296009A (en) * 1991-02-05 1993-11-09 Fuji Electric Co Ltd Exhaust heat recovery system for steam turbine equipment
JPH08128601A (en) * 1994-10-28 1996-05-21 Hitachi Ltd Waste incinerating power generating method, and facility
JPH11218005A (en) * 1998-01-30 1999-08-10 Ebara Corp Combined power generation system utilizing waster as fuel
JP2001520360A (en) * 1998-10-14 2001-10-30 株式会社荏原製作所 Waste combustion power generation method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443331A (en) * 1977-09-12 1979-04-05 Hitachi Ltd Steam turbine plant
JPH05296009A (en) * 1991-02-05 1993-11-09 Fuji Electric Co Ltd Exhaust heat recovery system for steam turbine equipment
JPH05288327A (en) * 1992-04-07 1993-11-02 Kumagai Gumi Co Ltd Energy recycling device
JPH08128601A (en) * 1994-10-28 1996-05-21 Hitachi Ltd Waste incinerating power generating method, and facility
JPH11218005A (en) * 1998-01-30 1999-08-10 Ebara Corp Combined power generation system utilizing waster as fuel
JP2001520360A (en) * 1998-10-14 2001-10-30 株式会社荏原製作所 Waste combustion power generation method and apparatus

Also Published As

Publication number Publication date
JP2006144633A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP6613822B2 (en) Waste incineration and hydrogen production equipment and method
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JP3861093B2 (en) Method and apparatus for converting sludge into fuel
JP5148809B2 (en) Method and apparatus for converting sludge into fuel
JP2006348302A (en) Method and apparatus for converting sludge into fuel
JP2005321131A (en) Sludge incinerating system
JP2001342476A (en) Method and facility for producing carbonized waste
JP4707370B2 (en) Processed object incineration system and processable object incineration method
KR101613968B1 (en) steam generating system having ultra high temperature sludge drying apparatus
JP2004358371A (en) Processing method and processing system of watery organic waste
KR101005850B1 (en) Apparatus for Drying and Carbonating Combustibile or organic Waste
JP2007002825A (en) Waste power generation method
FI108960B (en) Method and apparatus for burning of highly combustible substances
JPH11200882A (en) Sludge power generation equipment
CN210951326U (en) Sludge and garbage drying carbonization pyrolysis combustion treatment system
JP4449704B2 (en) Combustion method and apparatus
JP4918185B1 (en) Hybrid incinerator system
JP2004089773A (en) Waste treatment facility
JP4161462B2 (en) Waste treatment method and waste treatment system
JP4089079B2 (en) Waste treatment method and waste treatment system
CN220537680U (en) System for improve cement manufacture line and deal with municipal sludge volume in coordination
JP3769204B2 (en) Combustion treatment method of waste including organic waste
EP1382806B1 (en) Method and plant for the use of waste material in a thermoelectric power plant
JP2007284478A (en) Method for converting bio-mass into resource and apparatus for conversion into resource
JP2006162198A (en) Method for effectively using energy of waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4707370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250