JP4699821B2 - Acrylic fiber oil for carbon fiber production - Google Patents

Acrylic fiber oil for carbon fiber production Download PDF

Info

Publication number
JP4699821B2
JP4699821B2 JP2005192776A JP2005192776A JP4699821B2 JP 4699821 B2 JP4699821 B2 JP 4699821B2 JP 2005192776 A JP2005192776 A JP 2005192776A JP 2005192776 A JP2005192776 A JP 2005192776A JP 4699821 B2 JP4699821 B2 JP 4699821B2
Authority
JP
Japan
Prior art keywords
amino
carbon fiber
oil agent
oil
polyoxyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005192776A
Other languages
Japanese (ja)
Other versions
JP2006336181A (en
Inventor
幹生 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP2005192776A priority Critical patent/JP4699821B2/en
Publication of JP2006336181A publication Critical patent/JP2006336181A/en
Application granted granted Critical
Publication of JP4699821B2 publication Critical patent/JP4699821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、品位及び強度の優れた炭素繊維を製造するのに好適且つ、炭素繊維の製造に際して工程通過性に優れる炭素繊維製造用アクリル繊維(以下、プレカーサーと称する)油剤に関する。The present invention relates to an acrylic fiber (hereinafter referred to as a precursor) oil agent for producing carbon fibers which is suitable for producing carbon fibers having excellent quality and strength and which is excellent in process passability in the production of carbon fibers.

炭素繊維はその優れた機械的特性を利用して、マトリックス樹脂と称されるプラスチックとの複合材料用の補強繊維として、航空宇宙用途、スポーツ用途、一般産業用途等に幅広く利用されている。特に近年、製品の軽量化による省エネルギー化、これによる排出CO2削減の観点から、軽量且つ高強度な炭素繊維複合材料の優位性はますます高まり、高性能化要求が強くなってきている。この複合材料の高性能化は炭素繊維自体の特性に依存するところが大変大きく、複合材料に対する高性能化の要求は、すなわち炭素繊維自体の高性能化の要求となっている。Carbon fibers are widely used for aerospace applications, sports applications, general industrial applications and the like as reinforcing fibers for composite materials with plastics called matrix resins, utilizing their excellent mechanical properties. In recent years, in particular, from the viewpoint of energy saving by reducing the weight of products and reducing CO2 emissions, the superiority of lightweight and high-strength carbon fiber composite materials is increasing, and the demand for higher performance is increasing. The high performance of this composite material is very dependent on the characteristics of the carbon fiber itself, and the demand for high performance of the composite material, that is, the demand for high performance of the carbon fiber itself.

プレカーサーから炭素繊維を製造する方法としては、プレカーサーを250〜300℃の酸化性雰囲気中で耐炎化繊維に転換し、続いて300〜2000℃の不活性雰囲気中で炭素化する方法が一般的である。これらの高熱による焼成工程においては、単繊維同士の融着が発生し、得られた炭素繊維の品質、品位を低下させるという問題がある。この融着を防止する為、耐熱性に優れたシリコーン系油剤、特に架橋反応により耐熱性をさらに向上出来るアミノ変性シリコーン系油剤をプレカーサーに付与する技術が多数提案され(特許文献1〜3参照)、工業的に広く利用されている。
特開平6−220722号公報 特開平11−117128号公報 特開2004−149983号公報
As a method for producing carbon fiber from a precursor, a method in which the precursor is converted to a flame-resistant fiber in an oxidizing atmosphere at 250 to 300 ° C., followed by carbonization in an inert atmosphere at 300 to 2000 ° C. is there. In these high heat baking processes, there is a problem in that fusion of single fibers occurs and the quality and quality of the obtained carbon fibers are deteriorated. In order to prevent this fusion, many technologies have been proposed for imparting a precursor with a silicone-based oil agent having excellent heat resistance, in particular, an amino-modified silicone-based oil agent that can further improve heat resistance by a crosslinking reaction (see Patent Documents 1 to 3). Widely used industrially.
JP-A-6-220722 Japanese Patent Laid-Open No. 11-117128 JP 2004-149983 A

アミノ変性シリコーン系油剤は、3次元架橋反応することで、単繊維上に流動性を有しない皮膜を形成する。これにより、焼成工程において単繊維同士の融着を防止し、又、その優れたガス透過性により糸束内に酸素を十分に供給することで耐炎化工程での焼成斑を防止し、ひいては高品質、高品位の炭素繊維の製造を可能とする。よって、焼成時における架橋性は炭素繊維の高性能化において必要不可欠な特性である。しかしその一方、焼成前の製糸段階においては、油剤付与後のローラー、ガイド、特に加熱ローラーへの油剤脱落、架橋によるガムアップは、円滑な連続操業を行う上で少ない方が好ましい。つまり、アミノ変性シリコーンの架橋性に起因する炭素繊維の高性能化と製糸操業性は相反する特性であり、そのバランスを考慮して油剤処方が選定されているのが現状で、従来技術ではさらなる炭素繊維高性能化に対して限界があった。The amino-modified silicone-based oil agent forms a non-flowable film on the single fiber by performing a three-dimensional crosslinking reaction. This prevents the fusion of single fibers in the firing process, and also prevents oxygenation in the flame resistance process by sufficiently supplying oxygen into the yarn bundle due to its excellent gas permeability. Enables the production of high quality and high quality carbon fiber. Therefore, the crosslinkability during firing is an indispensable characteristic for improving the performance of carbon fibers. However, on the other hand, in the stage of yarn production before firing, it is preferable that the amount of oil removal to the rollers and guides after application of the oil agent, particularly the heating agent, and the gumming up by crosslinking are small in order to perform smooth continuous operation. In other words, the high performance of the carbon fiber and the spinning operability resulting from the crosslinkability of the amino-modified silicone are contradictory properties, and the oil agent formulation is currently selected in consideration of the balance. There was a limit to the improvement of carbon fiber performance.

本発明の目的は、かかる従来の技術背景に鑑み、炭素繊維の高性能化と安定した製糸操業性を両立し得るに好適なプレカーサー油剤を提供することにある。In view of the conventional technical background, an object of the present invention is to provide a precursor oil suitable for achieving both high-performance carbon fiber and stable yarn operability.

本発明者らは、上記課題を解決する為に、アミノ変性シリコーン系油剤組成に関し鋭意検討した結果、アミノ変性シリコーンに対して特定の化合物を共存させる事により、上記課題を解決出来る事を見出した。In order to solve the above-mentioned problems, the present inventors have intensively studied the amino-modified silicone oil composition, and as a result, found that the above-mentioned problems can be solved by allowing a specific compound to coexist with the amino-modified silicone. .

すなわち本発明は、25℃における粘度が500mm2/s以上のアミノ変性シリコーンを油剤純分中に50重量%以上含有し、且つポリオキシエチレン/ポリオキシプロピレン共重合体及び/又はその誘導体を油剤純分中に5〜20重量%含有する炭素繊維製造用アクリル繊維油剤である。アミノ変性シリコーンのアミノ含有量は0.15〜3.5重量%の範囲内であることが好ましく、またポリオキシエチレン/ポリオキシプロピレン共重合体の分子量は5000以上であることが好ましい。
本発明の炭素繊維製造用アクリル繊維の製造方法は、上記の油剤を炭素繊維製造用アクリル繊維に対して0.1〜2.0重量%付与することを特徴とする。
That is, the present invention contains 50% by weight or more of an amino-modified silicone having a viscosity at 25 ° C. of 500 mm 2 / s or more in a pure oil agent, and contains a polyoxyethylene / polyoxypropylene copolymer and / or a derivative thereof as pure It is an acrylic fiber oil agent for carbon fiber production containing 5 to 20% by weight in a minute. The amino content of the amino-modified silicone is preferably in the range of 0.15 to 3.5% by weight, and the molecular weight of the polyoxyethylene / polyoxypropylene copolymer is preferably 5000 or more.
The manufacturing method of the acrylic fiber for carbon fiber manufacture of this invention provides 0.1 to 2.0 weight% of said oil agent with respect to the acrylic fiber for carbon fiber manufacture, It is characterized by the above-mentioned.

本発明のプレカーサー油剤は、アミノ変性シリコーンと、ポリオキシエチレン/ポリオキシプロピレン共重合体を必須成分とする。アミノ変性シリコーンは、その変性基であるアミノ基が、熱エネルギーによりラジカル分解酸素と結合してパーオキサイドを生成、そして他のアミノ基と結合して3次元架橋する。よってこの反応は、ラジカル存在下でより加速する。一方、ポリオキシエチレン/ポリオキシプロピレン共重合体は、ポリオキシエチレン基に比較してポリオキシプロピレン基が熱エネルギーにより分解し易く、ラジカルを生成し易い。この事から、アミノ変性シリコーン単独に比較して、ポリオキシエチレン/ポリオキシプロピレン共重合体存在下でより熱による架橋反応が進行し易く、油剤としての耐熱性が向上し、ひいてはその油剤を付与した炭素繊維が高性能化出来る。The precursor oil of the present invention comprises amino-modified silicone and a polyoxyethylene / polyoxypropylene copolymer as essential components. In the amino-modified silicone, the amino group, which is a modifying group, is combined with radically decomposed oxygen by thermal energy to form a peroxide, and is combined with other amino groups to form a three-dimensional cross-link. Therefore, this reaction is more accelerated in the presence of radicals. On the other hand, in the polyoxyethylene / polyoxypropylene copolymer, the polyoxypropylene group is more easily decomposed by thermal energy than the polyoxyethylene group, and a radical is easily generated. Therefore, compared with amino-modified silicone alone, the crosslinking reaction by heat is more likely to proceed in the presence of polyoxyethylene / polyoxypropylene copolymer, and the heat resistance as an oil agent is improved. Carbon fiber can improve performance.

発明を実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明に使用するアミノ変性シリコーンは、上記架橋特性を得る為、25℃における粘度が500mm2/s以上である事が必要である。粘度が500mm2/sを下回ると、油剤加熱時にシリコーンが架橋する前に飛散してしまい不都合である。一方粘度の上限に特に制約は無いが、高過ぎると製糸工程においてガムアップが多くなる事がある為、粘度範囲としては25℃における粘度が500〜20,000mm2/sが好ましく、1,000〜10,000mm2/sがより好ましい。本発明に記載のアミノ含有量は下記により定義される。
アミノ含有量:試料1g中のNH2のg数を%表示

Figure 0004699821
アミノ変性シリコーンの架橋性は、アミノ基の数に大きく左右される。アミノ含有量が0.15%を下回ると、架橋点が少な過ぎる為、本発明のポリオキシエチレン/ポリオキシプロピレン共重合体存在下においても架橋性に乏しく、耐熱性の向上が得られない。又、アミノ含有量が3.5%を上回ると、架橋性が強過ぎる為製糸操業性が低くなる。アミノ含有量が0.15〜3.5%の範囲で本発明の効果が得られるが、架橋性と製糸操業性のバランスから0.3〜1.5%が好ましく、0.4〜1.2%がさらに好ましい。又、変性基であるアミノ基は主鎖であるシリコーンの側鎖に変性されていても良いし、末端に変性されていても良いし、又両者が変性されていても良い。尚、アミノ変性シリコーンは全油剤純分中に50重量%以上含まれている事が好ましく、50重量%を下回ると、架橋時の耐熱性が低くなる事がある。


The amino-modified silicone used in the present invention needs to have a viscosity at 25 ° C. of 500 mm 2 / s or more in order to obtain the above-mentioned crosslinking characteristics. When the viscosity is less than 500 mm 2 / s, it is inconvenient because the silicone scatters before crosslinking when heating the oil. On the other hand, the upper limit of the viscosity is not particularly limited, but if it is too high, gum-up may increase in the spinning process. Therefore, the viscosity at 25 ° C. is preferably 500 to 20,000 mm 2 / s, and 1,000. More preferably, it is -10,000 mm < 2 > / s. The amino content described in the present invention is defined by:
Amino content:% of NH 2 in 1g of sample
Figure 0004699821
The crosslinkability of the amino-modified silicone greatly depends on the number of amino groups. When the amino content is less than 0.15%, the number of crosslinking points is too small, so that the crosslinking property is poor even in the presence of the polyoxyethylene / polyoxypropylene copolymer of the present invention, and the heat resistance cannot be improved. On the other hand, if the amino content exceeds 3.5%, the crosslinkability is too strong, and the yarn maneuverability becomes low. The effect of the present invention can be obtained when the amino content is in the range of 0.15 to 3.5 %. 2% is more preferable. In addition, the amino group that is a modifying group may be modified to the side chain of the silicone that is the main chain, may be modified to the terminal, or both may be modified. In addition, it is preferable that the amino-modified silicone is contained in an amount of 50% by weight or more in the pure oil, and if it is less than 50% by weight, the heat resistance at the time of crosslinking may be lowered.


本発明に使用するポリオキシエチレン/ポリオキシプロピレン共重合体は、モノマー単位である酸化エチレンと酸化プロピレンの比率は特に限定されず、その単位はランダム又はブロックのいずれであっても良い。又、その誘導体として、末端基にアルキル基等を付加させたものも使用出来る。分子量としては、製糸工程における乾燥熱処理での飛散防止の観点から、5000以上が好ましい。尚、ポリオキシエチレン/ポリオキシプロピレン共重合体は全油剤純分中に5〜20重量%含まれている事が好ましい。5%を下回ると本発明の架橋性向上の効果が得られにくく、20%を上回るとポリオキシエチレン/ポリオキシプロピレン共重合体の分解、飛散により逆に耐熱性が低下する。In the polyoxyethylene / polyoxypropylene copolymer used in the present invention, the ratio of ethylene oxide and propylene oxide which are monomer units is not particularly limited, and the unit may be either random or block. Moreover, the derivative | guide_body which added the alkyl group etc. to the terminal group can also be used as the derivative | guide_body. The molecular weight is preferably 5000 or more from the viewpoint of preventing scattering in the drying heat treatment in the yarn production process. The polyoxyethylene / polyoxypropylene copolymer is preferably contained in an amount of 5 to 20% by weight in the total pure oil. If it is less than 5%, it is difficult to obtain the effect of improving the cross-linking property of the present invention, and if it exceeds 20%, the heat resistance is lowered due to decomposition and scattering of the polyoxyethylene / polyoxypropylene copolymer.

尚、本発明の油剤は、上記アミノ変性シリコーンと、ポリオキシエチレン/ポリオキシプロピレン共重合体が上記比率で含まれていればよく、性能を損なわない範囲で酸化防止剤、制電剤、粘度低下剤、浸透剤等の添加剤を含有してもよいが、シリコーンの架橋反応を阻害しないものを選択する。本発明の油剤をプレカーサーに付与する際には、製糸工程のいずれの段階で付与しても良い。すなわち、紡糸直後に付与しても良いし、延伸後に付与しても良いし、巻き取り段階で付与しても良い。付与方法に関しては、油剤純分のみからなるストレートオイルとしてローラー等にて付与しても良いし、あるいは水等の溶媒に乳化又は分散させ、浸漬法、スプレー法等で給油しても良い。後者の場合、特に水に乳化又は分散させる場合には、適当な界面活性剤を乳化剤として使用するのが良い。場合によっては必須成分であるポリオキシエチレン/ポリオキシプロピレン共重合体を乳化剤の一部として使用する事も可能である。油剤のプレカーサーへの付与量は、その効果により適宜選択されるが、純分として0.1〜2.0重量%が好ましく、0.5〜1.5重量%がより好ましい。The oil agent of the present invention is only required to contain the amino-modified silicone and the polyoxyethylene / polyoxypropylene copolymer in the above ratio, and an antioxidant, an antistatic agent, a viscosity as long as the performance is not impaired. An additive such as a reducing agent or penetrating agent may be contained, but one that does not inhibit the silicone crosslinking reaction is selected. When the oil agent of the present invention is applied to the precursor, it may be applied at any stage of the yarn making process. That is, it may be applied immediately after spinning, may be applied after stretching, or may be applied at the winding stage. With respect to the application method, it may be applied by a roller or the like as a straight oil consisting only of a pure oil agent, or may be emulsified or dispersed in a solvent such as water, and oiled by an immersion method, a spray method or the like. In the latter case, an appropriate surfactant may be used as an emulsifier, particularly when emulsified or dispersed in water. In some cases, an essential component polyoxyethylene / polyoxypropylene copolymer may be used as a part of the emulsifier. The amount of the oil agent applied to the precursor is appropriately selected depending on its effect, but is preferably 0.1 to 2.0% by weight, more preferably 0.5 to 1.5% by weight as a pure component.

以下、実施例により本発明を具体的に説明するが、ここに記載した実施例に限定されるものではない。尚、以下の実施例に示されるパーセント%は特に限定しない限り重量%を示す。各特性値の測定は以下に示す方法に基づいて行った。EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to the Example described here. In addition, the percentage% shown by the following example shows weight%, unless specifically limited. Each characteristic value was measured based on the following method.

<油剤付着量>油剤付与後のプレカーサーを水酸化カリウム/ナトリウムブチラートでアルカリ溶融した後、水に溶解して塩酸でpH1に調整する。これを亜硫酸ナトリウムとモリブデン酸アンモニウムを加えて発色させ、ケイモリブデンブルーの比色定量(波長815mμ)を行い、ケイ素の含有量を求める。ここで求めたケイ素含有量と予め同法で求めた油剤中のケイ素含有量の値を用いて試料中の油剤付着量を算出する。<Oil agent adhesion amount> The precursor after application of the oil agent is alkali-melted with potassium hydroxide / sodium butyrate, dissolved in water, and adjusted to pH 1 with hydrochloric acid. This is colored by adding sodium sulfite and ammonium molybdate, and colorimetric determination (wavelength 815 mμ) of silicomolybdenum blue is performed to determine the silicon content. The oil adhesion amount in the sample is calculated using the silicon content obtained here and the value of the silicon content in the oil obtained in advance by the same method.

<製糸操業性(ローラー汚れ)>プレカーサー50kgに油剤を付与した後の乾燥ローラーの汚染度合い(ガムアップ)を下記の指標で判定した。
○ :ガムアップによるローラー汚染が少なく、製糸操業性問題無し
△ :ガムアップによるローラー汚染がややあるが、製糸操業性問題無し
× :ガムアップによるローラー汚染があり、やや製糸操業性に劣る
××:ガムアップによるローラー汚染が著しく、製糸時に単糸取られ、捲き付きあり
<Spinning operability (roller dirt)> The degree of contamination (gum-up) of the drying roller after applying the oil to 50 kg of the precursor was determined by the following index.
○: Roller contamination due to gum-up is low and there is no problem with thread-manufacturing. : Roller contamination due to gum-up is remarkable, single yarn is taken out during yarn making, and there is a string

<油剤耐熱性(加熱減量)>直径φ60mmのアルミカップ上に各油剤エマルジョンを油剤純分1g採取、温風乾燥機にて105℃×3時間処理して水分を除去した。得られた試料をギヤオーブンにて250℃×1時間熱処理。熱処理前の油剤量に対する熱処理後の油剤減量を測定し、油剤耐熱性を評価した。<Oil agent heat resistance (heat loss)> 1 g of each oil agent emulsion was collected on an aluminum cup having a diameter of 60 mm and treated with a hot air dryer at 105 ° C. for 3 hours to remove moisture. The obtained sample was heat-treated in a gear oven at 250 ° C. for 1 hour. The oil agent loss after heat treatment relative to the amount of oil agent before heat treatment was measured to evaluate the oil agent heat resistance.

<融着防止性>炭素繊維中の無作為の20カ所より長さ10mmの短繊維を切り出し、その融着状態を観察、下記指標にて判定した。
◎:融着無し
○:ほぼ融着無し
△:融着少ない
×:融着多い
<Fusing prevention> Short fibers having a length of 10 mm were cut out from 20 random locations in the carbon fiber, and the fused state was observed and determined by the following index.
◎: No fusion ○: Almost no fusion △: Less fusion ×: Many fusion

<炭素繊維強度>JIS−R−7601に規定されているエポキシ樹脂含浸ストランド法に準じ測定、測定回数10回の平均値を炭素繊維強度とした。<Carbon fiber strength> Measurement was performed according to the epoxy resin impregnated strand method defined in JIS-R-7601, and the average value of 10 measurements was defined as carbon fiber strength.

アミノ変性シリコーンS−1(25℃粘度:1300mm2/s, アミノ含有量:0.9%):ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−1(酸化エチレン:酸化ポリプロピレン=80:20, 分子量:15000):ノニオン乳化剤1(ポリオキシエチレン7mol付加アルキル(C12−14)エーテル=86:5:9の比率からなる油剤組成物について、公知の転相乳化法にて油剤エマルジョンを得た。これをプレカーサー(0.8dtex,24,000フィラメント)のプレカーサーに目標付着量1.0%で付与し、100〜140℃で乾燥して水分を除去した。このプレカーサーを250℃の耐炎化炉にて60分間耐炎化処理し、次いで窒素雰囲気下300〜1400℃の温度勾配を有する炭素化炉で焼成して炭素繊維に転換した。各特性値の評価結果を表5に示す。Amino-modified silicone S-1 (25 ° C. viscosity: 1300 mm 2 / s, amino content: 0.9%): polyoxyethylene / polyoxypropylene block copolymer P-1 (ethylene oxide: polypropylene oxide = 80: 20, Molecular weight: 15000): Nonionic emulsifier 1 (polyoxyethylene 7 mol added alkyl (C12-14) ether = Oil agent composition having a ratio of 86: 5: 9, an oil agent emulsion was obtained by a known phase inversion emulsification method. This was applied to a precursor of a precursor (0.8 dtex, 24,000 filament) at a target adhesion amount of 1.0%, and dried to remove moisture at 100 to 140 ° C. The precursor was put into a 250 ° C. flameproofing furnace. In a carbonization furnace having a temperature gradient of 300 to 1400 ° C. under a nitrogen atmosphere. Table 5 shows the evaluation results of each characteristic value.

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−1:ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer P-1: Nonionic emulsifier 1 = An oil agent composition having a ratio of 83: 10: 7 In the same manner as in Example 1, a precursor and carbon fiber were used. Obtained. Table 5 shows the evaluation results of each characteristic value.

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−1:ノニオン乳化剤1=74:20:6の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer P-1: Nonionic emulsifier 1 = Oil agent composition having a ratio of 74: 20: 6 Obtained. Table 5 shows the evaluation results of each characteristic value.

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−2(酸化エチレン:酸化ポリプロピレン=70:30, 分子量:11000):ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer P-2 (ethylene oxide: polypropylene oxide = 70: 30, molecular weight: 11000): nonionic emulsifier 1 = 83: 10: 7 About the oil agent composition, a precursor and carbon fiber were obtained in the same manner as in Example 1. Table 5 shows the evaluation results of each characteristic value.

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンランダム共重合体P−3(酸化エチレン:酸化ポリプロピレン=75:25, 分子量:15000):ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene random copolymer P-3 (ethylene oxide: polypropylene oxide = 75: 25, molecular weight: 15000): nonionic emulsifier 1 = 83: 10: 7 About the oil agent composition, a precursor and carbon fiber were obtained in the same manner as in Example 1. Table 5 shows the evaluation results of each characteristic value.

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−4(酸化エチレン:酸化ポリプロピレン=85:15, 分子量:5000):ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer P-4 (ethylene oxide: polypropylene oxide = 85: 15, molecular weight: 5000): nonionic emulsifier 1 = 83: 10: 7 About the oil agent composition, a precursor and carbon fiber were obtained in the same manner as in Example 1. Table 5 shows the evaluation results of each characteristic value.

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体誘導体P−5(酸化エチレン:酸化ポリプロピレン=80:20, 分子量:5000,末端にアルキル(C18)基付加):ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer derivative P-5 (ethylene oxide: polypropylene oxide = 80: 20, molecular weight: 5000, addition of alkyl (C18) group at the terminal): nonionic emulsifier 1 A precursor and carbon fiber were obtained in the same manner as in Example 1 for an oil agent composition having a ratio of 83: 10: 7. Table 5 shows the evaluation results of each characteristic value.

アミノ変性シリコーンS−2(25℃粘度:3800mm2/s, アミノ含有量:0.4%):ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−1:ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-2 (25 ° C. viscosity: 3800 mm2 / s, amino content: 0.4%): polyoxyethylene / polyoxypropylene block copolymer P-1: nonionic emulsifier 1 = 83: 10: 7 About the oil agent composition which consists of a ratio, the precursor and carbon fiber were obtained like Example 1. FIG. Table 5 shows the evaluation results of each characteristic value.

アミノ変性シリコーンS−3(25℃粘度:5000mm2/s, アミノ含有量:0.2%):ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−1:ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-3 (25 ° C. viscosity: 5000 mm2 / s, amino content: 0.2%): polyoxyethylene / polyoxypropylene block copolymer P-1: nonionic emulsifier 1 = 83: 10: 7 About the oil agent composition which consists of a ratio, the precursor and carbon fiber were obtained like Example 1. FIG. Table 5 shows the evaluation results of each characteristic value.

比較例1Comparative Example 1

アミノ変性シリコーンS−1:ノニオン乳化剤1=91:9の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。A precursor and carbon fiber were obtained in the same manner as in Example 1 for an oil agent composition having a ratio of amino-modified silicone S-1: nonionic emulsifier 1 = 91: 9. Table 5 shows the evaluation results of each characteristic value.

比較例2Comparative Example 2

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−6(酸化エチレン:酸化ポリプロピレン=75:25,分子量:2000):ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer P-6 (ethylene oxide: polypropylene oxide = 75: 25, molecular weight: 2000): nonionic emulsifier 1 = 83: 10: 7 About the oil agent composition, a precursor and carbon fiber were obtained in the same manner as in Example 1. Table 5 shows the evaluation results of each characteristic value.

比較例3Comparative Example 3

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−7(酸化エチレン:酸化ポリプロピレン=40:60, 分子量:2900):ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer P-7 (ethylene oxide: polypropylene oxide = 40: 60, molecular weight: 2900): nonionic emulsifier 1 = 83: 10: 7 About the oil agent composition, a precursor and carbon fiber were obtained in the same manner as in Example 1. Table 5 shows the evaluation results of each characteristic value.

比較例4Comparative Example 4

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−1:ノニオン乳化剤1=88:3:9の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer P-1: Nonionic emulsifier 1 = For an oil agent composition having a ratio of 88: 3: 9, a precursor and carbon fiber were added in the same manner as in Example 1. Obtained. Table 5 shows the evaluation results of each characteristic value.

比較例5Comparative Example 5

アミノ変性シリコーンS−1:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−1:ノニオン乳化剤1=68:25:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-1: Polyoxyethylene / polyoxypropylene block copolymer P-1: Nonionic emulsifier 1 = An oil composition having a ratio of 68: 25: 7 In the same manner as in Example 1, a precursor and carbon fiber were used. Obtained. Table 5 shows the evaluation results of each characteristic value.

比較例6Comparative Example 6

アミノ変性シリコーンS−4(25℃粘度:1200mm2/s, アミノ含有量:3.2%):ノニオン乳化剤1=91:9の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-4 (viscosity at 25 ° C .: 1200 mm2 / s, amino content: 3.2%): non-emulsifier 1 = 91: 9 ratio of oil agent composition as in Example 1, precursor, carbon fiber Got. Table 5 shows the evaluation results of each characteristic value.

比較例7Comparative Example 7

アミノ変性シリコーンS−5(25℃粘度:3000mm2/s, アミノ含有量:0.13%):ノニオン乳化剤1=91:9の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-5 (25 ° C. viscosity: 3000 mm2 / s, amino content: 0.13%): nonionic emulsifier 1 = 91: 9 ratio of oil agent composition as in Example 1, precursor, carbon fiber Got. Table 5 shows the evaluation results of each characteristic value.

比較例8Comparative Example 8

アミノ変性シリコーンS−5:ポリオキシエチレン/ポリオキシプロピレンブロック共重合体P−1:ノニオン乳化剤1=83:10:7の比率からなる油剤組成物について実施例1と同様にプレカーサー、炭素繊維を得た。各特性値の評価結果を表5に示す。Amino-modified silicone S-5: Polyoxyethylene / polyoxypropylene block copolymer P-1: Nonionic emulsifier 1 = An oil agent composition having a ratio of 83: 10: 7 In the same manner as in Example 1, a precursor and carbon fiber were used. Obtained. Table 5 shows the evaluation results of each characteristic value.

表5より明らかな様に、比較例に比して実施例は製糸操業性に優れ、且つ加熱減量が小さい、すなわち架橋性に優れており、得られた炭素繊維強度も向上している事が分かる。As is clear from Table 5, the examples are superior in yarn maneuverability and have a small loss on heating, that is, excellent in crosslinkability, and the obtained carbon fiber strength is improved. I understand.

実施例、比較例にて使用したアミノ変性シリコーン、ポリオキシエチレン/ポリオキシプロピレン共重合体の内容を表1及び表2に、又、油剤組成物の内容を表3及び表4に纏めて表記した。

Figure 0004699821
Figure 0004699821
Figure 0004699821
Figure 0004699821
The contents of amino-modified silicones and polyoxyethylene / polyoxypropylene copolymers used in Examples and Comparative Examples are summarized in Tables 1 and 2, and the contents of the oil composition are summarized in Tables 3 and 4. did.
Figure 0004699821
Figure 0004699821
Figure 0004699821
Figure 0004699821

Figure 0004699821
Figure 0004699821

発明の効果The invention's effect

本発明の炭素繊維製造用アクリル繊維油剤によって、製糸工程でのガムアップが少なく操業性に優れ、且つその高耐熱性により高い炭素繊維強度を有する炭素繊維を製造する事が出来る。With the acrylic fiber oil agent for producing carbon fiber of the present invention, carbon fiber with little gum-up in the spinning process, excellent operability and high carbon fiber strength due to its high heat resistance can be produced.

Claims (3)

25℃における粘度が500mm2/s以上のアミノ変性シリコーンを油剤純分中に50重量%以上含有し、且つポリオキシエチレン/ポリオキシプロピレン共重合体及び/又はその誘導体を油剤純分中に5〜20重量%含有し、
前記アミノ変性シリコーンのアミノ含有量が0.15〜3.5重量%の範囲内であり、
前記ポリオキシエチレン/ポリオキシプロピレン共重合体の分子量が5000以上である、炭素繊維製造用アクリル繊維油剤。
50% by weight or more of amino-modified silicone having a viscosity at 25 ° C. of 500 mm 2 / s or more is contained in the pure oil, and 5% of the polyoxyethylene / polyoxypropylene copolymer and / or its derivative is contained in the pure oil. Contains ~ 20 wt% ,
The amino content of the amino-modified silicone is in the range of 0.15 to 3.5% by weight;
An acrylic fiber oil agent for producing carbon fibers , wherein the polyoxyethylene / polyoxypropylene copolymer has a molecular weight of 5000 or more .
請求項1記載の油剤を炭素繊維製造用アクリル繊維に対して0.1〜2.0重量%付与することを特徴とする炭素繊維製造用アクリル繊維の製造方法。 The manufacturing method of the acrylic fiber for carbon fiber manufacture characterized by providing 0.1 to 2.0weight% of the oil agent of Claim 1 with respect to the acrylic fiber for carbon fiber manufacture. 請求項1に記載の油剤を炭素繊維製造用アクリル繊維に付与し、該油剤が付与された炭素繊維製造用アクリル繊維を耐炎化処理し、次いで炭素化する、炭素繊維の製造方法。The manufacturing method of the carbon fiber which provides the oil agent of Claim 1 to the acrylic fiber for carbon fiber manufacture, flame-treats the acrylic fiber for carbon fiber manufacture to which this oil agent was provided, and then carbonizes.
JP2005192776A 2005-06-03 2005-06-03 Acrylic fiber oil for carbon fiber production Expired - Fee Related JP4699821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192776A JP4699821B2 (en) 2005-06-03 2005-06-03 Acrylic fiber oil for carbon fiber production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192776A JP4699821B2 (en) 2005-06-03 2005-06-03 Acrylic fiber oil for carbon fiber production

Publications (2)

Publication Number Publication Date
JP2006336181A JP2006336181A (en) 2006-12-14
JP4699821B2 true JP4699821B2 (en) 2011-06-15

Family

ID=37556979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192776A Expired - Fee Related JP4699821B2 (en) 2005-06-03 2005-06-03 Acrylic fiber oil for carbon fiber production

Country Status (1)

Country Link
JP (1) JP4699821B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5112973B2 (en) * 2008-06-30 2013-01-09 三菱レイヨン株式会社 Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP2021038478A (en) * 2019-08-30 2021-03-11 帝人株式会社 Method for producing carbon fiber bundle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220722A (en) * 1993-01-25 1994-08-09 Sumika Hercules Kk Oiling agent composition for precursor for high-performance carbon fiber and precursor
JPH11117128A (en) * 1997-10-08 1999-04-27 Toray Ind Inc Precursor for carbon fiber and production of carbon fiber
JP2002129481A (en) * 2000-10-16 2002-05-09 Takemoto Oil & Fat Co Ltd Synthetic fiber treating agent for producing carbon fiber and method for treating synthetic fiber for producing carbon fiber
JP2005089884A (en) * 2003-09-12 2005-04-07 Mitsubishi Rayon Co Ltd Method for producing carbon fiber precursor acrylic fiber bundle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220722A (en) * 1993-01-25 1994-08-09 Sumika Hercules Kk Oiling agent composition for precursor for high-performance carbon fiber and precursor
JPH11117128A (en) * 1997-10-08 1999-04-27 Toray Ind Inc Precursor for carbon fiber and production of carbon fiber
JP2002129481A (en) * 2000-10-16 2002-05-09 Takemoto Oil & Fat Co Ltd Synthetic fiber treating agent for producing carbon fiber and method for treating synthetic fiber for producing carbon fiber
JP2005089884A (en) * 2003-09-12 2005-04-07 Mitsubishi Rayon Co Ltd Method for producing carbon fiber precursor acrylic fiber bundle

Also Published As

Publication number Publication date
JP2006336181A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US8852684B2 (en) Finish for acrylic fiber processed into carbon fiber, and carbon fiber manufacturing method therewith
EP2208821B1 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
KR101653160B1 (en) Oil agent for acrylic fibers for production of carbon fibers, acrylic fibers for production of carbon fibers, and method for producing carbon fibers
JP5309280B1 (en) Acrylic fiber treatment agent for producing carbon fiber, acrylic fiber for producing carbon fiber, and method for producing carbon fiber
JP4699821B2 (en) Acrylic fiber oil for carbon fiber production
JP5437649B2 (en) Acrylic fiber oil for producing carbon fiber and method for producing carbon fiber using the same
CN107503157B (en) Carbon fiber oil agent for dry-jet wet spinning process and preparation method thereof
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP6510299B2 (en) Flame-resistant fiber bundle, carbon fiber precursor fiber bundle, and method for producing carbon fiber comprising the same
JP2010174408A (en) Oil agent for acrylic fiber for producing carbon fiber, and method for producing carbon fiber using the same
JP5592676B2 (en) Acrylic fiber oil for carbon fiber production, acrylic fiber for carbon fiber production, and method for producing carbon fiber
JP4862226B2 (en) Precursor fiber for carbon fiber and method for producing carbon fiber
JP2003253567A (en) Silicone oil for production of acrylic precursor fiber for carbon fiber and acrylic precursor fiber bundle for carbon fiber
JP5017211B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle using the same, and method for producing the same
JP2005264384A (en) Lubricant for treating synthetic fiber and method for producing precursor fiber for producing carbon fiber
JPS62231078A (en) Production of acrylic precursor for producing carbon fiber
JP2001248025A (en) Method for producing carbon fiber
JPH01156584A (en) Cord
JPH0291225A (en) Production of raw material yarn for carbon yarn
JPH0291226A (en) Production of raw material yarn for carbon yarn
JP4048230B2 (en) Precursor fiber for carbon fiber and method for producing the same
JP4995754B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
EP0279138B1 (en) Fibres, yarns, textile articles based on polyvinyl chloride with an improved thermal resistance
JPH0827673A (en) Production of polyester fiber
JP2853961B2 (en) Polyester fiber for power transmission belt and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4699821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees