JP4704894B2 - Film forming method and film forming apparatus - Google Patents

Film forming method and film forming apparatus Download PDF

Info

Publication number
JP4704894B2
JP4704894B2 JP2005332083A JP2005332083A JP4704894B2 JP 4704894 B2 JP4704894 B2 JP 4704894B2 JP 2005332083 A JP2005332083 A JP 2005332083A JP 2005332083 A JP2005332083 A JP 2005332083A JP 4704894 B2 JP4704894 B2 JP 4704894B2
Authority
JP
Japan
Prior art keywords
film forming
chamber
source gas
substrate
forming chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005332083A
Other languages
Japanese (ja)
Other versions
JP2007138230A (en
Inventor
敏幸 川原村
浩之 西中
静雄 藤田
喜男 増田
圭介 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2005332083A priority Critical patent/JP4704894B2/en
Publication of JP2007138230A publication Critical patent/JP2007138230A/en
Application granted granted Critical
Publication of JP4704894B2 publication Critical patent/JP4704894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、CVD法(化学的気相成膜法)により基板に膜を形成する成膜方法及び成膜装置、特に、ガラス基板等にSiO2膜、ITO膜(透明導電膜)、SnO2(ATO,FTO)膜、酸化マグネシュム(MgO)膜、酸化亜鉛(ZnO)膜等を成膜する成膜方法及び成膜装置に関する。 The present invention relates to a film forming method and a film forming apparatus for forming a film on a substrate by a CVD method (chemical vapor deposition method), in particular, a SiO 2 film, an ITO film (transparent conductive film), SnO 2 on a glass substrate or the like. The present invention relates to a film forming method and a film forming apparatus for forming an (ATO, FTO) film, a magnesium oxide (MgO) film, a zinc oxide (ZnO) film, and the like.

従来の成膜装置としては、次のようなものが知られている。
特許第2818776号
The following are known as conventional film forming apparatuses.
Japanese Patent No. 2818776

図6に示した前記特許文献1の成膜装置50は、ライナー管51の一端に設けた供給口52で混合されて供給される原料ガス(成膜成分である微粒子とこれを運搬するキャリヤーガスとの混合ガス)を、流路53を経て、成膜室54に導く構成である。この成膜室54は、その下部に基板57を設置し設置面と加熱装置を有するサセプタ56を備え、その上部の幅を基板57とほぼ同等とし、その高さを成膜室入口58から成膜室出口59へ向かって順次狭くなる構成であり、その断面が図7(D)に示す様に薄型の矩形形状である。   The film forming apparatus 50 of Patent Document 1 shown in FIG. 6 is a raw material gas (fine particles which are film forming components and a carrier gas which carries the raw material gas mixed and supplied at a supply port 52 provided at one end of a liner tube 51. Gas mixture) through the flow path 53 to the film forming chamber 54. The film forming chamber 54 is provided with a susceptor 56 having a substrate 57 in the lower part thereof and an installation surface and a heating device. The width of the upper part of the film forming chamber 54 is substantially the same as that of the substrate 57, and the height thereof is It is a structure which becomes narrow gradually toward the film | membrane room exit 59, and the cross section is a thin rectangular shape as shown in FIG.7 (D).

この成膜装置50は、原料ガスを供給口52から流路53で導いて成膜室54に流入させ、この流入した原料ガスがサセプタ56で加熱された基板57の表面に沿って流動中に膜を生成する機能を有する。   The film forming apparatus 50 guides the source gas from the supply port 52 through the flow path 53 to flow into the film forming chamber 54, and the inflowed source gas is flowing along the surface of the substrate 57 heated by the susceptor 56. It has a function of generating a film.

この成膜装置50は、基板に原料ガスを衝突せる成膜装置に比較して、基板の表面に沿って原料ガスを流動させる成膜装置であるから、加熱された基板からの上昇気流の影響を受けにくく成膜効率(原料ガス中の微粒子が基板上にとどまる率)が良いものである。   Since the film forming apparatus 50 is a film forming apparatus that causes the source gas to flow along the surface of the substrate as compared with the film forming apparatus that causes the source gas to collide with the substrate, the influence of the rising air current from the heated substrate is affected. Film formation efficiency (rate in which fine particles in the source gas stay on the substrate) is good.

しかし、この成膜装置50の流路53断面形状は、供給口52から成膜室入口58までの間で、図6(A)〜(C)に示すように円形、楕円、薄型矩形に変化する構成である。このために、成膜室54に到達した原料ガスの幅方向の流速分布は一様になりにくい。
すなわち、供給口52で円形に噴射された原料ガスは、流路53の断面形状の変化に従って成膜室入口58へ導かれるが、このためその断面内の流速分布は、噴射の形状を保ち続けようとするため、供給口52の延長線上である中央部の速度が周辺部より速くなる。この影響により成膜室54での幅方向の流速分布もその中央部が周辺部より速くなる傾向にある。
However, the cross-sectional shape of the flow path 53 of the film forming apparatus 50 changes from a supply port 52 to a film forming chamber inlet 58 into a circle, an ellipse, and a thin rectangle as shown in FIGS. It is the structure to do. For this reason, the flow velocity distribution in the width direction of the source gas that has reached the film forming chamber 54 is unlikely to be uniform.
In other words, the source gas injected in a circular shape at the supply port 52 is guided to the film formation chamber inlet 58 according to the change in the cross-sectional shape of the flow path 53. Therefore, the flow velocity distribution in the cross-section continues to maintain the injection shape. Therefore, the speed of the central portion on the extension line of the supply port 52 becomes faster than the peripheral portion. Due to this influence, the flow velocity distribution in the width direction in the film forming chamber 54 also tends to be faster in the central portion than in the peripheral portion.

原料ガスを流動させる成膜装置によって形成される基板上の膜の厚みは、原料ガスの流速に対応して変化する傾向を有するものであるから、従来技術の様に成膜室54の原料ガスの流速分布が一様でなく乱れを伴うと生成された膜の厚みが一様になりにくい。また原料ガスを導入する装置は、基板の大型化(基板面積が大)に伴い流路の断面形状変化が大きくなるので、原料ガスの流速分布の乱れがより顕著で大型基板の成膜装置にはきわめて不向きになる。   Since the thickness of the film on the substrate formed by the film forming apparatus for flowing the source gas has a tendency to change corresponding to the flow rate of the source gas, the source gas in the film forming chamber 54 as in the prior art. If the flow velocity distribution of the film is not uniform and is disturbed, the thickness of the generated film is difficult to be uniform. In addition, since the change in the cross-sectional shape of the flow path becomes larger as the substrate becomes larger (the substrate area is larger) in the apparatus for introducing the source gas, the disturbance in the flow velocity distribution of the source gas is more remarkable, and it becomes a film deposition apparatus for a large substrate. Becomes extremely unsuitable.

本発明は、上記した従来技術の問題点を解決し、生成される膜の厚みが一様で、大型基板の成膜も可能な成膜方法及び成膜装置の提供を課題とするものである。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a film forming method and a film forming apparatus capable of forming a large substrate with a uniform film thickness. .

課題を解決するための手段及び効果Means and effects for solving the problems

発明は、サセプタと上部本体との間にスペーサを介して形成される成膜室と、前記サセプタに設けられた基板厚み分の凹部に保持されて、その表面がサセプタ表面と同一平面を形成する基板と、前記成膜室の入口端部に連接して当該成膜室の入口開口全面から原料ガスを供給可能とした混合室と、
前記混合室に接続され開口された複数の原料ガス供給管とを備え、
前記成膜室の前記基板上の空間を極薄型の直方体状の空間とし
さらに、前記成膜室の入口開口の断面積を、前記複数の原料ガス供給管の開口の総断面積より小さい値にしたこと特徴とする。
In the present invention, a film forming chamber formed between a susceptor and an upper body via a spacer, and a concave portion corresponding to a substrate thickness provided in the susceptor, the surface of which forms the same plane as the susceptor surface a substrate, a mixing chamber a raw material gas was be supplied from the inlet opening the entire surface of the deposition chamber and connected to the inlet end of the deposition chamber,
A plurality of source gas supply pipes connected to the mixing chamber and opened,
Wherein a rectangular parallelepiped space ultrathin the space on the substrate of the film forming chamber,
Furthermore, the sectional area of the inlet opening of the film forming chamber is set to a value smaller than the total sectional area of the openings of the plurality of source gas supply pipes .

この手段によると、混合室は成膜室の入口端部に連接しているので、供給管から供給される原料ガスは、混合室で混合された後、成膜室に導かれる。前記混合室は成膜室の入口端部に連接して成膜室の入口開口全面から原料ガスを供給可能に形成されているので、原料ガスの供給速度の分布が成膜室内の基板表面に沿って流動する原料ガスの流速分布に影響しない。また、成膜室の凹部にサセプタ表面と同一平面を形成する基板上面の空間が極薄型の直方体状であるから、成膜室に流入した原料ガスの幅方向の流速分布は長さ方向のどの位置でも幅方向にほぼ一定となる。また、基板表面はサセプタ表面と同一平面を形成するので,原料ガスの流れを乱すことがない。そして、基板上の空間の高さすなわち原料ガスの流路の高さは非常に小さいので、原料ガスのように熱伝達係数の小さい流体でも加熱が可能であり、基板上の空間を流れる原料ガス全体が反応温度に達するのが容易である。しかも基板上の空間でのみ反応温度に達するので、基板以外に成膜成分が付着するおそれがないという効果を有する。   According to this means, since the mixing chamber is connected to the inlet end of the film forming chamber, the source gas supplied from the supply pipe is mixed in the mixing chamber and then guided to the film forming chamber. Since the mixing chamber is connected to the inlet end of the film forming chamber so that the source gas can be supplied from the entire entrance opening of the film forming chamber, the distribution of the supply speed of the source gas is distributed on the substrate surface in the film forming chamber. It does not affect the flow velocity distribution of the source gas flowing along. In addition, since the space on the upper surface of the substrate that forms the same plane as the susceptor surface in the recess of the film formation chamber is an extremely thin rectangular parallelepiped, the flow velocity distribution in the width direction of the source gas flowing into the film formation chamber is The position is almost constant in the width direction. In addition, since the substrate surface is flush with the susceptor surface, the flow of the source gas is not disturbed. And since the height of the space on the substrate, that is, the height of the flow path of the source gas is very small, it is possible to heat even a fluid having a small heat transfer coefficient such as the source gas, and the source gas flowing in the space on the substrate It is easy for the whole to reach the reaction temperature. In addition, since the reaction temperature is reached only in the space on the substrate, there is an effect that there is no possibility that film forming components adhere to other than the substrate.

さらに、上記手段によると、混合室内の圧力を成膜室より高く制御できるので、成膜室に原料ガスを安定して供給できるという効果を有する。 Further, according to the above means, since the pressure in the mixing chamber can be controlled higher than that in the film forming chamber, there is an effect that the source gas can be stably supplied to the film forming chamber.

また本発明は、前記複数の原料ガス供給管の前記混合室への開口方向は、交差または対向する方向にしたことを特徴とする。
上記手段によれば、混合室内での混合が原料ガス同士の衝突混合となるので、気体分子同士の衝突又は気体分子間の引力で双方の流速が互いに緩和され、方向も相手と異なる方向に分散し、原料ガスの安定した整流が容易になるという効果を有する。
The present invention is characterized in that an opening direction of the plurality of source gas supply pipes to the mixing chamber is set to intersect or face each other.
According to the above means, since mixing in the mixing chamber results in collision mixing of the source gases, both flow velocities are alleviated by collision between gas molecules or attraction between gas molecules, and the direction is also dispersed in a direction different from the partner. In addition, stable rectification of the source gas is facilitated.

また本発明は、前記複数の原料ガス供給管から前記成膜室へ流入される前記原料ガスの流速を調整することによって、前記基板の表面に沿って流動する当該原料ガスの流速の分布を前記流動方向(以下「基板の長さ方向」ともいう)と直交する方向(以下「基板の幅方向」ともいう)において一様となるようにしたことを特徴とする。In the present invention, the flow rate distribution of the source gas flowing along the surface of the substrate is adjusted by adjusting the flow rate of the source gas flowing into the film forming chamber from the plurality of source gas supply pipes. It is characterized by being uniform in a direction (hereinafter also referred to as “substrate width direction”) perpendicular to the flow direction (hereinafter also referred to as “substrate length direction”).
この手段によると、成膜室に配置した基板の表面に沿って流動する原料ガスの流速の分布が基板の幅方向に一様であるから、少なくとも幅方向に一様な厚みの膜が得られるという効果を有する。あとは、長さ方向にも膜厚が均一になるように制御すればよいので、制御が簡単になるという効果を有する。According to this means, since the distribution of the flow velocity of the source gas flowing along the surface of the substrate disposed in the film forming chamber is uniform in the width direction of the substrate, a film having a uniform thickness in at least the width direction can be obtained. It has the effect. After that, it is only necessary to control the film thickness so as to be uniform in the length direction, so that the control is simplified.

本発明は、前記混合室の前記成膜室との連接部は当該成膜室に向かって断面積が減少する平滑な誘導面を有することを特徴とする。
この手段によると、より滑らかに整流することができるという効果を有する。
The present invention, connecting part of the film forming chamber of the mixing chamber is characterized by having a smooth guide surface for the cross-sectional area toward the the deposition chamber is reduced.
This means has an effect that rectification can be performed more smoothly.

本発明は、前記混合室が原料ガスを予熱する加熱装置を有することを特徴とする。
この手段によると、混合室で原料ガスを熱分解温度より少し低い温度に予熱するのが容易になり、予熱された状態で成膜室に供給することにより、成膜室内で熱分解温度に達するまでの時間を短くすることができるという効果を有する。
The present invention is characterized in that the mixing chamber has a heating device for preheating the raw material gas.
According to this means, it becomes easy to preheat the raw material gas to a temperature slightly lower than the thermal decomposition temperature in the mixing chamber, and the thermal decomposition temperature is reached in the film forming chamber by supplying it to the film forming chamber in a preheated state. This has the effect of shortening the time until.

また本発明は、前記成膜室の出口側端部に、前記混合室とほぼ同一構造の排出室を対称に設けたことを特徴とする。
この手段によれば、排出室と混合室をほぼ同一構造に構成することにより、切換弁などの簡単な構成で原料ガスの供給方向を切り換えることができ、成膜室の基板上の成膜傾向を相殺できるという効果を有する。
Further, the present invention is characterized in that a discharge chamber having substantially the same structure as the mixing chamber is provided symmetrically at the outlet side end of the film forming chamber.
According to this means, by configuring the discharge chamber and the mixing chamber in substantially the same structure, the supply direction of the source gas can be switched with a simple configuration such as a switching valve, and the film formation tendency on the substrate in the film formation chamber Can be offset.

また本発明は、前記成膜室の前記基板上の空間を、前記原料ガスの流動方向に従って狭く形成していることを特徴とする。
上記手段によれば、原料ガスの成膜室内での流速を順次速くすることができるという効果を有する。
The present invention, the space on the substrate of the film forming chamber, characterized in that it is formed narrower in accordance with the flow direction of the raw material gas.
According to the above means, it is possible to sequentially increase the flow rate of the source gas in the film forming chamber.

以下本発明の実施例を、図面に基づいて説明する。
図1は、本発明の実施例である成膜装置の縦断面図(図2のA−A断面矢視図)であり、図2は、同成膜装置の横断面図(図1のB−B断面矢視図)である。また、図3は、同成膜装置の部分拡大図(図1のC部)である。図4は、同成膜装置の成膜室を流れる原料ガスの流速分布を示す説明図であり、図5は、同成膜室内の原料ガスの流動方向と成膜傾向との関係を示す説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view (a cross-sectional view taken along line AA in FIG. 2) of a film forming apparatus according to an embodiment of the present invention, and FIG. 2 is a transverse sectional view (B in FIG. 1) of the film forming apparatus. -B sectional view). FIG. 3 is a partially enlarged view of the film forming apparatus (part C in FIG. 1). FIG. 4 is an explanatory diagram showing the flow velocity distribution of the source gas flowing in the film forming chamber of the film forming apparatus, and FIG. 5 is an explanatory diagram showing the relationship between the flow direction of the source gas in the film forming chamber and the film forming tendency. FIG.

図1及び図2において、10は、成膜装置である。成膜装置10の本体部は、上部本体11と下部本体12と、下部本体上に設けたサセプタ13とスペーサ14とからなり、それらを一体的に結合して形成される。
サセプタ13には基板18の厚み分の深さを有する凹部30が設けられており、基板18は、このサセプタ13の凹部30に保持され、その表面が、サセプタ13の表面と同一平面をなすように形成される。
1 and 2, reference numeral 10 denotes a film forming apparatus. The main body of the film forming apparatus 10 includes an upper main body 11, a lower main body 12, a susceptor 13 and a spacer 14 provided on the lower main body, and is formed by integrally connecting them.
The susceptor 13 is provided with a recess 30 having a depth corresponding to the thickness of the substrate 18. The substrate 18 is held in the recess 30 of the susceptor 13 so that the surface thereof is flush with the surface of the susceptor 13. Formed.

成膜室17は、この凹部30を有するサセプタ13と上部本体11との間にスペーサ14を介して形成される。基板18が上述のようにサセプタ13の凹部30に保持されると、この成膜室の基板上には、極薄型の直方体状の空間が形成される。この基板上の空間の長さa及び幅bは、基板の長さ及び幅によって規定され、その高さhは、スペーサ14の高さによって規定される。
この基板上の空間の高さhは、0.3mm以上3.0mm以下とするのが好ましい。
The film forming chamber 17 is formed between the susceptor 13 having the concave portion 30 and the upper main body 11 via the spacer 14. When the substrate 18 is held in the recess 30 of the susceptor 13 as described above, an extremely thin rectangular parallelepiped space is formed on the substrate in the film forming chamber. The length a and the width b of the space on the substrate are defined by the length and width of the substrate, and the height h is defined by the height of the spacer 14.
The height h of the space on the substrate is preferably from 0.3 mm to 3.0 mm.

サセプタ13の凹部30に保持された基板18の表面が、サセプタ13の表面と同一平面をなすように形成されるので、原料ガスの流れを乱すおそれがない。そして、基板上の空間の高さすなわち原料ガスの流路の高さは非常に小さいので、原料ガスのように熱伝達係数の小さい流体でも加熱が可能であり、基板上の空間を流れる原料ガス全体が反応温度に達するのが容易であり、しかも基板上の空間でのみ反応温度に達するので、基板以外に成膜成分が付着するおそれがないという効果を有する。   Since the surface of the substrate 18 held in the concave portion 30 of the susceptor 13 is formed so as to be flush with the surface of the susceptor 13, there is no possibility of disturbing the flow of the source gas. And since the height of the space on the substrate, that is, the height of the flow path of the source gas is very small, it is possible to heat even a fluid having a small heat transfer coefficient such as the source gas, and the source gas flowing in the space on the substrate It is easy for the whole to reach the reaction temperature, and since the reaction temperature is reached only in the space on the substrate, there is an effect that there is no possibility that the film forming components adhere to other than the substrate.

下部本体12内には、サセプタ13の凹部に保持された基板18を加熱する加熱装置24が内蔵されている。この加熱装置24によって、基板18上を流れる原料ガスを加熱して、熱分解させ、基板上に膜を生成させる。
加熱装置24は、基板18より少し大きい面積を加熱する程度に設けてあり、混合室15をも加熱できる広さにしてあり、後述する混合室15内の原料ガスを予熱する役割も兼ねているが、混合室15内の原料ガスを予熱するための加熱装置は、加熱装置24と一体にする必要はなく別の加熱装置を設けても良い。
A heating device 24 for heating the substrate 18 held in the recess of the susceptor 13 is built in the lower body 12. By this heating device 24, the source gas flowing on the substrate 18 is heated and thermally decomposed to form a film on the substrate.
The heating device 24 is provided so as to heat an area slightly larger than the substrate 18, and is wide enough to heat the mixing chamber 15, and also serves as a preheat source gas in the mixing chamber 15 described later. However, the heating device for preheating the raw material gas in the mixing chamber 15 does not need to be integrated with the heating device 24 and may be provided with another heating device.

成膜装置10は、上記のように構成された本体部と、その左側に設けた混合室15と、右側に設けた排出室16からなる。
図3において、混合室15は、3本の原料ガス供給管20と成膜室17との間に設けられ、成膜室17との連接部は、成膜室17へ向かって断面積が減少する平滑な誘導面を有し、成膜室17側の端部の幅は、成膜室17の入口開口19aの幅と同等またはそれより広い幅に形成される。
また、成膜室入口開口の断面積は、前記3本の供給管の開口の総断面積より小さくしてある。
さらに、原料ガス供給管20は、混合室15に接続、開口されているが、その開口方向は水平方向に2本が対向し、他の1本は前記2本と同一水平面内で交差している。
The film forming apparatus 10 includes a main body configured as described above, a mixing chamber 15 provided on the left side thereof, and a discharge chamber 16 provided on the right side.
In FIG. 3, the mixing chamber 15 is provided between the three source gas supply pipes 20 and the film forming chamber 17, and the connection area with the film forming chamber 17 decreases in cross section toward the film forming chamber 17. The width of the end portion on the film forming chamber 17 side is equal to or wider than the width of the inlet opening 19a of the film forming chamber 17.
The sectional area of the film forming chamber inlet opening is smaller than the total sectional area of the openings of the three supply pipes.
Further, the source gas supply pipe 20 is connected to and opened in the mixing chamber 15, but the opening direction is two in the horizontal direction, and the other one intersects the two in the same horizontal plane. Yes.

このように混合室15の成膜室17側端部の幅は、成膜室17の入口開口19aの幅と同等またはそれより広い幅に形成されるので、原料ガスは、入口開口全面から成膜室17内に流入し、流入する原料ガスの幅方向の流速分布はほぼ一定となる。また、成膜室入口開口の断面積を、前記3本の供給管の開口の総断面積より小さくしてあるので、混合室内の圧力を成膜室内のそれよりも高くすることができ、原料ガスを成膜室内に安定して供給する事ができる。
そして、この圧力の差が大きいほど、成膜室内における原料ガスの流速は速くなるが、入口開口における流速の範囲は0.3m/sec以上8m/sec以下にするのが好ましい。流速がこの範囲を外れると、入口開口における幅方向の流速分布の一様性が劣化する。
Thus, the width of the end portion of the mixing chamber 15 on the side of the film forming chamber 17 is formed to be equal to or wider than the width of the inlet opening 19a of the film forming chamber 17, so that the source gas is formed from the entire surface of the inlet opening. The flow velocity distribution in the width direction of the inflowing raw material gas flows into the membrane chamber 17 and becomes almost constant. Further, since the cross-sectional area of the film-formation chamber inlet opening is smaller than the total cross-sectional area of the three supply pipe openings, the pressure in the mixing chamber can be made higher than that in the film-formation chamber. Gas can be stably supplied into the deposition chamber.
The larger the pressure difference, the faster the flow rate of the source gas in the film forming chamber, but the flow rate range at the inlet opening is preferably 0.3 m / sec or more and 8 m / sec or less. If the flow velocity is out of this range, the uniformity of the flow velocity distribution in the width direction at the inlet opening deteriorates.

さらに、3本の供給管20の開口方向は、対向または交差しているので、供給される原料ガスは混合室内でガス同士が衝突して混合される。
この原料ガス同士の衝突混合によれば、気体分子同士の衝突又は気体分子間の引力で双方の流速が互いに緩和され、流れの方向も相手と異なる方向に分散するので、流速分布の偏りを小さくなり、成膜室の入口開口に流入する原料ガスの流速分布への影響がいっそう小さくなる。したがって、原料ガスの安定した整流が容易になるという効果を有する。
Furthermore, since the opening directions of the three supply pipes 20 face each other or cross each other, the source gases to be supplied are mixed with each other in the mixing chamber.
According to the collision mixing of the source gases, both flow velocities are alleviated by collision between gas molecules or attractive force between gas molecules, and the flow direction is dispersed in a direction different from the other, so that the deviation in flow velocity distribution is reduced. Thus, the influence on the flow velocity distribution of the raw material gas flowing into the inlet opening of the film forming chamber is further reduced. Therefore, there is an effect that stable rectification of the source gas is facilitated.

前記混合室には前述のように、原料ガスを予熱する予熱装置(図示せず)を設けることが好ましい。この予熱装置により原料ガスを、その熱分解温度以下に予熱しておくと、成膜室における成膜時間を短縮することができる。
そして、予熱装置を基板18の加熱装置24と別体に設ける方が独自に温度調節することができるので、好ましい。
As described above, it is preferable to provide a preheating device (not shown) for preheating the raw material gas in the mixing chamber. If the source gas is preheated to a temperature equal to or lower than the thermal decomposition temperature by this preheating device, the film formation time in the film formation chamber can be shortened.
And it is preferable to provide the preheating device separately from the heating device 24 of the substrate 18 because the temperature can be adjusted independently.

成膜室17の出口19b側に設けた排出室16は、成膜室の入口19a側に設けた混合室15とほぼ同様に構成してある。
すなわち、混合室15と排出室16は、成膜室17を介して設けてあり、そのほぼ同一構造のものを左右対称に設けてある。従って、切換弁などを用いて原料ガスの供給方向を切り換えることができる。後述するように、供給方向を切り換えることにより、原料ガスの流動方向での成膜傾向を相殺して、基板18表面の長さ方向での膜厚さを均一にすることができる。
The discharge chamber 16 provided on the outlet 19b side of the film forming chamber 17 is configured in substantially the same manner as the mixing chamber 15 provided on the inlet 19a side of the film forming chamber.
That is, the mixing chamber 15 and the discharge chamber 16 are provided via the film forming chamber 17, and the substantially same structure is provided symmetrically. Therefore, the supply direction of the source gas can be switched using a switching valve or the like. As will be described later, by switching the supply direction, the tendency of film formation in the flow direction of the source gas can be offset, and the film thickness in the length direction of the surface of the substrate 18 can be made uniform.

上記実施例では、成膜室17の基板18上の空間を、直方体状としたが、下流方向に向かって狭く形成してもよい。基板上の空間が直方体状の場合、下流側にいくほど成膜傾向が小さくなるが,このようにする原料ガスの流速を下流にいくほど速くすることができるので、長さ方向の成膜傾向を均一にすることができる。   In the above embodiment, the space on the substrate 18 in the film forming chamber 17 has a rectangular parallelepiped shape, but it may be formed narrower in the downstream direction. When the space on the substrate is a rectangular parallelepiped, the tendency of film formation decreases as it goes downstream. However, since the flow rate of the raw material gas can be increased as it goes downstream, the tendency of film formation in the length direction is increased. Can be made uniform.

次に、本発明の実施例である成膜方法を、前記成膜装置10の作動とともに詳述する。供給管20を介して供給される原料ガスは、混合室15内で衝突混合し成膜室17に流入する。この成膜室17内の原料ガス中の成膜成分である微粒子は、基板18面上で加熱され熱分解し、基板上に付着してより成膜される。   Next, a film forming method according to an embodiment of the present invention will be described in detail along with the operation of the film forming apparatus 10. The source gas supplied through the supply pipe 20 collides and mixes in the mixing chamber 15 and flows into the film forming chamber 17. Fine particles that are film forming components in the source gas in the film forming chamber 17 are heated and thermally decomposed on the surface of the substrate 18 and deposited on the substrate to form a film.

上記の成膜作用において、成膜室17への原料ガスは、混合室15の存在により成膜室の手前上流側で混合され成膜室の入口開口19a全面からから供給される。すなわち、混合室15の成膜室側の端部の幅は、成膜室17の入口開口の幅bより大きいので、原料ガスは成膜室の入口開口全面から成膜室に流入する。従って、原料ガスの供給流速の分布が成膜室内の流速分布に影響しない。   In the film forming operation described above, the source gas to the film forming chamber 17 is mixed on the upstream side before the film forming chamber due to the presence of the mixing chamber 15 and is supplied from the entire entrance opening 19a of the film forming chamber. That is, since the width of the end of the mixing chamber 15 on the film forming chamber side is larger than the width b of the inlet opening of the film forming chamber 17, the source gas flows into the film forming chamber from the entire inlet opening of the film forming chamber. Therefore, the distribution of the supply flow rate of the source gas does not affect the flow rate distribution in the film forming chamber.

したがって、混合室15から供給される原料ガスの流速分布が均一になるようにすることにより、基板の表面に沿って流動する原料ガスの流速の分布を流動方向と直交する方向(基板の幅方向)においてほぼ一定となるようにすれば、少なくとも幅方向における膜の厚さが一様になる。   Therefore, by making the flow velocity distribution of the source gas supplied from the mixing chamber 15 uniform, the flow velocity distribution of the source gas flowing along the surface of the substrate is perpendicular to the flow direction (the width direction of the substrate). ), The film thickness is at least uniform in the width direction.

成膜室17の入口開口の断面積を、混合室15への前記3本の供給管20の開口の総断面より小さい値にしてあるので、混合室内の圧力が成膜室より高くすることができ、原料ガスを安定して供給できる。また、3本の供給管20の混合室への開口方向は対向または交差しているので、供給された原料ガスが、混合室内でガス同士衝突して、混合されることは、前述のとおりである。さらに、混合室15と成膜室17との連接部は、成膜室17へ向かって断面積が減少する平滑な誘導面としたので、混合され流速分布が均一化された原料ガスを滑らかに成膜室入口開口19aに導入することができる。   Since the sectional area of the inlet opening of the film forming chamber 17 is set to a value smaller than the total cross section of the openings of the three supply pipes 20 to the mixing chamber 15, the pressure in the mixing chamber may be higher than that of the film forming chamber. Can be supplied stably. In addition, since the opening directions of the three supply pipes 20 to the mixing chamber are opposed to or intersecting with each other, the supplied source gases collide with each other in the mixing chamber and are mixed as described above. is there. Further, the connecting portion between the mixing chamber 15 and the film forming chamber 17 is a smooth guiding surface whose cross-sectional area decreases toward the film forming chamber 17, so that the mixed raw material gas having a uniform flow velocity distribution can be smoothly supplied. It can be introduced into the film formation chamber inlet opening 19a.

成膜室17の基板上の空間内での原料ガスの流速分布について、シュミレーションした結果を、その寸法・条件の例を示しつつ、図4によって説明する。
図4は、横軸に成膜室17の幅方向中心から幅方向の距離を示し、縦軸に原料ガスの流速を成膜室入口19aから出口19b方向への距離をパラメータとして示したものである。混合室15への原料ガスの流入条件は、成膜室方向の供給管20からは、2m/sであり、それと垂直な方向の供給管20からは4m/sである。
また、原料ガスの供給速度すなわち成膜室入口19aにおける原料ガスの流速は,約8m/sとなるように調整して供給したものである。
The simulation result of the flow velocity distribution of the source gas in the space on the substrate in the film forming chamber 17 will be described with reference to FIG.
In FIG. 4, the horizontal axis indicates the distance in the width direction from the center of the film forming chamber 17 in the width direction, and the vertical axis indicates the flow rate of the source gas with the distance from the film forming chamber inlet 19a to the outlet 19b as a parameter. is there. Inflow conditions of the raw material gas into the mixing chamber 15 from the supply pipe 20 of the deposition chamber direction is 2m / s, the same is in a direction perpendicular supply pipe 20 of a 4m / s.
Further, the supply speed of the source gas, that is, the flow rate of the source gas at the film formation chamber inlet 19a is adjusted and supplied so as to be about 8 m / s.

図4から明らかなように、成膜室入口19aにおいて流速V0m/sで供給された原料ガスは、成膜室17内で加熱されるので、熱膨張し、下流側へいくほど速度が速くなり,入口19aから10mm、20mm、30mmの位置ではそれぞれV10,V20,V30となるが、どの断面でも幅方向では、ほぼ一様な流速分布を保っている。
この様に、成膜室17内の幅方向で原料ガスの流速が一様に保たれるので、幅方向に一様な厚みの膜が生成される。
As is clear from FIG. 4, since the source gas supplied at the flow velocity V0 m / s at the film formation chamber inlet 19a is heated in the film formation chamber 17, it thermally expands, and the speed increases as it goes downstream. , V10, V20, and V30 at positions 10 mm, 20 mm, and 30 mm from the inlet 19a, respectively, but a substantially uniform flow velocity distribution is maintained in the width direction in any cross section.
In this way, since the flow rate of the source gas is kept uniform in the width direction in the film forming chamber 17, a film having a uniform thickness in the width direction is generated.

次に、図5に基づき、長さ方向の成膜傾向について説明する。
成膜室17の入口19aから成膜室出口19bまでの間の成膜傾向は、先ず図5の線4aに示すように原料ガスの流速と温度の増加に対応して大きくなる。また、入口から遠ざかるにしたがって、線4bに示すように小さくなることがわかった(これは原料ガス内の成膜成分微粒子が消費され、その量が減少するためと思われる)。
成膜室17内では、この様に成膜成分微粒子の消費による減少傾向4bと流速及び温度による増加傾向4aが同時に生じる。このため、成膜室入口19aから成膜室出口19bに向かっての成膜傾向は線4cに示すようにほぼ一定の傾向を示すことになる。
Next, the film forming tendency in the length direction will be described with reference to FIG.
The tendency of film formation between the inlet 19a of the film forming chamber 17 and the outlet 19b of the film forming chamber first increases as the flow rate and temperature of the source gas increase as shown by the line 4a in FIG. Moreover, it turned out that it becomes small as shown to the line 4b as it distances from an entrance (this seems to be because the film-forming component fine particle in source gas is consumed and the quantity reduces).
In the film forming chamber 17, a decreasing tendency 4b due to the consumption of the film forming component fine particles and an increasing tendency 4a due to the flow velocity and the temperature occur simultaneously. For this reason, the film forming tendency from the film forming chamber inlet 19a toward the film forming chamber outlet 19b shows a substantially constant tendency as shown by a line 4c.

しかし、この二つの傾向が完全に相殺されるとはかぎらないので、成膜傾向4cが入口からの距離に応じて、多少傾斜することがある。
その場合、成膜室17の両端にほぼ同一構造の混合室15と排出室16を設けた構成により、基板上の原料ガスの流動方向を切換弁などで所定時間ごとに切り換えて供給することにより、原料ガスの流動方向を反対方向に切り換えることになるので、成膜傾向4cが相殺されて長さ方向にも一様な厚さの膜を生成することができる。
However, since these two tendencies are not completely offset, the deposition tendency 4c may be slightly inclined depending on the distance from the entrance.
In that case, by providing the mixing chamber 15 and the discharge chamber 16 having substantially the same structure at both ends of the film forming chamber 17, the flow direction of the source gas on the substrate is switched by a switching valve or the like at every predetermined time and supplied. Since the flow direction of the source gas is switched to the opposite direction, the film forming tendency 4c is offset and a film having a uniform thickness in the length direction can be generated.

混合室15は、加熱装置24が混合室の下部まで伸びているので、原料ガスの混合をするとともに予熱をする機能を有する。したがって、混合することにより、成膜室17での整流を均一に保ち、生成された膜の厚みを一様にするとともに、原料ガスが予熱されることにより、成膜室17に流入したとき熱分解温度への到達が早く、膜の生成時間を短縮できる。なお、この実施例では、原料ガスの予熱は、基板18を加熱する加熱装置24と一体になっているが、別に設けてもよい。別に設けた方が予熱の温度を独自に制御できるので、好ましい。   Since the heating device 24 extends to the lower part of the mixing chamber, the mixing chamber 15 has a function of mixing source gases and preheating. Therefore, by mixing, the rectification in the film forming chamber 17 is kept uniform, the thickness of the generated film is made uniform, and the source gas is preheated, so that heat is generated when it flows into the film forming chamber 17. The decomposition temperature is reached quickly, and the film formation time can be shortened. In this embodiment, the preheating of the source gas is integrated with the heating device 24 for heating the substrate 18, but may be provided separately. Providing separately is preferable because the preheating temperature can be independently controlled.

また、上記実施例では、原料ガスの供給に、3本の供給管20と排出管21を用い、その開口方向が交差又は対向するものとしたが、これに限定されるものではなく、要は成膜室入口への供給速度分布が一様になるものであればよく、原料ガス同士の衝突が生じない構成のものや供給管又は排出管が3本以外のものも含まれる。さらに、誘導面27は、平面としたが、原料ガスを誘導すればよいので、曲面など適宜変化させても良い。   In the above embodiment, the three supply pipes 20 and the discharge pipes 21 are used to supply the source gas, and the opening directions thereof intersect or face each other. However, the present invention is not limited to this. Any material may be used as long as the distribution of the supply speed to the film formation chamber inlet is uniform, and a configuration in which the source gases do not collide with each other and a configuration other than three supply tubes or discharge tubes are included. Furthermore, although the guide surface 27 is a flat surface, it is sufficient to guide the source gas, so that the curved surface or the like may be changed as appropriate.

本発明の実施例の縦断面図である。It is a longitudinal cross-sectional view of the Example of this invention. 本発明の実施例の横断面図である。It is a cross-sectional view of the Example of this invention. 本発明の実施例の部分拡大図である。It is the elements on larger scale of the Example of this invention. 本発明における成膜室内の原料ガスの流速分布図である。It is a flow velocity distribution map of the source gas in the film formation chamber in the present invention. 成膜傾向の特性を示す図である。It is a figure which shows the characteristic of a film-forming tendency. 従来技術の部分拡大図である。It is the elements on larger scale of a prior art. 従来技術の流路の各部分の断面図である。It is sectional drawing of each part of the flow path of a prior art.

10 成膜装置
11 上部本体
12 下部本体
13 サセプタ
14 スペーサ
15 混合室
16 排出室
17 成膜室
18 基板
19 開口端
19a 成膜室入口
19b 成膜室出口
20 供給管
21 排出管
22 供給口
24 加熱装置
27 誘導面
30 凹部
DESCRIPTION OF SYMBOLS 10 Film-forming apparatus 11 Upper main body 12 Lower main body 13 Susceptor 14 Spacer 15 Mixing chamber 16 Discharge chamber 17 Deposition chamber 17 Substrate 19 Open end 19a Deposition chamber inlet 19b Deposition chamber outlet 20 Supply pipe 21 Discharge pipe 22 Supply port 24 Heating Device 27 Guide surface 30 Recess

Claims (7)

サセプタと上部本体との間にスペーサを介して形成される成膜室と、
前記サセプタに設けられた基板厚み分の凹部に保持されて、その表面がサセプタ表面と同一平面を形成する基板と、
前記成膜室の入口端部に連接して当該成膜室の入口開口全面から原料ガスを供給可能とした混合室と、
前記混合室に接続され開口された複数の原料ガス供給管とを備え、
前記成膜室の前記基板上の空間を極薄型の直方体状の空間とし
さらに、前記成膜室の入口開口の断面積を、前記複数の原料ガス供給管の開口の総断面積より小さい値にしたことを特徴とする化学的気相成膜装置。
A film forming chamber formed through a spacer between the susceptor and the upper body;
A substrate that is held in a recess corresponding to the substrate thickness provided in the susceptor and whose surface forms the same plane as the susceptor surface;
A mixing chamber which is capable of supplying the raw material gas from the inlet opening the entire surface of the deposition chamber and connected to the inlet end of the deposition chamber,
A plurality of source gas supply pipes connected to the mixing chamber and opened,
Wherein a rectangular parallelepiped space ultrathin the space on the substrate of the film forming chamber,
Further, the chemical vapor deposition apparatus characterized in that the sectional area of the inlet opening of the film forming chamber is set to a value smaller than the total sectional area of the openings of the plurality of source gas supply pipes .
前記複数の原料ガス供給管の前記混合室への開口方向は、交差または対向する方向にしたことを特徴とする請求項1に記載の化学的気相成膜装置。 The chemical vapor deposition apparatus according to claim 1, wherein an opening direction of the plurality of source gas supply pipes to the mixing chamber is set to intersect or face each other. 前記複数の原料ガス供給管から前記成膜室へ流入される前記原料ガスの流速を調整することによって、前記基板の表面に沿って流動する当該原料ガスの流速の分布を前記流動方向と直交する方向において一様となるようにしたことを特徴とする請求項1又は2に記載の化学的気相成膜装置。By adjusting the flow rate of the source gas flowing into the film forming chamber from the plurality of source gas supply pipes, the distribution of the flow rate of the source gas flowing along the surface of the substrate is orthogonal to the flow direction. 3. The chemical vapor deposition apparatus according to claim 1, wherein the chemical vapor deposition apparatus is uniform in a direction. 前記混合室の前記成膜室との連接部は当該成膜室ヘ向かって断面積が減少する平滑な誘導面を有することを特徴とする請求項1乃至3のいずれかに記載の化学的気相成膜装置。 Chemical vapor according to any one of claims 1 to 3 connecting part of the film forming chamber of the mixing chamber is characterized by having a smooth guide surface that decreases in cross sectional area toward the film forming chamber F Phase deposition system. 前記混合室が、前記原料ガスを予熱する加熱装置を有することを特徴とする請求項乃至のいずれかに記載の化学的気相成膜装置。 Said mixing chamber, a chemical vapor deposition apparatus according to any one of claims 1 to 4, characterized in that it comprises a heating device for preheating the raw material gas. 前記成膜室の出口側端部に、前記混合室と同一構造の排出室を対称に設けたことを特徴とする請求項乃至のいずれかに記載の化学的気相成膜装置。 Wherein the outlet end of the deposition chamber, a chemical vapor deposition apparatus according to any one of claims 1 to 5, characterized in that the discharge chamber of the mixing chamber and the same structure is provided symmetrically. 前記成膜室の前記基板上の空間を、前記原料ガスの流動方向に従って狭く形成していることを特徴とする請求項乃至のいずれかに記載の化学的気相成膜装置。 Wherein said space on the substrate of the deposition chamber, a chemical vapor deposition apparatus according to any one of claims 1 to 6, characterized in that it is formed narrower in accordance with the flow direction of the raw material gas.
JP2005332083A 2005-11-16 2005-11-16 Film forming method and film forming apparatus Expired - Fee Related JP4704894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332083A JP4704894B2 (en) 2005-11-16 2005-11-16 Film forming method and film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332083A JP4704894B2 (en) 2005-11-16 2005-11-16 Film forming method and film forming apparatus

Publications (2)

Publication Number Publication Date
JP2007138230A JP2007138230A (en) 2007-06-07
JP4704894B2 true JP4704894B2 (en) 2011-06-22

Family

ID=38201467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332083A Expired - Fee Related JP4704894B2 (en) 2005-11-16 2005-11-16 Film forming method and film forming apparatus

Country Status (1)

Country Link
JP (1) JP4704894B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843626B2 (en) * 2012-01-20 2016-01-13 東京エレクトロン株式会社 Gas supply head and substrate processing apparatus
JP5343162B1 (en) * 2012-10-26 2013-11-13 エピクルー株式会社 Epitaxial growth equipment
KR102685903B1 (en) * 2019-02-27 2024-07-16 가부시키가이샤 코쿠사이 엘렉트릭 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794419A (en) * 1993-09-20 1995-04-07 Hitachi Ltd Semiconductor treating device
JPH11312650A (en) * 1998-01-17 1999-11-09 Hanbekku Corp Horizontal reaction furnace for manufacturing compound semiconductor
JP2005051153A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Cvd device
JP2005307238A (en) * 2004-04-19 2005-11-04 Shizuo Fujita Film-forming method and film-forming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818776B2 (en) * 1989-04-29 1998-10-30 豊田合成株式会社 Gallium nitride based compound semiconductor vapor phase growth equipment
JP2000334333A (en) * 1999-05-31 2000-12-05 Daiko Kennetsu Kk Flow-straightening mechanism for fluid
JP4672996B2 (en) * 2004-04-19 2011-04-20 静雄 藤田 Atomization equipment for film formation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794419A (en) * 1993-09-20 1995-04-07 Hitachi Ltd Semiconductor treating device
JPH11312650A (en) * 1998-01-17 1999-11-09 Hanbekku Corp Horizontal reaction furnace for manufacturing compound semiconductor
JP2005051153A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Cvd device
JP2005307238A (en) * 2004-04-19 2005-11-04 Shizuo Fujita Film-forming method and film-forming apparatus

Also Published As

Publication number Publication date
JP2007138230A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
US9387447B2 (en) Device for introducing, injecting or spraying a mixture of a carrier gas and liquid compounds and method for implementing said device
CN101423937B (en) Multi-gas concentric injection showerhead
JP5350824B2 (en) Liquid material vaporization supply system
JP2009141343A (en) Vapor phase growth apparatus and method
CN105441904A (en) Gas spray device, chemical vapor deposition device and method
JP2007081186A (en) Cvd device
KR101724904B1 (en) Hydrogen feed and recirculation device for fuel cell system
JP4704894B2 (en) Film forming method and film forming apparatus
CN203768445U (en) Vacuum evaporation device
JPH0620977A (en) Method and apparatus for changing of liquid flow into air current
JP5118644B2 (en) Liquid material vaporizer
WO2022156495A1 (en) Gas inlet assembly of process chamber, gas inlet apparatus, and semiconductor processing equipment
US9914997B2 (en) Method for supplying a process with an enriched carrier gas
KR100805354B1 (en) Vaporizer for liquid source
WO2023213128A1 (en) System, equipment and method for thin film deposition
CN103436860A (en) Gas passage and gas intake device
KR101501311B1 (en) Liquid material vaporization apparatus
TWI674926B (en) Gas injector for cvd system
KR102216526B1 (en) Valve assembly
CN107543159A (en) Burner
CN211170883U (en) Gas supply system
WO2006068241A1 (en) Substrate surface treating apparatus
JP2001118799A (en) Method and device for controlling introduction and flow of gas
CN203513793U (en) Gas inlet pipeline and gas inlet device
JP3437109B2 (en) Optical waveguide film forming apparatus and optical waveguide film forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees