JP4701450B2 - Battery characteristic evaluation apparatus and battery characteristic evaluation method - Google Patents

Battery characteristic evaluation apparatus and battery characteristic evaluation method Download PDF

Info

Publication number
JP4701450B2
JP4701450B2 JP2004135817A JP2004135817A JP4701450B2 JP 4701450 B2 JP4701450 B2 JP 4701450B2 JP 2004135817 A JP2004135817 A JP 2004135817A JP 2004135817 A JP2004135817 A JP 2004135817A JP 4701450 B2 JP4701450 B2 JP 4701450B2
Authority
JP
Japan
Prior art keywords
battery
electrode
sealed battery
voltage
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004135817A
Other languages
Japanese (ja)
Other versions
JP2004363091A (en
Inventor
利哉 北村
彦一 張替
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2004135817A priority Critical patent/JP4701450B2/en
Publication of JP2004363091A publication Critical patent/JP2004363091A/en
Application granted granted Critical
Publication of JP4701450B2 publication Critical patent/JP4701450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Primary Cells (AREA)

Description

本発明は、密閉型電池の電池特性を測定する装置およびその測定方法に関する。   The present invention relates to an apparatus for measuring battery characteristics of a sealed battery and a measuring method thereof.

従来、電池の起電力や放電特性等の電池特性を評価するために、当該電池を所定条件下で放電させて、時間毎の正負極間の電圧や放電容量毎の正負極間の電圧の変化を測定し、評価する事が行われてきた。
また、正負極の各々の単極について評価を行う場合は、簡易型のセル、参照電極、等を用いて前記単極の状態を再現し、このセル等の電圧を測定することで評価が行われてきた。(非特許文献1参照)
藤嶋 昭、相澤 益男、井上 徹著、電気化学測定法 技報堂出版 第3〜4章、実験チャート3.1、図−3.2他
Conventionally, in order to evaluate battery characteristics such as electromotive force and discharge characteristics of a battery, the battery is discharged under a predetermined condition, and the voltage between the positive and negative electrodes every time and the voltage between the positive and negative electrodes every discharge capacity are changed. Has been measured and evaluated.
In addition, when evaluating each single electrode of the positive and negative electrodes, the evaluation is performed by reproducing the state of the single electrode using a simple cell, a reference electrode, etc., and measuring the voltage of the cell or the like. I have been. (See Non-Patent Document 1)
Akira Fujishima, Masuo Aizawa, Tohru Inoue, Electrochemical Measurement Method, Gihodo Publishing, Chapters 3-4, Experiment Chart 3.1, Figure-3.2, etc.

電池特性を判断するための、時間毎の正負極間の電圧や、放電容量毎の正負極間の電圧変化を測定する方法は、正極電位と負極電位との差として表れる電池電圧を評価するため、得られた電圧や電池特性が、正極材に起因するものか負極材に起因するものか判断が困難で、正極材・負極材の材料開発に有益な情報が得ことが困難であるという問題があった。例えば、電池電圧が1.5Vであっても、正極電位1.2V、負極電位−0.3Vの場合があり、正極電位0.3V、負極電位−1.2Vの場合もある。   The method of measuring the voltage between the positive and negative electrodes for each time and the voltage change between the positive and negative electrodes for each discharge capacity for judging the battery characteristics is for evaluating the battery voltage that appears as the difference between the positive electrode potential and the negative electrode potential. It is difficult to determine whether the obtained voltage and battery characteristics are due to the positive electrode material or the negative electrode material, and it is difficult to obtain useful information for developing the positive electrode material and negative electrode material. was there. For example, even when the battery voltage is 1.5V, the positive electrode potential may be 1.2V and the negative electrode potential -0.3V, and the positive electrode potential may be 0.3V and the negative electrode potential may be -1.2V.

一方、例えば、簡易型のセル、参照電極、等を用いて、正極材および負極材の単極毎の評価を行う場合は、測定したい電極の近傍に参照電極を設置することで、正極、負極毎の電位や電池特性を測定することができる。しかし、これらの測定方法から得られる評価結果は、電極構造・電池構造等が実電池とは大きく違う簡易型セルを用いた測定であるために、これら評価結果を、実電池、例えば密閉型アルカリマンガン電池へ適用するには様々な問題があった。
そこで、本発明は、例えば、密閉型アルカリマンガン電池の様な、密閉型電池において、その本来の電池形状を大きく崩すことなく、正極材および負極材の電位を、分離して精度良く測定できる、電池特性評価装置、および電池特性評価方法を提供することである。
On the other hand, for example, when evaluating each single electrode of the positive electrode material and the negative electrode material using a simple cell, a reference electrode, etc., the positive electrode, the negative electrode can be obtained by installing the reference electrode in the vicinity of the electrode to be measured. Each potential and battery characteristics can be measured. However, the evaluation results obtained from these measurement methods are measurements using simple cells in which the electrode structure and the battery structure etc. are significantly different from those of the actual batteries. There were various problems when applied to manganese batteries.
Therefore, the present invention is capable of measuring the potential of the positive electrode material and the negative electrode material separately and with high accuracy, without greatly destroying the original battery shape, for example, in a sealed battery such as a sealed alkaline manganese battery. A battery characteristic evaluation apparatus and a battery characteristic evaluation method are provided.

すなわち、上記の課題を解決するための第1の手段は、
密閉型電池の電池特性評価装置であって、
電池の缶体に電池特性を損なわない穿孔のある前記密閉型電池が設けられ、
当該穿孔を通じて前記密閉型電池内に含有される電解液と接触している前記密閉型電池外にある電解液と、
前記密閉型電池外にある電解液中に浸漬されている電極と、
前記密閉型電池を所望の条件で放電させる負荷と、
前記密閉型電池の正負極間の電圧、前記密閉型電池の正極を構成する正極材と前記浸漬されている電極との間の電圧、前記密閉型電池の負極を構成する負極材と前記浸漬されている電極との間の電圧、の内から選択される少なくとも2つの電圧を測定する測定手段と、を有し、
前記電圧の値から、前記密閉型電池外にある電解液に浸漬された電極に対する、正極材および負極材の電位差を測定することを特徴とする電池特性評価装置である。
That is, the first means for solving the above problem is as follows.
An apparatus for evaluating battery characteristics of a sealed battery,
The sealed battery with perforations that do not impair the battery characteristics is provided in the battery can body,
An electrolyte outside the sealed battery in contact with the electrolyte contained in the sealed battery through the perforations ;
An electrode immersed in an electrolyte outside the sealed battery;
A load for discharging the sealed battery under desired conditions;
Voltage between the positive and negative electrodes of the sealed battery, the voltage between the hermetic being said immersion and cathode materials constituting the positive electrode of the battery, is the negative electrode material constituting the anode immersed in said sealed battery Measuring means for measuring at least two voltages selected from among the voltages between the two electrodes,
The battery characteristic evaluation apparatus is characterized by measuring a potential difference between a positive electrode material and a negative electrode material with respect to an electrode immersed in an electrolyte outside the sealed battery from the voltage value .

第2の手段は、密閉型電池の電池特性評価装置であって、
前記密閉型電池内に含有される電解液と接触している前記密閉型電池外にある電解液と、
前記密閉型電池外にある電解液中に浸漬されている電極と、
前記密閉型電池を所望の条件で放電させる負荷と、
前記密閉型電池の正負極間の電圧、前記密閉型電池の正極を構成する正極材と前記浸漬されている電極との間の電圧、前記密閉型電池の負極を構成する負極材と前記浸漬されている電極との間の電圧、の内から選択される少なくとも2つの電圧を測定する測定手段と、を有することを特徴とする電池特性評価装置である。
The second means is a battery characteristic evaluation device for a sealed battery,
An electrolyte outside the sealed battery in contact with the electrolyte contained in the sealed battery;
An electrode immersed in an electrolyte outside the sealed battery;
A load for discharging the sealed battery under desired conditions;
Voltage between the positive and negative electrodes of the sealed battery, the voltage between the hermetic being said immersion and cathode materials constituting the positive electrode of the battery, is the negative electrode material constituting the anode immersed in said sealed battery And a measuring means for measuring at least two voltages selected from among the voltages between the two electrodes.

第3の手段は、密閉型電池の電池特性評価装置であって、
前記密閉型電池を所定の条件で放電させる負荷と、電圧測定手段と、前記密閉型電池外にある電解液と、前記密閉型電池外にある電解液中に浸漬されている電極と、を有し、
前記電圧測定手段は、前記放電に伴う、前記密閉型電池の正負極間の電圧と、前記密閉型電池の缶体側の電極と前記電解液中に浸漬されている電極との間の電圧と、を測定するものであり、
前記密閉型電池の缶体近傍に、前記密閉型電池外にある電解液中に浸漬されている電極が設置されていることを特徴とする電池特性評価装置である。
The third means is a battery characteristic evaluation device for a sealed battery,
A load for discharging the sealed battery under a predetermined condition; a voltage measuring unit; an electrolyte solution outside the sealed battery; and an electrode immersed in the electrolyte solution outside the sealed battery. And
The voltage measuring means, the voltage between the positive and negative electrodes of the sealed battery, the voltage between the electrode on the can body side of the sealed battery and the electrode immersed in the electrolyte, accompanying the discharge, Is to measure
In the battery characteristic evaluation apparatus, an electrode immersed in an electrolytic solution outside the sealed battery is installed in the vicinity of the can of the sealed battery.

第4の手段は、密閉型電池の電池特性評価方法であって、
前記密閉型電池内に含有される電解液と前記密閉型電池外にある電解液とを接触させ、
前記密閉型電池を所定の条件で放電させながら、前記密閉型電池の正負極間の電圧、前記密閉型電池の正極を構成する正極材と前記密閉型電池外にある電解液中に浸漬されている電極との間の電圧、前記密閉型電池の負極を構成する負極材と前記密閉型電池外にある電解液中に浸漬されている電極との間の電圧、の3つの電圧の内から選択される少なくとも2つの電圧を測定することを特徴とする電池特性評価方法である。
The fourth means is a battery characteristic evaluation method of a sealed battery,
Contacting the electrolyte contained in the sealed battery with the electrolyte outside the sealed battery;
While discharging the sealed battery under predetermined conditions, it is immersed in the voltage between the positive and negative electrodes of the sealed battery, the positive electrode material constituting the positive electrode of the sealed battery and the electrolyte outside the sealed battery. Selected from among three voltages: the voltage between the electrode and the electrode between the negative electrode material constituting the negative electrode of the sealed battery and the electrode immersed in the electrolyte outside the sealed battery The battery characteristic evaluation method is characterized in that at least two voltages are measured.

第5の手段は、密閉型電池の電池特性評価方法であって、
前記密閉型電池の缶体に、前記密閉型電池の電池特性を損なわない穿孔を設け、
前記穿孔を介して、前記密閉型電池内に含有される電解液を、前記電解液と同様の組成および濃度を有する前記密閉型電池外にある電解液と接触させ、この前記密閉型電池外にある電解液に電極を浸漬し、
前記密閉型電池を所定の条件で放電させながら、前記密閉型電池の穿孔が設けられた缶体側の電極と前記電解液中に浸漬されている電極との間の電圧を測定し、前記密閉型電池の穿孔が設けられた缶体側電極の電極材と前記電解液中に浸漬されている電極との電位差を測定することを特徴とする電池特性評価方法である。
The fifth means is a battery characteristic evaluation method for a sealed battery,
In the sealed battery can body, a perforation that does not impair the battery characteristics of the sealed battery is provided,
Via the perforations, the electrolyte contained in the sealed battery is brought into contact with an electrolyte outside the sealed battery having the same composition and concentration as the electrolyte, and outside the sealed battery. Immerse the electrode in a certain electrolyte,
While discharging the sealed battery under predetermined conditions, the voltage between the electrode on the can body provided with the perforations of the sealed battery and the electrode immersed in the electrolytic solution is measured, and the sealed battery It is a battery characteristic evaluation method characterized by measuring a potential difference between an electrode material of a can body side electrode provided with a battery perforation and an electrode immersed in the electrolytic solution.

第6の手段は、密閉型電池の電池特性評価方法であって、
前記密閉型電池の缶体に、前記密閉型電池の電池特性を損なわない穿孔を設け、
前記穿孔を介して、前記密閉型電池内に含有される電解液を、前記電解液と同様の組成および濃度を有する前記密閉型電池外にある電解液と接触させ、この前記密閉型電池外にある電解液に電極を浸漬し、
前記密閉型電池を所定の条件で放電させながら、前記密閉型電池の正負極間の電圧と、前記密閉型電池の穿孔が設けられた缶体と前記電解液中に浸漬されている電極との間の電圧とを測定し、当該両電圧より、前記密閉型電池の穿孔が設けられた缶体側でない電極の電極材と前記電解液中に浸漬されている電極との電位差を算出することを特徴とする電池特性評価方法である。
The sixth means is a method for evaluating battery characteristics of a sealed battery,
In the sealed battery can body, a perforation that does not impair the battery characteristics of the sealed battery is provided,
Via the perforations, the electrolyte contained in the sealed battery is brought into contact with an electrolyte outside the sealed battery having the same composition and concentration as the electrolyte, and outside the sealed battery. Immerse the electrode in a certain electrolyte,
While discharging the sealed battery under predetermined conditions, a voltage between the positive and negative electrodes of the sealed battery, a can body provided with a perforation of the sealed battery, and an electrode immersed in the electrolyte A voltage between the electrode material of the electrode that is not on the can body provided with the perforations of the sealed battery and an electrode immersed in the electrolytic solution is calculated from the two voltages. This is a battery characteristic evaluation method.

第7の手段は、密閉型電池の電池特性評価方法であって、
前記密閉型電池の缶体に、前記密閉型電池の電池特性を損なわない穿孔を設け、
前記穿孔を介して、前記密閉型電池内に含有される電解液を、前記電解液と同様の組成および濃度を有する前記密閉型電池外にある電解液と接触させ、この前記密閉型電池外にある電解液に電極を浸漬し、
前記密閉型電池を所定の条件で放電させながら、前記密閉型電池の正負極間の電圧と、前記密閉型電池の穿孔が設けられた缶体と前記電解液中に浸漬されている電極との間の電圧とを測定し、当該両電圧より、前記密閉型電池における穿孔が設けられた缶体側電極の電極材と前記電解液中に浸漬されている電極との電位差、穿孔が設けられた缶体側でない電極の電極材と前記電解液中に浸漬されている電極との電位差、および正負極間の電圧を測定することを特徴とする電池特性評価方法である。
The seventh means is a battery characteristic evaluation method for a sealed battery,
In the sealed battery can body, a perforation that does not impair the battery characteristics of the sealed battery is provided,
Via the perforations, the electrolyte contained in the sealed battery is brought into contact with an electrolyte outside the sealed battery having the same composition and concentration as the electrolyte, and outside the sealed battery. Immerse the electrode in a certain electrolyte,
While discharging the sealed battery under predetermined conditions, a voltage between the positive and negative electrodes of the sealed battery, a can body provided with a perforation of the sealed battery, and an electrode immersed in the electrolyte The voltage difference between the electrode material of the can body side electrode provided with perforations in the sealed battery and the electrode immersed in the electrolytic solution, the can provided with perforations It is a battery characteristic evaluation method characterized by measuring a potential difference between an electrode material of an electrode that is not on the body side and an electrode immersed in the electrolytic solution, and a voltage between positive and negative electrodes.

課題を解決するための第1の手段に係る電池特性評価装置は、評価対象である密閉型電池を大きく崩すことなく、実電池に近い形態にて、前記密閉型電池外にある電解液に浸漬された電極に対する、正極材および負極材の電位差を求めることが出来る。   The battery characteristic evaluation apparatus according to the first means for solving the problem is immersed in an electrolyte outside the sealed battery in a form close to an actual battery without greatly losing the sealed battery being evaluated. The potential difference between the positive electrode material and the negative electrode material with respect to the formed electrode can be obtained.

第2の手段に係る電池特性評価装置は、評価対象である密閉型電池を大きく崩すことなく、実電池に近い形態にて、前記密閉型電池の正負極間の電圧、前記密閉型電池の正極を構成する正極材と前記密閉型電池外にある電解液に浸漬された電極との間の電圧、前記密閉型電池の負極を構成する負極材と前記密閉型電池外にある電解液に浸漬された電極との間の電圧、の内から選択される少なくとも2つの電圧を測定することで、これらの値から前記密閉型電池外にある電解液に浸漬された電極に対する、正極材および負極材の電位差を求めることが出来る。   The battery characteristic evaluation apparatus according to the second means is configured such that the voltage between the positive and negative electrodes of the sealed battery, the positive electrode of the sealed battery, in a form close to an actual battery, without greatly destroying the sealed battery to be evaluated. Between the positive electrode material constituting the electrode and the electrode immersed in the electrolyte outside the sealed battery, the negative electrode material constituting the negative electrode of the sealed battery and the electrolyte outside the sealed battery By measuring at least two voltages selected from the voltages between the positive electrode material and the negative electrode material, the positive electrode material and the negative electrode material for the electrode immersed in the electrolyte outside the sealed battery are measured based on these values. The potential difference can be obtained.

第3の手段に係る電池特性評価装置は、評価対象である密閉型電池を大きく崩すことなく、実電池に近い形態にて、その缶体側の電極と前記密閉型電池外にある電解液に浸漬された電極との間の電圧と、正負極間の電圧とを測定することができるので、これらの値から前記密閉型電池外にある電解液に浸漬された電極に対する、正極材および負極材の電位差を求めることが出来る。   The battery characteristic evaluation apparatus according to the third means is immersed in the electrode on the can body and the electrolyte outside the sealed battery in a form close to a real battery without greatly losing the sealed battery to be evaluated. Since the voltage between the electrodes and the voltage between the positive and negative electrodes can be measured, the positive electrode material and the negative electrode material with respect to the electrode immersed in the electrolyte outside the sealed battery can be measured from these values. The potential difference can be obtained.

第4の手段に係る電池特性評価方法によれば、評価対象である密閉型電池を大きく崩すことなく、実電池に近い形態にて、前記密閉型電池の正負極間の電圧、前記密閉型電池の正極を構成する正極材と前記密閉型電池外にある電解液に浸漬された電極との間の電圧、前記密閉型電池の負極を構成する負極材と前記密閉型電池外にある電解液に浸漬された電極との間の電圧、3つの電圧の内から選択される少なくとも2つの電圧を測定することで、これらの値から前記密閉型電池外にある電解液に浸漬された電極に対する、正極材および負極材の電位差を求めることが出来る。   According to the battery characteristic evaluation method according to the fourth means, the voltage between the positive and negative electrodes of the sealed battery, the sealed battery in a form close to an actual battery without greatly losing the sealed battery to be evaluated. The voltage between the positive electrode material constituting the positive electrode and the electrode immersed in the electrolyte solution outside the sealed battery, the negative electrode material constituting the negative electrode of the sealed battery and the electrolyte solution outside the sealed battery By measuring at least two voltages selected from among three voltages, the voltage between the immersed electrode and the electrode, the positive electrode for the electrode immersed in the electrolyte outside the sealed battery from these values The potential difference between the material and the negative electrode material can be determined.

第5の手段に係る電池特性評価方法によれば、評価対象である密閉型電池を大きく崩すことなく、実電池に近い形態にて、穿孔が設けられた缶体側電極と前記密閉型電池外にある電解液に浸漬された電極との間の電圧を測定し、前記密閉型電池外にある電解液に浸漬された電極に対する、穿孔が設けられた缶体側電極の電極材の電位差を求めることができる。   According to the battery characteristic evaluation method according to the fifth means, outside the sealed battery and the can-side electrode provided with perforations in a form close to an actual battery, without greatly losing the sealed battery to be evaluated. Measuring the voltage between the electrode immersed in an electrolyte and determining the potential difference of the electrode material of the can-side electrode provided with perforations relative to the electrode immersed in the electrolyte outside the sealed battery it can.

第6の手段に係る電池特性評価方法によれば、評価対象である密閉型電池を大きく崩すことなく、実電池に近い形態にて、前記穿孔が設けられた缶体側でない電極と前記密閉型電池外にある電解液に浸漬された電極との間の電圧を求めることができ、前記密閉型電池外にある電解液に浸漬された電極に対する、前記穿孔が設けられた缶体側でない電極の電極材の電位差を求めることができる。   According to the battery characteristic evaluation method according to the sixth means, the sealed battery which is not the can body side provided with the perforations and the sealed battery in a form close to an actual battery without greatly breaking the sealed battery to be evaluated The voltage between the electrode immersed in the electrolyte solution outside can be obtained, and the electrode material of the electrode that is not on the can body side provided with the perforations with respect to the electrode immersed in the electrolyte solution outside the sealed battery Can be obtained.

第7の手段に係る電池特性評価方法によれば、評価対象である密閉型電池を大きく崩すことなく、実電池に近い形態にて、正負極間の電圧、穿孔が設けられた缶体側電極と前記密閉型電池外にある電解液に浸漬された電極との間の電圧を同時に測定することができ、これらの値から前記密閉型電池外にある電解液に浸漬された電極に対する、正極材および負極材の電位差を求めることが出来る。   According to the battery characteristic evaluation method according to the seventh means, the can-side electrode provided with a voltage between the positive and negative electrodes and a perforation in a form close to an actual battery without greatly losing the sealed battery to be evaluated. The voltage between the electrode immersed in the electrolytic solution outside the sealed battery and the electrode immersed in the electrolytic solution outside the sealed battery can be measured simultaneously. The potential difference of the negative electrode material can be obtained.

本発明者は、上述の課題を解決するために鋭意研究を行った。そして、測定対象である密閉型電池の正極材または負極材と接している缶体の片方または双方に穿孔を設けた後、当該電池を、当該電池の電解液と同様の組成および濃度を有する電解液に浸漬できる新規な電池特性評価装置に設置し、当該電池内部と外部との電解質を接触させる。次に、当該電池の正負極間の電圧、穿孔の外側近傍に設けた前記密閉型電池外にある電解液に浸漬された電極(以下、基準となる電極と記載する場合がある。)と穿孔の内側近傍の正極との電圧(但し、穿孔が正極材側の缶体に設けられている場合。)、穿孔の外側近傍に設けた基準となる電極と穿孔の内側近傍の負極との電圧(但し、穿孔が負極材側の缶体に設けられている場合。)、の3種の電圧値の内から選択される少なくても2つの電圧を測定しながら、当該電池を所望の条件で放電させる。すると、測定対象である密閉型電池が電池として構成されたままの姿で、基準となる電極と穿孔の内側にある電極材との電位差を測定できる事に想到した。
一方、基準となる電極に対する正極材および負極材の電位差の合計が、当該電池の正負極間の電圧となることから、前記3つの電圧から選択される少なくても2つの電圧を測定することで、残りの電圧は容易に算出できる。
The present inventor has conducted extensive research to solve the above-described problems. Then, after providing a hole in one or both of the cans in contact with the positive electrode material or the negative electrode material of the sealed battery to be measured, the battery is electrolyzed having the same composition and concentration as the electrolyte solution of the battery. It is installed in a new battery characteristic evaluation apparatus that can be immersed in the liquid, and the electrolyte inside and outside the battery is brought into contact. Next, the voltage between the positive and negative electrodes of the battery, an electrode immersed in an electrolyte outside the sealed battery provided near the outside of the perforation (hereinafter, may be referred to as a reference electrode) and the perforation. The voltage between the positive electrode near the inner side of the hole (provided that the perforation is provided in the can on the positive electrode side), the voltage between the reference electrode provided near the outer side of the perforation and the negative electrode near the inner side of the perforation ( However, when the perforation is provided in the can on the negative electrode material side.), The battery is discharged under desired conditions while measuring at least two voltages selected from the three voltage values of Let Then, it came to the idea that the potential difference between the reference electrode and the electrode material inside the perforation can be measured while the sealed battery as the measurement object is still configured as a battery.
On the other hand, since the total potential difference between the positive electrode material and the negative electrode material with respect to the reference electrode becomes the voltage between the positive and negative electrodes of the battery, it is possible to measure at least two voltages selected from the three voltages. The remaining voltage can be easily calculated.

そして、当該電池を所定の条件で放電しながら、電池電圧、正極材電位、負極材電位を測定して得られた各電圧、電位と放電時間との相関関係が、電池特性、正極材、および負極材の各特性と関連性があることを見出し、新規な電池特性評価装置および電池特性評価方法に想到したものである。
ここで、本発明の実施の形態について、図面を参照しながら説明する。
尚、当該説明においては、密閉型電池の例として円筒型のアルカリマンガン電池を用い、負極側の缶体に穿孔を設け、当該電池の正負極間の電圧、および基準となる電極と穿孔の内側の負極材との電圧を測定する場合を例とした例について説明する。尚、本発明の実施の形態では、基準となる電極として、Hg/HgOの参照電極(以下、参照電極と記載する場合がある。)を用いた。
ここで、図1は、本発明に係る電池特性評価装置の模式的な断面図および測定回路のブロック図である。
Each voltage obtained by measuring the battery voltage, the positive electrode material potential, and the negative electrode material potential while discharging the battery under predetermined conditions, and the correlation between the potential and the discharge time are battery characteristics, positive electrode material, and The present inventors have found that there is a relationship with each characteristic of the negative electrode material, and have arrived at a novel battery characteristic evaluation apparatus and battery characteristic evaluation method.
Here, embodiments of the present invention will be described with reference to the drawings.
In the description, a cylindrical alkaline manganese battery is used as an example of a sealed battery, and a perforation is provided in a can on the negative electrode side, a voltage between the positive and negative electrodes of the battery, and a reference electrode and the inside of the perforation. An example of measuring the voltage with the negative electrode material will be described. In the embodiment of the present invention, an Hg / HgO reference electrode (hereinafter sometimes referred to as a reference electrode) was used as a reference electrode.
Here, FIG. 1 is a schematic cross-sectional view of a battery characteristic evaluation apparatus according to the present invention and a block diagram of a measurement circuit.

まず、本発明に係る電池特性評価装置1について説明する。
本発明に係る電池特性評価装置1は、測定用セル10、電圧測定器50、放電装置60とを有している。測定用セル10内には密閉型電池例であるアルカリマンガン電池30外にある電解液11が満たされ、評価対象であるアルカリマンガン電池30と、基準となる電極として電解液11に浸漬された参照電極20とが適宜な支持手段(図示していない。)により支持され設置されている。
First, the battery characteristic evaluation apparatus 1 according to the present invention will be described.
The battery characteristic evaluation apparatus 1 according to the present invention includes a measurement cell 10, a voltage measuring device 50, and a discharge device 60. The measurement cell 10 is filled with the electrolytic solution 11 outside the alkaline manganese battery 30 which is an example of a sealed battery, and the reference is immersed in the electrolytic solution 11 as an alkaline manganese battery 30 to be evaluated and a reference electrode. The electrode 20 is supported and installed by appropriate support means (not shown).

アルカリマンガン電池30は、正極31と負極32とを有し、さらにその缶体33には穿孔40が設けられている。尚、アルカリマンガン電池30の内部構造については後述する。一方、参照電極20は、ルギン管21中にHg/HgO極22が設置され、さらに、クランプ等の支持手段によりルギン管21の先端23は穿孔40の近傍2〜20mm、さらに好ましくは2〜10mmに設置されている。   The alkaline manganese battery 30 has a positive electrode 31 and a negative electrode 32, and the can body 33 is provided with perforations 40. The internal structure of the alkaline manganese battery 30 will be described later. On the other hand, as for the reference electrode 20, the Hg / HgO electrode 22 is installed in the lugin tube 21, and the tip 23 of the lugin tube 21 is 2-20 mm in the vicinity of the perforation 40 by a support means such as a clamp, more preferably 2-10 mm. Is installed.

測定用セル10内の電解液11は、アルカリマンガン電池30の穿孔40とHg/HgO極22とを浸漬している。但し、測定用リード線が接続された負極32は、電解液11と接触しないように樹脂等のシール材45で予めシールしてある。そして、電解液11は、後述するアルカリマンガン電池30内の電解液38と同様の組成、同様の濃度を有するものである。負極32をシール材45でシールする代わりに、これを、電解液11の液面より上方に突出させる構成としても良いが、負極32をシール材45でシールしてアルカリマンガン電池30全体を電解液11に浸漬させることで、電解液11の温度制御によりアルカリマンガン電池30の温度制御も容易に実施可能となることから、アルカリマンガン電池30全体の浸漬は、好ましい構成である。   The electrolytic solution 11 in the measurement cell 10 immerses the perforations 40 of the alkaline manganese battery 30 and the Hg / HgO electrode 22. However, the negative electrode 32 to which the measurement lead wire is connected is previously sealed with a sealing material 45 such as a resin so as not to come into contact with the electrolytic solution 11. And the electrolyte solution 11 has the same composition and the same density | concentration as the electrolyte solution 38 in the alkali manganese battery 30 mentioned later. Instead of sealing the negative electrode 32 with the sealing material 45, this may be configured to protrude above the liquid surface of the electrolytic solution 11, but the negative electrode 32 is sealed with the sealing material 45 and the entire alkaline manganese battery 30 is electrolyted. 11, the temperature of the alkaline manganese battery 30 can be easily controlled by controlling the temperature of the electrolytic solution 11. Therefore, the immersion of the entire alkaline manganese battery 30 is a preferable configuration.

電圧測定器50は、正極31と参照電極20との電圧を測定するものである。
放電装置60には、電圧測定器61と、評価対象の電池を所定の条件(電流値、ON−OFFのタイミング等)で放電させることの出来る負荷(可変電流器)62とスイッチ63とが設置されている。
The voltage measuring device 50 measures the voltage between the positive electrode 31 and the reference electrode 20.
The discharge device 60 is provided with a voltage measuring device 61, a load (variable current device) 62 and a switch 63 that can discharge the battery to be evaluated under predetermined conditions (current value, ON-OFF timing, etc.). Has been.

次に、アルカリマンガン電池30の構造と穿孔40とについて説明する。
アルカリマンガン電池30は、例えば、両面がニッケルメッキされた鉄製の缶体33の中に外側より順に、正極材34である二酸化マンガン、セパレーター35、負極材36である亜鉛粉、負極集電体37である、例えばスズメッキされた黄銅棒が設けられている。缶体33は正極材34と接触して正極となり、正極31と接合されて缶体33の正極側蓋部をも兼ねる。負極集電体37は負極材36と接触して負極となり、負極32と接合される。また負極32は、樹脂等からなる封止材39と共に缶体33の負極側蓋部をも兼ねる。そして正極材34、セパレーター35、負極材36は電解液38に浸漬されている。アルカリマンガン電池30の電解液38とは、例えば、KOH水溶液である。
Next, the structure of the alkaline manganese battery 30 and the perforations 40 will be described.
The alkaline manganese battery 30 includes, for example, manganese dioxide as a positive electrode material 34, a separator 35, zinc powder as a negative electrode material 36, and a negative electrode current collector 37 in an iron can 33 whose surfaces are nickel-plated in order from the outside. For example, a tin-plated brass bar is provided. The can body 33 comes into contact with the positive electrode material 34 to become a positive electrode, and is joined to the positive electrode 31 to also serve as a positive electrode side lid portion of the can body 33. The negative electrode current collector 37 comes into contact with the negative electrode material 36 to become a negative electrode, and is bonded to the negative electrode 32. The negative electrode 32 also serves as a negative electrode side lid of the can 33 together with a sealing material 39 made of resin or the like. The positive electrode material 34, the separator 35, and the negative electrode material 36 are immersed in the electrolytic solution 38. The electrolytic solution 38 of the alkaline manganese battery 30 is, for example, a KOH aqueous solution.

ここで、缶体33に設けられた穿孔40について説明する。穿孔40はアルカリマンガン電池30内の電解液38と、図1にて説明した測定用セル10内の電解液11とを接触させ、後述する当該電池の特性測定のための測定用窓となるものである。具体的には、缶体33の概ね中央部に設けられた径1〜2mm、深さ0.5〜1mm程度の穿孔で、缶体33内に充填された正極材34の成形体を崩すことがないものである。この穿孔40を介し、後述するように、参照電極20にて正極材34の電位を測定するが、参照電極20の構造上の制約(正確な測定を行うには、Hg/HgO極22のほぼ全体が、電解液に浸漬していることが好ましい。)から、アルカリマンガン電池30を電池内の電解液38と同組成の電解液11に浸漬させ、穿孔40にルギン管21の先端23を近づけることで、当該測定をおこなう。尚、穿孔40は、アルカリマンガン電池30の総体に比して微小なので、穴あけ加工前の電池とほぼ同じ状態のままで当該測定が可能である。   Here, the perforation 40 provided in the can 33 will be described. The perforations 40 contact the electrolytic solution 38 in the alkaline manganese battery 30 and the electrolytic solution 11 in the measurement cell 10 described with reference to FIG. 1, and serve as a measurement window for measuring the characteristics of the battery described later. It is. Specifically, the molded body of the positive electrode material 34 filled in the can body 33 is broken by perforations having a diameter of about 1 to 2 mm and a depth of about 0.5 to 1 mm provided at a substantially central portion of the can body 33. There is no. As will be described later, the potential of the positive electrode material 34 is measured by the reference electrode 20 through the perforations 40. However, the structural limitations of the reference electrode 20 (for accurate measurement, the Hg / HgO electrode 22 is almost the same). The whole is preferably immersed in the electrolytic solution.) Therefore, the alkaline manganese battery 30 is immersed in the electrolytic solution 11 having the same composition as the electrolytic solution 38 in the battery, and the tip 23 of the lugin tube 21 is brought close to the perforation 40. The measurement is performed. In addition, since the perforations 40 are minute as compared with the whole of the alkaline manganese battery 30, the measurement can be performed while maintaining almost the same state as the battery before drilling.

次に、本発明に係る電池特性評価装置1によるアルカリマンガン電池30の特性測定方法について説明する。
まず、電圧測定器50は、缶体33側の電極と参照電極20との間の電圧(これをE2とする。)を測定し、放電装置60内の電圧測定器61は、正極31と負極32との間の電圧(これをE1とする。)を測定している。さらに、放電装置60は負荷62とスイッチ63とにより、アルカリマンガン電池30に所定の負荷を与え、この負荷を与えられたアルカリマンガン電池30のE1、E2が測定される。
ここで、缶体33側でない電極と参照電極20との間の電圧(これをE3とする。)は、直接測定することが困難であるが、E1=E2+E3の関係を用いて、E1およびE2の値より、適宜、E3の値を算出することができる。
Next, a method for measuring the characteristics of the alkaline manganese battery 30 using the battery characteristic evaluation apparatus 1 according to the present invention will be described.
First, the voltage measuring device 50 measures a voltage between the electrode on the can body 33 side and the reference electrode 20 (this is E2), and the voltage measuring device 61 in the discharge device 60 includes the positive electrode 31 and the negative electrode. 32 is measured (this is referred to as E1). Further, the discharge device 60 applies a predetermined load to the alkaline manganese battery 30 by the load 62 and the switch 63, and the E1 and E2 of the alkaline manganese battery 30 to which this load is applied are measured.
Here, it is difficult to directly measure the voltage between the electrode that is not on the can body 33 and the reference electrode 20 (referred to as E3), but E1 and E2 using the relationship of E1 = E2 + E3. From the value of E3, the value of E3 can be calculated as appropriate.

この結果、放電装置60内の負荷62とスイッチ63とで、アルカリマンガン電池30に所定の負荷(例えば、所定の負荷を与えながら定電流連続放電を行う、または所定の負荷を与えながらパルス放電を行う、等。)を与えながら、正極材34および負極材36の参照電極20に対する電位差を各々正確に測定できると共に、その各々の電位差の時間変化を測定することができた。そして、正極材34および負極材36の各々の電位差の時間変化を、精度良く測定することができたことで、殆ど、実電池と同様の状態で、各々の電極材の分極状態、抵抗成分の状態を把握することが出来た。この結果、実電池として好ましい正極材34、負極材36の評価と選定とが可能となった。   As a result, with the load 62 and the switch 63 in the discharge device 60, the alkaline manganese battery 30 is subjected to a predetermined load (for example, constant current continuous discharge while applying a predetermined load, or pulse discharge while applying a predetermined load. The potential difference between the positive electrode material 34 and the negative electrode material 36 with respect to the reference electrode 20 can be accurately measured, and the time change of each potential difference can be measured. Since the time change of the potential difference between each of the positive electrode material 34 and the negative electrode material 36 can be measured with high accuracy, the polarization state of each electrode material and the resistance component are almost the same as in the actual battery. I was able to grasp the condition. As a result, it is possible to evaluate and select the positive electrode material 34 and the negative electrode material 36 that are preferable as an actual battery.

即ち、本発明に係る電池特性評価装置、電池特性評価方法によれば、従来、困難であった、缶体に密閉された実電池に近い形態のまま、電池特性の測定が可能であること、基準となる電極に対する正極材および負極材の電位差を、明確に分離して精度良く測定できること、等、非常に有効なものであると言える。   That is, according to the battery characteristic evaluation apparatus and the battery characteristic evaluation method according to the present invention, the battery characteristic can be measured while maintaining a form close to an actual battery sealed in a can, which has been difficult in the past. It can be said that the potential difference between the positive electrode material and the negative electrode material with respect to the reference electrode can be clearly separated and measured with high accuracy, and so on.

以上、密閉型電池として円筒型のアルカリマンガン電池を用い負極側の缶体に穿孔を設け、当該電池の正負極間の電圧、および穿孔の外側近傍の電解質と穿孔の内側近傍の負極材との電圧を測定する場合を例として、本発明に係る電池特性評価装置および電池特性評価方法について説明してきた。   As described above, a cylindrical alkaline manganese battery is used as the sealed battery, and the can on the negative electrode side is perforated, and the voltage between the positive and negative electrodes of the battery, the electrolyte near the outside of the perforation, and the negative electrode material near the inside of the perforation The battery characteristic evaluation apparatus and the battery characteristic evaluation method according to the present invention have been described using the case of measuring the voltage as an example.

次に、本発明に係る電池特性評価装置および電池特性評価方法の変形例1〜3について、図8〜10参照しながら説明する。
当該変形例1〜3の説明においては、密閉型電池の例としてボタン型のアルカリマンガン電池を用い、正極側および/または負極側の缶体に穿孔を設けた場合を例とする。
また、当該変形例1〜3の説明において、図1を用いて説明した実施の形態の説明内容と重複する部分については、図8〜10において、図1と同様の番号を付して説明を省略する場合がある。
Next, modifications 1 to 3 of the battery characteristic evaluation apparatus and the battery characteristic evaluation method according to the present invention will be described with reference to FIGS.
In the description of the first to third modifications, a button-type alkaline manganese battery is used as an example of the sealed battery, and a case in which perforations are provided in the positive electrode side and / or the negative electrode side can is taken as an example.
Further, in the description of the first to third modifications, portions overlapping with the description of the embodiment described with reference to FIG. 1 are denoted by the same reference numerals as in FIG. May be omitted.

ここで、図8は、変形例1に係る電池特性評価装置の模式的な断面図および測定回路のブロック図である。   Here, FIG. 8 is a schematic cross-sectional view of a battery characteristic evaluation apparatus according to Modification 1, and a block diagram of a measurement circuit.

まず、本変形例1に係る電池特性評価装置2において、測定用セル10、電圧測定器50、放電装置60、参照電極20は、図1にて説明した電池特性評価装置1のものと同様であり、密閉型電池としてボタン型のアルカリマンガン電池70を用いている。   First, in the battery characteristic evaluation device 2 according to the first modification, the measurement cell 10, the voltage measuring device 50, the discharge device 60, and the reference electrode 20 are the same as those of the battery characteristic evaluation device 1 described in FIG. Yes, a button-type alkaline manganese battery 70 is used as the sealed battery.

次に、ボタン型アルカリマンガン電池70の構造と穿孔80とについて説明する。
ボタン型アルカリマンガン電池70は、例えば、両面がニッケルメッキされた鉄製の正極側缶体73Bの中に、図面向かって右より順に、正極材74である二酸化マンガン、セパレーター75、負極材76である亜鉛粉が充填され、負極側缶体73Aが蓋をしている。正極側缶体73Bは正極材74と接触して正極71となり、負極側缶体73Aは負極材76と接触して負極72となる。また負極側缶体73Aは、樹脂等からなる封止材79より正極側缶体73Bと電気的に絶縁されながら蓋部となる。そして正極材74、セパレーター75、負極材76は電解液78に浸漬されている。ボタン型アルカリマンガン電池70の電解液78とは、例えば、KOH水溶液である。
Next, the structure of the button-type alkaline manganese battery 70 and the perforations 80 will be described.
The button-type alkaline manganese battery 70 includes, for example, manganese dioxide, which is a positive electrode material 74, a separator 75, and a negative electrode material 76 in order from the right in the drawing in an iron positive electrode body 73B that is nickel-plated on both sides. Zinc powder is filled, and the negative electrode side can body 73A is covered. The positive electrode side can body 73 </ b> B comes into contact with the positive electrode material 74 to become the positive electrode 71, and the negative electrode side can body 73 </ b> A comes into contact with the negative electrode material 76 to become the negative electrode 72. Further, the negative electrode side can body 73A becomes a lid portion while being electrically insulated from the positive electrode side can body 73B by the sealing material 79 made of resin or the like. The positive electrode material 74, the separator 75, and the negative electrode material 76 are immersed in the electrolytic solution 78. The electrolyte solution 78 of the button-type alkaline manganese battery 70 is, for example, a KOH aqueous solution.

ここで、正極側缶体73Bの略中央部に設けられた穿孔80は、図1にて説明した穿孔と同様の構成を有しているが、ボタン型アルカリマンガン電池70のサイズが小さい場合は、穿孔径、穿孔深さとも適宜小さくすることが好ましい。   Here, the perforation 80 provided in the substantially central portion of the positive electrode side can body 73B has the same configuration as the perforation described in FIG. 1, but when the size of the button-type alkaline manganese battery 70 is small. In addition, it is preferable to appropriately reduce both the diameter of the hole and the depth of the hole.

次に、本発明に係る電池特性評価装置2によるボタン型アルカリマンガン電池70の特性測定方法について説明する。
まず、図1にて説明したのと同様に、クランプ等の支持手段によりルギン管21の先端23は穿孔80の近傍2〜20mm、さらに好ましくは2〜10mmに設置されている。
測定用セル10内の密閉型電池例であるボタン型アルカリマンガン電池70外にある電解液111は、ボタン型アルカリマンガン電池70の穿孔80とHg/HgO極22とを浸漬している。但し、測定用リード線が接続された負極72は、電解液111と接触しないように樹脂等のシール材85で予めシールしてある。そして、電解液111は、ボタン型アルカリマンガン電池70内に含有される電解液78と同様の組成、同様の濃度を有するものである。
Next, a method for measuring the characteristics of the button-type alkaline manganese battery 70 using the battery characteristic evaluation apparatus 2 according to the present invention will be described.
First, as described with reference to FIG. 1, the distal end 23 of the Luggin tube 21 is set in the vicinity of the perforation 80 by 2 to 20 mm, more preferably 2 to 10 mm by a support means such as a clamp.
The electrolyte 111 outside the button-type alkaline manganese battery 70, which is an example of a sealed battery in the measurement cell 10, immerses the perforation 80 and the Hg / HgO electrode 22 of the button-type alkaline manganese battery 70. However, the negative electrode 72 to which the measurement lead wire is connected is previously sealed with a sealing material 85 such as a resin so as not to come into contact with the electrolytic solution 111. The electrolytic solution 111 has the same composition and the same concentration as the electrolytic solution 78 contained in the button type alkaline manganese battery 70.

一方、電圧測定器50は、正極側缶体73Bと参照電極20との間の電圧(これをE2とする。)を測定し、放電装置60内の電圧測定器61は、正極71と負極72との間の電圧(これをE1とする。)を測定している。さらに、放電装置60は負荷62とスイッチ63とにより、ボタン型アルカリマンガン電池70に所定の負荷を与え、この負荷を与えられたボタン型アルカリマンガン電池70のE1、E2が測定される。
ここで、負極側缶体73Aと参照電極20との間の電圧(これをE3とする。)は、E1=E2+E3の関係を用いて、E1およびE2の値より、適宜、E3の値を算出することができる。
On the other hand, the voltage measuring device 50 measures the voltage between the positive electrode side can body 73B and the reference electrode 20 (referred to as E2), and the voltage measuring device 61 in the discharge device 60 includes the positive electrode 71 and the negative electrode 72. (This is referred to as E1). Further, the discharge device 60 applies a predetermined load to the button-type alkaline manganese battery 70 by the load 62 and the switch 63, and E1 and E2 of the button-type alkaline manganese battery 70 to which this load is applied are measured.
Here, the voltage between the negative electrode side can body 73A and the reference electrode 20 (referred to as E3) is appropriately calculated from the values of E1 and E2, using the relationship of E1 = E2 + E3. can do.

この結果、放電装置60内の負荷62とスイッチ63とで、ボタン型アルカリマンガン電池70に、図1を用いて説明した実施の形態の場合と同様の所定の負荷を与えながら、正極材74および負極材76の参照電極20に対する電位差を各々正確に測定できると共に、その各々の電位差の時間変化を測定することができた。この結果、図1にて説明したものと同様に、実電池として好ましい正極材74、負極材76の評価と選定とが可能となった。   As a result, the load 62 and the switch 63 in the discharge device 60 give the button-type alkaline manganese battery 70 a predetermined load similar to that in the embodiment described with reference to FIG. Each potential difference of the negative electrode material 76 with respect to the reference electrode 20 could be accurately measured, and the time change of each potential difference could be measured. As a result, the positive electrode material 74 and the negative electrode material 76, which are preferable as an actual battery, can be evaluated and selected as described with reference to FIG.

次に、図9を用いて異なる変形例2について説明する。図9は、異なる変形例2に係る電池特性評価装置の模式的な断面図および測定回路のブロック図である。
本変形例2に係る電池特性評価装置2は、変形例1にて説明した電池特性評価装置2と同様の構成を有している。また、密閉型電池であるボタン型アルカリマンガン電池70自体も、変形例1にて説明したボタン型アルカリマンガン電池70と同様の構成を有している。
Next, a different modification 2 will be described with reference to FIG. FIG. 9 is a schematic cross-sectional view of a battery characteristic evaluation device according to a different modification 2 and a block diagram of a measurement circuit.
The battery characteristic evaluation apparatus 2 according to the second modification has the same configuration as the battery characteristic evaluation apparatus 2 described in the first modification. The button-type alkaline manganese battery 70 itself, which is a sealed battery, has the same configuration as the button-type alkaline manganese battery 70 described in the first modification.

ここで、ボタン型アルカリマンガン電池70に設けられた穿孔81、シール材86について説明する。
変形例2においては、穿孔81は負極側缶体73Aの略中央部に設けられ、その口径等は変形例1にて説明した穿孔80と同様の構成を有している。そして、正極側缶体73Bはシール材86によりシールされ、ボタン型アルカリマンガン電池70が電解液111に浸漬されてもこれと接触しない。
Here, the perforation 81 and the sealing material 86 provided in the button type alkaline manganese battery 70 will be described.
In the second modification, the perforations 81 are provided in the substantially central portion of the negative electrode side can body 73A, and the diameter and the like thereof are the same as those of the perforations 80 described in the first modification. And the positive electrode side can body 73B is sealed with the sealing material 86, and even if the button type alkaline manganese battery 70 is immersed in the electrolyte solution 111, it does not contact this.

変形例1と同様に、ボタン型アルカリマンガン電池70は放電装置60と接続され、電解液111に浸漬される。そして、ルギン管21の先端23を穿孔81の近傍2〜20mm、さらに好ましくは2〜10mmに設置する。 As in the first modification, the button-type alkaline manganese battery 70 is connected to the discharge device 60 and immersed in the electrolytic solution 111. And the front-end | tip 23 of the Lugin tube 21 is installed 2-20 mm in the vicinity of the perforation 81, More preferably, it is 2-10 mm.

次に、変形例2に係るボタン型アルカリマンガン電池70の特性測定方法について説明する。
まず、電圧測定器50は、負極側缶体73A側の電極と参照電極20との間の電圧(これをE3とする。)を測定し、放電装置60内の電圧測定器61は、正極71と負極72との間の電圧(これをE1とする。)を測定している。さらに放電装置60は、変形例1と同様にアルカリマンガン電池70に所定の負荷を与え、この負荷を与えられたボタン型アルカリマンガン電池70のE1、E3が測定される。
ここで、正極側缶体73Bと参照電極20との間の電圧(これをE2とする。)は、E1=E2+E3の関係を用いて、E1およびE3の値より算出することができる。
Next, a method for measuring characteristics of the button-type alkaline manganese battery 70 according to Modification 2 will be described.
First, the voltage measuring device 50 measures the voltage (referred to as E3) between the electrode on the negative electrode side can body 73A side and the reference electrode 20, and the voltage measuring device 61 in the discharge device 60 is a positive electrode 71. And the negative electrode 72 (this is referred to as E1). Furthermore, the discharge device 60 applies a predetermined load to the alkaline manganese battery 70 as in the first modification, and the E1 and E3 of the button-type alkaline manganese battery 70 to which this load is applied are measured.
Here, the voltage (referred to as E2) between the positive electrode side can body 73B and the reference electrode 20 can be calculated from the values of E1 and E3 using the relationship of E1 = E2 + E3.

この結果、放電装置60内の負荷62とスイッチ63とで、ボタン型アルカリマンガン電池70に、図1を用いて説明した実施の形態の場合と同様の所定の負荷を与えながら、正極材74および負極材76の参照電極20に対する電位差を各々正確に測定できると共に、その各々の電位差の時間変化を測定することができた。この結果、図1にて説明したものと同様に、実電池として好ましい正極材74、負極材76の評価と選定とが可能となった。   As a result, the load 62 and the switch 63 in the discharge device 60 give the button-type alkaline manganese battery 70 a predetermined load similar to that in the embodiment described with reference to FIG. Each potential difference of the negative electrode material 76 with respect to the reference electrode 20 could be accurately measured, and the time change of each potential difference could be measured. As a result, the positive electrode material 74 and the negative electrode material 76, which are preferable as an actual battery, can be evaluated and selected as described with reference to FIG.

次に、図10を用いて異なる変形例3について説明する。図10は、異なる変形例3に係る電池特性評価装置の模式的な断面図および測定回路のブロック図である。
変形例3に係る電池特性評価装置3は、第1の参照電極20と電圧測定手段50に加えて、第2の参照電極120と電圧測定手段51とを有している他は、上述した電池特性評価装置2と同様の構成を有している。
一方、変形例3に係るボタン型アルカリマンガン電池70自体は、変形例1にて説明したものと同様であるが、変形例1にて説明した正極側缶体73Bに設けられた第1の穿孔80と、変形例2にて説明した負極側缶体73Aに設けられた第2の穿孔81との両穿孔を有したものである。そして、ボタン型アルカリマンガン電池70の正極71、負極72は、変形例1と同様に放電装置60に接続されている。尚、変形例3の場合、変形例1、2にて実施したシール材による缶体シールは不要である。
Next, a different modification 3 will be described with reference to FIG. FIG. 10 is a schematic cross-sectional view of a battery characteristic evaluation device according to a different modification 3 and a block diagram of a measurement circuit.
The battery characteristic evaluation apparatus 3 according to the modified example 3 includes the second reference electrode 120 and the voltage measurement unit 51 in addition to the first reference electrode 20 and the voltage measurement unit 50, except that the battery described above. It has the same configuration as the characteristic evaluation device 2.
On the other hand, the button-type alkaline manganese battery 70 according to the third modification is the same as that described in the first modification, but the first perforation provided in the positive electrode can body 73B described in the first modification. 80 and the second perforation 81 provided in the negative electrode side can body 73A described in the second modification. The positive electrode 71 and the negative electrode 72 of the button-type alkaline manganese battery 70 are connected to the discharge device 60 as in the first modification. In the case of the modification 3, the can body sealing by the sealing material performed in the modifications 1 and 2 is not necessary.

ここで、変形例1と同様に、参照電極20のルギン管21の先端23は穿孔80の近傍2〜20mm、さらに好ましくは2〜10mmに設置されている。変形例3ではこれに加え変形例2と同様に、参照電極120のルギン管121の先端123が穿孔81の近傍2〜20mm、さらに好ましくは2〜10mmに設置され、ボタン型アルカリマンガン電池70、参照電極20、120は電解液111に浸漬される。 Here, as in the first modification, the distal end 23 of the Lugin tube 21 of the reference electrode 20 is installed in the vicinity of the perforation 80 2 to 20 mm, more preferably 2 to 10 mm. In addition to this, in Modification 3, the tip 123 of the Lugin tube 121 of the reference electrode 120 is installed in the vicinity of 2 to 20 mm, more preferably 2 to 10 mm in the vicinity of the perforation 81, and the button type alkaline manganese battery 70, The reference electrodes 20 and 120 are immersed in the electrolytic solution 111.

次に、変形例3に係る密閉型電池であるボタン型アルカリマンガン電池70の特性測定方法について説明する。
まず、電圧測定器50は、正極側缶体73Bと参照電極20との間の電圧(これをE2とする。)を測定し、一方、電圧測定器51は、負極側缶体73Aと参照電極120との間の電圧(これをE3とする。)を測定している。
さらに放電装置60は、変形例1と同様にアルカリマンガン電池70に所定の負荷を与え、この負荷を与えられたボタン型アルカリマンガン電池70のE2、E3が測定される。
Next, a method for measuring characteristics of the button-type alkaline manganese battery 70 which is a sealed battery according to Modification 3 will be described.
First, the voltage measuring device 50 measures the voltage (this is referred to as E2) between the positive electrode side can body 73B and the reference electrode 20, while the voltage measuring device 51 is connected to the negative electrode side can body 73A and the reference electrode. The voltage between 120 (this is set to E3) is measured.
Further, the discharge device 60 applies a predetermined load to the alkaline manganese battery 70 as in the first modification, and measures E2 and E3 of the button-type alkaline manganese battery 70 to which this load is applied.

この結果、正極材74の参照電極20に対する電位差、および負極材76の参照電極120に対する電位差を各々測定できると共に、その各々の電位差の時間変化を測定することができた。この結果、図1にて説明したものと同様に、実電池として好ましい正極材74、負極材76の評価と選定とが可能となった。   As a result, the potential difference of the positive electrode material 74 with respect to the reference electrode 20 and the potential difference of the negative electrode material 76 with respect to the reference electrode 120 can be measured, and the time change of each potential difference can be measured. As a result, the positive electrode material 74 and the negative electrode material 76, which are preferable as an actual battery, can be evaluated and selected as described with reference to FIG.

以上、本発明に係る実施の形態およびその変形例1〜3について説明したが、さらに本発明は測定可能な密閉型電池が、上述した筒型のアルカリマンガン電池、ボタン型のアルカリマンガン電池に限られず、筒型のマンガン電池、ボタン型の酸化銀電池、ボタン型の酸化銀電池、ボタン型のリチウム電池等の、正極材および負極材がスパイラル構造を採ることなく、同心円状または平板状に積層された密閉型電池であれば適用可能である。また、本発明に係る実施の形態およびその変形例においては、基準となる電極としてHg/HgO極を有する参照電極を用いたが、基準となる電極としてはこの他にも、カロメル電極、各種の金属電極等が使用可能である。   As mentioned above, although embodiment which concerns on this invention, and its modifications 1-3 were demonstrated, furthermore, this invention is limited to the cylindrical alkaline manganese battery and button-type alkaline manganese battery which can measure further this invention. The positive and negative electrode materials, such as a cylindrical manganese battery, button-type silver oxide battery, button-type silver oxide battery, and button-type lithium battery, are stacked in a concentric or flat shape without adopting a spiral structure. Any sealed battery can be used. Further, in the embodiment and its modification according to the present invention, the reference electrode having the Hg / HgO electrode is used as the reference electrode. However, as the reference electrode, in addition to this, a calomel electrode, various kinds of electrodes can be used. A metal electrode or the like can be used.

次に、実施例を用いて本発明をより詳細に説明する。
(実施例1)
単三筒型アルカリマンガン電池試料501を準備し、缶体側面の略中央部にドリルを用いて、径1mm、深さ0.5mmの穿孔を設けた。次に、電池試料501の正極と負極とにリード線を設け、負極が電解液と接触しないように、ここへ樹脂製のシール材を塗布した。そして電池試料501を、電池特性評価装置の電解液を満たした測定用セル内に設置した。
このとき、測定用セル内の電解液は、電池試料501内の電解液と同一組成、同一濃度である40%−KOH水溶液とし、電解液温度(測定温度)は20℃とした。
次に、ルギン管の中にHg/HgO電極が設置された参照電極を、ルギン管の先端が電池試料501に設けられた穿孔から概ね10mmの位置となるように設置した。
そして電池試料501に対し、1Aの連続放電となる所定の負荷を与えるように放電装置を設定し、放電時間毎の正極と負極との間の電圧、正極と参照電極との間の電圧を測定した。そして、これらの値から負極と参照電極との間の電圧を算出した。この測定結果を、図2〜4に太実線で示す。
図2〜4は、縦軸に測定または算出された電圧をとり、横軸に放電時間をとったグラフである。図2は、放電時間毎の、正極と負極との間の電圧を示し、図3は、放電時間毎の、正極と参照電極との間の電圧を示し、図4は、放電時間毎の、負極と参照電極との間の電圧を示す。
Next, the present invention will be described in more detail using examples.
(Example 1)
An AA-type alkaline manganese battery sample 501 was prepared, and a drill having a diameter of 1 mm and a depth of 0.5 mm was provided in a substantially central portion on the side surface of the can body. Next, lead wires were provided on the positive electrode and the negative electrode of the battery sample 501, and a resin sealing material was applied thereto so that the negative electrode was not in contact with the electrolyte. And the battery sample 501 was installed in the cell for a measurement satisfy | filled with the electrolyte solution of the battery characteristic evaluation apparatus.
At this time, the electrolytic solution in the measurement cell was a 40% -KOH aqueous solution having the same composition and the same concentration as the electrolytic solution in the battery sample 501, and the electrolytic solution temperature (measurement temperature) was 20 ° C.
Next, the reference electrode in which the Hg / HgO electrode was installed in the Lugin tube was installed so that the tip of the Lugin tube was approximately 10 mm from the perforation provided in the battery sample 501.
Then, the discharge device is set so as to give a predetermined load for 1 A continuous discharge to the battery sample 501, and the voltage between the positive electrode and the negative electrode and the voltage between the positive electrode and the reference electrode are measured every discharge time. did. And the voltage between a negative electrode and a reference electrode was computed from these values. The measurement results are shown by thick solid lines in FIGS.
2 to 4 are graphs in which the vertical axis represents the measured or calculated voltage and the horizontal axis represents the discharge time. FIG. 2 shows the voltage between the positive electrode and the negative electrode for each discharge time, FIG. 3 shows the voltage between the positive electrode and the reference electrode for each discharge time, and FIG. 4 shows the voltage for each discharge time. The voltage between a negative electrode and a reference electrode is shown.

(実施例2)
電池試料501とは異なる銘柄の単三筒型アルカリマンガン電池試料502を準備し、実施例1と同様の試験を実施した。この測定結果を、実施例1と同様に、図2〜4に実線で示す。
(Example 2)
A single-cylinder alkaline manganese battery sample 502 of a brand different from that of the battery sample 501 was prepared, and the same test as in Example 1 was performed. The measurement results are shown by solid lines in FIGS.

(実施例3)
電池試料501、502とは異なる銘柄の単三筒型アルカリマンガン電池試料503を準備し、実施例1と同様の試験を実施した。この測定結果を、実施例1と同様に、図2〜4に破線で示す。
(Example 3)
A single-cylinder alkaline manganese battery sample 503 of a brand different from the battery samples 501 and 502 was prepared, and the same test as in Example 1 was performed. The measurement results are shown by broken lines in FIGS.

(実施例1〜3の解析)
1)図2より、電池試料501の放電容量が最も大きく、以下、電池試料502、電池試料503の順であることが判明した。
この電池試料501の放電容量が大きい理由を図3および図4より読みとると、電池試料501は、図3から判明するように正極材の分極は大きいにもかかわらず、図4から判明するように負極材の分極が小さいことにより、大きな放電容量を有していることが判明した。
一方、電池試料503の放電容量が最も小さい理由を、図3および図4より読みとると、電池試料503は、図3から判明するように正極材の分極は、それ程大きくないもかかわらず、図4から判明するように負極材の分極が大きいことにより、放電容量が小さいことが判明した。
(Analysis of Examples 1 to 3)
1) From FIG. 2, it was found that the discharge capacity of the battery sample 501 was the largest, and in the following order, the battery sample 502 and the battery sample 503.
When the reason why the discharge capacity of the battery sample 501 is large is read from FIG. 3 and FIG. 4, the battery sample 501 is found from FIG. 4 although the polarization of the positive electrode material is large as can be seen from FIG. 3. It has been found that the negative electrode material has a large discharge capacity due to the small polarization.
On the other hand, when the reason why the discharge capacity of the battery sample 503 is the smallest is read from FIG. 3 and FIG. 4, the battery sample 503 has a positive electrode material whose polarization is not so large as shown in FIG. As can be seen from the above, it was found that the discharge capacity was small due to the large polarization of the negative electrode material.

2)図2より、電池試料502の正極と負極との間の電圧は、放電30分までは最も高いが、それ以後、著しく降下している。この理由を、図3および図4より読みとると、図3から判明するように正極材の分極は、それ程大きくないにもかかわらず、図4から判明するように、放電30分以後の負極材の分極が大きくなることに起因することが判明した。   2) From FIG. 2, the voltage between the positive electrode and the negative electrode of the battery sample 502 is the highest until 30 minutes of discharge, but has dropped significantly thereafter. The reason for this is read from FIGS. 3 and 4, as can be seen from FIG. 3, the polarization of the positive electrode material is not so large, but as can be seen from FIG. It has been found that this is caused by an increase in polarization.

以上、1)2)の解析事例より、本電池特性評価方法は、電池試料の正負各電極材の評価に有効であることが理解される。   As described above, from the analysis examples 1) and 2), it is understood that the present battery characteristic evaluation method is effective in evaluating positive and negative electrode materials of a battery sample.

(実施例4)
単三筒型アルカリマンガン電池試料504を準備し、電池試料504に対する放電条件を、2A−2秒、0A−28秒のパルス放電となる負荷を与えた以外は、実施例1と同様の試験を実施した。この測定結果を、図5〜7に破線で示す。
図5〜7は、縦軸に測定または算出された電圧をとり、横軸に放電時間をとったグラフである。図5は、放電時間毎の、正極と負極との間の電圧を示し、図6は、放電時間毎の、正極と参照電極との間の電圧を示し、図7は、放電時間毎の、負極と参照電極との間の電圧を示す。そして、電池試料504のパルス放電に関するデータの、上限値と下限値とを各々包絡線で結んで記載したものである。
Example 4
An AA alkaline manganese battery sample 504 was prepared, and the same test as in Example 1 was performed except that the discharge conditions for the battery sample 504 were set to 2A-2 seconds and 0A-28 seconds of pulse discharge. Carried out. The measurement results are shown by broken lines in FIGS.
5 to 7 are graphs in which the vertical axis represents the measured or calculated voltage and the horizontal axis represents the discharge time. FIG. 5 shows the voltage between the positive electrode and the negative electrode for each discharge time, FIG. 6 shows the voltage between the positive electrode and the reference electrode for each discharge time, and FIG. 7 shows the voltage for each discharge time. The voltage between a negative electrode and a reference electrode is shown. Then, the upper limit value and the lower limit value of the data relating to the pulse discharge of the battery sample 504 are respectively connected by an envelope.

(実施例5)
電池試料504とは異なる銘柄の単三筒型アルカリマンガン電池試料505を準備し、実施例4と同様の試験を実施した。この測定結果を、実施例4と同様に図5〜7に実線で示す。
(Example 5)
An AA-type alkaline manganese battery sample 505 of a brand different from the battery sample 504 was prepared, and the same test as in Example 4 was performed. The measurement results are shown by solid lines in FIGS.

(実施例4〜5の解析)
1)図5より、電池試料504の放電電圧は、常に電池試料505より高く、放電容量も多い。
この電池試料504の、放電電圧が高く放電容量が大きい理由を図6、図7より読みとると、図6から判明するように、正極材の分極は電池試料505の方が小さく、図7から判明するように、負極材の分極は電池試料504の方が小さい。
すなわち、電池試料504、505における放電電圧の差および容量の差は、電池試料504の負極材の分極が電池試料505より十分に小さく、電池試料504の正極材の分極が電池試料505の正極材より分極が大きいことを補って、好ましい電池特性を維持していると解釈される。
(Analysis of Examples 4 to 5)
1) From FIG. 5, the discharge voltage of the battery sample 504 is always higher than that of the battery sample 505, and the discharge capacity is also large.
The reason why the battery sample 504 has a high discharge voltage and a large discharge capacity is read from FIG. 6 and FIG. 7. As can be seen from FIG. 6, the polarization of the positive electrode material is smaller in the battery sample 505. Thus, the polarization of the negative electrode material is smaller in the battery sample 504.
That is, the difference in discharge voltage and the difference in capacity between the battery samples 504 and 505 are such that the polarization of the negative electrode material of the battery sample 504 is sufficiently smaller than that of the battery sample 505, and the polarization of the positive electrode material of the battery sample 504 is the positive electrode material of the battery sample 505. It is interpreted that the preferable battery characteristics are maintained while compensating for the higher polarization.

2)図6より、電池試料505の正極における開放回路電圧(以下、OCVと記載する。)と閉鎖回路電圧(以下、CCVと記載する。)との差が小さいことが判明した。ここで、OCVとCCVとの差は、電極の抵抗成分(IR成分)と読み取れるので、電池試料505の正極自身の電気抵抗は低く、電極として良好な状態であると言える。   2) It was found from FIG. 6 that the difference between the open circuit voltage (hereinafter referred to as OCV) and the closed circuit voltage (hereinafter referred to as CCV) at the positive electrode of the battery sample 505 was small. Here, since the difference between the OCV and the CCV can be read as a resistance component (IR component) of the electrode, it can be said that the electrical resistance of the positive electrode of the battery sample 505 is low and is in a good state as an electrode.

以上、1)2)の解析事例より、電池試料504の負極と、電池試料505の正極を組み合わせた電池試料が作製出来るなら、2A−2秒、0A−28秒のパルス放電に対し非常に良好な特性を発揮する電池を構成可能である事が判明した。
この例からも、本電池特性評価方法は、電池試料の正負各電極材の評価に有効であることが理解される。
1) From the analysis example in 2), if a battery sample combining the negative electrode of the battery sample 504 and the positive electrode of the battery sample 505 can be produced, it is very good for pulse discharge of 2A-2 seconds and 0A-28 seconds. It has been found that a battery that exhibits excellent characteristics can be constructed.
Also from this example, it is understood that this battery characteristic evaluation method is effective in evaluating positive and negative electrode materials of a battery sample.

本発明に係る電池特性評価装置の模式的な断面図および測定回路のブロック図である。It is typical sectional drawing of the battery characteristic evaluation apparatus which concerns on this invention, and the block diagram of a measurement circuit. 実施例に係る電池試料における、放電時間毎の、正極と負極との間の電圧を示したグラフである。It is the graph which showed the voltage between the positive electrode and the negative electrode for every discharge time in the battery sample which concerns on an Example. 実施例に係る電池試料における、放電時間毎の、正極と参照電極との間の電圧を示したグラフである。It is the graph which showed the voltage between a positive electrode and a reference electrode for every discharge time in the battery sample which concerns on an Example. 実施例に係る電池試料における、放電時間毎の、負極と参照電極との間の電圧を示したグラフである。It is the graph which showed the voltage between the negative electrode and the reference electrode for every discharge time in the battery sample which concerns on an Example. 実施例に係る電池試料における、パルス放電時間毎の、正極と負極との間の電圧を示したグラフである。It is the graph which showed the voltage between a positive electrode and a negative electrode for every pulse discharge time in the battery sample which concerns on an Example. 実施例に係る電池試料における、パルス放電時間毎の、正極と参照電極との間の電圧を示したグラフである。It is the graph which showed the voltage between a positive electrode and a reference electrode for every pulse discharge time in the battery sample which concerns on an Example. 実施例に係る電池試料における、パルス放電時間毎の、負極と参照電極との間の電圧を示したグラフである。It is the graph which showed the voltage between a negative electrode and a reference electrode for every pulse discharge time in the battery sample which concerns on an Example. 変形例1に係る電池特性評価装置の模式的な断面図および測定回路のブロック図である。FIG. 6 is a schematic cross-sectional view of a battery characteristic evaluation device according to Modification 1 and a block diagram of a measurement circuit. 変形例2に係る電池特性評価装置の模式的な断面図および測定回路のブロック図である。FIG. 10 is a schematic cross-sectional view of a battery characteristic evaluation device according to Modification 2 and a block diagram of a measurement circuit. 変形例3に係る電池特性評価装置の模式的な断面図および測定回路のブロック図である。10 is a schematic cross-sectional view of a battery characteristic evaluation device according to Modification 3 and a block diagram of a measurement circuit. FIG.

符号の説明Explanation of symbols

1.2.3.電池特性評価装置
10.測定用セル
11.電解液
20.120.参照電極
21.121.ルギン管
22.122.Hg/HgO極
23.123.(ルギン管の)先端
30.(円筒型)アルカリマンガン電池
31.正極
32.負極
33.缶体
34.正極材
35.セパレーター
36.負極材
37.負極集電体
38.(円筒型アルカリマンガン電池に含有されている)電解液
39.封止材
40.穿孔
45.シール材
50.51.電圧測定器
60.放電装置
61.電圧測定器
62.負荷(可変電流器)
63.スイッチ
70.ボタン型アルカリマンガン電池
71.正極
72.負極
73A.負極側缶体
73B.正極側缶体
74.正極材
75.セパレーター
76.負極材
78.(ボタン型アルカリマンガン電池に含有されている)電解液
79.封止材
80.81.穿孔
85.86.シール材
111.電解液
1.2.3. Battery characteristic evaluation apparatus 10. Measurement cell 11. Electrolytic solution 20.120. Reference electrode 21.121. Lugin tube 22.122. Hg / HgO electrode 23.123. Tip 30 (of Lugin tube) 30. (Cylindrical) alkaline manganese battery 31. Positive electrode 32. Negative electrode 33. Can body 34. Positive electrode material 35. Separator 36. Negative electrode material 37. Negative electrode current collector 38. Electrolyte (contained in cylindrical alkaline manganese battery) 39. Sealing material 40. Perforation 45. Sealing material 50.51. Voltage measuring instrument 60. Discharge device 61. Voltage measuring instrument 62. Load (variable current source)
63. Switch 70. Button-type alkaline manganese battery 71. Positive electrode 72. Negative electrode 73A. Negative electrode side can body 73B. Positive electrode side can body 74. Positive electrode material 75. Separator 76. Negative electrode material 78. Electrolyte solution 79 (contained in button-type alkaline manganese battery) Sealing material 80.81. Perforation 85.86. Sealing material 111. Electrolyte

Claims (5)

密閉型電池の電池特性評価装置であって、
電池の缶体に電池特性を損なわない穿孔のある前記密閉型電池が設けられ、
当該穿孔を通じて前記密閉型電池内に含有される電解液と接触している前記密閉型電池外にある電解液と、
前記密閉型電池外にある電解液中に浸漬されている電極と、
前記密閉型電池を所望の条件で放電させる負荷と、
前記密閉型電池の正負極間の電圧、前記密閉型電池の正極を構成する正極材と前記浸漬されている電極との間の電圧、前記密閉型電池の負極を構成する負極材と前記浸漬されている電極との間の電圧、の内から選択される少なくとも2つの電圧を測定する測定手段と、を有し、
前記電圧の値から、前記密閉型電池外にある電解液に浸漬された電極に対する、正極材および負極材の電位差を測定することを特徴とする電池特性評価装置。
An apparatus for evaluating battery characteristics of a sealed battery,
The sealed battery with perforations that do not impair the battery characteristics is provided in the battery can body,
An electrolyte outside the sealed battery in contact with the electrolyte contained in the sealed battery through the perforations ;
An electrode immersed in an electrolyte outside the sealed battery;
A load for discharging the sealed battery under desired conditions;
Voltage between the positive and negative electrodes of the sealed battery, the voltage between the hermetic being said immersion and cathode materials constituting the positive electrode of the battery, is the negative electrode material constituting the anode immersed in said sealed battery Measuring means for measuring at least two voltages selected from among the voltages between the two electrodes,
An apparatus for evaluating battery characteristics , wherein a potential difference between a positive electrode material and a negative electrode material with respect to an electrode immersed in an electrolyte outside the sealed battery is measured from the voltage value .
前記密閉型電池の缶体近傍に、前記密閉型電池外にある電解液中に浸漬されている電極が設置されていることを特徴とする請求項1に記載の電池特性評価装置。 The battery characteristic evaluation apparatus according to claim 1, wherein an electrode immersed in an electrolyte outside the sealed battery is installed in the vicinity of the can of the sealed battery. 請求項1に記載の電池特性評価装置を用いた密閉型電池の電池特性評価方法であって、
前記密閉型電池の缶体に、前記密閉型電池の電池特性を損なわない穿孔を設け、
前記穿孔を介して、前記密閉型電池内に含有される電解液を、前記電解液と同様の組成および濃度を有する前記密閉型電池外にある電解液と接触させ、この前記密閉型電池外にある電解液に電極を浸漬し、
前記密閉型電池を所定の条件で放電させながら、前記密閉型電池の穿孔が設けられた缶体側の電極と前記電解液中に浸漬されている電極との間の電圧を測定し、前記密閉型電池の穿孔が設けられた缶体側電極の電極材と前記電解液中に浸漬されている電極との電位差を測定することを特徴とする電池特性評価方法。
A battery characteristic evaluation method for a sealed battery using the battery characteristic evaluation device according to claim 1,
In the sealed battery can body, a perforation that does not impair the battery characteristics of the sealed battery is provided,
Via the perforations, the electrolyte contained in the sealed battery is brought into contact with an electrolyte outside the sealed battery having the same composition and concentration as the electrolyte, and outside the sealed battery. Immerse the electrode in a certain electrolyte,
While discharging the sealed battery under predetermined conditions, the voltage between the electrode on the can body provided with the perforations of the sealed battery and the electrode immersed in the electrolytic solution is measured, and the sealed battery A method for evaluating battery characteristics, comprising measuring a potential difference between an electrode material of a can body side electrode provided with a battery perforation and an electrode immersed in the electrolytic solution.
前記密閉型電池の正負極間の電圧と、前記密閉型電池の穿孔が設けられた缶体と前記電解液中に浸漬されている電極との間の電圧とを測定し、当該両電圧より、前記密閉型電池の穿孔が設けられた缶体側でない電極の電極材と前記電解液中に浸漬されている電極との電位差を算出することを特徴とする請求項3に記載の電池特性評価方法。 Measure the voltage between the positive and negative electrodes of the sealed battery and the voltage between the can body provided with the perforations of the sealed battery and the electrode immersed in the electrolyte, from both the voltages, 4. The battery characteristic evaluation method according to claim 3, wherein a potential difference between an electrode material of an electrode that is not on a can body provided with perforations of the sealed battery and an electrode immersed in the electrolytic solution is calculated. 前記密閉型電池の正負極間の電圧と、前記密閉型電池の穿孔が設けられた缶体と前記電解液中に浸漬されている電極との間の電圧とを測定し、当該両電圧より、前記密閉型電池における穿孔が設けられた缶体側電極の電極材と前記電解液中に浸漬されている電極との電位差、穿孔が設けられた缶体側でない電極の電極材と前記電解液中に浸漬されている電極との電位差、および正負極間の電圧を測定することを特徴とする請求項3に記載の電池特性評価方法。 Measure the voltage between the positive and negative electrodes of the sealed battery and the voltage between the can body provided with the perforations of the sealed battery and the electrode immersed in the electrolyte, from both the voltages, immersing the potential difference between the perforations in the sealed battery is immersed in the electrolytic solution and the electrode material of the can body side electrode provided electrode, the electrolyte and the electrode material of the perforations is not a can body side provided electrodes The battery characteristic evaluation method according to claim 3, wherein a potential difference with respect to the applied electrode and a voltage between positive and negative electrodes are measured.
JP2004135817A 2003-05-09 2004-04-30 Battery characteristic evaluation apparatus and battery characteristic evaluation method Expired - Fee Related JP4701450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135817A JP4701450B2 (en) 2003-05-09 2004-04-30 Battery characteristic evaluation apparatus and battery characteristic evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003131235 2003-05-09
JP2003131235 2003-05-09
JP2004135817A JP4701450B2 (en) 2003-05-09 2004-04-30 Battery characteristic evaluation apparatus and battery characteristic evaluation method

Publications (2)

Publication Number Publication Date
JP2004363091A JP2004363091A (en) 2004-12-24
JP4701450B2 true JP4701450B2 (en) 2011-06-15

Family

ID=34067063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135817A Expired - Fee Related JP4701450B2 (en) 2003-05-09 2004-04-30 Battery characteristic evaluation apparatus and battery characteristic evaluation method

Country Status (1)

Country Link
JP (1) JP4701450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131822A1 (en) * 2017-01-11 2018-07-19 주식회사 엘지화학 Electrode potential measuring device for three-electrode system comprising short-circuit preventing member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216537B (en) * 2007-12-27 2012-10-03 上海万宏动力能源有限公司 Single-electrode potential measurement method suitable for alkaline sealed cell and its device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318530A (en) * 1994-05-23 1995-12-08 Dowa Mining Co Ltd Method and apparatus for evaluating corrosion resistance of zinc alloy powder for alkaline battery
JPH09171833A (en) * 1995-12-20 1997-06-30 Agency Of Ind Science & Technol Method for evaluating secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318530A (en) * 1994-05-23 1995-12-08 Dowa Mining Co Ltd Method and apparatus for evaluating corrosion resistance of zinc alloy powder for alkaline battery
JPH09171833A (en) * 1995-12-20 1997-06-30 Agency Of Ind Science & Technol Method for evaluating secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131822A1 (en) * 2017-01-11 2018-07-19 주식회사 엘지화학 Electrode potential measuring device for three-electrode system comprising short-circuit preventing member
CN109661587A (en) * 2017-01-11 2019-04-19 株式会社Lg化学 Three-electrode system type electrode potential measuring device including anti-shorting members
CN109661587B (en) * 2017-01-11 2021-05-11 株式会社Lg化学 Three-electrode system type electrode potential measuring device including short-circuit preventing member
US11411287B2 (en) 2017-01-11 2022-08-09 Lg Energy Solution, Ltd. Three-electrode-system-type electrode potential measurement device including short-circuit prevention member

Also Published As

Publication number Publication date
JP2004363091A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
CN101276943B (en) Evaluation method and evaluation apparatus for evaluating battery safety and battery
EP0891000A2 (en) A novel method to determine the state of charge and remaining life of lithium batteries used in oilfield services applications
KR20130124326A (en) Electrochemical cell based on lithium technology with internal reference electrode, process for its production and methods for simultaneous monitoring of the voltage or impedance of the anode and the cathode thereof
US9847560B2 (en) Electrochemical energy cell, and rechargeable battery for repeatedly storing electrical energy, and also method for determining an electrode potential of an electrode of an electrochemical energy storage cell
JP5825101B2 (en) Non-aqueous electrolyte secondary battery OCV characteristic estimation device, OCV characteristic estimation method, power storage system, and assembled battery
JP6252965B2 (en) Triode cell for testing and Bipolar cell for testing
AU747384B2 (en) Implant
KR20210087322A (en) Electrode assembly for performance test and performance test method of electrode assembly
KR20130128030A (en) Jig for measurement of voltage in 3-electrode system
KR101487496B1 (en) Method and apparatus for checking insulation of pouch type secondary battery
US3720869A (en) Battery cell structure and method of determining state of charge
JP4701450B2 (en) Battery characteristic evaluation apparatus and battery characteristic evaluation method
US7279902B2 (en) Battery characteristic evaluation device and battery characteristic evaluating method
KR100821861B1 (en) Reference Electrode Member for Measurement of Electrode Potential in 3-Electrode System
JP2011003314A (en) Secondary battery
KR20160088890A (en) Method for the in-situ recalibration of a comparison electrode incorporated into an electrochemical system
KR101690372B1 (en) Device for Measurement of voltage profile in 3-Electrode System
KR102160339B1 (en) Apparatus for real-time collecting inner gas in pouch type secondary electric cell while charging and discharging and method thereof
JP5880972B2 (en) Secondary battery inspection method
JP2006179329A (en) Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell
JP2010135186A (en) Battery inspection method
JP4580751B2 (en) Electrochemical property measuring cell and electrochemical property measuring method using the same
Narayanan et al. Electrochemical determination of the anode film resistance and double layer capacitance in magnesium—manganese dioxide dry cells
JP2004502279A (en) Electrochemical cell with anode containing sulfur
JPH11142490A (en) Method and device for evaluating characteristic of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110218

R150 Certificate of patent or registration of utility model

Ref document number: 4701450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees