JP4699481B2 - Quality test method for sealing of ceramic discharge tube of lamp - Google Patents

Quality test method for sealing of ceramic discharge tube of lamp Download PDF

Info

Publication number
JP4699481B2
JP4699481B2 JP2007552496A JP2007552496A JP4699481B2 JP 4699481 B2 JP4699481 B2 JP 4699481B2 JP 2007552496 A JP2007552496 A JP 2007552496A JP 2007552496 A JP2007552496 A JP 2007552496A JP 4699481 B2 JP4699481 B2 JP 4699481B2
Authority
JP
Japan
Prior art keywords
tube
sealing
lamp
discharge tube
rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007552496A
Other languages
Japanese (ja)
Other versions
JP2008528978A (en
Inventor
ランペンシェルフ、シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of JP2008528978A publication Critical patent/JP2008528978A/en
Application granted granted Critical
Publication of JP4699481B2 publication Critical patent/JP4699481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/42Measurement or testing during manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/027Specimens with holes or notches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0274Tubular or ring-shaped specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

本発明は、ランプ、特に高圧放電ランプのセラミック放電管の封止の品質試験方法に関する。 The present invention relates to a quality test method for sealing a ceramic discharge tube of a lamp, particularly a high pressure discharge lamp .

詳細には特に、メタルハライドランプのセラミック放電管の機械的品質試験の開発が問題とされる。殊に、電極のろう付け時に重要な荷重条件のもとで機械的安定性(耐亀裂生成性)に関してセラミック放電管が評価され、相応の臨界荷重値が決定される。   In particular, the development of mechanical quality tests for ceramic discharge tubes of metal halide lamps is particularly problematic. In particular, the ceramic discharge tube is evaluated for mechanical stability (cracking resistance) under load conditions that are important during brazing of the electrodes, and corresponding critical load values are determined.

最近のメタルハライドランプでは、セラミックスが放電管の透光性耐熱材料として使用される。こうして、従来使用された石英ガラス製放電管に比べて幾つかの利点を達成することができる。例えば点灯時に温度を高めることができ、それとともにスペクトルは昼光のスペクトルに一層良好に合わせることができる。セラミックス製メタルハライドランプは、セラミック管の製造時に形状の公差が事実上存在しないので色散乱が僅かである。さらに、密封されたセラミック管から封入物質が漏出することができないので有効寿命全体にわたってその色温度をほぼ維持する。   In recent metal halide lamps, ceramics are used as a translucent heat-resistant material for discharge tubes. In this way, several advantages can be achieved compared to the conventionally used quartz glass discharge tubes. For example, the temperature can be raised during lighting, and the spectrum can be better matched to the daylight spectrum. Ceramic metal halide lamps have little color scatter because there is virtually no shape tolerance when manufacturing ceramic tubes. In addition, since the encapsulating material cannot escape from the sealed ceramic tube, its color temperature is substantially maintained throughout its useful life.

しかしセラミック材料(例えばPCA)を使用すると、前記諸利点と並んで、脆性による漏れの虞も生じる。原因は引張荷重下での亀裂生成である。亀裂生成は特に、電極を封止管内に「ろう付け」するときの故障率の高まりに現れ、つまり封止品質に現れる。ろうを有するランプは例えば国際公開第96/28839号パンフレットにより公知である。電極対を管状放電管内にろう付け(図1参照)するときの放電管と電極材料との間の熱的不整合のゆえにランプ消灯後の冷却段階中に残留応力が生じる。タングステン電極は約1500〜1600℃において放電管(大抵は殆どPCA製)の封止管内にろう付けされる。液化したガラスろうまたは溶融セラミックスはこの温度において空隙を満たし、固化温度以下において電極系と封止管との間に強固な結合を実現する(ろう付け過程)。メタルハライドランプの場合、放電管(PCA)の膨張率は、ふつうニオブ、タングステン、モリブデンおよび/または金属サーメットを成分として含む電極系の被試験成分の膨張率よりも大きい。つまり封止管は冷却時に電極系上に収縮し、それゆえにろう付け過程後に特に電極との境界面が、周方向を向く引張応力によって負荷されている。これらの引張応力は結局、軸線方向亀裂の生成、従って封止管の機能不全を生じることがある。それとともにろう付けプロセス時に亀裂を生成する虞は、従ってランプ生産効率も、放電管材料の破壊靭性と封止管の内表面の品質とに依存する(欠陥寸法分布)。ろう残留応力の作用を受けての亀裂生成に対するセラミック放電管封止管の機械的耐久性を評価するのに実務に即した方法はこれまで存在していない。   However, the use of a ceramic material (for example, PCA), along with the above-mentioned advantages, may cause leakage due to brittleness. The cause is crack formation under tensile load. Crack generation is particularly manifested in an increased failure rate when the electrode is “brazed” into the sealed tube, ie, in the sealing quality. A lamp having a wax is known, for example, from WO 96/28839. Residual stresses occur during the cooling phase after the lamp is extinguished due to the thermal mismatch between the discharge tube and the electrode material when brazing the electrode pair into the tubular discharge tube (see FIG. 1). The tungsten electrode is brazed in a sealed tube of a discharge tube (mostly mostly PCA) at about 1500-1600 ° C. The liquefied glass brazing or molten ceramic fills the voids at this temperature and realizes a strong bond between the electrode system and the sealing tube below the solidification temperature (brazing process). In the case of a metal halide lamp, the expansion coefficient of the discharge tube (PCA) is usually larger than the expansion coefficient of the component under test of the electrode system containing niobium, tungsten, molybdenum and / or metal cermet as components. In other words, the sealing tube shrinks on the electrode system during cooling, and therefore the interface with the electrode is loaded by tensile stress in the circumferential direction, especially after the brazing process. These tensile stresses can eventually lead to the creation of axial cracks and thus failure of the sealed tube. At the same time, the risk of cracking during the brazing process, the lamp production efficiency is therefore also dependent on the fracture toughness of the discharge tube material and the quality of the inner surface of the sealing tube (defect size distribution). There has been no practical method to evaluate the mechanical durability of ceramic discharge tube seals against crack formation under the influence of wax residual stress.

本発明の課題は、封止品質に関する情報を提供する簡単な試験を提供することである。   The object of the present invention is to provide a simple test that provides information on the sealing quality.

この課題は、本発明によれば、ランプのセラミック放電管が封止管を備えており、この封止管の検査によりランプのセラミック放電管の封止の品質を試験する方法において
先ず、封止管が電極を備えられ、電極が封止管にろう付けされ、
その後、封止管は電極をろう付けされた後に放電管から分離され、
その後、分離された封止管が、ろう付けされた電極と一緒にまたはそれなしに、2つの受け部の間に挿入され、
次に、両受け部によって封止管に圧力が加えられ、
その後、亀裂生成が現れるまでこの圧力が高められ、評価に弾性率およびポアソン比の値が利用される
ことによって解決される。
本発明の特に有利な実施態様は次の通りである。
・受け部が板として構成されている(請求項2)
・受け部がローラとして構成されている(請求項3)。
・複数のローラが使用される(請求項4)。
・間隔Aを有する2つのローラからなる下側受け部と、この下側受け部の2つのローラの間隔Aよりも僅かな間隔Bを有する2つのローラからなる上側受け部とが使用される(請求項5)。
According to the present invention, the subject is a method in which the ceramic discharge tube of the lamp is provided with a sealing tube, and the quality of the sealing of the ceramic discharge tube of the lamp is tested by inspection of the sealing tube .
First, the sealing tube is provided with an electrode , the electrode is brazed to the sealing tube ,
Then the sealing tube is separated from the discharge tube after brazing the electrodes ,
A separate sealing tube is then inserted between the two receptacles , with or without the brazed electrode ,
Next, pressure is applied to the sealing tube by both receiving parts,
This pressure is then increased until crack formation appears and is resolved by utilizing the modulus and Poisson's ratio values for evaluation.
Particularly advantageous embodiments of the invention are as follows.
The receiving part is configured as a plate (Claim 2).
-A receiving part is comprised as a roller (Claim 3).
A plurality of rollers are used (Claim 4).
A lower receiving part consisting of two rollers having a distance A and an upper receiving part consisting of two rollers having a distance B slightly smaller than the distance A between the two rollers of this lower receiving part are used ( Claim 5).

ろう残留応力の作用を受けての亀裂生成に対する封止管の機械的耐久性を評価するために、類似の荷重状態と同じ亀裂モード(軸線方向亀裂)を封止管中に引き起こす簡単な破壊試験が提案される。封止管は円筒軸線に直角方向に圧力を負荷される(図2参照)。このため2つの受け部が使用され、受け部の間に封止管が挿入される。受け部として板またはローラが適している。この荷重方式では封止管の内面に、ろう付け時と同様に、周方向を向く引張応力が生じ、これらの引張応力は結局、亀裂生成をもたらすことができる(図3も参照)。試験のために圧縮力は封止管の機能不全に至るまで高められる。機能不全メカニズムはろう付け時に観察される亀裂モードに一致している。つまり、両事例とも内面から始まる軸線方向亀裂であることが判明した。   A simple destructive test that causes the same crack mode (axial crack) in a sealed tube to evaluate the mechanical durability of the sealed tube against crack formation under the influence of wax residual stress Is proposed. The sealing tube is loaded with pressure in a direction perpendicular to the cylinder axis (see FIG. 2). For this reason, two receiving parts are used, and a sealing tube is inserted between the receiving parts. A plate or roller is suitable as the receiving part. In this loading method, tensile stresses in the circumferential direction are generated on the inner surface of the sealing tube, as in brazing, and these tensile stresses can eventually lead to crack generation (see also FIG. 3). For the test, the compressive force is increased until the malfunction of the sealed tube. The dysfunction mechanism is consistent with the crack mode observed during brazing. In other words, both cases were found to be axial cracks starting from the inner surface.

特に、複数のローラ、有利には各側で2つのローラを使用することができる。一方の側で大きな間隔を有する2つのローラ、反対側では僅かな間隔を有する2つのローラが使用されると特に好ましい。好ましくは片側で、僅かな間隔を有する2つのローラによって力が加えられる。   In particular, it is possible to use a plurality of rollers, preferably two rollers on each side. It is particularly preferred if two rollers with a large spacing on one side and two rollers with a slight spacing on the other side are used. On one side, the force is applied by two rollers with a slight spacing.

機能不全時の圧縮力から数値荷重分析を利用して、封止管に亀裂を生成する臨界引張応力が試験結果として決定される。封止管は特に毛細管として、放電管と一体に、または個別に実施されている。この臨界値は封止管の機械的安定性にとって実務に即した尺度として利用することができ、それとともにセラミック放電管の異なるロットまたは製造業者の品質を比較するのに適している。試験時とろう付け時との荷重状態および機能不全挙動に関する特別な類似性が試験結果の重要性を高める。他方で、機械的試験は比較的僅かな労力で済み、従って好ましい品質評価法を提供する。   The critical tensile stress that generates a crack in the sealed tube is determined as a test result using numerical load analysis from the compressive force at the time of malfunction. The sealing tube is implemented in particular as a capillary tube, either integrally with the discharge tube or separately. This critical value can be used as a practical measure for the mechanical stability of the sealed tube and is suitable for comparing the quality of different lots or manufacturers of ceramic discharge tubes. Special similarities with respect to loading conditions and dysfunctional behavior during testing and brazing increase the importance of test results. On the other hand, mechanical testing requires relatively little effort and thus provides a preferred quality assessment method.

本発明は、電極のろう付けプロセス時の荷重条件のもとでセラミック封止管の機械的安定性を判断するための実務に即した機械的試験方法の開発にある。荷重状態および機能不全挙動に関して機械的試験とろう付け過程との類似性が適切に利用されることを特に強調することができる。これは特に、両方の事例において封止管の内面に現れる周方向引張応力と軸線方向亀裂の生成とに関係している。   The present invention resides in the development of a practical mechanical test method for determining the mechanical stability of a ceramic sealed tube under the load conditions during the electrode brazing process. It can be particularly emphasized that similarities between mechanical testing and brazing processes are adequately utilized with regard to loading conditions and dysfunctional behavior. This is particularly related to the circumferential tensile stress and axial cracking that appear on the inner surface of the sealed tube in both cases.

以下において複数の実施例に基づいて本発明が詳しく説明される。   In the following, the invention will be described in detail on the basis of several embodiments.

図1にメタルハライドランプの放電管1が示してある。この放電管は多結晶Al23(PCA)からなる。封止管2はここでは毛細管として放電管に一体に継ぎ足してあるが、しかし当然に個別の部品とすることもできる。リード線3(例えばニオブ/モリブデン製)が電極4(例えばタングステン製)と結合され、封止管に通常のガラスろう(または溶融セラミックス)5でろう付けされている。放電管内に通常の金属ハロゲン化物封入物が封入されている。ランプ点灯時の主たる故障メカニズムは封止管の内面で始まる軸線方向亀裂であることが実務において判明した。この亀裂はとりわけ毛細管、つまり大きな長さ対直径比を有する非常に縦長の細い封止管に生じる。亀裂は毛細管を通して外方に成長し、ガラスろう5を通して内方にも成長する。 FIG. 1 shows a discharge tube 1 of a metal halide lamp. This discharge tube is made of polycrystalline Al 2 O 3 (PCA). The sealing tube 2 is here integrally joined to the discharge tube as a capillary tube, but can of course also be a separate part. A lead wire 3 (for example, made of niobium / molybdenum) is bonded to an electrode 4 (for example, made of tungsten), and is brazed to the sealing tube with a normal glass brazing (or molten ceramic) 5. A normal metal halide inclusion is enclosed in the discharge tube. It has been found in practice that the main failure mechanism during lamp operation is an axial crack that begins on the inner surface of the sealed tube. This crack occurs especially in capillaries, i.e. very long and narrow sealing tubes having a large length to diameter ratio. The crack grows outward through the capillary and also grows inward through the glass wax 5.

図2に試験経過の実現が略示されている。本方法(左半分)では2つの板10が利用され、2つの板10の間に封止管2が挿入される。圧力を加えること(右半分の矢印)によって、封止管内に亀裂11を生成するのに必要な力が決定される。体系的な検査の場合、個々のまたは分離された封止管2は、ろう付けされた電極系と一緒にまたはそれなしに、2つの平行な板10からなる受圧部で処理することができる。両板10で加えられる圧力(矢印)は封止管2内で荷重増大を生じ、最後には封止管内に亀裂11を生成する。電極とガラスろうは特段図示されていない。   The realization of the test process is schematically shown in FIG. In this method (left half), two plates 10 are used, and the sealing tube 2 is inserted between the two plates 10. By applying pressure (arrow on the right half), the force required to create a crack 11 in the sealed tube is determined. In the case of a systematic examination, the individual or separate sealing tubes 2 can be processed with a pressure receiving part consisting of two parallel plates 10 with or without a brazed electrode system. The pressure (arrow) applied on both plates 10 causes a load increase in the sealed tube 2 and finally creates a crack 11 in the sealed tube. The electrodes and glass brazing are not specifically shown.

図3には封止管の横断面における応力状況が荷重分析の結果として示してある。試験は納入状態の封止管2(電極系未装備)について、または一体な封止管を放電管から分離後に個々に、実施することができる。試験を評価するために、封止管の機能不全(亀裂11の生成)の時点に臨界荷重、つまり力の消費が測定されねばならず(簡単な力測定)、封止管の形状、つまり外径と、内径と、圧力を負荷される長さとが既知でなければならない。さらに、放電管のセラミック材料の弾性特性、特に変形度の尺度である弾性率値とポアソン比とが既知でなければならない。分析は板10の接触点の近傍に高い圧力の帯域を示しており、D4は最高圧力帯域、D1は最低圧力帯域である。それに対して引張応力は封止管2の内部にあり、ここでもZ2は高い引張応力の帯域、Z1は低い引張応力の帯域を示唆している。弱い圧力の帯域D1はなお水平に延びている。   FIG. 3 shows the stress state in the cross section of the sealed tube as a result of the load analysis. The test can be carried out on the delivered sealed tube 2 (without electrode system) or individually after separating the integral sealed tube from the discharge tube. In order to evaluate the test, the critical load, i.e. the consumption of force, must be measured (simple force measurement) at the time of malfunction of the sealed tube (crack 11 formation), the shape of the sealed tube, i.e. outside The diameter, inner diameter, and length to which pressure is applied must be known. Furthermore, the elastic properties of the ceramic material of the discharge tube, in particular the modulus value and Poisson's ratio, which are a measure of the degree of deformation, must be known. The analysis shows a high pressure zone in the vicinity of the contact point of the plate 10, where D4 is the highest pressure zone and D1 is the lowest pressure zone. On the other hand, the tensile stress is inside the sealed tube 2, and here again, Z 2 indicates a high tensile stress zone and Z 1 indicates a low tensile stress zone. The weak pressure zone D1 still extends horizontally.

図4には4点曲げ強度を決定する他の試験が示してある。板がローラの配置に取替えられている。規定の間隔Aで2つのローラ20が下側受け部として使用される。同時に、規定の小さな間隔Bの2つのローラ21からなる上側受け部が使用され、これらのローラは両下側ローラ20間の中央に配置されている。こうしていわゆる4点曲げ試験が実施される。矢印は上側受け部の両ローラ21が破壊するまで加える力を表す。代表的なクロスヘッド速度は0.2〜1mm/分である。試料、つまりここでは毛細管2の外径dAと内径dIが既知であるとき、試料の強度σは破壊力Fから計算することができる。というのも、両方の値は互いに比例しているからである。それに加えて、締付長SL、つまり上側受け部のローラと下側受け部のローラとの間の軸線方向間隔を知ることが重要である。   FIG. 4 shows another test for determining the 4-point bending strength. The plate has been replaced with a roller arrangement. Two rollers 20 are used as a lower receiving portion at a predetermined interval A. At the same time, an upper receiving part consisting of two rollers 21 with a specified small distance B is used, and these rollers are arranged in the center between the lower rollers 20. In this way, a so-called four-point bending test is performed. The arrow represents the force applied until both rollers 21 of the upper receiving portion break. A typical crosshead speed is 0.2-1 mm / min. When the outer diameter dA and inner diameter dI of the sample, that is, here the capillary tube 2 is known, the strength σ of the sample can be calculated from the breaking force F. This is because both values are proportional to each other. In addition, it is important to know the fastening length SL, that is, the axial distance between the upper receiving part roller and the lower receiving part roller.

従って、σは破壊力Fから次式により得られる。
σ=(16×SL×dA×F)/(π×(dA4−dI4))
Therefore, σ is obtained from the breaking force F by the following equation.
σ = (16 × SL × dA × F) / (π × (dA 4 −dI 4 ))

メタルハライドランプの断面図。Sectional drawing of a metal halide lamp. 規定の圧縮荷重を封止管に加えることのできる方法を示す概略図Schematic showing how the specified compressive load can be applied to the sealed tube 封止管内の過程の詳細な説明図Detailed explanatory diagram of the process in the sealing tube 本方法の第2実施例の詳細な説明図Detailed illustration of the second embodiment of the method

符号の説明Explanation of symbols

1 放電管
2 封止管
3 リード線
4 電極
5 ガラスろう
10 板
11 亀裂
20、21 ローラ
A、B 間隔
D 圧力帯域
F 破壊力
SL 締付長
σ 強度
dA 外径
dI 内径
DESCRIPTION OF SYMBOLS 1 Discharge tube 2 Sealing tube 3 Lead wire 4 Electrode 5 Glass brazing 10 Plate 11 Crack 20, 21 Roller A, B Interval D Pressure zone F Destructive force SL Tightening length σ Strength dA Outer diameter dI Inner diameter

Claims (5)

ランプのセラミック放電管が封止管を備えており、この封止管の検査によりランプのセラミック放電管の封止の品質を試験する方法において、
先ず、封止管が電極を備えられ、電極が封止管にろう付けされ、
その後、封止管は電極をろう付けされた後に放電管から分離され、
その後、分離された封止管が、ろう付けされた電極と一緒にまたはそれなしに、2つの受け部の間に挿入され、
次に、両受け部によって封止管に圧力が加えられ、
その後、亀裂生成が現れるまでこの圧力が高められ、評価に弾性率およびポアソン比の値が利用される
ことを特徴とするランプのセラミック放電管の封止の品質試験方法。
In a method in which the ceramic discharge tube of the lamp is provided with a sealing tube, and the quality of the sealing of the ceramic discharge tube of the lamp is tested by inspecting the sealing tube,
First, the sealing tube is provided with an electrode , the electrode is brazed to the sealing tube ,
Then the sealing tube is separated from the discharge tube after brazing the electrodes ,
A separate sealing tube is then inserted between the two receptacles , with or without the brazed electrode ,
Next, pressure is applied to the sealing tube by both receiving parts,
Thereafter, this pressure is increased until crack formation appears, and the value of the elastic modulus and Poisson's ratio is used for the evaluation, and the quality test method for sealing the ceramic discharge tube of the lamp.
受け部が板(10)として構成されていることを特徴とする請求項1記載の方法。  2. Method according to claim 1, characterized in that the receiving part is configured as a plate (10). 受け部がローラ(20、21)として構成されていることを特徴とする請求項1記載の方法。  2. Method according to claim 1, characterized in that the receiving part is configured as a roller (20, 21). 複数のローラが使用されることを特徴とする請求項3記載の方法。  4. The method according to claim 3, wherein a plurality of rollers are used. 間隔Aを有する2つのローラからなる下側受け部と、この下側受け部の2つのローラの間隔Aよりも僅かな間隔Bを有する2つのローラからなる上側受け部とが使用されることを特徴とする請求項4記載の方法。  A lower receiving portion made of two rollers having a distance A and an upper receiving portion made of two rollers having a distance B slightly smaller than the distance A between the two rollers of the lower receiving portion are used. 5. A method according to claim 4, characterized in that
JP2007552496A 2005-01-27 2006-01-13 Quality test method for sealing of ceramic discharge tube of lamp Expired - Fee Related JP4699481B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005003892.1 2005-01-27
DE200510003892 DE102005003892A1 (en) 2005-01-27 2005-01-27 Seal quality testing method for e.g. metal halide lamp, involves inserting mandrel between two supports, and applying pressure on mandrel by supports, where pressure is increased until arise of cracking
PCT/DE2006/000044 WO2006079309A1 (en) 2005-01-27 2006-01-13 Method for testing a seal

Publications (2)

Publication Number Publication Date
JP2008528978A JP2008528978A (en) 2008-07-31
JP4699481B2 true JP4699481B2 (en) 2011-06-08

Family

ID=36019622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007552496A Expired - Fee Related JP4699481B2 (en) 2005-01-27 2006-01-13 Quality test method for sealing of ceramic discharge tube of lamp

Country Status (3)

Country Link
JP (1) JP4699481B2 (en)
DE (2) DE102005003892A1 (en)
WO (1) WO2006079309A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854067B (en) * 2012-10-10 2014-11-05 佛山市南海佛阳照明有限公司 Multi-working-position compressive testing machine for bulbs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500960A (en) * 1981-06-16 1983-06-09 メタル ボツクス パブリツク リミテツド コンパニ− Fragmentation identification method and identification device for brittle articles
JP2000100387A (en) * 1998-09-18 2000-04-07 Ushio Inc Lamp made of ceramic
JP2004247297A (en) * 2003-01-24 2004-09-02 Matsushita Electric Ind Co Ltd Manufacturing method of high-pressure discharge lamp, glass tube for high-pressure discharge lamp, and lamp member for high-pressure discharge lamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626725B1 (en) * 2000-05-08 2003-09-30 Welch Allyn, Inc Electrode treatment surface process for reduction of a seal cracks in quartz
US7198534B2 (en) * 2003-01-24 2007-04-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing high-pressure discharge lamp, glass tube for high-pressure discharge lamp, and lamp element for high-pressure discharge lamp
EP1475626B1 (en) * 2003-05-07 2007-07-18 Brabender GmbH & Co. KG Apparatus and method to measure the plasticity of materials like ceramic raw material and ceramic mass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500960A (en) * 1981-06-16 1983-06-09 メタル ボツクス パブリツク リミテツド コンパニ− Fragmentation identification method and identification device for brittle articles
JP2000100387A (en) * 1998-09-18 2000-04-07 Ushio Inc Lamp made of ceramic
JP2004247297A (en) * 2003-01-24 2004-09-02 Matsushita Electric Ind Co Ltd Manufacturing method of high-pressure discharge lamp, glass tube for high-pressure discharge lamp, and lamp member for high-pressure discharge lamp

Also Published As

Publication number Publication date
JP2008528978A (en) 2008-07-31
DE112006000083A5 (en) 2007-08-30
WO2006079309A1 (en) 2006-08-03
DE102005003892A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
US7975524B2 (en) Oxygen sensor inspection method and apparatus and oxygen sensor production method
WO2014155558A1 (en) Method for predicting remaining creep life of heat- and pressure-degraded product, and standard curve preparation method using this prediction method
HU221365B1 (en) Metal halogenid lamp with ceramic discharge vessel
JP4699481B2 (en) Quality test method for sealing of ceramic discharge tube of lamp
JP4071703B2 (en) Thermal fatigue life diagnosis method and apparatus for solder joints
JP4358729B2 (en) Short arc type discharge lamp
Leichtfried et al. Molybdenum alloys for glass-to-metal seals
WO2012073515A1 (en) Flashtube and strobe apparatus
US8053990B2 (en) High intensity discharge lamp having composite leg
JPWO2014147830A1 (en) Method for predicting the remaining creep life of a product having a bainite structure, and a method for creating a calibration curve used in this prediction method
JP2001250504A (en) High-pressure discharge lamp
CN101558466A (en) Method for measuring pressure of gas sealed in electric discharge tube and method for manufacturing electric discharge tube
CN100531475C (en) Ceramic heater and production method therefor
US20140001946A1 (en) Flash light discharge tube and strobe device provided with same
JPH0674951A (en) Creep damage evaluating method for ferrite heat resistant steel
JPH0720121A (en) Method and equipment conducting guarantee test for ceramic component
JP2003317907A (en) Ceramic heater
JPS62115644A (en) High pressure discharge lamp
JP2009211879A (en) Short arc high-pressure discharge lamp
SU1490552A1 (en) Method for determining unused part operation lifetime
JPH06324032A (en) Measuring method of creep damage of chrome-molybdenum steel
US3425767A (en) Process for removing alkali contamination from electric lamps
JP2005315580A (en) Cycle fatigue test method and cycle fatigue tester
Kase et al. Characteristics of sealed parts under internal pressure in super high pressure mercury discharge lamps
RU2149376C1 (en) Material tension strength test piece

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

LAPS Cancellation because of no payment of annual fees