JP4699001B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP4699001B2
JP4699001B2 JP2004303406A JP2004303406A JP4699001B2 JP 4699001 B2 JP4699001 B2 JP 4699001B2 JP 2004303406 A JP2004303406 A JP 2004303406A JP 2004303406 A JP2004303406 A JP 2004303406A JP 4699001 B2 JP4699001 B2 JP 4699001B2
Authority
JP
Japan
Prior art keywords
slab
segregation
striking
casting
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004303406A
Other languages
Japanese (ja)
Other versions
JP2006110620A (en
Inventor
広明 山副
義起 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004303406A priority Critical patent/JP4699001B2/en
Publication of JP2006110620A publication Critical patent/JP2006110620A/en
Application granted granted Critical
Publication of JP4699001B2 publication Critical patent/JP4699001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、未凝固部を含む鋳片の短辺面を連続して打撃することにより、鋳片に振動を付与しつつ鋳造する連続鋳造方法に関する。   The present invention relates to a continuous casting method in which casting is performed while applying vibration to a slab by continuously striking a short side surface of the slab including an unsolidified portion.

連続鋳造により鋳造された鋳片の厚さ方向の中心部およびその近傍には、中心偏析やV偏析とよばれるマクロ偏析である内部欠陥が発生しやすい。中心偏析は、鋳片の最終凝固部にC、S、P、Mnなどの偏析しやすい溶質成分(以下、「偏析成分」ともいう)が濃化して発生する内部欠陥であり、V偏析は、鋳片の最終凝固部の近傍に、これらの偏析成分がV字状に濃化して発生する内部欠陥である。   Internal defects, which are macro segregation called center segregation or V segregation, are likely to occur at the central portion in the thickness direction of the slab cast by continuous casting and in the vicinity thereof. Center segregation is an internal defect that occurs due to concentration of solute components such as C, S, P, and Mn that are easily segregated in the final solidified portion of the slab (hereinafter also referred to as “segregation component”). In the vicinity of the final solidified portion of the slab, these segregation components are internal defects generated by concentrating in a V shape.

これらのマクロ偏析が発生した鋳片を素材として熱間加工を行った製品では、靱性の低下や水素誘起割れなどが発生しやすく、また、これらの製品を冷間で最終製品に加工する際に、割れが発生しやすくなる。   Products that have been hot-worked using slabs with macrosegregation as a raw material are prone to toughness reduction and hydrogen-induced cracking, and when these products are processed into final products in the cold. , Cracking is likely to occur.

鋳片における偏析の生成機構は、以下のように考えられている。すなわち、凝固が進行するにつれて、凝固組織である柱状晶の樹枝間に偏析成分が濃化する。その偏析成分の濃化した溶鋼が、凝固時の鋳片の収縮、またはバルジングと呼ばれる鋳片の膨れなどにより、柱状晶の樹枝間から流出する。流出した濃化溶鋼は、最終凝固部の凝固完了点に向かって流動し、そのまま凝固して偏析成分の濃化帯を形成する。このようにして形成された偏析成分の濃化帯が偏析である。   The generation mechanism of segregation in the slab is considered as follows. That is, as solidification progresses, segregation components are concentrated between columnar dendritic branches that are solidified structures. The molten steel enriched in the segregation component flows out between the columns of the columnar crystals due to shrinkage of the slab during solidification or swelling of the slab called bulging. The concentrated molten steel that has flowed out flows toward the solidification completion point of the final solidified portion and solidifies as it is to form a concentrated band of segregation components. The concentrated band of the segregation component thus formed is segregation.

鋳片の偏析防止対策としては、柱状晶の樹枝間に残った偏析成分の濃化した溶鋼の移動を防止すること、およびこれらの濃化溶鋼が局所的に集積することを防止することなどが効果的である。本発明者らは、上述の課題を達成するために研究を重ね、未凝固部を含む鋳片に鋳片表面から打撃を付与することが、偏析の低減に極めて有効であることを知見し、下記の特許文献1および特許文献2に記載の連続鋳造方法を提案した。   Measures for preventing segregation of slabs include preventing the movement of molten steel enriched in segregation components remaining between columnar dendrites, and preventing these concentrated molten steels from accumulating locally. It is effective. The inventors of the present invention have repeated research to achieve the above-mentioned problems, and it has been found that applying a blow from the slab surface to a slab containing an unsolidified portion is extremely effective in reducing segregation, The continuous casting method described in Patent Document 1 and Patent Document 2 below was proposed.

特許文献1にて提案した連続鋳造方法は、下記の第1〜第3に示される鋳造方法である。すなわち、第1の方法は、横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の短辺面側に配置した打撃振動装置により、未凝固部を含む鋳片の短辺面を連続して打撃することにより、鋳片に振動を付与しつつ鋳造する鋼の連続鋳造方法である。また、第2の方法は、前記第1の方法において、さらに、鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側で、中心固相率が0.2〜0.95である未凝固部を含む位置の鋳片を、ガイドロール対を用いて、鋳造方向の長さ1m当たり0.5mm〜2.5mmの割合で圧下する鋳造方法である。そして、第3の方法は、第1の方法において、未凝固部を含む鋳片の短辺面を連続して打撃する位置の上流側または下流側において、未凝固部を含む鋳片をバルジングさせ始め、そのバルジングさせた鋳片を、鋳片の短辺面を最初に打撃した位置より鋳造方向下流側の厚さ中心部が凝固完了するまでの間で、R=D1/D2により表される圧下率Rが0.8〜1.1となる条件で、圧下ロール対により鋳片を圧下する鋳造方法である。ここで、D1は未凝固部を含む鋳片の幅中央部における圧下量(mm)を、D2は圧下開始時の固相率が0.8以下の未凝固部の厚さ(mm)を表す。   The continuous casting method proposed in Patent Document 1 is the following first to third casting methods. That is, in the first method, when casting a slab having a rectangular cross-sectional shape, a striking vibration device arranged on the short side surface side of the slab including the unsolidified part is used to perform the slab including the unsolidified part. This is a continuous casting method of steel in which a short side surface is continuously hit and cast while giving vibration to a slab. Further, the second method is the first method, wherein the central solid phase ratio is 0.2 to 0.95 further downstream in the casting direction from the position where the short side surface of the slab was first hit. This is a casting method in which a slab including a certain unsolidified portion is reduced at a rate of 0.5 mm to 2.5 mm per 1 m in the casting direction by using a pair of guide rolls. And the 3rd method bulges the slab containing an unsolidified part in the 1st method in the upstream or the downstream of the position which hits the short side surface of the slab containing an unsolidified part continuously. First, the bulging slab is represented by R = D1 / D2 until the thickness center portion on the downstream side in the casting direction is completely solidified from the position where the short side surface of the slab was first hit. This is a casting method in which the slab is squeezed by a pair of squeezing rolls under a condition that the reduction ratio R is 0.8 to 1.1. Here, D1 represents the amount of reduction (mm) at the center of the width of the slab including the unsolidified portion, and D2 represents the thickness (mm) of the unsolidified portion having a solid phase ratio of 0.8 or less at the start of the reduction. .

また、特許文献2にて提案した方法は、下記の第1および第2の鋳造方法である。すなわち、第1の方法は、矩形の横断面形状を有する鋳片の未凝固部を含む鋳造方向の位置を、圧下用ガイドロール対により圧下する際に、鋳造方向における圧下領域の範囲内において、鋳片表面を連続して打撃することにより、鋳片に振動を付与しつつ鋳造する鋼の連続鋳造方法である。さらに、第2の方法は、矩形の横断面形状を有する鋳片を鋳造する際に、未凝固部を含む位置の鋳片をバルジングさせ、バルジングさせた前記鋳片を厚さ方向中心部の凝固が完了するまでの間に、圧下ロール対により圧下する連続鋳造方法であって、バルジング開始後圧下を開始するまでの鋳造方向領域の範囲内、または鋳造方向における圧下領域の範囲内において、鋳片表面を連続して打撃することにより、鋳片に振動を付与しつつ鋳造する方法である。   The method proposed in Patent Document 2 is the following first and second casting methods. That is, in the first method, when the position in the casting direction including the unsolidified portion of the slab having a rectangular cross-sectional shape is reduced by the pair of guide rolls for reduction, within the range of the reduction region in the casting direction, This is a steel continuous casting method in which casting is performed while applying vibration to the slab by continuously striking the slab surface. Furthermore, in the second method, when casting a slab having a rectangular cross-sectional shape, the slab at a position including an unsolidified portion is bulged, and the squeezed slab is solidified at the center in the thickness direction. Is a continuous casting method in which rolling is performed by a pair of rolling rolls until completion of slab, in the range of the casting direction area after the start of bulging, or within the range of the rolling area in the casting direction. This is a method of casting while applying vibration to the slab by continuously hitting the surface.

上記の連続鋳造方法の提案後も、偏析の防止方法に関する研究を進めた結果、鋳片幅が大きい場合には、上述の鋳造方法を用いても、なお成分偏析が十分には低減できない場合のあることが判明した。偏析が十分に低減できない理由は、下記のとおりである。すなわち、
(1)鋳片の打撃を短辺面側から行う場合に、鋳片幅が大きくなると、打撃による振動が鋳片内部に十分に伝播しなくなるからである。つまり、打撃による振動が鋳片内部に十分に伝播しなければ、成長途中の柱状晶を破断することはできず、したがって、柱状晶は成長を続けるので、凝固組織を微細な結晶組織とすることができなくなる。
(2)さらに、最終凝固部近傍に打撃を付与して振動させる場合においても、生成した等軸晶に振動を伝達することができず、等軸晶がブリッジングするからである。
After proposing the above continuous casting method, as a result of research on the segregation prevention method, when the slab width is large, even when the above casting method is used, the component segregation cannot be sufficiently reduced. It turned out to be. The reason why the segregation cannot be sufficiently reduced is as follows. That is,
(1) When the slab is struck from the short side, if the slab width is increased, vibration due to the impact will not be sufficiently propagated inside the slab. In other words, if the vibration due to the impact does not propagate sufficiently inside the slab, the columnar crystal in the middle of growth cannot be broken, and therefore the columnar crystal continues to grow, so that the solidified structure becomes a fine crystal structure. Can not be.
(2) Furthermore, even when striking and vibrating near the final solidified part, vibration cannot be transmitted to the generated equiaxed crystal, and the equiaxed crystal bridges.

上述のとおり、連続鋳造における中心偏析やV偏析などの偏析の発生を防止し、内部品質の良好な鋳片を得るためには、なお、解決されなければならない問題が残されている。   As described above, in order to prevent the occurrence of segregation such as center segregation and V segregation in continuous casting, and to obtain a slab having good internal quality, there still remains a problem to be solved.

特開2002−273554号公報(特許請求の範囲、段落[0010]および段落[0011])JP 2002-273554 A (claims, paragraph [0010] and paragraph [0011]) 特開2003−334641号公報(特許請求の範囲、段落[0016]および[0017])JP 2003-334461 A (claims, paragraphs [0016] and [0017])

前述したとおり、鋳片に打撃を付与しながら鋳造を行う方法には、下記の問題がある。すなわち、鋳片の打撃を短辺面側から行う場合に、鋳片幅が大きくなると、打撃による振動が鋳片内部にまで十分に伝播しないため、成長途中の柱状晶を破断することができずに、柱状晶が成長する。したがって、凝固組織を微細な結晶組織とすることできず、十分な偏析低減効果が得られない。さらに、最終凝固部近傍に打撃を付与して振動させる場合においても、生成した等軸晶に振動を伝達することができずに、等軸晶がブリッジングし、十分な偏析低減効果が得られない。   As described above, the method of casting while giving a blow to the slab has the following problems. That is, when the slab is struck from the short side, if the slab width becomes large, the vibration due to the impact does not sufficiently propagate to the inside of the slab, so the columnar crystals during the growth cannot be broken. In addition, columnar crystals grow. Therefore, the solidified structure cannot be made a fine crystal structure, and a sufficient segregation reducing effect cannot be obtained. Furthermore, even when striking and vibrating in the vicinity of the final solidified part, vibration cannot be transmitted to the generated equiaxed crystal, and the equiaxed crystal bridges, thereby obtaining a sufficient segregation reducing effect. Absent.

本発明は、上記の問題に鑑みてなされたものであり、その課題は、鋳片に打撃を付与することにより、中心偏析やV偏析などの偏析の発生を防止し、内部品質の良好な鋳片を得ることができる鋼の連続鋳造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its problem is to prevent the occurrence of segregation such as center segregation and V segregation by imparting impact to the slab and to improve casting quality with good internal quality. The object is to provide a continuous casting method of steel from which pieces can be obtained.

本発明者は、上述の課題を解決するために、従来の問題点を踏まえて、鋳片に付与した打撃振動を鋳片内部にまで十分に伝播させる方法について研究を重ね、下記の(a)〜(c)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventor has repeatedly studied on a method for sufficiently propagating the impact vibration imparted to the slab to the inside of the slab based on the conventional problems. The knowledge of (c) was obtained and the present invention was completed.

(a)偏析低減効果を得るには、偏析低減効果が得られるための最低打撃エネルギー以上のエネルギーにより、鋳片を打撃する必要がある。   (A) In order to obtain the segregation reduction effect, it is necessary to strike the slab with an energy equal to or higher than the minimum impact energy for obtaining the segregation reduction effect.

ここで、1回の打撃当たりの打撃エネルギーは下記(2)式によりで定義される。   Here, the impact energy per impact is defined by the following equation (2).

E=(1/2)×m×V2 ・・・・(2)
ただし、mは打撃用金型の質量(kg)を、Vは打撃用金型の鋳片への衝突速度(m/s)を表す。
E = (1/2) × m × V 2 (2)
Here, m represents the mass (kg) of the striking mold, and V represents the collision speed (m / s) of the striking mold with the slab.

(b)上記(a)の1回の打撃当たりの最低打撃エネルギーは鋳片幅に比例し、下記(3)式により表される。   (B) The minimum impact energy per impact of (a) is proportional to the slab width and is expressed by the following formula (3).

Emin=0.0065×W ・・・・(3)
ここで、Eminは偏析低減効果が得られる1回の打撃当たりの最低打撃エネルギー(J)を、また、Wは鋳片の長辺幅(mm)をそれぞれ表す。
Emin = 0.0065 × W (3)
Here, Emin represents the minimum impact energy (J) per impact at which a segregation reduction effect is obtained, and W represents the long side width (mm) of the slab.

(c)さらに、上記の(3)式で与えられる最低打撃エネルギー以上の打撃を与えるとともに、鋳片の未凝固部を含む鋳造方向の位置を複数の圧下用ガイドロール対により圧下することにより、より一層の偏析低減効果を得ることができる。   (C) Furthermore, by giving an impact higher than the minimum impact energy given by the above formula (3), and by reducing the position in the casting direction including the unsolidified portion of the slab by a plurality of reduction guide roll pairs, A further effect of reducing segregation can be obtained.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)および(2)に示す連続鋳造方法にある。   The present invention has been completed based on the above findings, and the gist thereof is the continuous casting method shown in the following (1) and (2).

(1)横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の短辺面側の少なくとも1ヶ所に配置した打撃振動装置を用いて、鋳片の短辺面を連続して打撃することにより鋳片に振動を付与しつつ鋳造する方法であって、下記(1)式により表される関係を満足する打撃エネルギーを鋳片に与える鋼の連続鋳造方法。   (1) When casting a slab having a rectangular cross-sectional shape, a short side surface of the slab is formed using a striking vibration device disposed at least at one short side of the slab including an unsolidified portion. A continuous casting method of steel in which casting is performed while applying vibration to the slab by continuously striking, and the striking energy satisfying the relationship expressed by the following formula (1) is given to the slab.

E≧0.0065×W ・・・(1)
ここで、Eは鋳片に与える1回の打撃当たりの打撃エネルギー(J)を、Wは鋳片の長辺幅(mm)をそれぞれ表す。
E ≧ 0.0065 × W (1)
Here, E represents the impact energy (J) per impact given to the slab, and W represents the long side width (mm) of the slab.

(2)上記(1)に記載の連続鋳造方法において、さらに、未凝固部を含む鋳片の長辺面を、複数の圧下用ガイドロール対を用いて連続して圧下することを特徴とする鋼の連続鋳造方法。   (2) In the continuous casting method according to the above (1), the long side surface of the slab including the unsolidified portion is continuously reduced using a plurality of reduction guide roll pairs. Steel continuous casting method.

本発明において、「連続して打撃する」とは、未凝固部を含む鋳片が存在する、ある一定の箇所に配置した打撃振動装置により鋳片の短辺面を打撃するに際して、好適な単位時間当たりの打撃数の範囲で、後述する打撃用金型を振動させて、鋳片の短辺面を打撃することを意味し、その打撃数は、60〜480回/分の範囲が望ましい。   In the present invention, “continuously hitting” means a suitable unit for hitting the short side surface of a slab by a striking vibration device arranged at a certain location where a slab containing an unsolidified portion exists. In the range of the number of hits per hour, this means that the hitting die described later is vibrated to hit the short side surface of the slab, and the number of hits is preferably in the range of 60 to 480 times / min.

また、「連続して圧下する」とは、鋳造方向の下流側に向かって連続して配置され、順次、鋳片厚さを低減させるべく圧下勾配をつけられた複数のガイドロール対により鋳片を圧下することを意味し、その圧下勾配は、鋳造方向の長さ1m当たり0.5〜2.5mmの範囲が望ましい。   “Continuous reduction” refers to a slab formed by a plurality of guide roll pairs that are continuously arranged toward the downstream side in the casting direction and are sequentially provided with a reduction gradient to reduce the thickness of the slab. The rolling gradient is preferably in the range of 0.5 to 2.5 mm per meter of length in the casting direction.

本発明の連続鋳造方法によれば、中心偏析、V偏析などのマクロ偏析の発生しない内部品質の良好な鋳片を製造することができる。よって、本発明は、これらの鋳片を素材とする熱間圧延線材、棒鋼、鋼管、厚板などの内部品質の向上に大きく貢献できる。   According to the continuous casting method of the present invention, it is possible to produce a slab having good internal quality in which macro-segregation such as center segregation and V segregation does not occur. Therefore, the present invention can greatly contribute to the improvement of the internal quality of hot rolled wire rods, steel bars, steel pipes, thick plates and the like made from these slabs.

本発明の方法は、前記のとおり、横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の短辺面側の少なくとも1ヶ所に配置した打撃振動装置を用いて、鋳片の短辺面を連続して打撃することにより、鋳片に所定値以上の打撃エネルギーを与えて振動を付与しつつ鋳造する連続鋳造方法である。さらに、上記の連続鋳造方法において、未凝固部を含む鋳片の長辺面を、複数の圧下用ガイドロール対を用いて連続して圧下してもよい。以下に、本発明の連続鋳造方法について詳細に説明する。   As described above, when casting a slab having a rectangular cross-sectional shape, the method of the present invention uses a striking vibration device disposed at least at one location on the short side surface side of the slab including the unsolidified portion. This is a continuous casting method in which the short side surface of the slab is continuously struck to give the slab a striking energy of a predetermined value or more and cast while applying vibration. Furthermore, in the above continuous casting method, the long side surface of the slab including the unsolidified portion may be continuously reduced using a plurality of reduction guide pairs. Below, the continuous casting method of this invention is demonstrated in detail.

(A)発明の基本構成
図1は、鋳片を連続して打撃する装置を連続鋳造機内に設けて本発明の方法を実施する連続鋳造機の例を示す模式図であり、同図(a)は、連続鋳造機の全体概略を模式的に示す縦断面図であり、同図(b)は、同図(a)のA1−A2断面を模式的に示す平面図である。
(A) Basic configuration of the invention
FIG. 1 is a schematic view showing an example of a continuous casting machine in which a device for continuously hitting a slab is provided in a continuous casting machine to carry out the method of the present invention. FIG. It is a longitudinal cross-sectional view which shows the whole outline typically, and the figure (b) is a top view which shows typically the A1-A2 cross section of the figure (a).

浸漬ノズル1を経て鋳型2内に注入された溶鋼3は、鋳型2により冷却され、鋳型2との接触部分から凝固殻5を形成する。凝固殻5は、複数のガイドロール対4により案内されながら徐々にその厚さを増し、未凝固部6を含む鋳片7となる。未凝固部を含む鋳片および凝固完了した鋳片7は、ピンチロール8により鋳造方向の下流側に引き抜かれる。   The molten steel 3 injected into the mold 2 through the immersion nozzle 1 is cooled by the mold 2 and forms a solidified shell 5 from the contact portion with the mold 2. The solidified shell 5 gradually increases in thickness while being guided by the plurality of guide roll pairs 4, and becomes a slab 7 including the unsolidified portion 6. The slab including the unsolidified portion and the slab 7 having been solidified are pulled out to the downstream side in the casting direction by the pinch roll 8.

図1で例示する連続鋳造機においては、符号4aにより示される5つのガイドロール対は、鋳片を軽圧下するためのガイドロール対を示す。この5つのガイドロール対は、圧下勾配を調節でき、軽圧下を行わないようにすることもできる。なお、図1中に符号4で示すガイドロール対は、鋳片を圧下しない通常のガイドロール対を意味する。   In the continuous casting machine illustrated in FIG. 1, the five guide roll pairs indicated by reference numeral 4 a indicate guide roll pairs for lightly reducing the slab. These five guide roll pairs can adjust the rolling gradient and can prevent light rolling. In addition, the guide roll pair shown with the code | symbol 4 in FIG. 1 means the normal guide roll pair which does not reduce a slab.

本発明の方法では、横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の短辺面側の少なくとも1ヶ所に配置した打撃振動装置により、未凝固部を含む鋳片の短辺面を連続して打撃することにより、鋳片に振動を付与しつつ鋳造する。鋳片への打撃は、未凝固部を含む鋳片の短辺面側の少なくとも1ヶ所に配置した打撃振動装置により、連続して打撃する。未凝固部を含む鋳片の短辺面側の2ヶ所、例えば、鋳造方向の鋳片の位置がほぼ同じであって、鋳片の両側の短辺面側の2ヶ所に配置した打撃振動装置により、連続して打撃してもよいし、鋳造方向に2ヶ所以上の未凝固部を含む鋳片の短辺面側に配置した打撃振動装置により、連続して打撃してもよい。   In the method of the present invention, when casting a slab having a rectangular cross-sectional shape, a casting vibrator including an unsolidified portion is formed by a striking vibration device disposed at least at one position on the short side surface side of the slab including the unsolidified portion. By casting the short side surface of the piece continuously, casting is performed while applying vibration to the slab. The slab is continuously struck by a striking vibration device disposed at least at one position on the short side surface side of the slab including the unsolidified portion. The impact vibration device disposed at two locations on the short side surface side of the slab including the unsolidified portion, for example, at the same position of the slab in the casting direction and on the two short side surfaces on both sides of the slab. Thus, it may be hit continuously, or may be hit continuously by a striking vibration device arranged on the short side surface side of the slab including two or more unsolidified portions in the casting direction.

鋳片を連続して打撃する装置として、図1(b)に示すように、先端部に打撃用の金型11を有する打撃振動装置10を用いることができる。このような装置を用いて、未凝固部を含む鋳片の短辺面9を連続して打撃することにより、鋳片に振動を付与することができる。   As a device for continuously striking a slab, as shown in FIG. 1B, a striking vibration device 10 having a striking die 11 at the tip can be used. Using such an apparatus, vibration can be applied to the slab by continuously striking the short side surface 9 of the slab including the unsolidified portion.

鋳片の短辺面を打撃するのは、下記の理由による。すなわち、長辺面を打撃する場合には、長辺の幅方向の全体にわたって打撃効果を得るためには、打撃装置の打撃用金型11を鋳片の長辺幅方向に多数配置する必要が生じ、設備費が上昇するからである。また、鋳片の長辺面側には、打撃振動装置10を配置するための余裕空間が少なく、したがって、打撃振動装置10を配置するために大幅な設備改造を要するからである。   The reason for hitting the short side surface of the slab is as follows. That is, when striking the long side surface, in order to obtain a striking effect over the entire width direction of the long side, it is necessary to arrange a large number of striking dies 11 of the striking device in the long side width direction of the slab. This is because the equipment cost increases. Moreover, it is because there is little margin space for arrange | positioning the impact vibration apparatus 10 in the long side surface side of a slab, Therefore, in order to arrange | position the impact vibration apparatus 10, a large installation modification is required.

打撃振動装置の先端部に配置する打撃用の金型は、耐久性、耐熱性などの観点から、鋳物製の打撃用金型とするのが望ましい。打撃用金型の鋳造方向の長さは、鋳片サイズによるが、100〜500mm程度とするのが望ましい。鋳片の短辺面に平行な鋳造方向の金型の断面形状は、長方形、楕円形状などが望ましい。打撃用金型は交換できる形式とするのが望ましい。例えば、ボルトなどにより金型を打撃振動装置の先端部に取り付ける方式を採用するのが望ましい。また、打撃用金型を振動させる機構としては、例えば、エアーシリンダーや電動ハンマーなどを用いることができる。   From the viewpoint of durability, heat resistance, etc., it is desirable that the hitting die placed at the tip of the hitting vibration device be a casting hitting die. The length in the casting direction of the striking mold depends on the slab size, but is preferably about 100 to 500 mm. The cross-sectional shape of the mold in the casting direction parallel to the short side surface of the slab is preferably rectangular or elliptical. It is desirable that the hitting mold be of a replaceable type. For example, it is desirable to adopt a method in which a die is attached to the tip of the impact vibration device with a bolt or the like. Further, as a mechanism for vibrating the striking mold, for example, an air cylinder, an electric hammer, or the like can be used.

(B)本発明の限定理由および好ましい範囲
鋳片には、下記(1)式により表される関係を満足する打撃エネルギーを連続して付与する必要がある。
(B) Reason for limitation and preferred range of the present invention It is necessary to continuously apply impact energy satisfying the relationship represented by the following formula (1) to the slab.

E≧0.0065×W ・・・(1)
ここで、Eは鋳片に与える1回の打撃当たりの打撃エネルギー(J)を、Wは鋳片の長辺幅(mm)を表す。
なお、上記(1)式の打撃エネルギーは、下記(2)式によりで定義されるエネルギーである。
E ≧ 0.0065 × W (1)
Here, E represents impact energy (J) per impact given to the slab, and W represents the long side width (mm) of the slab.
In addition, the impact energy of said (1) Formula is energy defined by the following (2) Formula.

E=(1/2)×m×V2 ・・・・(2)
ただし、mは打撃用金型の質量(kg)を、Vは打撃用金型の鋳片への衝突速度(m/s)を表す。
E = (1/2) × m × V 2 (2)
Here, m represents the mass (kg) of the striking mold, and V represents the collision speed (m / s) of the striking mold with the slab.

上記(1)式を満足する打撃エネルギーを鋳片に付与すれば、打撃による振動が鋳片内部に十分に伝播するので、成長途中の柱状晶を破断して、凝固組織を微細な結晶組織とすることでき、したがって、十分な偏析低減効果を得ることができる。また、最終凝固部近傍に打撃を付与して振動させる場合においても、生成した等軸晶に振動を十分に伝達させることができるので、等軸晶のブリッジングを防止し、十分な偏析低減効果を得ることができる。   If the striking energy satisfying the above formula (1) is applied to the slab, vibration due to striking sufficiently propagates to the inside of the slab, so that the columnar crystals in the middle of growth are broken and the solidified structure becomes a fine crystal structure. Therefore, a sufficient segregation reduction effect can be obtained. In addition, even when striking and vibrating in the vicinity of the final solidified part, vibration can be sufficiently transmitted to the generated equiaxed crystal, thus preventing bridging of the equiaxed crystal and sufficient segregation reduction effect Can be obtained.

打撃エネルギーを調節するには、打撃用金型の質量の調整、または鋳片への打撃用金型の衝突速度の調整などを行えばよい。鋳片に与える打撃エネルギーの上限値は特に規定しないが、鋳片や連続鋳造機を損傷しない範囲の値とする観点から、500Jを超えない範囲で調節することが望ましい。   In order to adjust the striking energy, the mass of the striking mold may be adjusted, or the collision speed of the striking mold to the slab may be adjusted. The upper limit value of the striking energy applied to the slab is not particularly defined, but it is desirable to adjust it within a range not exceeding 500 J from the viewpoint of making the value within a range that does not damage the slab or the continuous casting machine.

また、単位時間当たりの打撃数は、60〜480回/分とすることが望ましい。その打撃数が60回/分未満では、鋳片の偏析低減効果が鋳片の長手方向で不均一となりやすく、また、480回/分を超えて多くなると、鋳片や連続鋳造機を損傷するおそれがあるため、かえって望ましくないからである。   The number of hits per unit time is preferably 60 to 480 times / minute. If the number of hits is less than 60 times / minute, the segregation reduction effect of the slab tends to be non-uniform in the longitudinal direction of the slab, and if it exceeds 480 times / minute, the slab and the continuous casting machine are damaged. This is because it is not desirable because of fear.

打撃振動装置を未凝固部を含む鋳片の短辺面側に配置するに当たっては、鋳片の中心部固相率が0.1〜0.9に相当する位置に配置するのが望ましい。ここで、中心部固相率とは、鋳片の厚さ方向中心部において、液相と固相の合計量に対して固相量の占める分率をいう。等軸晶などのブリッジングは、中心部固相率が0.1以上の領域で発生することから、鋳片の中心部固相率が0.1未満の位置では、等軸晶などの生成が十分ではなく、鋳片を打撃する効果は小さいからである。また、中心部固相率が0.9を超える領域では、未凝固溶鋼が振動および流動しにくくなるので、等軸晶などのブリッジングまたはブリッジングにより形成された空間部を、鋳片の打撃により破壊することが困難となるからである。   When the striking vibration device is disposed on the short side surface side of the slab including the unsolidified portion, it is desirable to dispose the striking vibration device at a position where the solid fraction at the center of the slab corresponds to 0.1 to 0.9. Here, the central part solid phase ratio means the fraction of the solid phase amount with respect to the total amount of the liquid phase and the solid phase in the central part in the thickness direction of the slab. Since bridging of equiaxed crystals occurs in the region where the solid fraction of the central part is 0.1 or more, the formation of equiaxed crystals is produced at the position where the solid fraction of the central part of the slab is less than 0.1 This is because the effect of hitting the slab is small. Also, in the region where the solid fraction in the central part exceeds 0.9, the unsolidified molten steel is less likely to vibrate and flow, so that the space formed by bridging or bridging such as equiaxed crystals is struck by the slab. This is because it becomes difficult to destroy.

さらに、本発明の方法においては、鋳片の表面を打撃する位置を含み、その上流側から下流側にわたる中心部固相率が0.1〜0.95である鋳片の未凝固部を含む鋳片長手方向の範囲を、複数の圧下用ガイドロール対を用いて、鋳造方向の長さ1m当たり0.5〜2.5mmの割合で圧下するのが望ましい。鋳片を圧下する際に、中心部固相率が0.1未満では、柱状晶の樹枝間などから排出される偏析成分濃化溶鋼の排出量が少なくなり、圧下の効果が小さいからである。一方、中心部固相率が0.95を超えると、未凝固溶鋼が流動しにくくなるので、上記の濃化溶鋼を上流側に排出しにくくなるからである。   Furthermore, the method of the present invention includes a position at which the surface of the slab is hit, and includes an unsolidified portion of the slab whose center solid phase ratio from the upstream side to the downstream side is 0.1 to 0.95. It is desirable to reduce the range in the slab longitudinal direction at a rate of 0.5 to 2.5 mm per 1 m in the length in the casting direction by using a plurality of reduction roll pairs. This is because when the slab is rolled down, if the solid fraction in the central part is less than 0.1, the amount of segregation-concentrated concentrated molten steel discharged from between the branches of the columnar crystals decreases, and the reduction effect is small. . On the other hand, when the solid fraction in the central part exceeds 0.95, the unsolidified molten steel is difficult to flow, and thus it is difficult to discharge the concentrated molten steel upstream.

また、鋳造方向の長さ1m当たり0.5mm未満の圧下では、濃化溶鋼が最終凝固部の近傍に集積するのを防止する効果が小さく、一方、2.5mmを超えると、圧下用ガイドロール対を支える支持枠に撓みが発生し、十分な圧下効果が得られにくくなるからである。   Further, when the rolling is less than 0.5 mm per 1 m in the length in the casting direction, the effect of preventing the concentrated molten steel from accumulating in the vicinity of the final solidified portion is small. This is because the support frame that supports the pair is bent and it becomes difficult to obtain a sufficient reduction effect.

鋳片を圧下する場合においても、前記(1)式で表される関係を満足する打撃エネルギーを鋳片に与える必要がある。(1)式の関係を満足する打撃エネルギーを鋳片に与えることにより、打撃による振動を鋳片内部に十分に伝播させることができ、さらなる偏析低減効果を得ることができるからである。   Even when the slab is squeezed, it is necessary to give the slab impact energy that satisfies the relationship expressed by the formula (1). This is because by giving impact energy satisfying the relationship of the expression (1) to the slab, vibration due to impact can be sufficiently propagated inside the slab, and a further segregation reducing effect can be obtained.

(試験方法)
本発明の連続鋳造方法の効果を確認するため、下記の鋳造試験を行い、その結果を評価した。鋳片を圧下する圧下用ガイドロール対を5対備えた図1に示される構成の連続鋳造装置を用いて、中炭素鋼および高炭素鋼を、厚さ300mm、幅400〜2300mmのブルームまたはスラブに鋳造した。鋳造速度は0.75m/分とした。
(Test method)
In order to confirm the effect of the continuous casting method of the present invention, the following casting test was conducted and the result was evaluated. Using a continuous casting apparatus having the configuration shown in FIG. 1 having five pairs of reduction guide rolls for reducing the slab, a medium carbon steel and a high carbon steel are made into a bloom or slab having a thickness of 300 mm and a width of 400 to 2300 mm. Cast into. The casting speed was 0.75 m / min.

表1に、鋳造に用いた中炭素鋼および高炭素鋼の供試鋼の成分組成を示した。   Table 1 shows the component compositions of the test steels of medium carbon steel and high carbon steel used for casting.

Figure 0004699001
Figure 0004699001

鋳片圧下時の中心部固相率は0.1〜0.9の範囲とし、鋳造方向の長さ1m当たり1.0mmの割合で圧下した。二次冷却は、比水量を0.8リットル/kg−鋼の条件で一定とした。   The solid fraction in the center at the time of slab reduction was in the range of 0.1 to 0.9, and the slab was reduced at a rate of 1.0 mm per 1 m length in the casting direction. In the secondary cooling, the specific water amount was constant under the condition of 0.8 liter / kg-steel.

鋳片の未凝固部を含む位置の片方の短辺面の1ヶ所を打撃振動装置により連続して打撃し、鋳片に振動を付与した。打撃振動装置を配置する際のメニスカスからの距離は10mで一定とし、打撃振動装置の打撃用金型の質量および鋳片への衝突速度を種々変更して試験を行った。鋳片に振動を付与する際に、短辺面を基準面として、短辺面の振動の振幅が±3mmとなるように、鋳片を連続して打撃した。また、打撃振動装置の打撃用金型の振動数(打撃数)は120回/分とし、エアーシリンダー方式により打撃用金型を振動させて打撃振動を付与した。打撃条件は、打撃用金型の質量を15〜300kgとし、衝突速度を0.2〜0.5m/secとした。   One portion of the short side surface at a position including the unsolidified portion of the slab was continuously struck by a striking vibration device to impart vibration to the slab. The distance from the meniscus when placing the striking vibration device was fixed at 10 m, and the test was performed by changing the mass of the striking die of the striking vibration device and the collision speed with the slab. When vibration was applied to the slab, the slab was continuously struck with the short side surface as the reference plane so that the amplitude of vibration on the short side surface was ± 3 mm. Moreover, the vibration frequency (the number of hits) of the hitting vibration device of the hitting vibration device was 120 times / minute, and the hitting mold was vibrated by an air cylinder method to give the hitting vibration. The striking conditions were such that the mass of the striking mold was 15 to 300 kg and the collision speed was 0.2 to 0.5 m / sec.

打撃振動装置の先端部に配置する打撃用金型のブルームとの接触面の形状は、鋳片厚さ方向の幅を200mm、鋳造方向の長さを400mmとし、種々の肉厚の直方体のブロック形状のものとした。   The shape of the contact surface of the hammering die placed on the tip of the hammering vibration device with the bloom is 200 mm in the thickness direction of the slab and 400 mm in the length of the casting direction. Shaped.

各鋳造試験において、鋳片のサンプルを採取し、そのサンプルの横断面の厚さ方向および幅方向の中心部相当の位置から、厚さ方向中心部を挟んで厚さ方向に10mm、幅方向に200mm、鋳造方向に15mm程度の試験片を採取した。これらの試験片を用いて、鋳片の厚さ方向中心部に相当する位置の26ヶ所から、7mmピッチで直径2mmのドリル刃により切り粉を採取して、C含有率を分析により求め、そのC含有率(C)(質量%)をレードル内溶鋼のC含有率(C0)(質量%)で除して、比(C/C0)の値を算出し、前記比の最大値(以下「最大中心偏析率」という)を求めた。なお、試験結果の評価は、最大中心偏析率が1.15以下の場合を良好とし、1.15を超える場合を不良とした。 In each casting test, a sample of a slab is taken, and from the position corresponding to the central portion in the thickness direction and the width direction of the cross section of the sample, the thickness direction is 10 mm across the central portion in the thickness direction, in the width direction. Test specimens of about 200 mm and about 15 mm in the casting direction were collected. Using these test pieces, chips were collected from 26 locations corresponding to the center of the slab in the thickness direction with a drill blade having a diameter of 2 mm at a pitch of 7 mm, and the C content was determined by analysis. By dividing the C content (C) (mass%) by the C content (C 0 ) (mass%) of the molten steel in the ladle, the value of the ratio (C / C 0 ) is calculated, and the maximum value of the ratio ( (Hereinafter referred to as “maximum center segregation rate”). In the evaluation of the test results, the case where the maximum center segregation rate was 1.15 or less was judged good, and the case where it exceeded 1.15 was judged as bad.

(試験結果)
表2に試験条件および試験結果を示す。
(Test results)
Table 2 shows test conditions and test results.

Figure 0004699001
Figure 0004699001

表2において、試験番号1〜22は、本発明例についての試験であり、試験番号23〜44は、比較例についての試験である。   In Table 2, test numbers 1 to 22 are tests for the examples of the present invention, and test numbers 23 to 44 are tests for the comparative examples.

本発明例では、同表に示したとおり、打撃エネルギーが前記(1)式の右辺の値以上、すなわち、(1)式で表される関係を満足しており、鋼種および鋳片の圧下の有無にかかわらず、鋳片の最大偏析率が1.15を下回る良好な結果が得られた。これに対して、比較例では、打撃エネルギーが(1)式の右辺の値未満、すなわち、(1)式の関係を満足せず、鋳片の最大偏析率が1.15を超える劣った結果となった。   In the example of the present invention, as shown in the table, the impact energy is equal to or greater than the value on the right side of the formula (1), that is, the relationship represented by the formula (1) is satisfied. Regardless of the presence or absence, good results were obtained in which the maximum segregation rate of the slab was less than 1.15. In contrast, in the comparative example, the impact energy is less than the value on the right side of the formula (1), that is, the relationship of the formula (1) is not satisfied, and the maximum segregation rate of the slab exceeds 1.15. It became.

図2は、鋳片の偏析状況に及ぼす鋳片の長辺幅と打撃エネルギーとの関係を示す図である。同図において、○印は、鋳片の最大偏析率が1.15を下回った試験結果であり、●印は、鋳片の最大偏析率が1.15を超えた試験結果である。   FIG. 2 is a diagram showing the relationship between the long side width of the slab and the impact energy that affects the segregation situation of the slab. In the figure, ◯ indicates a test result in which the maximum segregation rate of the slab is less than 1.15, and ● indicates a test result in which the maximum segregation rate of the slab exceeds 1.15.

前記(1)式の関係を満足する領域(図2において、E=0.0065×Wの直線の上側の領域)では、鋳片の最大偏析率が1.15を下回る良好な結果が得られており、これは、衝撃エネルギーが鋳片内部にまで十分に伝播し、偏析低減効果が発揮されたことによる。しかしながら、(1)式の関係を満足しない領域(同図中の直線の下側の領域)では、打撃エネルギーが鋳片内部にまで十分に伝播せず、その結果、鋳片の最大偏析率が1.15を上回る劣った結果になったと推察される。   In the region satisfying the relationship of the above expression (1) (the region on the upper side of the straight line E = 0.005 × W in FIG. 2), a good result is obtained in which the maximum segregation rate of the slab is less than 1.15. This is because the impact energy is sufficiently propagated to the inside of the slab and the effect of reducing segregation is exhibited. However, in the region that does not satisfy the relationship of the formula (1) (the region below the straight line in the figure), the impact energy does not sufficiently propagate to the inside of the slab, and as a result, the maximum segregation rate of the slab is increased. It is inferred that the result was inferior above 1.15.

図3は、本発明例および比較例についての鋳片の最大中心偏析率を、圧下の有無別に比較した図である。同図の結果によれば、未凝固部を含む鋳片に圧下を加えることにより、本発明例および比較例ともに鋳片の最大中心偏析率は低下し、偏析状況は好転している。   FIG. 3 is a diagram comparing the maximum center segregation rate of slabs according to the present invention example and the comparative example according to the presence or absence of reduction. According to the results shown in the figure, by applying the reduction to the slab including the unsolidified portion, the maximum center segregation rate of the slab is lowered in both the inventive example and the comparative example, and the segregation state is improved.

上記の結果から、鋳片に前記(1)式の関係を満足する条件で打撃を付与しつつ、鋳片の未凝固部に圧下を加えることにより、さらに一層の偏析低減効果が得られることが確認された。   From the above results, it is possible to obtain a further segregation reduction effect by applying a reduction to the unsolidified portion of the slab while giving a blow to the slab under the condition satisfying the relationship of the above formula (1). confirmed.

図4は、本発明の連続鋳造方法の実施前および実施後において、厚板工場において調査した内質格落ち率を比較して示した図である。ここで、内質格落ち率(%)とは、厚板製品の内部品質についての超音波試験(UST)において、内部品質欠陥発生と判定された検査結果数を、総検査数で除した百分比率を意味する。内部品質欠陥とは、板厚の中心付近の欠陥であって、スラブの中心偏析、V偏析などのマクロ偏析を原因とする内部欠陥である。   FIG. 4 is a diagram showing a comparison of the quality degradation rate investigated in the thick plate factory before and after the continuous casting method of the present invention. Here, the internal quality failure rate (%) is the percentage obtained by dividing the number of inspection results determined to be internal quality defects by the total number of inspections in the ultrasonic test (UST) for the internal quality of the plate product. Means rate. The internal quality defect is a defect near the center of the plate thickness, and is an internal defect caused by macrosegregation such as center segregation or V segregation of the slab.

本発明に係る連続鋳造方法の実施により、厚板工場における内質格落ち率は、本発明法を実施する以前の内質格落ち率に比較して約1/4にまで低減し、厚板製品の内部品質改善に及ぼす本発明法の効果が確認された。   By implementing the continuous casting method according to the present invention, the quality degradation rate in the plank factory is reduced to about ¼ compared to the quality degradation rate before the implementation of the method of the present invention. The effect of the method of the present invention on the improvement of the internal quality of the product was confirmed.

本発明の連続鋳造方法によれば、未凝固部分を含む鋳片の短辺面に、偏析改善効果を与えるための最低限度以上のエネルギーを有する打撃を付与して、鋳片を振動させながら鋳造することにより、中心偏析、V偏析などのマクロ偏析の発生を防止した内部品質の良好な鋳片を製造することができる。したがって、本発明の方法は、内部品質の良好な熱間圧延線材、棒鋼、鋼管、厚板などを製造するための素材鋳片を供給する連続鋳造分野において、広範に適用できる鋳造方法である。   According to the continuous casting method of the present invention, the short side surface of a slab including an unsolidified portion is subjected to casting having energy exceeding the minimum level for giving a segregation improvement effect, and the slab is vibrated while being vibrated. By doing this, it is possible to manufacture a slab of good internal quality that prevents the occurrence of macrosegregation such as center segregation and V segregation. Therefore, the method of the present invention is a casting method that can be widely applied in the continuous casting field for supplying raw material slabs for producing hot rolled wire rods, steel bars, steel pipes, thick plates and the like having good internal quality.

鋳片を連続して打撃する装置を設けた連続鋳造機の例を示す模式図であり、同図(a)は、連続鋳造機の全体概略を模式的に示す縦断面図であり、同図(b)は、同図(a)のA1−A2断面を模式的に示す平面図である。It is a schematic diagram which shows the example of the continuous casting machine provided with the apparatus which hits a slab continuously, The same figure (a) is a longitudinal cross-sectional view which shows the whole outline of a continuous casting machine typically, (B) is a top view which shows typically the A1-A2 cross section of the figure (a). 鋳片の偏析状況に及ぼす鋳片の長辺幅と打撃エネルギーとの関係を示す図である。It is a figure which shows the relationship between the long side width | variety of a slab and impact energy which affects the segregation condition of a slab. 本発明例および比較例についての鋳片の最大中心偏析率を、圧下の有無別に比較した図である。It is the figure which compared the maximum center segregation rate of the slab about the example of this invention, and the comparative example according to the presence or absence of reduction. 本発明法の実施前後における厚板工場での内質格落ち率を比較した図である。It is the figure which compared the internal quality degradation rate in the plate factory before and behind implementation of this invention method.

符号の説明Explanation of symbols

1:浸漬ノズル、 2:鋳型、 3:溶鋼、 4:ガイドロール対、
4a:鋳片を圧下するガイドロール対、 5:凝固殻、 6:未凝固部、
7:鋳片、 8:ピンチロール、 9:鋳片の短辺面、 10:打撃振動装置、
11:打撃用金型。
1: immersion nozzle, 2: mold, 3: molten steel, 4: guide roll pair,
4a: a pair of guide rolls for rolling down the slab, 5: a solidified shell, 6: an unsolidified part,
7: slab, 8: pinch roll, 9: short side surface of slab, 10: impact vibration device,
11: Die for hitting.

Claims (2)

横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の短辺面側の少なくとも1ヶ所に配置した打撃振動装置を用いて、鋳片の短辺面を連続して打撃することにより鋳片に振動を付与しつつ鋳造する方法であって、下記(1)式で表される関係を満足する打撃エネルギーを鋳片に与えることを特徴とする鋼の連続鋳造方法。
E≧0.0065×W ・・・(1)
ここで、Eは鋳片に与える1回の打撃当たりの打撃エネルギー(J)を、Wは鋳片の長辺幅(mm)をそれぞれ表す。
When casting a slab having a rectangular cross-sectional shape, the short side surface of the slab is continuously formed by using a striking vibration device disposed at least at one short side of the slab including the unsolidified portion. A continuous casting method for steel, which is a method of casting while applying vibration to a slab by striking, and applying impact energy satisfying the relationship represented by the following formula (1) to the slab.
E ≧ 0.0065 × W (1)
Here, E represents the impact energy (J) per impact given to the slab, and W represents the long side width (mm) of the slab.
さらに、未凝固部を含む鋳片の長辺面を、複数の圧下用ガイドロール対を用いて連続して圧下することを特徴とする請求項1に記載の鋼の連続鋳造方法。
The continuous casting method of steel according to claim 1, wherein the long side surface of the slab including the unsolidified portion is continuously reduced using a plurality of reduction guide pairs.
JP2004303406A 2004-10-18 2004-10-18 Continuous casting method Expired - Fee Related JP4699001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303406A JP4699001B2 (en) 2004-10-18 2004-10-18 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303406A JP4699001B2 (en) 2004-10-18 2004-10-18 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2006110620A JP2006110620A (en) 2006-04-27
JP4699001B2 true JP4699001B2 (en) 2011-06-08

Family

ID=36379564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303406A Expired - Fee Related JP4699001B2 (en) 2004-10-18 2004-10-18 Continuous casting method

Country Status (1)

Country Link
JP (1) JP4699001B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890981B2 (en) * 2006-07-11 2012-03-07 株式会社神戸製鋼所 Continuous casting method of slab steel with little center segregation
KR101183420B1 (en) * 2007-08-08 2012-09-14 수미도모 메탈 인더스트리즈, 리미티드 Hammering vibrator in continuous casting
JP5188862B2 (en) 2008-04-04 2013-04-24 株式会社Ihi Continuous hammering device for continuous casting of slabs
TWI446979B (en) * 2008-12-18 2014-08-01 Nippon Steel & Sumitomo Metal Corp Continuous vibration when the vibration device
JP5272720B2 (en) * 2008-12-25 2013-08-28 新日鐵住金株式会社 Steel continuous casting method
CN103464704A (en) * 2013-09-11 2013-12-25 钢铁研究总院 Vibration hammer device for continuous casting billet and using method
CN108526423A (en) * 2018-03-29 2018-09-14 马鞍山钢铁股份有限公司 A kind of method, control method and device of slab quality improving casting process solidification middle and later periods solid-liquid two-phase region mobility
CN108500226A (en) * 2018-03-29 2018-09-07 马鞍山钢铁股份有限公司 A kind of continuous casting and solidifying course control method for use inhibiting column crystals growth

Also Published As

Publication number Publication date
JP2006110620A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP5029694B2 (en) Stroke vibration device for continuous casting
JP5272720B2 (en) Steel continuous casting method
JP6115735B2 (en) Steel continuous casting method
JP4699001B2 (en) Continuous casting method
JP3835185B2 (en) Steel continuous casting method
JP5604946B2 (en) Steel continuous casting method
JP4577235B2 (en) Steel continuous casting method and impact vibration device
JP4055689B2 (en) Continuous casting method
JP2003334641A (en) Continuous steel casting method
JP2007136496A (en) Continuous casting method and continuously cast slab
JP5327006B2 (en) Steel continuous casting method and extra-thick steel plate
JP3588411B2 (en) Stainless steel continuous casting method
JP3360618B2 (en) Continuous casting method
JP3356100B2 (en) Continuous casting method
JP2014231086A (en) Method for continuously casting steel
JP7031628B2 (en) Continuous steel casting method
TWI446979B (en) Continuous vibration when the vibration device
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JP3055462B2 (en) Continuous casting method
JP3395717B2 (en) Continuous casting method
JP2005262269A (en) Method for continuously casting steel
JP4458796B2 (en) Continuous casting equipment
JP3915456B2 (en) Ingot-making method
JP2000301304A (en) Continuously cast slab and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4699001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees