JP4703626B2 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP4703626B2
JP4703626B2 JP2007281763A JP2007281763A JP4703626B2 JP 4703626 B2 JP4703626 B2 JP 4703626B2 JP 2007281763 A JP2007281763 A JP 2007281763A JP 2007281763 A JP2007281763 A JP 2007281763A JP 4703626 B2 JP4703626 B2 JP 4703626B2
Authority
JP
Japan
Prior art keywords
voltage
frequency
lighting
lamp
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007281763A
Other languages
Japanese (ja)
Other versions
JP2009110800A (en
Inventor
喜一 菊地
純一 嶋村
一 木村
勉 増田
博文 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2007281763A priority Critical patent/JP4703626B2/en
Publication of JP2009110800A publication Critical patent/JP2009110800A/en
Application granted granted Critical
Publication of JP4703626B2 publication Critical patent/JP4703626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大画面液晶テレビ等の多灯バックライトにおける蛍光ランプ等の放電灯の部分不点灯防止機能を備えた放電灯点灯装置に関するものである。   The present invention relates to a discharge lamp lighting device having a function of preventing partial non-lighting of a discharge lamp such as a fluorescent lamp in a multi-lamp backlight such as a large-screen liquid crystal television.

従来、大型液晶テレビ及び大型液晶ディスプレイのバックライトは、外部電極型蛍光管や冷陰極蛍光管等の放電灯を複数使用する多灯方式が用いられている。従来は、多灯方式のバックライトインバータは、1本又は2本の放電灯を1系統の制御系で制御する方式(いわゆる1by1方式)が用いられていたが、放電灯の数に応じた複数の制御回路やトランスが必要になるため、特に十数本以上の放電灯を使用する大型バックライトの点灯装置はコスト高になっていた。   2. Description of the Related Art Conventionally, backlights for large liquid crystal televisions and large liquid crystal displays employ a multi-lamp system that uses a plurality of discharge lamps such as external electrode fluorescent tubes and cold cathode fluorescent tubes. Conventionally, a multi-lamp type backlight inverter has been used in which a single or two discharge lamps are controlled by a single control system (a so-called 1-by1 system). Therefore, a large-sized backlight lighting device using more than a dozen discharge lamps is expensive.

そこで、最近では、少ない制御系の回路と集約化された大型トランスを用いて並列接続された複数の放電灯を駆動する方式により電気回路の簡略化を図り、装置の部品点数を少なくしてコストダウンを図っている。   Therefore, recently, the electric circuit has been simplified by driving a plurality of discharge lamps connected in parallel using a small control system circuit and an integrated large transformer, thereby reducing the number of parts of the device and reducing the cost. I'm trying to go down.

放電灯として外部電極型蛍光管(EEFL)を用いる場合、外部電極型蛍光管は正方向の抵抗特性を有するので、バランサー素子を使用せずに直接並列に接続して使用できる。このため、電流バランスをとるための回路部品を必要としないので少ない部品点数で放電灯点灯装置を構成できるメリットがある。   When an external electrode fluorescent tube (EEFL) is used as a discharge lamp, the external electrode fluorescent tube has a resistance characteristic in the positive direction, and therefore can be directly connected in parallel without using a balancer element. For this reason, there is an advantage that a discharge lamp lighting device can be configured with a small number of parts since circuit parts for balancing current are not required.

尚、放電灯として冷陰極蛍光管(CCFL)を用いる場合、冷陰極蛍光管は負性抵抗特性を有するため、蛍光管を直接並列接続して使用することが出来ないので、一般的にバランサ方式と称される手法が用いられる。これは、バラストコイルやバラストコンデンサ等を電極に直列接続した電流バランス機能を備えることにより、蛍光管を並列接続して使用できるようにするものである。   When a cold cathode fluorescent tube (CCFL) is used as a discharge lamp, since the cold cathode fluorescent tube has negative resistance characteristics, it cannot be used by directly connecting the fluorescent tubes in parallel. Is used. This has a current balance function in which a ballast coil, a ballast capacitor, and the like are connected in series with an electrode, so that fluorescent tubes can be connected in parallel and used.

上記のような多灯方式の放電灯点灯装置の一例としては、特開2006-173024号公報に開示される多灯用放電灯点灯装置、特開2006-173023号公報に開示される多灯用放電灯点灯装置、特開2002-027762に開示されるインバータ装置、特開平07-245186号公報に開示される放電灯点灯装置、特開平07-211467に開示される並列多灯点灯用高周波電源装置などが知られている。   Examples of the multi-lamp type discharge lamp lighting device as described above include a multi-lamp discharge lamp lighting device disclosed in JP-A-2006-173024 and a multi-lamp discharge device disclosed in JP-A-2006-173023. Discharge lamp lighting device, inverter device disclosed in Japanese Patent Application Laid-Open No. 2002-027762, discharge lamp lighting device disclosed in Japanese Patent Application Laid-Open No. 07-245186, and high frequency power supply device for parallel multi-lamp lighting disclosed in Japanese Patent Application Laid-Open No. 07-211467 Etc. are known.

また、冷陰極蛍光管(CCFL)や外部電極型蛍光管(EEFL)を放電灯として用いた場合、これらの冷陰極蛍光管や外部電極型蛍光管は、低温環境では管内部のガスが活性化されにくくなるため、放電開始電圧が上昇し、放電灯が点灯しにくくなる性質がある。また長時間点灯させずに冷暗所に保管されると、ランプ自身が放電開始を可能とするための初期電子を生成することができず、点灯させるためには、通常の点灯開始電圧よりも、更に高い放電開始電圧を必要とする性質がある。   In addition, when a cold cathode fluorescent tube (CCFL) or an external electrode type fluorescent tube (EEFL) is used as a discharge lamp, these cold cathode fluorescent tube and external electrode type fluorescent tube are activated by the gas inside the tube in a low temperature environment. Therefore, the discharge start voltage rises and the discharge lamp is difficult to light. In addition, if the lamp itself is stored in a cool and dark place without lighting for a long time, the lamp itself cannot generate initial electrons for enabling the discharge to start. There is a property that requires a high discharge start voltage.

複数の放電灯を並列接続して点灯させる外部電極型蛍光管(EEFL)の場合、並列接続された放電灯に点灯遅れ時間や、点灯開始電圧特性、暗黒放置後の始動性等に差があった場合に、全ての管が同時に点灯しない場合がある。並列接続した蛍光管で、点灯に時間遅れがあると、先に点灯した蛍光管により、管電圧が低下してしまうため、時間遅れがある蛍光管は放電を開始できず不点灯になり、若しくは、電極付近でのみ放電する半点灯状態になって、バックライトの輝度ムラが発生する。   In the case of an external electrode fluorescent tube (EEFL) in which a plurality of discharge lamps are connected in parallel, the discharge lamp connected in parallel has a difference in lighting delay time, lighting start voltage characteristics, startability after standing in the dark, etc. In some cases, all tubes may not light up at the same time. If there is a time delay in lighting with the fluorescent tubes connected in parallel, the tube voltage will be reduced by the previously lighted fluorescent tube, so the fluorescent tube with the time delay will not start discharging, or will not light up, or In a semi-lighting state in which discharge occurs only in the vicinity of the electrodes, uneven brightness of the backlight occurs.

また、放電灯が不点灯となる原因の一つに暗黒点灯がある。外部電極型放電管や冷陰極放電管等の放電灯は、始動時に放電のきっかけとなる初期電子を生成することができず、明るいところでは周囲の光によって管内に初期電子が生成されて通電後直ちに点灯するが、暗いところでは点灯が不能若しくは困難になる。放電のきっかけとなる初期電子としては、熱電子、光電子、高電界により放出される電子、自然界の宇宙線などがあるが、外部からの光が存在しない場所に放電灯を置いた場合は、光電子が存在しないため点灯が困難になる。   In addition, one of the causes of the discharge lamp not lighting is dark lighting. Discharge lamps such as external electrode discharge tubes and cold cathode discharge tubes cannot generate initial electrons that trigger discharge at start-up, and in bright places, the initial electrons are generated in the tube by ambient light, and after energization Lights up immediately, but lighting is impossible or difficult in dark places. The initial electrons that trigger the discharge include thermionic electrons, photoelectrons, electrons emitted by high electric fields, natural cosmic rays, etc., but if a discharge lamp is placed in a place where no external light exists, photoelectrons Since there is no light, it becomes difficult to light up.

このため、暗黒点灯では、高い点灯開始電圧を必要とするので、起動時における点灯開始電圧を高くするため、及び、電極部からの放電をし易くするために、起動時のみに動作周波数を高い周波数にシフトして点灯後に通常の周波数に戻す方式が知られている。一般に、バックライトの金属筐体やリフレクタが放電灯の電極との間で静電容量を形成し、高周波放電を促進する近接導体の役目をする。またこの場合、点灯後は所定の通常点灯周波数に周波数を戻す。
特開2006−173024号公報 特開2006−173023号公報 特開2002−027762号公報 特開平07−245186号公報 特開平07−211467号公報
For this reason, in the case of dark lighting, a high lighting start voltage is required. Therefore, in order to increase the lighting start voltage at start-up and to facilitate discharge from the electrode section, the operating frequency is increased only at start-up. A method of shifting to a frequency and returning to a normal frequency after lighting is known. In general, a metal casing or reflector of a backlight forms a capacitance with an electrode of a discharge lamp, and serves as a proximity conductor that promotes high-frequency discharge. In this case, the frequency is returned to a predetermined normal lighting frequency after lighting.
JP 2006-173024 A JP 2006-173023 A Japanese Patent Laid-Open No. 2002-027762 JP 07-245186 A Japanese Patent Application Laid-Open No. 07-212467

しかしながら、放電灯点灯装置の起動時に動作周波数を高い周波数にシフトして点灯させる手法で複数の放電灯が並列接続されたLCDパネルを点灯させると放電灯の特性ばらつきにより不点灯または半点灯の放電灯が存在し、画面で見て部分的に輝度ムラを発生させる場合がある。   However, when an LCD panel in which a plurality of discharge lamps are connected in parallel is turned on by a method in which the operating frequency is shifted to a higher frequency when the discharge lamp lighting device is started up, the non-lighted or half-lighted light is not emitted due to variations in the characteristics of the discharge lamp. There is a case where an electric lamp is present and luminance unevenness is partially generated when viewed on the screen.

すなわち、低温環境下で起動した場合に、並列接続された放電灯の一部(1〜数本)が不点灯となり、TV画面で輝度ムラを発生するという問題がある。部分不点灯は、放電灯の点灯開始時間、暗黒始動性、管電圧等の特性バラツキに起因して並列接続した場合に発生する。放電灯特性による選別やランク分けは困難であるため、同一パネルで起動特性に差異のある放電灯が混在するため低温時に部分不点灯が発生しやすい。   That is, when started in a low temperature environment, there is a problem that some (one to several) of discharge lamps connected in parallel are not lit, and luminance unevenness occurs on the TV screen. Partial non-lighting occurs when the discharge lamps are connected in parallel due to variations in characteristics such as lighting start time, dark startability, and tube voltage. Since it is difficult to sort and rank according to the characteristics of the discharge lamps, partial discharge of light tends to occur at low temperatures because of the presence of discharge lamps with different starting characteristics on the same panel.

部分不点灯が発生すると、パネルが十分にウオームアップして全放電灯が完全に点灯するまで時間がかかり、画面の輝度ムラが長時間保持されて画面の品質が損なわれてしまう。   When partial non-lighting occurs, it takes time for the panel to warm up sufficiently and all the discharge lamps to light up completely, and uneven brightness on the screen is maintained for a long time, thereby degrading the screen quality.

このように、放電灯が点灯しにくくなる低温環境において部分不点灯の問題が顕在する。このような部分不点灯を解消する手段としては以下の方法が知られている。
・起動時に蛍光管に印加される電圧を高くする。
・起動時に蛍光管に印加される電圧を高くすると共に高電圧が印可される時間を長くする。
・起動時に短時間大電流を流す。
Thus, the problem of partial non-lighting becomes apparent in a low temperature environment where the discharge lamp is difficult to light. The following methods are known as means for eliminating such partial non-lighting.
• Increase the voltage applied to the fluorescent tube at startup.
Increase the voltage applied to the fluorescent tube at startup and lengthen the time during which a high voltage is applied.
・ A large current is applied for a short time during startup.

しかしながら、これらの方法では以下の問題がある。   However, these methods have the following problems.

起動時の印加電圧を高くする方法では、通常動作電圧に対して2倍程度の出力電圧を出すため、トランスの絶縁耐圧が必要になりトランスの小型化、薄型化が難しくなる。また、高電圧を出す為に巻き数比を高くすると通常動作時の効率が低下しトランスの発熱が増大するという問題がある。さらに、高電圧を発生する際にトランスの磁歪によって唸り音が発生し、この唸り音が耳障りになるという問題がある。   In the method of increasing the applied voltage at start-up, an output voltage that is about twice that of the normal operating voltage is output, which requires a transformer withstand voltage, making it difficult to reduce the size and thickness of the transformer. In addition, if the turn ratio is increased in order to produce a high voltage, there is a problem that the efficiency during normal operation is lowered and the heat generation of the transformer is increased. Further, when a high voltage is generated, a roaring sound is generated due to the magnetostriction of the transformer, and this roaring sound becomes annoying.

起動時に大電流を流す方法では、20%程度の電流アップでは部分不点灯は解消されない。また、定常動作時の効率を考慮して設計されたトランスでは、通常動作において定格電流の150%前後の過大電流を流せる能力がない。そのため、低温環境下における部分不点灯を完全に無くすことは困難であった。   In the method of flowing a large current at the time of start-up, partial non-lighting is not eliminated with a current increase of about 20%. In addition, a transformer designed in consideration of efficiency during steady operation does not have an ability to flow an overcurrent of about 150% of the rated current in normal operation. For this reason, it has been difficult to completely eliminate partial non-lighting in a low temperature environment.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、放電灯の部分不点灯を防止して、低温環境下においても起動時から輝度ムラのない点灯を実現できると共にトランスの唸り音発生を最小限に抑えることができる放電灯点灯装置を提供することである。   The present invention has been made in view of the above-mentioned problems, and the object thereof is to prevent partial non-lighting of the discharge lamp and realize lighting without uneven brightness from the start even in a low temperature environment. It is an object of the present invention to provide a discharge lamp lighting device capable of minimizing the occurrence of a roaring sound of a transformer.

本発明は前記目的を達成するために、両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象とし、並列接続された複数の放電灯に接続され、全ての放電灯が未点灯のときのインバータ駆動周波数と出力電圧との関係を表す未点灯時共振周波数特性と1つ以上の放電灯が点灯しているときのインバータ駆動周波数と出力電圧との関係を表す点灯時共振周波数特性とを有するとともに、直流電圧を入力して、前記未点灯時共振周波数特性における最大電圧値を示す共振周波数よりも低く且つ前記点灯時共振周波数特性における最大電圧値を示す共振周波数よりも高い通常点灯周波数の交流電圧を生成して前記複数の放電灯に印加するインバータ回路を備えた放電灯点灯装置において、前記放電灯の周囲温度を検出し、該検出した周囲温度が所定のしきい値以下の低温であるときに駆動信号を出力する低温時動作手段と、前記駆動信号が出力されているときに動作し、前記点灯時共振周波数特性における前記通常点灯周波数の電圧よりも高い電圧となる前記通常点灯周波数よりも低い所定の低周波数で前記インバータ回路を動作させる低温時駆動周波数制御手段とを設けた。   In order to achieve the above object, the present invention aims at lighting a discharge lamp to which a voltage is applied to each of both end electrodes and a voltage is applied via the capacitance, and is connected to a plurality of discharge lamps connected in parallel. The relationship between the inverter driving frequency and the output voltage when one of the discharge lamps is lit, and the relationship between the inverter driving frequency and the output voltage when one or more discharge lamps are lit. A resonance frequency characteristic that represents a lighting resonance frequency characteristic, a DC voltage is input, and a resonance that is lower than a resonance frequency indicating a maximum voltage value in the resonance frequency characteristic when not lit and indicates a maximum voltage value in the lighting resonance frequency characteristic In a discharge lamp lighting device comprising an inverter circuit that generates an alternating voltage of a normal lighting frequency higher than a frequency and applies the alternating voltage to the plurality of discharge lamps, the discharge Detecting the ambient temperature of the sensor, and operating when the drive signal is output, operating means for outputting a drive signal when the detected ambient temperature is a low temperature below a predetermined threshold, Low temperature driving frequency control means for operating the inverter circuit at a predetermined low frequency lower than the normal lighting frequency that is higher than the voltage of the normal lighting frequency in the lighting resonance frequency characteristics is provided.

本発明の放電灯点灯装置は、両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象としている。この放電灯に印加されるインバータ回路の出力電圧は、両端電極のキャパシタンスに印加される電圧と両端電極間に印加される電圧との和になる。このとき両端電極のそれぞれのキャパシタンスに印加される電圧はインバータ回路の動作周波数によって決まるキャパシタンスのインピーダンス成分と電流に依存する。   The discharge lamp lighting device of the present invention is intended for lighting a discharge lamp having a capacitance at each of both end electrodes and to which a voltage is applied via the capacitance. The output voltage of the inverter circuit applied to the discharge lamp is the sum of the voltage applied to the capacitance of both end electrodes and the voltage applied between the both end electrodes. At this time, the voltage applied to each capacitance of both end electrodes depends on the impedance component and current of the capacitance determined by the operating frequency of the inverter circuit.

低温時動作手段によって放電灯の周囲温度が検出され、該検出温度がしきい値以下の低温であるときは、低温時駆動周波数制御手段によって通常点灯周波数よりも低い所定の低周波数でインバータ回路が動作するように制御される。   When the ambient temperature of the discharge lamp is detected by the low temperature operation means and the detected temperature is a low temperature below the threshold value, the inverter circuit operates at a predetermined low frequency lower than the normal lighting frequency by the low temperature drive frequency control means. Controlled to work.

このため、低温時においては、前記キャパシタンス及び両端電極間の電圧は点灯時共振周波数特性に基づく電圧に変化する。すなわち、共振周波数特性が未点灯時共振周波数特性から点灯時共振周波数特性に移行してインバータ回路が前記低周波数によって動作するので、未点灯時共振周波数特性に基づく印加電圧によって点灯しない放電灯が存在しても、前記点灯時共振周波数特性における前記低周波数の動作により、前記キャパシタンスのインピーダンスが増加し、該キャパシタンスの両端に印加される電圧が通常点灯周波数のときの電圧よりも増大し、前記キャパシタンスを含む放電灯に印加される電圧が増大する。これにより、放電灯の点灯が促進される。また、周囲温度が前記しきい値よりも高いときは、前記点灯時共振周波数特性における通常点灯周波数によってインバータ回路が動作するように制御される。   For this reason, at the time of low temperature, the capacitance and the voltage between both end electrodes change to a voltage based on the resonance frequency characteristic at the time of lighting. That is, the resonance frequency characteristic shifts from the resonance frequency characteristic when not lit to the resonance frequency characteristic when lit, and the inverter circuit operates at the low frequency, so there is a discharge lamp that does not light by the applied voltage based on the resonance frequency characteristic when not lit. However, due to the operation at the low frequency in the lighting resonance frequency characteristic, the impedance of the capacitance increases, and the voltage applied to both ends of the capacitance increases more than the voltage at the normal lighting frequency. Increases the voltage applied to the discharge lamp including Thereby, lighting of the discharge lamp is promoted. Further, when the ambient temperature is higher than the threshold value, the inverter circuit is controlled to operate at the normal lighting frequency in the lighting resonance frequency characteristic.

また、本発明は前記目的を達成するために、両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象とし、並列接続された複数の放電灯に接続され、全ての放電灯が未点灯のときのインバータ駆動周波数と出力電圧との関係を表す未点灯時共振周波数特性と1つ以上の放電灯が点灯しているときのインバータ駆動周波数と出力電圧との関係を表す点灯時共振周波数特性とを有するとともに、直流電圧を入力して、前記未点灯時共振周波数特性における最大電圧値を示す共振周波数よりも低く且つ前記点灯時共振周波数特性における最大電圧値を示す共振周波数よりも高い通常点灯周波数の交流電圧を生成して前記複数の放電灯に印加するインバータ回路と、前記放電灯に流れる電流値を検出して該電流値が小さいほど前記インバータ回路から前記放電灯に供給する電力を増加する手段とを備えた放電灯点灯装置において、前記放電灯の周囲温度を検出し、該検出した周囲温度が所定のしきい値以下の低温であるときに駆動信号を出力する低温時動作手段と、前記駆動信号が出力されているときに動作し、前記放電灯に流れる電流が実際の電流値よりも低い値であるように検出電流値を補正する補正手段とを設けた。   In order to achieve the above object, the present invention is directed to a discharge lamp having a capacitance at each of both end electrodes and to which a voltage is applied via the capacitance, and is connected to a plurality of discharge lamps connected in parallel. The relationship between the inverter driving frequency and the output voltage when all the discharge lamps are not lit, the resonance frequency characteristic when not lit and the inverter driving frequency and the output voltage when one or more discharge lamps are lit And having a resonance frequency characteristic at the time of lighting representing the relationship, a DC voltage is input, and the maximum voltage value in the resonance frequency characteristic at the time of lighting is lower than the resonance frequency indicating the maximum voltage value in the resonance frequency characteristic when not lit. An inverter circuit that generates an alternating voltage with a normal lighting frequency higher than the indicated resonance frequency and applies it to the plurality of discharge lamps, and a current value flowing through the discharge lamps are detected. And a means for increasing the power supplied from the inverter circuit to the discharge lamp as the current value is smaller, detecting the ambient temperature of the discharge lamp, and the detected ambient temperature is a predetermined value. Low temperature operation means for outputting a drive signal when the temperature is lower than a threshold, and when the drive signal is output, the current flowing through the discharge lamp is lower than the actual current value. Correction means for correcting the detected current value is provided.

本発明の放電灯点灯装置は、両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象としている。この放電灯に印加されるインバータ回路の出力電圧は、両端電極のキャパシタンスに印加される電圧と両端電極間に印加される電圧との和になる。このとき両端電極のそれぞれのキャパシタンスに印加される電圧はインバータ回路の動作周波数によって決まるキャパシタンスのインピーダンス成分と電流に依存する。   The discharge lamp lighting device of the present invention is intended for lighting a discharge lamp having a capacitance at each of both end electrodes and to which a voltage is applied via the capacitance. The output voltage of the inverter circuit applied to the discharge lamp is the sum of the voltage applied to the capacitance of both end electrodes and the voltage applied between the both end electrodes. At this time, the voltage applied to each capacitance of both end electrodes depends on the impedance component and current of the capacitance determined by the operating frequency of the inverter circuit.

低温時動作手段によって放電灯の周囲温度が検出され、該検出温度がしきい値以下の低温であるときは、補正手段によって放電灯に流れる電流が実際の電流値よりも低い値であるように検出電流値が補正される。このため、インバータ回路から放電灯に供給される電力が増加され、前記キャパシタンスを含む放電灯に印加される電圧が増大する。これにより、放電灯の点灯が促進される。また、周囲温度が前記しきい値よりも高いときは、前記補正が行われない検出電流値に基づいてインバータ回路が動作するように制御される。   When the ambient temperature of the discharge lamp is detected by the low temperature operation means and the detected temperature is a low temperature below the threshold value, the current flowing through the discharge lamp by the correction means is lower than the actual current value. The detected current value is corrected. For this reason, the electric power supplied from the inverter circuit to the discharge lamp is increased, and the voltage applied to the discharge lamp including the capacitance is increased. Thereby, lighting of the discharge lamp is promoted. When the ambient temperature is higher than the threshold value, the inverter circuit is controlled to operate based on the detected current value that is not corrected.

また、本発明は前記目的を達成するために、両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象とし、並列接続された複数の放電灯に接続され、全ての放電灯が未点灯のときのインバータ駆動周波数と出力電圧との関係を表す未点灯時共振周波数特性と1つ以上の放電灯が点灯しているときのインバータ駆動周波数と出力電圧との関係を表す点灯時共振周波数特性とを有するとともに、直流電圧を入力して、前記未点灯時共振周波数特性における最大電圧値を示す共振周波数よりも低く且つ前記点灯時共振周波数特性における最大電圧値を示す共振周波数よりも高い通常点灯周波数の交流電圧を生成して前記複数の放電灯に印加するインバータ回路と、前記放電灯に流れる電流値を検出して該電流値が小さいほど前記インバータ回路から前記放電灯に供給する電力を増加する手段とを備えた放電灯点灯装置において、前記放電灯の周囲温度を検出し、該検出した周囲温度が所定のしきい値以下の低温であるときに駆動信号を出力する低温時動作手段と、前記駆動信号が出力されているときに動作し、前記放電灯に流れる電流が実際の電流値よりも低い値であるように検出電流値を補正する補正手段と、前記駆動信号が出力されているときに動作し、前記点灯時共振周波数特性における前記通常点灯周波数の電圧よりも高い電圧となる前記通常点灯周波数よりも低い所定の低周波数で前記インバータ回路を動作させる低温時駆動周波数制御手段とを設けた。   In order to achieve the above object, the present invention is directed to a discharge lamp having a capacitance at each of both end electrodes and to which a voltage is applied via the capacitance, and is connected to a plurality of discharge lamps connected in parallel. The relationship between the inverter driving frequency and the output voltage when all the discharge lamps are not lit, the resonance frequency characteristic when not lit and the inverter driving frequency and the output voltage when one or more discharge lamps are lit And having a resonance frequency characteristic at the time of lighting representing the relationship, a DC voltage is input, and the maximum voltage value in the resonance frequency characteristic at the time of lighting is lower than the resonance frequency indicating the maximum voltage value in the resonance frequency characteristic when not lit. An inverter circuit that generates an alternating voltage with a normal lighting frequency higher than the indicated resonance frequency and applies it to the plurality of discharge lamps, and a current value flowing through the discharge lamps are detected. And a means for increasing the power supplied from the inverter circuit to the discharge lamp as the current value is smaller, detecting the ambient temperature of the discharge lamp, and the detected ambient temperature is a predetermined value. Low temperature operation means for outputting a drive signal when the temperature is lower than a threshold, and when the drive signal is output, the current flowing through the discharge lamp is lower than the actual current value. The correction means for correcting the detected current value, and the normal lighting frequency that operates when the drive signal is output and is higher than the voltage of the normal lighting frequency in the lighting resonance frequency characteristic. Low temperature driving frequency control means for operating the inverter circuit at a predetermined low frequency.

本発明の放電灯点灯装置は、両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象としている。この放電灯に印加されるインバータ回路の出力電圧は、両端電極のキャパシタンスに印加される電圧と両端電極間に印加される電圧との和になる。このとき両端電極のそれぞれのキャパシタンスに印加される電圧はインバータ回路の動作周波数によって決まるキャパシタンスのインピーダンス成分と電流に依存する。   The discharge lamp lighting device of the present invention is intended for lighting a discharge lamp having a capacitance at each of both end electrodes and to which a voltage is applied via the capacitance. The output voltage of the inverter circuit applied to the discharge lamp is the sum of the voltage applied to the capacitance of both end electrodes and the voltage applied between the both end electrodes. At this time, the voltage applied to each capacitance of both end electrodes depends on the impedance component and current of the capacitance determined by the operating frequency of the inverter circuit.

低温時動作手段によって放電灯の周囲温度が検出され、該検出温度がしきい値以下の低温であるときは、補正手段によって放電灯に流れる電流が実際の電流値よりも低い値であるように検出電流値が補正されてインバータ回路から放電灯に供給される電力が増加されると共に、低温時駆動周波数制御手段によって通常点灯周波数よりも低い所定の低周波数でインバータ回路が動作するように制御される。このため、前記キャパシタンスを含む放電灯に印加される電圧が増大し、点灯時共振周波数特性に基づく電圧に変化する。すなわち、検出電流値が少なくなるように補正されることで印加電圧が増大されることに加えて、共振周波数特性が未点灯時共振周波数特性から点灯時共振周波数特性に移行してインバータ回路が前記低周波数によって動作するので、未点灯時共振周波数特性に基づく印加電圧によって点灯しない放電灯が存在しても、前記点灯時共振周波数特性における前記低周波数の動作により、前記キャパシタンスのインピーダンスが増加し、該キャパシタンスの両端に印加される電圧が通常点灯周波数のときの電圧よりも増大し、前記キャパシタンスを含む放電灯に印加される電圧が増大する。これにより、放電灯の点灯が促進される。また、周囲温度が前記しきい値よりも高いときは、前記補正が行われない検出電流値に基づき、前記点灯時共振周波数特性における通常点灯周波数によってインバータ回路が動作するように制御される。   When the ambient temperature of the discharge lamp is detected by the low temperature operation means and the detected temperature is a low temperature below the threshold value, the current flowing through the discharge lamp by the correction means is lower than the actual current value. The detected current value is corrected and the power supplied from the inverter circuit to the discharge lamp is increased, and the inverter circuit is controlled to operate at a predetermined low frequency lower than the normal lighting frequency by the low temperature driving frequency control means. The For this reason, the voltage applied to the discharge lamp including the capacitance increases, and changes to a voltage based on the resonance frequency characteristics during lighting. That is, in addition to increasing the applied voltage by correcting the detection current value to be small, the resonance frequency characteristic shifts from the resonance frequency characteristic when not lit to the resonance frequency characteristic when lit and the inverter circuit Since it operates at a low frequency, even if there is a discharge lamp that does not light by an applied voltage based on the resonance frequency characteristics when not lit, the low frequency operation in the resonance frequency characteristics during lighting increases the impedance of the capacitance, The voltage applied to both ends of the capacitance increases more than the voltage at the normal lighting frequency, and the voltage applied to the discharge lamp including the capacitance increases. Thereby, lighting of the discharge lamp is promoted. Further, when the ambient temperature is higher than the threshold value, the inverter circuit is controlled to operate at the normal lighting frequency in the lighting resonance frequency characteristic based on the detected current value that is not corrected.

本発明の放電灯点灯装置によれば、共振周波数特性が未点灯時共振周波数特性から点灯時共振周波数特性に移行した後、インバータ回路は前記低周波数によって動作するため、未点灯時共振周波数特性に基づく印加電圧によって点灯しない放電灯が存在しても、前記点灯時共振周波数特性における前記低周波数の動作により、放電灯に印加される電圧が増大して放電灯の点灯が促進されるので、複数の放電灯を並列接続して駆動する場合も、一部の放電灯が不点灯又は半点灯状態になるのを防止することができる。さらに、特に放電灯が点灯しにくくなる低温環境における部分不点灯を防止して、起動時から輝度ムラのない画面輝度のユニフォーミティを向上できる。また、起動時と低温時にのみ放電灯に通常点灯電圧よりも高い電圧を印加して不点灯や部分不点灯の発生を防止しているので、放電灯に高電圧を印加する際のトランスの磁歪による唸り音の発生を最小限に抑えることができる。   According to the discharge lamp lighting device of the present invention, since the inverter circuit operates at the low frequency after the resonance frequency characteristic shifts from the unlit resonance frequency characteristic to the lighting resonance frequency characteristic, Even if there is a discharge lamp that does not light up due to the applied voltage based on the low frequency operation in the lighting resonance frequency characteristic, the voltage applied to the discharge lamp increases and lighting of the discharge lamp is promoted. Even when the discharge lamps are driven in parallel, it is possible to prevent some of the discharge lamps from becoming unlit or semi-lit. Furthermore, it is possible to prevent partial non-lighting particularly in a low-temperature environment where the discharge lamp is difficult to turn on, and to improve the uniformity of the screen brightness without brightness unevenness from the start. In addition, since a voltage higher than the normal lighting voltage is applied to the discharge lamp only at startup and at a low temperature to prevent the occurrence of non-lighting or partial non-lighting, the magnetostriction of the transformer when a high voltage is applied to the discharge lamp It is possible to minimize the generation of the roaring sound caused by.

以下、図面を参照して本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の第1実施形態における放電灯点灯装置を示すブロック図である。図において、101は放電灯点灯装置で、8つの電界効果トランジスタ(以下、FETと称する)Q1〜Q4,Q21〜Q24と、コンデンサC1,C21、インバータトランスT1,T21、電流検出用の抵抗器R1,R21、駆動制御回路11,21、電流検出回路12,22、発振回路13、点灯時周波数シフト回路15、低温時動作オン回路18、周波数変更回路19、放電灯Lamp-1〜Lamp-n(nは自然数)から構成され、フルブリッジのインバータ回路を備えている。本実施形態では、放電灯Lamp-1〜Lamp-nとして、例えば、外部電極型蛍光管(External Electrode Fluorescent Lamp)を使用している。   FIG. 1 is a block diagram showing a discharge lamp lighting device according to a first embodiment of the present invention. In the figure, 101 is a discharge lamp lighting device, eight field effect transistors (hereinafter referred to as FETs) Q1 to Q4, Q21 to Q24, capacitors C1 and C21, inverter transformers T1 and T21, and a resistor R1 for current detection. , R21, drive control circuits 11, 21, current detection circuits 12, 22, oscillation circuit 13, lighting frequency shift circuit 15, low temperature operation on circuit 18, frequency change circuit 19, discharge lamps Lamp-1 to Lamp-n ( n is a natural number) and has a full-bridge inverter circuit. In this embodiment, as the discharge lamps Lamp-1 to Lamp-n, for example, external electrode fluorescent lamps (External Electrode Fluorescent Lamps) are used.

FETQ1のドレインは直流電源Vcc1の正極とFETQ3のドレインに接続され、直流電源Vcc1の負極は接地されている。FETQ1のソースはFETQ2のドレインに接続されると共にコンデンサC1を介してトランスT1の一次巻線の一端に接続され、FETQ2のソースは接地されている。   The drain of the FET Q1 is connected to the positive electrode of the DC power source Vcc1 and the drain of the FET Q3, and the negative electrode of the DC power source Vcc1 is grounded. The source of the FET Q1 is connected to the drain of the FET Q2, and is connected to one end of the primary winding of the transformer T1 through the capacitor C1, and the source of the FET Q2 is grounded.

また、FETQ3のソースはFETQ4のドレインに接続されると共にトランスT1の一次巻線の他端に接続されている。トランスT1の二次巻線の一端は並列接続された放電灯Lamp-1〜Lamp-nの一端に接続され、二次巻線の他端は電流検出回路12に接続されると共に抵抗器R1を介して接地されている。これにより、電流検出回路12は抵抗器R1の端子間電圧によって放電灯Lamp-1〜Lamp-nに流れる電流値を検出することができる。また、電流検出回路12は検出結果を駆動制御回路11と点灯時周波数シフト回路15に出力する。   The source of FETQ3 is connected to the drain of FETQ4 and to the other end of the primary winding of transformer T1. One end of the secondary winding of the transformer T1 is connected to one end of the discharge lamps Lamp-1 to Lamp-n connected in parallel, and the other end of the secondary winding is connected to the current detection circuit 12 and the resistor R1 is connected. Is grounded. Thereby, the current detection circuit 12 can detect the value of the current flowing through the discharge lamps Lamp-1 to Lamp-n based on the voltage across the resistor R1. Further, the current detection circuit 12 outputs the detection result to the drive control circuit 11 and the lighting frequency shift circuit 15.

各FETQ1〜Q4のゲートは駆動制御回路11に接続され、各FETQ1〜Q4は駆動制御回路11から出力される制御信号によってオン・オフの切換が行われる。すなわち、駆動制御回路11は、発振回路13によって発振される交流信号の周波数に基づく制御信号を各FETQ1〜Q4のゲートに対して出力し、各FETQ1〜Q4をスイッチング動作させてインバータトランスT1の一次巻線の通電方向を所定周期で反転させ、インバータトランスT1の二次巻線に高電圧の交流電圧を発生させる。発振回路13の発振周波数(インバータ駆動周波数)は起動時および定常状態時においては通常点灯周波数である54KHzに設定されている。従って、 起動時および定常状態時においては、駆動制御回路11は54KHzの周波数の交流電圧が放電灯Lamp-1〜Lamp-nに印加されるように各FETQ1〜Q4のオン・オフ状態をスイッチング制御する。   The gates of the FETs Q1 to Q4 are connected to the drive control circuit 11, and the FETs Q1 to Q4 are switched on and off by a control signal output from the drive control circuit 11. That is, the drive control circuit 11 outputs a control signal based on the frequency of the AC signal oscillated by the oscillation circuit 13 to the gates of the FETs Q1 to Q4, and switches the FETs Q1 to Q4 to perform the primary operation of the inverter transformer T1. The energization direction of the winding is reversed at a predetermined cycle, and a high-voltage AC voltage is generated in the secondary winding of the inverter transformer T1. The oscillation frequency (inverter drive frequency) of the oscillation circuit 13 is set to 54 KHz, which is a normal lighting frequency, during startup and in a steady state. Accordingly, during start-up and steady state, the drive control circuit 11 performs switching control of the on / off states of the FETs Q1 to Q4 so that an AC voltage having a frequency of 54 KHz is applied to the discharge lamps Lamp-1 to Lamp-n. To do.

さらに、駆動制御回路11には電流検出回路12から出力される電圧が入力されている。この電圧はインバータトランスT1の二次巻線を流れる電流に比例して変化するものであり、また、放電灯Lamp-1〜Lamp-nに流れるランプ電流は二次巻線に流れる電流に対応して変化するので、駆動制御回路11は電流検出回路12から出力される電圧に基づいて各FETQ1〜Q4の動作を制御し、オン・オフのデューティーを変化させて、トランスT1の二次巻線から発生する電力すなわちランプ電流を制御する。すなわち、放電灯Lamp-1〜Lamp-nを流れる電流が少ないときは、FETQ1〜Q4がオン状態となる時間を増加させることにより放電灯Lamp-1〜Lamp-nに供給する電力を増大させる。これにより、放電灯Lamp-1〜Lamp-nの輝度調整が行われる。   Further, the voltage output from the current detection circuit 12 is input to the drive control circuit 11. This voltage changes in proportion to the current flowing through the secondary winding of the inverter transformer T1, and the lamp current flowing through the discharge lamps Lamp-1 to Lamp-n corresponds to the current flowing through the secondary winding. Therefore, the drive control circuit 11 controls the operation of each of the FETs Q1 to Q4 based on the voltage output from the current detection circuit 12, changes the on / off duty, and starts from the secondary winding of the transformer T1. The generated electric power, ie, the lamp current is controlled. That is, when the current flowing through the discharge lamps Lamp-1 to Lamp-n is small, the power supplied to the discharge lamps Lamp-1 to Lamp-n is increased by increasing the time during which the FETs Q1 to Q4 are turned on. Thereby, the brightness adjustment of the discharge lamps Lamp-1 to Lamp-n is performed.

点灯時周波数シフト回路15は、起動後、電流検出回路12によって検出された放電灯Lamp-1〜Lamp-nに流れる電流が定格電流値を含む所定の許容範囲内(例えば、定格電流値の70%以上の範囲)になったときに、発振回路13の周波数を通常点灯周波数から所定の低周波数に切り換えて駆動制御回路11を動作させ、この後0.3秒から3.0秒までの間の所定時間後に発振回路13の周波数を通常点灯周波数に切り換える。   When the lighting frequency shift circuit 15 is activated, the current flowing through the discharge lamps Lamp-1 to Lamp-n detected by the current detection circuit 12 is within a predetermined allowable range including the rated current value (for example, 70 of the rated current value). %), The frequency of the oscillation circuit 13 is switched from the normal lighting frequency to a predetermined low frequency, and the drive control circuit 11 is operated. After a predetermined time, the frequency of the oscillation circuit 13 is switched to the normal lighting frequency.

低温時動作オン回路18は、周囲温度が所定のしきい値以下となったときに、周波数変更回路19を動作させ、周囲温度が上記しきい値よりも高くなったときに周波数変更回路19の動作を停止する。   The low temperature operation ON circuit 18 operates the frequency change circuit 19 when the ambient temperature becomes a predetermined threshold value or less, and when the ambient temperature becomes higher than the above threshold value, the frequency change circuit 19 Stop operation.

周波数変更回路19は、低温時動作オン回路18によって動作を開始されると、発振回路13の周波数を通常点灯周波数から所定の低周波数に切り換えて駆動制御回路11を動作させ、低温時動作オン回路18によって動作を停止されると、発振回路13の周波数を上記低周波数から通常点灯周波数に切り換えて駆動制御回路11を動作させる。   When the operation is started by the low temperature operation on circuit 18, the frequency change circuit 19 switches the frequency of the oscillation circuit 13 from the normal lighting frequency to a predetermined low frequency to operate the drive control circuit 11, and operates at a low temperature operation on circuit. When the operation is stopped by 18, the drive control circuit 11 is operated by switching the frequency of the oscillation circuit 13 from the low frequency to the normal lighting frequency.

FETQ21のドレインは直流電源Vcc21の正極とFETQ23のドレインに接続され、直流電源Vcc21の負極は接地されている。FETQ21のソースはFETQ22のドレインに接続されると共にコンデンサC21を介してトランスT21の一次巻線の一端に接続され、FETQ22のソースは接地されている。   The drain of the FET Q21 is connected to the positive electrode of the DC power source Vcc21 and the drain of the FET Q23, and the negative electrode of the DC power source Vcc21 is grounded. The source of the FET Q21 is connected to the drain of the FET Q22 and is connected to one end of the primary winding of the transformer T21 via the capacitor C21, and the source of the FET Q22 is grounded.

また、FETQ23のソースはFETQ24のドレインに接続されると共にトランスT21の一次巻線の他端に接続されている。トランスT21の二次巻線の一端は並列接続された放電灯Lamp-1〜Lamp-nの他端に接続され、二次巻線の他端は電流検出回路22に接続されると共に抵抗器R21を介して接地されている。これにより、電流検出回路22は抵抗器R21の端子間電圧によって放電灯Lamp-1〜Lamp-nに流れる電流値を検出することができる。また、電流検出回路22は検出結果を駆動制御回路21に出力する。尚、トランスT1とT21の出力は逆位相になるように出力される。   The source of the FET Q23 is connected to the drain of the FET Q24 and to the other end of the primary winding of the transformer T21. One end of the secondary winding of the transformer T21 is connected to the other end of the discharge lamps Lamp-1 to Lamp-n connected in parallel, and the other end of the secondary winding is connected to the current detection circuit 22 and the resistor R21. Is grounded. Thereby, the current detection circuit 22 can detect the value of the current flowing through the discharge lamps Lamp-1 to Lamp-n based on the voltage across the terminals of the resistor R21. Further, the current detection circuit 22 outputs the detection result to the drive control circuit 21. Note that the outputs of the transformers T1 and T21 are output in opposite phases.

各FETQ21〜Q24のゲートは駆動制御回路21に接続され、各FETQ21〜Q24は駆動制御回路21から出力される制御信号によってオン・オフの切換が行われる。すなわち、駆動制御回路21は、発振回路13によって発振される交流信号の周波数に基づく制御信号を各FETQ21〜Q24のゲートに対して出力し、各FETQ21〜Q24をスイッチング動作させてインバータトランスT21の一次巻線の通電方向を所定周期で反転させ、インバータトランスT21の二次巻線に高電圧の交流電圧を発生させる。起動時および定常状態時においては、駆動制御回路21は54KHzの周波数の交流電圧が放電灯Lamp-1〜Lamp-nに印加されるように各FETQ21〜Q24のオン・オフ状態をスイッチング制御する。さらに、駆動制御回路21には電流検出回路22から出力される電圧が入力されている。この電圧はインバータトランスT21の二次巻線を流れる電流に比例して変化するものであり、また、放電灯Lamp-1〜Lamp-nに流れるランプ電流は二次巻線に流れる電流に対応して変化するので、駆動制御回路21は電流検出回路22から出力される電圧に基づいて各FETQ21〜Q24の動作を制御し、オン・オフのデューティーを変化させて、トランスT21の二次巻線から発生する電力すなわちランプ電流を制御する。すなわち、放電灯Lamp-1〜Lamp-nを流れる電流が少ないときは、FETQ21〜Q24がオン状態となる時間を増加させることにより放電灯Lamp-1〜Lamp-nに供給する電力を増大させる。これにより、放電灯Lamp-1〜Lamp-nの輝度調整が行われる。尚、駆動制御回路21においては放電灯Lamp-1〜Lamp-nの他端側電極への印加電圧の位相が一端側電極への印加電圧の位相を反転した位相すなわち180度ずれた位相になるように各FETQ21〜Q24のオン・オフ状態の切換えを行っている。   The gates of the FETs Q21 to Q24 are connected to the drive control circuit 21, and the FETs Q21 to Q24 are switched on and off by a control signal output from the drive control circuit 21. In other words, the drive control circuit 21 outputs a control signal based on the frequency of the AC signal oscillated by the oscillation circuit 13 to the gates of the FETs Q21 to Q24, and switches the FETs Q21 to Q24 to perform the primary operation of the inverter transformer T21. The energization direction of the winding is reversed at a predetermined cycle, and a high-voltage AC voltage is generated in the secondary winding of the inverter transformer T21. In the start-up and steady state, the drive control circuit 21 performs switching control of the on / off states of the FETs Q21 to Q24 so that an alternating voltage having a frequency of 54 KHz is applied to the discharge lamps Lamp-1 to Lamp-n. Further, the voltage output from the current detection circuit 22 is input to the drive control circuit 21. This voltage changes in proportion to the current flowing through the secondary winding of the inverter transformer T21, and the lamp current flowing through the discharge lamps Lamp-1 to Lamp-n corresponds to the current flowing through the secondary winding. Therefore, the drive control circuit 21 controls the operation of each of the FETs Q21 to Q24 based on the voltage output from the current detection circuit 22, changes the ON / OFF duty, and starts from the secondary winding of the transformer T21. The generated electric power, ie, the lamp current is controlled. That is, when the current flowing through the discharge lamps Lamp-1 to Lamp-n is small, the electric power supplied to the discharge lamps Lamp-1 to Lamp-n is increased by increasing the time during which the FETs Q21 to Q24 are turned on. Thereby, the brightness adjustment of the discharge lamps Lamp-1 to Lamp-n is performed. In the drive control circuit 21, the phase of the applied voltage to the other end side electrodes of the discharge lamps Lamp-1 to Lamp-n is a phase obtained by inverting the phase of the applied voltage to the one end side electrode, that is, a phase shifted by 180 degrees. As described above, the on / off states of the FETs Q21 to Q24 are switched.

図2は点灯時周波数シフト回路15の一例を示すブロック図、図3は点灯時周波数シフト回路15と低温時動作オン回路18と周波数変更回路19の一例を示す回路図である。図2において、151はバッファ&ホールド&ディレー回路、152は微分回路、153はスイッチ回路である。   FIG. 2 is a block diagram showing an example of the lighting frequency shift circuit 15, and FIG. 3 is a circuit diagram showing an example of the lighting frequency shift circuit 15, the low temperature operation on circuit 18 and the frequency change circuit 19. In FIG. 2, 151 is a buffer & hold & delay circuit, 152 is a differentiation circuit, and 153 is a switch circuit.

バッファ&ホールド&ディレー回路151は、電流検出回路12から入力する管電流検出電圧すなわち放電灯Lamp-1〜Lamp-nに流れるランプ電流を検出してこれを電圧に変換したものを入力し、この電圧を一時的に保持し、所定時間遅延させて微分回路152に出力する。微分回路152は入力した電圧を微分してスイッチ回路153に出力する。スイッチ回路153は微分回路152から入力した電圧が所定の閾値電圧以上である間、スイッチング素子をオン状態にしてコンデンサCXの一端を接地する。コンデンサCXの他端は発振回路13のCT端子すなわち発振周波数を設定するためのコンデンサ接続端子に接続されている。さらに発振回路13のCT端子はコンデンサCTを介して接地されている。   The buffer & hold & delay circuit 151 detects the tube current detection voltage input from the current detection circuit 12, that is, the lamp current flowing through the discharge lamps Lamp-1 to Lamp-n, and inputs the voltage converted into the voltage. The voltage is temporarily held, delayed for a predetermined time, and output to the differentiation circuit 152. The differentiation circuit 152 differentiates the input voltage and outputs it to the switch circuit 153. The switch circuit 153 turns on the switching element and grounds one end of the capacitor CX while the voltage input from the differentiation circuit 152 is equal to or higher than a predetermined threshold voltage. The other end of the capacitor CX is connected to the CT terminal of the oscillation circuit 13, that is, a capacitor connection terminal for setting the oscillation frequency. Further, the CT terminal of the oscillation circuit 13 is grounded via the capacitor CT.

図3に示すように、点灯時周波数シフト回路15は、コンデンサ161〜164,CX、NPN型のトランジスタ165,166、ダイオード167,168、抵抗器169〜172によって構成されている。コンデンサ161の一端は電源+Vccの入力端子とトランジスタ165のコレクタ及びダイオード168のカソードに接続され、他端は接地されている。   As shown in FIG. 3, the lighting frequency shift circuit 15 includes capacitors 161 to 164 and CX, NPN transistors 165 and 166, diodes 167 and 168, and resistors 169 to 172. One end of the capacitor 161 is connected to the input terminal of the power source + Vcc, the collector of the transistor 165, and the cathode of the diode 168, and the other end is grounded.

トランジスタ165のベースは電流検出回路12から出力される管電流検出電圧V1の入力端子に接続され、エミッタはダイオード167のアノードに接続されると共に抵抗器169を介して接地されている。ダイオード167のカソードは抵抗器170の一端に接続され、抵抗器170の他端はダイオード168のアノードとコンデンサ162,163のそれぞれの一端に接続されている。コンデンサ162の他端は接地され、コンデンサ163の他端は抵抗器172の一端に接続されると共に、抵抗器171を介して接地されている。抵抗器172の他端はトランジスタ166のベースに接続されると共にコンデンサ164を介して接地されている。トランジスタ166のコレクタはコンデンサCXの一端に接続され、エミッタは接地されている。コンデンサCXの他端は発振回路13のCT端子に接続されている。   The base of the transistor 165 is connected to the input terminal of the tube current detection voltage V1 output from the current detection circuit 12, and the emitter is connected to the anode of the diode 167 and grounded through the resistor 169. The cathode of the diode 167 is connected to one end of the resistor 170, and the other end of the resistor 170 is connected to the anode of the diode 168 and one end of each of the capacitors 162 and 163. The other end of the capacitor 162 is grounded, the other end of the capacitor 163 is connected to one end of the resistor 172, and is grounded via the resistor 171. The other end of the resistor 172 is connected to the base of the transistor 166 and grounded via the capacitor 164. The collector of the transistor 166 is connected to one end of the capacitor CX, and the emitter is grounded. The other end of the capacitor CX is connected to the CT terminal of the oscillation circuit 13.

また、低温時動作オン回路18は、サーミスタRth、抵抗器181〜184、演算増幅器からなるコンパレータ185から構成されている。サーミスタRthの一端には直列接続された抵抗器182,182を介して電源+Vccが印加されると共にこれらの抵抗器181,182の接続点がコンパレータ185の反転入力端子に接続され、サーミスタ181の他端は接地されている。コンパレータ185の非反転入力端子には直列接続された2つの抵抗器183,184によって電源+Vccを分圧した電圧、すなわち接地側の抵抗器183と電源側の抵抗器184によって電源電圧+Vccを分圧した電圧が印加されている。これにより、サーミスタ181によって検知された周囲温度が放電灯Lamp-1〜Lamp-nの不点灯や部分不点灯を生じさせる所定のしきい値以下の低温の範囲内にある時にコンパレータ185の出力をオープンにし、上記しきい値温度よりも周囲温度の方が高いときにコンパレータ185の出力をローレベルにする。すなわち、抵抗器183,184によって電圧+Vccが分圧されたしきい値電圧Vth1は、上記のしきい値温度に対応するように各抵抗器183,184の抵抗値が設定されている。さらに、サーミスタRthによって上記しきい値以下の温度が検出されたとき、抵抗器181及びサーミスタRthの合成抵抗と抵抗器182によって分圧された電圧が上記しきい値電圧Vth1以上となるように、サーミスタRthの抵抗値及び特性が選択されると共に各抵抗器181,182の抵抗値が設定されている。   The low temperature operation ON circuit 18 includes a thermistor Rth, resistors 181 to 184, and a comparator 185 including an operational amplifier. The power supply + Vcc is applied to one end of the thermistor Rth via resistors 182 and 182 connected in series, the connection point of these resistors 181 and 182 is connected to the inverting input terminal of the comparator 185, and the other end of the thermistor 181 is grounded. Has been. A voltage obtained by dividing the power source + Vcc by two resistors 183 and 184 connected in series to the non-inverting input terminal of the comparator 185, that is, a power source voltage + Vcc is divided by the ground side resistor 183 and the power source side resistor 184. Applied voltage. As a result, the output of the comparator 185 is output when the ambient temperature detected by the thermistor 181 is within a low temperature range below a predetermined threshold value that causes the discharge lamps Lamp-1 to Lamp-n to be unlit or partially unlit. When the ambient temperature is higher than the threshold temperature, the output of the comparator 185 is set to low level. That is, for the threshold voltage Vth1 obtained by dividing the voltage + Vcc by the resistors 183 and 184, the resistance values of the resistors 183 and 184 are set so as to correspond to the above threshold temperature. Furthermore, when the temperature below the threshold is detected by the thermistor Rth, the voltage divided by the combined resistance of the resistor 181 and the thermistor Rth and the resistor 182 is equal to or higher than the threshold voltage Vth1. The resistance value and characteristics of the thermistor Rth are selected, and the resistance values of the resistors 181 and 182 are set.

周波数変更回路19は、コンデンサ191、ダイオード192、抵抗器193,194、Nチャネル型のFET195から構成されている。コンデンサ191の一端には電流検出回路12から出力される管電流検出電圧V1が印加され、コンデンサ191の他端はダイオード192のカソードと抵抗器193の一端に接続されている。ダイオード192のアノードは接地され、抵抗器193の他端は抵抗器194を介して接地されると共にFET195のゲートに接続されている。FET195のドレインはトランジスタ166のコレクタ及びコンデンサCXの一端に接続されている。   The frequency changing circuit 19 includes a capacitor 191, a diode 192, resistors 193 and 194, and an N-channel FET 195. A tube current detection voltage V 1 output from the current detection circuit 12 is applied to one end of the capacitor 191, and the other end of the capacitor 191 is connected to the cathode of the diode 192 and one end of the resistor 193. The anode of the diode 192 is grounded, and the other end of the resistor 193 is grounded via the resistor 194 and is connected to the gate of the FET 195. The drain of the FET 195 is connected to the collector of the transistor 166 and one end of the capacitor CX.

上記構成により、起動時においては、図4に示すように、ランプ電流が放電灯Lamp-1〜Lamp-nの定格電流値を含む所定の許容範囲内になったときに微分回路152から微分信号が出力されて、スイッチング素子が所定時間、例えば0.5秒の間オン状態に保持され、発振回路13のCT端子に接続されるキャパシタンスはコンデンサCTとコンデンサCXを並列接続したキャパシタンスとなり、46KHzの周波数の信号が発振回路13から駆動制御回路11,21に出力される。これにより、駆動制御回路11,21は46KHzの周波数の交流電圧が放電灯Lamp-1〜Lamp-nに印加されるように各FETQ1〜Q4のオン・オフ状態をスイッチング制御する。   With the above configuration, at the time of start-up, as shown in FIG. 4, when the lamp current falls within a predetermined allowable range including the rated current values of the discharge lamps Lamp-1 to Lamp-n, the differential signal is output from the differentiating circuit 152. Is output, the switching element is kept on for a predetermined time, for example, 0.5 seconds, and the capacitance connected to the CT terminal of the oscillation circuit 13 is a capacitance obtained by connecting the capacitor CT and the capacitor CX in parallel, which is 46 KHz. A frequency signal is output from the oscillation circuit 13 to the drive control circuits 11 and 21. Thus, the drive control circuits 11 and 21 perform switching control of the on / off states of the FETs Q1 to Q4 so that an AC voltage having a frequency of 46 KHz is applied to the discharge lamps Lamp-1 to Lamp-n.

起動時および定常状態時においては、スイッチ回路153のスイッチング素子がオフ状態であるので、発振回路13のCT端子にはコンデンサCTのみが接続された状態となり、発振回路13から54KHzの周波数の信号が駆動制御回路11,21に出力され、駆動制御回路11,21は、54KHzの周波数の交流電圧が放電灯Lamp-1〜Lamp-nに印加されるように各FETQ1〜Q4のオン・オフ状態をスイッチング制御する。   Since the switching element of the switch circuit 153 is in the off state at the start-up and steady state, only the capacitor CT is connected to the CT terminal of the oscillation circuit 13, and a signal having a frequency of 54 KHz is output from the oscillation circuit 13. Is output to the drive control circuits 11 and 21, and the drive control circuits 11 and 21 turn on / off the FETs Q1 to Q4 so that an AC voltage having a frequency of 54 KHz is applied to the discharge lamps Lamp-1 to Lamp-n. Control switching.

例えば、放電灯Lamp-1〜Lamp-nが点灯して電流が流れたことが電流検出用の抵抗器R1で検出される。これにより電流検出回路12から管電流検出電圧(約5V)が点灯時周波数シフト回路15に入力され、これをバッファで受けて、整流して数μFのコンデンサでホールドする。さらに、コンデンサの入力側に直列に設けられている抵抗器によって遅延させる。この遅延した信号を微分して電流が流れ始めた立ち上がりを取り出す。微分信号の立ち上がりでスイッチング素子を導通させて発振回路の時定数を所定の時間のみ切り替える。一例としては、起動時に54KHzで起動して、管電流が定格電流(例えば100mArms)の約70%(70mArma)以上の電流が流れると、低周波数46KHzに切り替わり、約0.5秒間維持した後に通常点灯周波数54KHzに戻す動作を行う。   For example, the current detection resistor R1 detects that the discharge lamps Lamp-1 to Lamp-n are turned on and a current flows. As a result, the tube current detection voltage (about 5V) is input from the current detection circuit 12 to the frequency shift circuit 15 at the time of lighting, which is received by the buffer, rectified, and held by a capacitor of several μF. Furthermore, it is delayed by a resistor provided in series on the input side of the capacitor. The delayed signal is differentiated to pick up the rising edge at which current begins to flow. The switching element is turned on at the rising edge of the differential signal to switch the time constant of the oscillation circuit only for a predetermined time. As an example, when starting up at 54 KHz at the time of starting and the tube current flows about 70% (70 mAmma) or more of the rated current (for example, 100 mArms), it is switched to a low frequency of 46 KHz and is normally maintained for about 0.5 seconds. An operation for returning the lighting frequency to 54 KHz is performed.

尚、スイッチ回路153のスイッチング素子をオン状態にする時間は回路や放電灯Lamp-1〜Lamp-nの特性等を考慮して、放電灯Lamp-1〜Lamp-nの全てが点灯状態に移行するように0.3秒から3.0秒の間の時間に適宜設定することが好ましい。   Note that the time for turning on the switching elements of the switch circuit 153 takes into account the characteristics of the circuit and the discharge lamps Lamp-1 to Lamp-n, etc., and all of the discharge lamps Lamp-1 to Lamp-n shift to the lighting state. Thus, it is preferable to appropriately set the time between 0.3 seconds and 3.0 seconds.

一方、周囲温度が、放電灯Lamp-1〜Lamp-nの不点灯や部分不点灯が発生しやすい所定のしきい値以下の低温時には、低温時動作オン回路18のコンパレータ185の出力がオープンとなり、周波数変更回路19が駆動される。すなわち、周囲温度が上記しきい値よりも高いときにはコンパレータ185の出力がローレベルであるためFET195のゲートはローレベルとなりFET195はオフ状態であり、コンデンサCXは前述した点灯時周波数シフト回路15の制御のみでコンデンサCTに並列接続される。しかし、放電灯Lamp-1〜Lamp-nの不点灯や部分不点灯が発生しやすい所定のしきい値以下の低温時には、低温時動作オン回路18のコンパレータ185の出力がオープンとなり、FET195のゲートには電圧V1に対応したパルス状のハイレベルの電圧が印加され断続して印加されるので、これに対応してFET195がオン・オフを繰り返す。これにより、FET195のオン・オフ状態に対応してコンデンサCTに対して断続的にコンデンサCXが並列接続されるので、駆動制御回路11,21は低周波数46kHzでの駆動と、通常点灯周波数54KHzでの駆動を交互に繰り返す。   On the other hand, when the ambient temperature is a low temperature that is less than the specified threshold value, at which the discharge lamps Lamp-1 to Lamp-n are not easily lit or partially lit, the output of the comparator 185 of the low temperature operation on circuit 18 is open. The frequency changing circuit 19 is driven. That is, when the ambient temperature is higher than the above threshold, the output of the comparator 185 is low level, so the gate of the FET 195 is low level, the FET 195 is off, and the capacitor CX controls the frequency shift circuit 15 at the time of lighting described above. Only connected in parallel to the capacitor CT. However, when the discharge lamps Lamp-1 to Lamp-n are not lit or partially unlit, the output of the comparator 185 of the low temperature operation on circuit 18 is open at the low temperature below a predetermined threshold, and the FET 195 gate Since a pulse-like high level voltage corresponding to the voltage V1 is applied to and intermittently applied, the FET 195 is repeatedly turned on and off correspondingly. As a result, the capacitor CX is intermittently connected in parallel to the capacitor CT in accordance with the on / off state of the FET 195, so that the drive control circuits 11 and 21 are driven at a low frequency of 46 kHz and at a normal lighting frequency of 54 KHz. The driving of is repeated alternately.

尚、本実施形態では、図5に示す放電灯点灯装置101の共振周波数特性に基づいて上記の発振周波数(インバータ回路の動作周波数)を設定している。すなわち、通常点灯周波数f0は、放電灯点灯装置101の未点灯時共振周波数特性曲線A1の共振周波数f1と点灯時共振周波数特性曲線A2の共振周波数f2との間に設定されている。本実施形態では、起動時には未点灯時共振周波数特性曲線A1上の動作周波数が54KHzの点B1における電圧が放電灯Lamp-1〜Lamp-nに印加された後、共振周波数特性が点灯時共振周波数特性曲線A2に移行した後に駆動制御回路11が動作する周波数を46KHzに切り換えて、点灯時共振周波数特性曲線A2上の周波数46KHzの点B2における電圧を放電灯Lamp-1〜Lamp-nに印加して全放電灯Lamp-1〜Lamp-nが点灯状態になるように促進し、この後、点灯時共振周波数特性曲線A2上の通常点灯周波数54KHzの点B3における電圧を放電灯Lamp-1〜Lamp-nに印加して点灯状態を維持している。また、放電灯Lamp-1〜Lamp-nの不点灯や部分不点灯が発生しやすい所定のしきい値以下の低温時には、駆動制御回路11が動作する周波数を46KHzに切り換えて、点灯時共振周波数特性曲線A2上の周波数46KHzの点B2における電圧を放電灯Lamp-1〜Lamp-nに印加して全放電灯Lamp-1〜Lamp-nが点灯状態になるように促進している。   In the present embodiment, the oscillation frequency (operating frequency of the inverter circuit) is set based on the resonance frequency characteristics of the discharge lamp lighting device 101 shown in FIG. That is, the normal lighting frequency f0 is set between the resonance frequency f1 of the unlit resonance frequency characteristic curve A1 of the discharge lamp lighting device 101 and the resonance frequency f2 of the lighting resonance frequency characteristic curve A2. In this embodiment, at the time of start-up, after the voltage at the point B1 whose operating frequency on the unlit resonance frequency characteristic curve A1 is 54 KHz is applied to the discharge lamps Lamp-1 to Lamp-n, the resonance frequency characteristic is the resonance frequency at lighting. The frequency at which the drive control circuit 11 operates after shifting to the characteristic curve A2 is switched to 46 KHz, and the voltage at the point B2 of the frequency 46 KHz on the lighting resonance frequency characteristic curve A2 is applied to the discharge lamps Lamp-1 to Lamp-n. Then, all the discharge lamps Lamp-1 to Lamp-n are promoted to be in the lighting state, and thereafter, the voltage at the point B3 of the normal lighting frequency 54 KHz on the lighting resonance frequency characteristic curve A2 is changed to the discharge lamps Lamp-1 to Lamp. Applied to -n to maintain the lighting state. Further, when the discharge lamps Lamp-1 to Lamp-n are not lit or partially unlit, the drive control circuit 11 operates at a frequency of 46 KHz at a low temperature below a predetermined threshold, and the lighting resonance frequency. A voltage at a point B2 having a frequency of 46 KHz on the characteristic curve A2 is applied to the discharge lamps Lamp-1 to Lamp-n to promote all the discharge lamps Lamp-1 to Lamp-n to be in a lighting state.

図6に示すように、外部電極型蛍光管(EEFL)の等価回路は、両端電極のそれぞれに直列接続されたキャパシタンスCa1,Ca2と放電灯部分Lampで構成される。   As shown in FIG. 6, the equivalent circuit of the external electrode type fluorescent tube (EEFL) includes capacitances Ca1 and Ca2 and a discharge lamp portion Lamp that are connected in series to both end electrodes.

放電灯に印加される電圧VLは、キャパシタンスCa1,Ca2が分担する電圧Vca1,Vca2と放電灯部分Lampが分担する電圧Vlampで構成される。   The voltage VL applied to the discharge lamp is composed of voltages Vca1 and Vca2 shared by the capacitances Ca1 and Ca2 and a voltage Vlamp shared by the discharge lamp portion Lamp.

起動時に部分不点灯が発生したときに、インバータ回路出力の周波数を下げることにより、キャパシタンスCa1,Ca2が分担する電圧Vca1,Vca2と放電灯部分Lampが分担する電圧Vlampの比率が変わる。放電灯部分Lampの電圧Vlampは、電流と温度が一定であれば、周波数が変わっても、ほぼ一定である。キャパシタンスCa1.Ca2が分担する電圧Vca1,Vca2は、周波数が下がるとXc=1/ωCの関係で高くなる。   When partial unlighting occurs at startup, the ratio of the voltages Vca1, Vca2 shared by the capacitances Ca1, Ca2 and the voltage Vlamp shared by the discharge lamp portion Lamp is changed by lowering the frequency of the inverter circuit output. If the current and temperature are constant, the voltage Vlamp of the discharge lamp portion Lamp is substantially constant even if the frequency changes. The voltages Vca1 and Vca2 shared by the capacitances Ca1 and Ca2 increase with the relationship of Xc = 1 / ωC as the frequency decreases.

すなわち、動作周波数を下げることにより放電灯負荷全体にかかる電圧VLは上昇する。不点灯の放電灯があると、不点灯の放電灯には電流が流れていないので、キャパシタンスCa1,Ca2による電圧降下は発生せず、上記電圧VLが放電灯部分Lampにかかる。すなわち、動作周波数を下げることにより不点灯の放電灯両端の電圧を上げて点灯しやすくする。   That is, the voltage VL applied to the entire discharge lamp load increases by lowering the operating frequency. If there is a non-lighted discharge lamp, no current flows through the non-lighted discharge lamp, so that a voltage drop due to the capacitances Ca1 and Ca2 does not occur, and the voltage VL is applied to the discharge lamp portion Lamp. That is, by lowering the operating frequency, the voltage at both ends of the non-lighting discharge lamp is increased to facilitate lighting.

キャパシタンスCa1,Ca2が39pF、放電灯部分Lampの電圧Vlampが1255Vrms、放電灯を流れる電流が5mArmsとして、差動駆動の場合を例に計算すると、図7に示すように、駆動制御回路11,21の動作周波数を通常点灯周波数54KHzから部分点灯解除周波数である低周波数46KHzに下げることにより、キャパシタンスCa1,Ca2の分担する電圧Vca1.Vca2は2カ所合計で約130Vrms上昇して、不点灯の放電灯を点灯しやすくする若しくは不点灯の度合いを改善して画面の輝度ムラを改善する。   Assuming that the capacitances Ca1 and Ca2 are 39 pF, the voltage Vlamp of the discharge lamp portion Lamp is 1255 Vrms, the current flowing through the discharge lamp is 5 mArms and the case of differential driving is calculated as an example, as shown in FIG. By reducing the normal operating frequency from the normal lighting frequency 54KHz to the low lighting frequency 46KHz, which is the partial lighting cancellation frequency, the voltage Vca1.Vca2 shared by the capacitances Ca1 and Ca2 rises by about 130Vrms in total at two locations, and the non-lighting discharge lamp The brightness unevenness of the screen is improved by facilitating lighting or improving the degree of non-lighting.

また、駆動制御回路11,21の動作周波数を下げることにより、全放電灯点灯時の共振周波数特性のゲインが高い部分で動作させることになり、放電灯に印加される電圧を上げたり、電流を増やして部分不点灯を解消するための性能を得ることができる。   In addition, by lowering the operating frequency of the drive control circuits 11 and 21, the operation is performed in a portion where the gain of the resonance frequency characteristic when all the discharge lamps are lit is increased, and the voltage applied to the discharge lamp is increased or the current is increased. The performance for eliminating the partial non-lighting by increasing can be obtained.

前述したように、本実施形態によれば、共振周波数特性が未点灯時共振周波数特性曲線A1から点灯時共振周波数特性曲線A2に移行した後、インバータ回路は低周波数46KHzによって動作するため、未点灯時共振周波数特性曲線A1に基づく印加電圧によって点灯しない放電灯Lamp-1〜Lamp-nが存在しても、点灯時共振周波数特性曲線A2における低周波数46KHzの動作により、放電灯Lamp-1〜Lamp-nに印加される電圧が増大して放電灯Lamp-1〜Lamp-nの点灯が促進されるので、複数の放電灯Lamp-1〜Lamp-nを並列接続して駆動する場合も、一部の放電灯Lamp-1〜Lamp-nが不点灯又は半点灯状態になるのを防止することができる。さらに、特に放電灯Lamp-1〜Lamp-nが点灯しにくくなる低温環境における部分不点灯を防止して、起動時から輝度ムラのない画面輝度のユニフォーミティを向上できる。   As described above, according to the present embodiment, after the resonance frequency characteristic shifts from the non-lighting resonance frequency characteristic curve A1 to the lighting resonance frequency characteristic curve A2, the inverter circuit operates at a low frequency of 46 KHz. Even if there are discharge lamps Lamp-1 to Lamp-n that are not lit by an applied voltage based on the resonance frequency characteristic curve A1, the discharge lamps Lamp-1 to Lamp-1 are operated by a low frequency 46 KHz operation in the lighting resonance frequency characteristic curve A2. Since the voltage applied to -n is increased and the lighting of the discharge lamps Lamp-1 to Lamp-n is promoted, even when a plurality of discharge lamps Lamp-1 to Lamp-n are connected in parallel, It is possible to prevent the discharge lamps Lamp-1 to Lamp-n of the unit from being unlit or semi-lit. Furthermore, it is possible to prevent partial non-lighting particularly in a low temperature environment where the discharge lamps Lamp-1 to Lamp-n are difficult to turn on, and to improve the uniformity of screen brightness without brightness unevenness from the start.

また、本実施形態では、起動時と低温時にのみ放電灯Lamp-1〜Lamp-nに通常点灯電圧よりも高い電圧を印加して不点灯や部分不点灯の発生を防止しているので、放電灯Lamp-1〜Lamp-nに高電圧を印加する際のトランスT1,T21の磁歪による唸り音の発生を最小限に抑えることができる。   In the present embodiment, the discharge lamps Lamp-1 to Lamp-n are applied with a voltage higher than the normal lighting voltage only at startup and at a low temperature to prevent the occurrence of non-lighting or partial non-lighting. Generation of a roaring sound due to magnetostriction of the transformers T1 and T21 when a high voltage is applied to the lamps Lamp-1 to Lamp-n can be minimized.

尚、本実施形態では、通常点灯周波数f0を54KHzに設定し、部分点灯解除周波数である低周波数を46KHzに設定したが、これに限定されることはない。例えば、部分点灯解除周波数である低周波数は、点灯時共振周波数特性曲線A2上において通常点灯周波数f0の電圧よりも高い電圧となる周波数に設定すればよい。しかし、部分点灯解除周波数である低周波数を、点灯時共振周波数特性曲線A2の共振周波数f2以下の周波数にした場合、低周波数から通常点灯周波数f0に移行する際に共振周波数を通過するためサージを発生することもあるため、好ましくは部分点灯解除周波数である低周波数を点灯時共振周波数特性曲線A2の共振周波数f2と通常点灯周波数f0との間の周波数に設定したほうがよい。   In the present embodiment, the normal lighting frequency f0 is set to 54 KHz and the low frequency which is the partial lighting release frequency is set to 46 KHz. However, the present invention is not limited to this. For example, the low frequency that is the partial lighting release frequency may be set to a frequency that is higher than the voltage of the normal lighting frequency f0 on the lighting resonance frequency characteristic curve A2. However, if the low frequency, which is the partial lighting release frequency, is set to a frequency equal to or lower than the resonant frequency f2 of the resonant frequency characteristic curve A2 during lighting, a surge is generated to pass the resonant frequency when shifting from the low frequency to the normal lighting frequency f0. Therefore, it is preferable to set the low frequency, which is the partial lighting release frequency, to a frequency between the resonance frequency f2 of the lighting resonance frequency characteristic curve A2 and the normal lighting frequency f0.

次に、本発明の第2実施形態を説明する。   Next, a second embodiment of the present invention will be described.

図8は第2実施形態における放電灯点灯装置102を示すブロック図である。図において、前述した第1実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第2実施形態と第1実施形態との相違点は、外部電極型蛍光管(EEFL)からなる複数の放電灯Lamp-1〜Lamp-nのそれぞれに代えて両端電極のそれぞれにバラストコンデンサと呼ばれるキャパシタンス42を直列接続した冷陰極蛍光管(CCFL)41を放電灯として用いたことである。本実施形態の構成によっても前述した第1実施形態と同様の作用効果を得ることができる。   FIG. 8 is a block diagram showing a discharge lamp lighting device 102 in the second embodiment. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Further, the difference between the second embodiment and the first embodiment is that a ballast capacitor is provided for each of both end electrodes instead of each of the plurality of discharge lamps Lamp-1 to Lamp-n made of an external electrode type fluorescent tube (EEFL). That is, a cold cathode fluorescent tube (CCFL) 41 in which capacitances 42 called in series are connected in series is used as a discharge lamp. The same effect as that of the first embodiment described above can also be obtained by the configuration of the present embodiment.

次に、本発明の第3実施形態を説明する。   Next, a third embodiment of the present invention will be described.

図9は第3実施形態における放電灯点灯装置103を示すブロック図である。図において、前述した第1実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第3実施形態と第1実施形態との相違点は、第1実施形態における周波数変更回路19に代えて電流検出値補正回路20を設けたことである。   FIG. 9 is a block diagram showing a discharge lamp lighting device 103 in the third embodiment. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The difference between the third embodiment and the first embodiment is that a current detection value correction circuit 20 is provided in place of the frequency change circuit 19 in the first embodiment.

電流検出値補正回路20は、図10に示すように、コンデンサ201、ダイオード202、抵抗器203,204、Nチャネル型のFET205から構成されている。コンデンサ201の一端には電流検出回路12から出力される管電流検出電圧V1が印加され、コンデンサ201の他端はダイオード202のカソードと抵抗器203の一端に接続されている。ダイオード202のアノードは接地され、抵抗器203の他端は抵抗器204を介して接地されると共にFET205のゲートに接続されている。FET205のドレインは電流検出回路12,22の抵抗器R6の他端に接続されている。   As shown in FIG. 10, the current detection value correction circuit 20 includes a capacitor 201, a diode 202, resistors 203 and 204, and an N-channel FET 205. The tube current detection voltage V1 output from the current detection circuit 12 is applied to one end of the capacitor 201, and the other end of the capacitor 201 is connected to the cathode of the diode 202 and one end of the resistor 203. The anode of the diode 202 is grounded, and the other end of the resistor 203 is grounded via the resistor 204 and is connected to the gate of the FET 205. The drain of the FET 205 is connected to the other end of the resistor R6 of the current detection circuits 12 and 22.

電流検出回路12,22のそれぞれは、抵抗器R2〜R6、ダイオードD1,D2、コンデンサC2、及び可変抵抗器VR1から構成され、トランスT1,T21の二次巻線と抵抗器R1,R21との接続点がダイオードD2のアノード及びダイオードD1のカソードに接続されている。また、ダイオードD2のカソードは抵抗器R2の一端に接続されると共にコンデンサC2を介して接地され、抵抗器R2の他端は直列接続された抵抗器R3と可変抵抗器VR1を介して接地されると共に直列接続された抵抗器R4,R5を介して駆動制御回路11,21に接続されている。また、抵抗器R4,R5の接続点には抵抗器R6の一端が接続されている。   Each of the current detection circuits 12 and 22 includes resistors R2 to R6, diodes D1 and D2, a capacitor C2, and a variable resistor VR1, and includes a secondary winding of the transformers T1 and T21 and resistors R1 and R21. The connection point is connected to the anode of the diode D2 and the cathode of the diode D1. The cathode of the diode D2 is connected to one end of the resistor R2 and grounded via the capacitor C2, and the other end of the resistor R2 is grounded via the resistor R3 and the variable resistor VR1 connected in series. Also connected to the drive control circuits 11 and 21 via resistors R4 and R5 connected in series. One end of the resistor R6 is connected to the connection point of the resistors R4 and R5.

また、ここでは図示していないがダイオードD2のカソードには、三角波電圧が印加されている。ここで、コンデンサC2の値は、三角波電圧の周波数(バースト周波数)に対して、十分にインピーダンスが高くなるように設定されている。   Although not shown here, a triangular wave voltage is applied to the cathode of the diode D2. Here, the value of the capacitor C2 is set so that the impedance is sufficiently high with respect to the frequency of the triangular wave voltage (burst frequency).

これにより、放電灯Lamp-1〜Lamp-nを流れる管電流は抵抗器R1によって電圧に変換され、この検出電圧はダイオードD2のアノードにおいて三角波電圧と合成された後、抵抗器R2,R3及び可変抵抗器VR1によって分圧され、電流検出値補正回路20が動作していないときには、この分圧された電圧が帰還電圧として直列接続された抵抗器R4,R5を介して駆動制御回路11,21に出力される。この帰還電圧のレベルは可変抵抗器VR1によって変化させることができる。また、電流検出値補正回路20が動作しているときは、抵抗器R2,R3及び可変抵抗器VR1によって分圧された電圧が抵抗器R4,R6によってさらに分圧され、この分圧された電圧が帰還電圧として抵抗器R5を介して駆動制御回路11,21に出力される。   Thereby, the tube current flowing through the discharge lamps Lamp-1 to Lamp-n is converted into a voltage by the resistor R1, and this detection voltage is combined with the triangular wave voltage at the anode of the diode D2, and then the resistors R2, R3 and the variable When the voltage is divided by the resistor VR1 and the current detection value correction circuit 20 is not operating, the divided voltage is supplied to the drive control circuits 11 and 21 via the resistors R4 and R5 connected in series as a feedback voltage. Is output. The level of the feedback voltage can be changed by the variable resistor VR1. Further, when the current detection value correction circuit 20 is operating, the voltage divided by the resistors R2, R3 and the variable resistor VR1 is further divided by the resistors R4, R6, and this divided voltage is Is output as a feedback voltage to the drive control circuits 11 and 21 via the resistor R5.

したがって、電流検出値補正回路20が動作しているときは、放電灯Lamp-1〜Lamp-nに流れる電流が実際の電流値よりも低い値であるように検出電流値が補正され、補正後の感電流検出電圧V1が上記帰還電圧として駆動制御回路11,21に出力される。これにより、電流検出値補正回路20が動作しているとき、すなわち、放電灯Lamp-1〜Lamp-nに不点灯や部分不点灯が発生しやすい低温時には、駆動制御回路11,21によって通常点灯電圧よりも高い電圧が放電灯Lamp-1〜Lamp-nに印加されるので、低温時における放電灯Lamp-1〜Lamp-nの不点灯や部分不点灯の発生を防止することができる。   Therefore, when the current detection value correction circuit 20 is operating, the detection current value is corrected so that the current flowing through the discharge lamps Lamp-1 to Lamp-n is lower than the actual current value. The current sensing voltage V1 is output to the drive control circuits 11 and 21 as the feedback voltage. As a result, when the current detection value correction circuit 20 is operating, that is, when the discharge lamps Lamp-1 to Lamp-n are not lit or partially unlit, they are normally lit by the drive control circuits 11, 21. Since a voltage higher than the voltage is applied to the discharge lamps Lamp-1 to Lamp-n, it is possible to prevent the discharge lamps Lamp-1 to Lamp-n from being unlit or partially unlit at a low temperature.

また、本実施形態では、起動時と低温時にのみ放電灯Lamp-1〜Lamp-nに通常点灯電圧よりも高い電圧を印加して不点灯や部分不点灯の発生を防止しているので、放電灯Lamp-1〜Lamp-nに高電圧を印加する際のトランスT1,T21の磁歪による唸り音の発生を最小限に抑えることができる。   In the present embodiment, the discharge lamps Lamp-1 to Lamp-n are applied with a voltage higher than the normal lighting voltage only at startup and at a low temperature to prevent the occurrence of non-lighting or partial non-lighting. Generation of a roaring sound due to magnetostriction of the transformers T1 and T21 when a high voltage is applied to the lamps Lamp-1 to Lamp-n can be minimized.

次に、本発明の第4実施形態を説明する。   Next, a fourth embodiment of the present invention will be described.

図11は第4実施形態における放電灯点灯装置104を示すブロック図である。図において、前述した第1実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第4実施形態と第1実施形態との相違点は、第1実施形態の構成に加えて第3実施形態における電流検出値補正回路20を設けたことである。   FIG. 11 is a block diagram showing a discharge lamp lighting device 104 in the fourth embodiment. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The difference between the fourth embodiment and the first embodiment is that a current detection value correction circuit 20 in the third embodiment is provided in addition to the configuration of the first embodiment.

このように周波数変更回路19と電流検出値補正回路20の両方を設けることにより、放電灯Lamp-1〜Lamp-nの不点灯や部分不点灯が発生しやすい所定のしきい値以下の低温時には、駆動制御回路11が動作する周波数を46KHzに切り換えて、点灯時共振周波数特性曲線A2上の周波数46KHzの点B2における電圧を放電灯Lamp-1〜Lamp-nに印加して全放電灯Lamp-1〜Lamp-nが点灯状態になるように促進すると共に、放電灯Lamp-1〜Lamp-nに流れる電流が実際の電流値よりも低い値であるように検出電流値を補正し、駆動制御回路11,21によって通常点灯電圧よりも高い電圧放電灯Lamp-1〜Lamp-nを印加して全放電灯Lamp-1〜Lamp-nが点灯状態になるように促進する。これにより、低温時における放電灯Lamp-1〜Lamp-nの不点灯や部分不点灯の発生を防止することができる。   By providing both the frequency changing circuit 19 and the current detection value correcting circuit 20 in this way, the discharge lamps Lamp-1 to Lamp-n are not lit up or partially lit up at low temperatures below a predetermined threshold value. Then, the frequency at which the drive control circuit 11 operates is switched to 46 KHz, and the voltage at the point B2 of the frequency 46 KHz on the lighting resonance frequency characteristic curve A2 is applied to the discharge lamps Lamp-1 to Lamp-n. Drive control is performed by correcting the detected current value so that the current flowing through the discharge lamps Lamp-1 to Lamp-n is lower than the actual current value, while facilitating the 1 to Lamp-n to be lit. The circuits 11 and 21 apply voltage discharge lamps Lamp-1 to Lamp-n higher than the normal lighting voltage to promote all the discharge lamps Lamp-1 to Lamp-n to be in a lighting state. Thereby, it is possible to prevent the discharge lamps Lamp-1 to Lamp-n from being unlit or partially unlit at a low temperature.

また、本実施形態においても、起動時と低温時にのみ放電灯Lamp-1〜Lamp-nに通常点灯電圧よりも高い電圧を印加して不点灯や部分不点灯の発生を防止しているので、放電灯Lamp-1〜Lamp-nに高電圧を印加する際のトランスT1,T21の磁歪による唸り音の発生を最小限に抑えることができる。   Also in the present embodiment, the discharge lamps Lamp-1 to Lamp-n are applied with a voltage higher than the normal lighting voltage only at startup and at low temperatures to prevent the occurrence of non-lighting and partial non-lighting. Generation of a roaring sound due to magnetostriction of the transformers T1 and T21 when a high voltage is applied to the discharge lamps Lamp-1 to Lamp-n can be minimized.

尚、上記各実施形態において輝度調整(調光)を行う場合、特に周知のバースト調光(デューティー調光、或いは時比率調光とも称する)を行う場合においても起動時と同様に電圧印加時におけるインバータ動作周波数を変化させることにより放電灯の点灯促進を図ることができる。尚、この場合、バースト調光時に点灯時周波数シフト回路15を用いると共に点灯時周波数シフト回路15におけるバッファ&ホールド&ディレー回路151の時定数を小さく設定する、すなわちコンデンサ162を静電容量の小さいものに切り換えることにより時定数を小さくする必要がある。   In addition, when performing luminance adjustment (dimming) in each of the above-described embodiments, particularly when performing well-known burst dimming (also referred to as duty dimming or time ratio dimming), the voltage is applied in the same manner as at startup. It is possible to promote lighting of the discharge lamp by changing the inverter operating frequency. In this case, the lighting frequency shift circuit 15 is used at the time of burst dimming, and the time constant of the buffer & hold & delay circuit 151 in the lighting frequency shift circuit 15 is set small, that is, the capacitor 162 has a small electrostatic capacity. It is necessary to reduce the time constant by switching to.

すなわち、バースト調光においては、放電灯への電圧印加期間と電圧非印加期間の比率を変化させて放電灯の点灯状態と消灯状態とを交互に切り替えることにより放電灯の輝度調整を行っている。このとき、電圧印加期間内において、図12或いは図13に示すようにインバータ動作周波数を変化させることにより点灯促進を図ることができる。   That is, in burst dimming, the brightness of the discharge lamp is adjusted by changing the ratio between the voltage application period and the voltage non-application period to the discharge lamp to alternately switch between the lighting state and the extinguishing state of the discharge lamp. . At this time, it is possible to promote lighting by changing the inverter operating frequency as shown in FIG. 12 or FIG. 13 within the voltage application period.

図12に示すバースト調光波形では電圧印加期間において上記第1実施形態の起動時と同じように周波数を変化させている。つまり、電圧印加開始時には未点灯時共振周波数特性曲線A1上の動作周波数が54KHzの点B1における電圧を放電灯Lamp-1〜Lamp-nに印加した後、共振周波数特性が点灯時共振周波数特性曲線A2に移行した後に駆動制御回路11が動作する周波数を46KHzに切り換えて、点灯時共振周波数特性曲線A2上の周波数46KHzの点B2における電圧を放電灯Lamp-1〜Lamp-nに印加して全放電灯Lamp-1〜Lamp-nが点灯状態になるように促進し、この後、点灯時共振周波数特性曲線A2上の通常点灯周波数54KHzの点B3における電圧を放電灯Lamp-1〜Lamp-nに印加して点灯状態を維持している。   In the burst dimming waveform shown in FIG. 12, the frequency is changed in the voltage application period in the same manner as in the start-up of the first embodiment. That is, at the start of voltage application, after applying the voltage at point B1 whose operating frequency is 54 KHz on the unlit resonance frequency characteristic curve A1 to the discharge lamps Lamp-1 to Lamp-n, the resonance frequency characteristic is the resonance frequency characteristic curve at lighting. The frequency at which the drive control circuit 11 operates after shifting to A2 is switched to 46 KHz, and the voltage at the point B2 of the frequency 46 KHz on the lighting resonance frequency characteristic curve A2 is applied to the discharge lamps Lamp-1 to Lamp-n. The discharge lamps Lamp-1 to Lamp-n are promoted to be in the lighting state, and thereafter, the voltage at the point B3 of the normal lighting frequency 54 KHz on the lighting resonance frequency characteristic curve A2 is changed to the discharge lamps Lamp-1 to Lamp-n. To maintain the lighting state.

図13に示すバースト調光波形では、電圧印加開始時には未点灯時共振周波数特性曲線A1上の動作周波数が46KHzの点B1における電圧を放電灯Lamp-1〜Lamp-nに印加した後、共振周波数特性が点灯時共振周波数特性曲線A2に移行した後に、点灯時共振周波数特性曲線A2上の通常点灯周波数54KHzの点B3における電圧を放電灯Lamp-1〜Lamp-nに印加して点灯状態を維持している。   In the burst dimming waveform shown in FIG. 13, at the start of voltage application, after applying the voltage at the point B1 whose operating frequency is 46 kHz on the resonance frequency characteristic curve A1 when not lit to the discharge lamps Lamp-1 to Lamp-n, After the characteristic shifts to the lighting resonance frequency characteristic curve A2, the voltage at the point B3 at the normal lighting frequency of 54 KHz on the lighting resonance frequency characteristic curve A2 is applied to the discharge lamps Lamp-1 to Lamp-n to maintain the lighting state is doing.

尚、上記実施形態では放電灯Lamp-1〜Lamp-nの両電極側にインバータ回路を設けたが、例えば第4実施形態の変形例としては、図14に示す第5実施形態の放電灯点灯装置105のように放電灯Lamp-1〜Lamp-nの一方の電極側のみにインバータ回路を設け他方の電極を接地する構成にしても良いし、図15に示す第6実施形態の放電灯点灯装置106のように周知のハーフブリッジ駆動方式や、図16に示す第7実施形態の放電灯点灯装置107のように周知のプッシュプル駆動方式としても、前述したと同様の作用効果を得ることができることは言うまでもない。   In the above embodiment, inverter circuits are provided on both electrode sides of the discharge lamps Lamp-1 to Lamp-n. For example, as a modification of the fourth embodiment, the discharge lamp lighting of the fifth embodiment shown in FIG. As in the device 105, an inverter circuit may be provided only on one electrode side of the discharge lamps Lamp-1 to Lamp-n, and the other electrode may be grounded, or the discharge lamp lighting of the sixth embodiment shown in FIG. The same effects as described above can be obtained by using a known half-bridge driving method such as the device 106 or a known push-pull driving method such as the discharge lamp lighting device 107 of the seventh embodiment shown in FIG. Needless to say, you can.

また、点灯周波数を変化させる場合、段階的に周波数を変化させても良いし、連続スキャンによって点灯周波数を変化させても良い。   Further, when changing the lighting frequency, the frequency may be changed step by step, or the lighting frequency may be changed by continuous scanning.

本発明の第1実施形態の放電灯点灯装置を示すブロック図The block diagram which shows the discharge lamp lighting device of 1st Embodiment of this invention. 本発明の第1実施形態における点灯時周波数シフト回路の一例を示すブロック図The block diagram which shows an example of the frequency shift circuit at the time of lighting in 1st Embodiment of this invention 本発明の第1実施形態における点灯時周波数シフト回路と低温動作オン回路と周波数変更回路の一例を示す回路図The circuit diagram which shows an example of the frequency shift circuit at the time of lighting in 1st Embodiment of this invention, a low temperature operation ON circuit, and a frequency change circuit 本発明の第1実施形態における点灯周波数の変移を示す図The figure which shows the transition of the lighting frequency in 1st Embodiment of this invention. 本発明の第1実施形態における共振周波数特性曲線と点灯周波数の関係を示す図The figure which shows the relationship between the resonant frequency characteristic curve and lighting frequency in 1st Embodiment of this invention. 本発明の第1実施形態における外部電極型蛍光管の等価回路および各部の印加電圧を説明する図The figure explaining the equivalent circuit of the external electrode type | mold fluorescent tube in 1st Embodiment of this invention, and the applied voltage of each part 本発明の第1実施形態における放電灯への印加電圧と点灯周波数との関係を説明する図The figure explaining the relationship between the applied voltage to the discharge lamp in 1st Embodiment of this invention, and a lighting frequency. 本発明の第2実施形態の放電灯点灯装置を示すブロック図The block diagram which shows the discharge lamp lighting device of 2nd Embodiment of this invention. 本発明の第3実施形態の放電灯点灯装置を示すブロック図The block diagram which shows the discharge lamp lighting device of 3rd Embodiment of this invention. 本発明の第3実施形態における電流検出回路及び電流検出値補正回路を示す図The figure which shows the current detection circuit and current detection value correction circuit in 3rd Embodiment of this invention. 本発明の第4実施形態の放電灯点灯装置を示すブロック図The block diagram which shows the discharge lamp lighting device of 4th Embodiment of this invention. 本発明の一実施形態におけるバースト調光制御の一例を説明する図The figure explaining an example of the burst dimming control in one Embodiment of this invention 本発明の一実施形態におけるバースト調光制御の一例を説明する図The figure explaining an example of the burst dimming control in one Embodiment of this invention 本発明の第5実施形態の放電灯点灯装置を示すブロック図The block diagram which shows the discharge lamp lighting device of 5th Embodiment of this invention. 本発明の第6実施形態の放電灯点灯装置を示すブロック図The block diagram which shows the discharge lamp lighting device of 6th Embodiment of this invention. 本発明の第7実施形態の放電灯点灯装置を示すブロック図The block diagram which shows the discharge lamp lighting device of 7th Embodiment of this invention.

符号の説明Explanation of symbols

101〜107…放電灯点灯装置、Q1〜Q4,Q21〜Q24…電界効果トランジスタ(FET)、C1,C21…コンデンサ、T1,T21…インバータトランス、R1,R21…電流検出用の抵抗器、11,21…駆動制御回路、12,22…電流検出回路、13…発振回路、15…点灯時周波数シフト回路、18…低温時動作オン回路、19…周波数変更回路、20…電流検出値補正回路、、Lamp-1〜Lamp-n…放電灯。   101 to 107 ... discharge lamp lighting device, Q1 to Q4, Q21 to Q24 ... field effect transistor (FET), C1, C21 ... capacitor, T1, T21 ... inverter transformer, R1, R21 ... resistor for current detection, 11, 21 ... Drive control circuit, 12, 22 ... Current detection circuit, 13 ... Oscillation circuit, 15 ... Lighting frequency shift circuit, 18 ... Low temperature operation on circuit, 19 ... Frequency change circuit, 20 ... Current detection value correction circuit, Lamp-1 ~ Lamp-n ... Discharge lamp.

Claims (7)

両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象とし、並列接続された複数の放電灯に接続され、全ての放電灯が未点灯のときのインバータ駆動周波数と出力電圧との関係を表す未点灯時共振周波数特性と1つ以上の放電灯が点灯しているときのインバータ駆動周波数と出力電圧との関係を表す点灯時共振周波数特性とを有するとともに、直流電圧を入力して、前記未点灯時共振周波数特性における最大電圧値を示す共振周波数よりも低く且つ前記点灯時共振周波数特性における最大電圧値を示す共振周波数よりも高い通常点灯周波数の交流電圧を生成して前記複数の放電灯に印加するインバータ回路を備えた放電灯点灯装置において、
前記放電灯の周囲温度を検出し、該検出した周囲温度が所定のしきい値以下の低温であるときに駆動信号を出力する低温時動作手段と、
前記駆動信号が出力されているときに動作し、前記点灯時共振周波数特性における前記通常点灯周波数の電圧よりも高い電圧となる前記通常点灯周波数よりも低い所定の低周波数で前記インバータ回路を動作させる低温時駆動周波数制御手段とを設けた
ことを特徴とする放電灯点灯装置。
Inverter drive when each discharge electrode has a capacitance at each end electrode and a voltage is applied via the capacitance, and is connected to a plurality of discharge lamps connected in parallel, and all the discharge lamps are not lit An unlit resonance frequency characteristic representing the relationship between the frequency and the output voltage, and a lighting resonance frequency characteristic representing the relationship between the inverter drive frequency and the output voltage when one or more discharge lamps are lit, When a DC voltage is input, an AC voltage having a normal lighting frequency that is lower than a resonance frequency indicating the maximum voltage value in the resonance frequency characteristics when not lit and higher than a resonance frequency indicating the maximum voltage value in the resonance frequency characteristics when lit. In a discharge lamp lighting device comprising an inverter circuit that generates and applies to the plurality of discharge lamps,
Low temperature operation means for detecting the ambient temperature of the discharge lamp and outputting a drive signal when the detected ambient temperature is a low temperature below a predetermined threshold value;
Operates when the drive signal is output, and operates the inverter circuit at a predetermined low frequency lower than the normal lighting frequency that is higher than the voltage of the normal lighting frequency in the lighting resonance frequency characteristic. A discharge lamp lighting device comprising a low-temperature driving frequency control means.
両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象とし、並列接続された複数の放電灯に接続され、全ての放電灯が未点灯のときのインバータ駆動周波数と出力電圧との関係を表す未点灯時共振周波数特性と1つ以上の放電灯が点灯しているときのインバータ駆動周波数と出力電圧との関係を表す点灯時共振周波数特性とを有するとともに、直流電圧を入力して、前記未点灯時共振周波数特性における最大電圧値を示す共振周波数よりも低く且つ前記点灯時共振周波数特性における最大電圧値を示す共振周波数よりも高い通常点灯周波数の交流電圧を生成して前記複数の放電灯に印加するインバータ回路と、前記放電灯に流れる電流値を検出して該電流値が小さいほど前記インバータ回路から前記放電灯に供給する電力を増加する手段とを備えた放電灯点灯装置において、
前記放電灯の周囲温度を検出し、該検出した周囲温度が所定のしきい値以下の低温であるときに駆動信号を出力する低温時動作手段と、
前記駆動信号が出力されているときに動作し、前記放電灯に流れる電流が実際の電流値よりも低い値であるように検出電流値を補正する補正手段とを設けた
ことを特徴とする放電灯点灯装置。
Inverter drive when each discharge electrode has a capacitance at each end electrode and a voltage is applied via the capacitance, and is connected to a plurality of discharge lamps connected in parallel, and all the discharge lamps are not lit An unlit resonance frequency characteristic representing the relationship between the frequency and the output voltage, and a lighting resonance frequency characteristic representing the relationship between the inverter drive frequency and the output voltage when one or more discharge lamps are lit, When a DC voltage is input, an AC voltage having a normal lighting frequency that is lower than a resonance frequency indicating the maximum voltage value in the resonance frequency characteristics when not lit and higher than a resonance frequency indicating the maximum voltage value in the resonance frequency characteristics when lit. An inverter circuit that is generated and applied to the plurality of discharge lamps, and a current value that flows through the discharge lamp is detected. In the discharge lamp lighting device and means for increasing the power supplied to the discharge lamp from,
Low temperature operation means for detecting the ambient temperature of the discharge lamp and outputting a drive signal when the detected ambient temperature is a low temperature below a predetermined threshold value;
And a correction unit that operates when the drive signal is output and corrects the detected current value so that the current flowing through the discharge lamp is lower than the actual current value. Electric light lighting device.
両端電極のそれぞれにキャパシタンスを有し該キャパシタンスを介して電圧が印加される放電灯を点灯対象とし、並列接続された複数の放電灯に接続され、全ての放電灯が未点灯のときのインバータ駆動周波数と出力電圧との関係を表す未点灯時共振周波数特性と1つ以上の放電灯が点灯しているときのインバータ駆動周波数と出力電圧との関係を表す点灯時共振周波数特性とを有するとともに、直流電圧を入力して、前記未点灯時共振周波数特性における最大電圧値を示す共振周波数よりも低く且つ前記点灯時共振周波数特性における最大電圧値を示す共振周波数よりも高い通常点灯周波数の交流電圧を生成して前記複数の放電灯に印加するインバータ回路と、前記放電灯に流れる電流値を検出して該電流値が小さいほど前記インバータ回路から前記放電灯に供給する電力を増加する手段とを備えた放電灯点灯装置において、
前記放電灯の周囲温度を検出し、該検出した周囲温度が所定のしきい値以下の低温であるときに駆動信号を出力する低温時動作手段と、
前記駆動信号が出力されているときに動作し、前記放電灯に流れる電流が実際の電流値よりも低い値であるように検出電流値を補正する補正手段と、
前記駆動信号が出力されているときに動作し、前記点灯時共振周波数特性における前記通常点灯周波数の電圧よりも高い電圧となる前記通常点灯周波数よりも低い所定の低周波数で前記インバータ回路を動作させる低温時駆動周波数制御手段とを設けた
ことを特徴とする放電灯点灯装置。
Inverter drive when each discharge electrode has a capacitance at each end electrode and a voltage is applied via the capacitance, and is connected to a plurality of discharge lamps connected in parallel, and all the discharge lamps are not lit An unlit resonance frequency characteristic representing the relationship between the frequency and the output voltage, and a lighting resonance frequency characteristic representing the relationship between the inverter drive frequency and the output voltage when one or more discharge lamps are lit, When a DC voltage is input, an AC voltage having a normal lighting frequency that is lower than a resonance frequency indicating the maximum voltage value in the resonance frequency characteristics when not lit and higher than a resonance frequency indicating the maximum voltage value in the resonance frequency characteristics when lit. An inverter circuit that is generated and applied to the plurality of discharge lamps, and a current value that flows through the discharge lamp is detected. In the discharge lamp lighting device and means for increasing the power supplied to the discharge lamp from,
Low temperature operation means for detecting the ambient temperature of the discharge lamp and outputting a drive signal when the detected ambient temperature is a low temperature below a predetermined threshold value;
A correction unit that operates when the drive signal is output and corrects the detected current value so that the current flowing through the discharge lamp is lower than the actual current value;
Operates when the drive signal is output, and operates the inverter circuit at a predetermined low frequency lower than the normal lighting frequency that is higher than the voltage of the normal lighting frequency in the lighting resonance frequency characteristic. A discharge lamp lighting device comprising a low-temperature driving frequency control means.
前記点灯時共振周波数特性における共振周波数と前記通常点灯周波数との間に前記低周波数が設定されている
ことを特徴とする請求項1または請求項3に記載の放電灯点灯装置。
The discharge lamp lighting device according to claim 1 or 3, wherein the low frequency is set between a resonance frequency in the lighting resonance frequency characteristic and the normal lighting frequency.
前記点灯対象となる放電灯が外部電極型蛍光管であることを特徴とする請求項1乃至請求項3の何れかに記載の放電灯点灯装置。   The discharge lamp lighting device according to any one of claims 1 to 3, wherein the discharge lamp to be lit is an external electrode fluorescent tube. 前記点灯対象となる放電灯が電極に直列接続されたバラストコンデンサを有する冷陰極蛍光管であることを特徴とする請求項1乃至請求項3の何れかに記載の放電灯点灯装置。   The discharge lamp lighting device according to any one of claims 1 to 3, wherein the discharge lamp to be lit is a cold cathode fluorescent tube having a ballast capacitor connected in series with an electrode. 起動後に放電灯への電圧印加期間と電圧非印加期間の比率を変化させて前記放電灯の点灯状態と消灯状態とを交互に切り替えると共に、前記電圧印加期間内において、前記低周波数で前記インバータ回路を動作させた後、前記通常点灯周波数で前記インバータ回路を動作させて輝度調整を行うバースト調光手段を設けた
ことを特徴とする請求項1乃至請求項3の何れかに記載の放電灯点灯装置。
After the start-up, the ratio of the voltage application period and the voltage non-application period to the discharge lamp is changed to alternately switch between the lighting state and the extinguishing state of the discharge lamp, and the inverter circuit at the low frequency within the voltage application period The discharge lamp lighting according to any one of claims 1 to 3, further comprising: burst dimming means for adjusting brightness by operating the inverter circuit at the normal lighting frequency after operating the lamp. apparatus.
JP2007281763A 2007-10-30 2007-10-30 Discharge lamp lighting device Expired - Fee Related JP4703626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281763A JP4703626B2 (en) 2007-10-30 2007-10-30 Discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281763A JP4703626B2 (en) 2007-10-30 2007-10-30 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JP2009110800A JP2009110800A (en) 2009-05-21
JP4703626B2 true JP4703626B2 (en) 2011-06-15

Family

ID=40779068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281763A Expired - Fee Related JP4703626B2 (en) 2007-10-30 2007-10-30 Discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP4703626B2 (en)

Also Published As

Publication number Publication date
JP2009110800A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
EP1814367B1 (en) Backlight inverter and its driving method
JP4972151B2 (en) Discharge lamp lighting device, lighting device, and liquid crystal display device
US7397198B2 (en) Fluorescent lamp driver and liquid crystal display apparatus
US7242153B2 (en) Pulse width modulation inverter circuit and control method thereof
US7282870B2 (en) Driving apparatus for CCFL
TW200822807A (en) Improved ballast control circuit for use with CCFL and EEFL lamps
JP2010123567A (en) High-pressure discharge lamp lighting device and image display apparatus using this
US20100244716A1 (en) High pressure discharge lamp ballast with adaptive filament heating control based on lamp age
JP2007035503A (en) Discharge lamp lighting device
JP2006024511A (en) Discharge lamp lighting device
US7932680B2 (en) Discharge lamp control device and projector
JP4702038B2 (en) High intensity discharge lamp lighting device and projector
JP4506073B2 (en) Discharge lamp lighting device and lighting device
US20060082329A1 (en) Inverter and method for rapid warm-up of luminance loadings
JP4690296B2 (en) Discharge lamp lighting device
JP2002164190A (en) Driving device and method of cathode-discharge tube
JP4703626B2 (en) Discharge lamp lighting device
JP2007128713A (en) Discharge lamp lighting device
WO2006043361A1 (en) Cold-cathode tube drive device
JP5348497B2 (en) High pressure discharge lamp lighting device, projector, and high pressure discharge lamp starting method
JPH0428199A (en) Inverter lighting device
JP3553493B2 (en) Control circuit for piezoelectric transformer
CN1856208B (en) Light regulating method for gas discharge lamp
JP3329172B2 (en) Discharge lamp lighting device
JP4925304B2 (en) Discharge lamp lighting device, illumination device using the same, and liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

LAPS Cancellation because of no payment of annual fees