JP4696893B2 - Method for evaluating local buckling performance of steel pipe, material design method for steel pipe, and method for manufacturing steel pipe - Google Patents

Method for evaluating local buckling performance of steel pipe, material design method for steel pipe, and method for manufacturing steel pipe Download PDF

Info

Publication number
JP4696893B2
JP4696893B2 JP2005362651A JP2005362651A JP4696893B2 JP 4696893 B2 JP4696893 B2 JP 4696893B2 JP 2005362651 A JP2005362651 A JP 2005362651A JP 2005362651 A JP2005362651 A JP 2005362651A JP 4696893 B2 JP4696893 B2 JP 4696893B2
Authority
JP
Japan
Prior art keywords
strain
steel pipe
local buckling
yield
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005362651A
Other languages
Japanese (ja)
Other versions
JP2007163392A (en
Inventor
信久 鈴木
克身 正村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005362651A priority Critical patent/JP4696893B2/en
Publication of JP2007163392A publication Critical patent/JP2007163392A/en
Application granted granted Critical
Publication of JP4696893B2 publication Critical patent/JP4696893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス・石油パイプライン等に用いる鋼管の局部座屈性能評価方法、鋼管の材質設計方法、鋼管の製造方法に関する。
The present invention relates to a method for evaluating local buckling performance of a steel pipe used in a gas / petroleum pipeline, a steel pipe material design method, and a steel pipe manufacturing method .

ガスパイプライン、石油パイプラインはエネルギー供給の根幹として建設が進められてきている。近年では、特に天然ガス需要の増大を背景とし、消費地から遠く離れた地にガス田が開発されることが多い。このため、近年の新しいパイプラインは長距離化の傾向を呈し、大量輸送のために大径化、高圧化の傾向が強まってきている。
このような新しいパイプラインでは、高強度鋼管を適用して大口径でも薄い管厚で高い内圧に耐えられることが要求されるようになってきている。管厚を薄くすることによって、現地における溶接費やパイプの輸送費が低減されパイプラインの建設および操業のトータルコストの低減が図られるからである。
Construction of gas pipelines and oil pipelines has been promoted as the basis of energy supply. In recent years, gas fields have often been developed far away from consumption areas, especially against the backdrop of increasing demand for natural gas. For this reason, new pipelines in recent years have a tendency to increase the distance, and the tendency to increase the diameter and pressure for mass transportation has increased.
In such a new pipeline, it has been required to use a high-strength steel pipe and to withstand a high internal pressure with a thin pipe thickness even with a large diameter. This is because by reducing the pipe thickness, the welding costs and pipe transportation costs at the site are reduced, and the total cost of construction and operation of the pipeline can be reduced.

ところで、鋼管は引張荷重に対しては材料の延性を十分に活かせるが、圧縮負荷に対しては断面形状が薄肉円筒であるため座屈が発生する。そして、一様伸びが10%前後であるのに対し、圧縮負荷による座屈歪は1〜2%程度であり、パイプラインの塑性設計では、圧縮局部座屈歪が支配因子となる可能性が高い。特に管厚の薄い鋼管では圧縮局部座屈歪が小さくなる傾向があり、圧縮局部座屈歪を大きくすることが重要となる。   By the way, although a steel pipe can fully utilize the ductility of a material with respect to a tensile load, since a cross-sectional shape is a thin-walled cylinder with respect to a compression load, buckling occurs. And while the uniform elongation is around 10%, the buckling strain due to the compression load is about 1 to 2%, and in the plastic design of the pipeline, the compression local buckling strain may be a dominant factor. high. In particular, in a steel pipe having a thin pipe thickness, the compression local buckling strain tends to be small, and it is important to increase the compression local buckling strain.

そこで、圧縮局部座屈歪を大きくして座屈性能を高めるために以下のような提案がなされている。
すなわち、試験片長手方向を鋼管の軸方向に一致させて採取した引張試験片を用いて引張試験を行い、得られた公称応力−公称歪曲線において、降伏点からオンロード歪量が5%までのいずれの歪量においても、公称応力/公称歪の勾配が正となる鋼管は、勾配が0または負となる鋼管に比較して局部座屈を起こす限界の外径/管厚比が著しく大きく、局部座屈を起こしにくいとの知見から、軸方向の引張試験により得られる公称応力−公称歪曲線において、降伏点からオンロード歪が5%までのいずれの歪においても公称応力/公称歪の勾配が正となるような鋼管とする(特許文献1参照)。
特開平9−196243号公報
Accordingly, the following proposals have been made to increase the buckling performance by increasing the compression local buckling strain.
That is, a tensile test was performed using a tensile test piece collected with the test piece longitudinal direction coinciding with the axial direction of the steel pipe, and in the obtained nominal stress-nominal strain curve, the on-load strain amount was 5% from the yield point. For any of these strains, steel pipes with a positive nominal stress / nominal strain gradient have a significantly larger limit of outer diameter / pipe thickness that causes local buckling than steel pipes with a zero or negative gradient. From the knowledge that local buckling is unlikely to occur, in the nominal stress-nominal strain curve obtained by the axial tensile test, the nominal stress / nominal strain of any strain from the yield point to the on-load strain of 5% The steel pipe has a positive gradient (see Patent Document 1).
JP-A-9-196243

上記特許文献1に示されるように、従来、鋼管の圧縮局部座屈歪を大きくするには鋼材の応力歪曲線がいわゆる連続硬化型(詳細は後述)であることが要求されていた。
近年においては、このような考え方がパイプライン業界では一般的であり、逆に連続硬化型でない降伏棚のあるものでは大きな圧縮局部座屈歪が得られないとして、そのような材料はパイプライン用の鋼管には不向きであると認識されていた。
As shown in Patent Document 1 above, conventionally, in order to increase the compression local buckling strain of a steel pipe, the stress strain curve of the steel material has been required to be a so-called continuous hardening type (details will be described later).
In recent years, this concept is common in the pipeline industry, and conversely, such materials with a yielding shelf that is not a continuous hardening type cannot obtain a large compression local buckling strain. It was recognized as unsuitable for steel pipes.

ここで、連続硬化型応力歪曲線とは、材料の引張試験によって得られる応力歪曲線において弾性域を超えた後に降伏棚が生じることなく、歪の増加に伴って応力が増加して滑らかな曲線となるものである(図1参照)。
また、降伏棚型応力歪曲線とは、材料の引張試験によって得られる応力歪曲線において線形域の後に降伏棚を生ずるものをいう(図1参照)。なお、降伏棚型応力歪曲線における直線で示される弾性域を線形域、応力が増加することなく歪が増加する領域を降伏棚域、降伏棚終点後の滑らかな曲線領域を歪硬化域、歪硬化域が開始する歪を歪硬化開始歪という(図2参照)。
なお、図2から分かるように、歪硬化開始歪は降伏棚終点歪に一致する。したがって、本明細書において降伏棚に着目したときには降伏棚終点歪と言い、歪硬化域に着目したときには歪硬化開始歪と言うことがあるが、これらは同一の値である。
Here, the continuous-curing stress-strain curve is a smooth curve in which the stress increases as the strain increases without yielding a shelf after exceeding the elastic range in the stress-strain curve obtained by tensile testing of the material. (See FIG. 1).
Moreover, the yield shelf type stress-strain curve is a stress-strain curve obtained by a tensile test of a material that yields a yield shelf after a linear region (see FIG. 1). Note that the elastic region indicated by the straight line in the yield shelf type stress-strain curve is the linear region, the region where the strain increases without increasing the stress is the yield region, the smooth curved region after the end of the yield shelf is the strain hardening region, the strain The strain at which the hardening region starts is called strain hardening start strain (see FIG. 2).
Note that, as can be seen from FIG. 2, the strain hardening start strain coincides with the yield shelf end strain. Accordingly, when attention is paid to the yield shelf in this specification, it is sometimes referred to as yield shelf end point strain, and when attention is paid to the strain hardening region, it may be referred to as strain hardening starting strain, which are the same value.

上記のように降伏棚型の応力歪曲線を有する鋼管(降伏棚モデルの鋼管)の圧縮局部座屈歪は、連続硬化型の応力歪曲線を有する鋼管(連続硬化モデルの鋼管)よりも小さいというのが一般的な認識である。このため、パイプラインの建設のように座屈性能が高い鋼管を得ようとする場合、降伏棚モデルの鋼管は、工学的な判断に基づいて自動的に排除されているのが現状である。
なお、連続硬化モデルの鋼管は、鋼管の化学成分や造管前の鋼板の圧延条件を制御し、あるいは造管中や造管後の鋼管に熱処理や加工処理を施すことによって得られる。
As mentioned above, the compression local buckling strain of a steel pipe having a yield-shelf-type stress-strain curve (yield-shelf model steel pipe) is smaller than that of a steel pipe having a continuous-hardening-type stress-strain curve (steel pipe of a continuous hardening model). This is a general recognition. For this reason, when trying to obtain a steel pipe with high buckling performance as in the construction of a pipeline, the steel pipe of the yield shelf model is automatically excluded based on engineering judgment.
In addition, the steel pipe of the continuous hardening model is obtained by controlling the chemical composition of the steel pipe and the rolling conditions of the steel plate before pipe making, or by subjecting the steel pipe during or after pipe making to heat treatment or processing.

しかしながら、鋼管の製造途中においては、連続硬化型を維持していたとしても、例えば防食のためのコーティング処理のように熱処理を加えることによって、材質が変化してしまい連続硬化型を維持できなくなってしまう場合もある。
このような場合には、降伏棚モデルとなってしまい、従来の考えであれば、このような鋼管は局部座屈性能が低いとして例えばパイプライン用の鋼管としては不向きであると判断されることになる。
しかしながら、このようなものを一律排除するのは現実的でない。かといって、従来では降伏棚モデルを一律に排除する考え方しかなかったために、どのようなものであればパイプライン用に使用できるかを判定することができなかったのである。
However, even during the production of steel pipes, even if the continuous hardening type is maintained, the material changes due to heat treatment such as a coating process for anticorrosion, and the continuous hardening type cannot be maintained. Sometimes it ends up.
In such a case, it becomes a yield shelf model, and if it is a conventional idea, such a steel pipe is judged to be unsuitable as a steel pipe for a pipeline, for example, because the local buckling performance is low. become.
However, it is not realistic to eliminate such things uniformly. However, in the past, since there was only the idea of eliminating the yield shelf model uniformly, it was not possible to determine what type could be used for the pipeline.

本発明は係る課題を解決するためになされたものであり、降伏棚モデルのものを例えばパイプラインのような局部座屈性能に優れることが要求される用途に適用できるかどうかを判定する鋼管の局部座屈性能評価方法を提供することを目的としている。
また、上記鋼管の局部座屈性能評価方法の技術思想を用いて鋼管の材質設計をする方法を提供することを目的としている。
さらに、前記鋼管の材質設計方法を用いた鋼管の製造方法を提供することを目的としている。
The present invention has been made to solve such a problem, and it is a steel pipe that determines whether a yield shelf model can be applied to an application that requires excellent local buckling performance such as a pipeline. It aims to provide a local buckling performance evaluation method.
It is another object of the present invention to provide a method for designing the material quality of a steel pipe using the technical idea of the local buckling performance evaluation method for the steel pipe.
Furthermore, it aims at providing the manufacturing method of the steel pipe using the material design method of the said steel pipe.

前述のように、降伏棚モデルの鋼管の場合、鋼管の座屈性能は低く、該鋼管は大きな変形性能が要求されるパイプラインへの適用は不適当であると考えられてきた。
つまり、従来の鋼管の評価方法を図示すると、図3(a)に示すように、連続硬化モデルかどうかのみを判定基準として、連続硬化モデルの場合にはパイプライン等への適用の可能性ありと評価し、連続硬化モデルでない、すなわち降伏棚モデルの場合にはパイプライン等への適用の可能性なしと評価していたのである。
しかしながら、このような考えに固執すると、本来的には連続硬化モデルモデルであったものが塗覆装のための熱処理などにより、降伏棚モデルへと変化したような場合には、もはやパイプラインには使用できないことになってしまう。
As described above, in the case of the steel pipe of the yield shelf model, the buckling performance of the steel pipe is low, and it has been considered that the steel pipe is inappropriate for application to a pipeline that requires a large deformation performance.
In other words, when a conventional steel pipe evaluation method is illustrated, as shown in FIG. 3A, only a continuous hardening model is used as a criterion, and in the case of a continuous hardening model, there is a possibility of application to a pipeline or the like. In the case of the non-continuous hardening model, that is, the yield shelf model, it was evaluated that there was no possibility of application to a pipeline or the like.
However, if you stick to this idea, if a model that was originally a continuous hardening model changes to a yield shelf model due to heat treatment for coating, etc., it will no longer be in the pipeline. Will not be usable.

そこで、発明者は従来の連続硬化モデルか降伏棚モデルかという2者択一で鋼管の局部座屈性能を峻別することに疑問を感じ、図3(b)に示すように、降伏棚モデルであっても所定の判定基準を満たす場合には連続硬化モデルと同様の局部座屈性能を発揮し、パイプライン等への適用の可能性があるものがあるのではないかとの着想のもとに、降伏棚モデルのうちどのような基準を満たすものであれば連続硬化モデルと同等の局部座屈性能を発揮できる可能性があるのかの検討を重ね、その判定方法を見出し、本発明を完成したものである。   Therefore, the inventor felt the question of distinguishing the local buckling performance of the steel pipe by choosing between the conventional continuous hardening model and the yield shelf model, and as shown in FIG. Even if it meets the predetermined criteria, it exhibits the same local buckling performance as the continuous hardening model, and is based on the idea that there is a possibility of application to pipelines, etc. In addition, the criteria for the yield-shelf model satisfying the possibility of local buckling performance equivalent to that of the continuous hardening model are repeatedly examined, the determination method is found, and the present invention has been completed. Is.

発明者はまず、降伏棚モデルの場合には何ゆえに局部座屈性能が低いのかを検討した。
パイプラインにおいて最も考慮すべき点は曲げ変形に対する変形性能である。しかし、曲げ変形に対する変形性能を示す曲げ座屈歪に関する理論式は存在しない。そこで、発明者は圧縮力を受ける鋼管の圧縮力に対する変形性能を示す圧縮局部座屈歪を表す基礎式である下記(1)式に着目した。
The inventor first examined why the local buckling performance is low in the case of the yield shelf model.
The most important point to consider in the pipeline is the deformation performance against bending deformation. However, there is no theoretical formula for bending buckling strain that indicates deformation performance against bending deformation. Therefore, the inventor has paid attention to the following formula (1), which is a basic formula representing a compression local buckling strain indicating a deformation performance with respect to the compressive force of the steel pipe that receives the compressive force.

Figure 0004696893
Figure 0004696893

(1)式において、εcrは圧縮局部座屈歪、νはポアソン比、tは管厚、Dは管径をそれぞれ示している。また、Escrは、降伏棚モデルの応力歪曲線を示した図4において、原点と座屈点とを結ぶ線の傾き(以下、「割線係数」という)を示し、ETcrは座屈点における応力歪曲線の傾き(以下、「接線係数」という)を示している。また、図中εは歪硬化開始点における歪を表す。但し、図4において、歪硬化域における応力歪曲線は、任意の関係を表現するために曲線で描いている。
(1)式において、塑性変形する場合のポアソン比νとして0.5を代入して整理すると下記(2)式となる。

Figure 0004696893
In the equation (1), ε cr is a compression local buckling strain, ν is a Poisson's ratio, t is a tube thickness, and D is a tube diameter. In addition, E scr indicates the slope of the line connecting the origin and the buckling point (hereinafter referred to as “secant modulus”) in FIG. 4 showing the stress-strain curve of the yield shelf model, and E Tcr is at the buckling point. The slope of the stress-strain curve (hereinafter referred to as “tangent coefficient”) is shown. In the figure, ε H represents the strain at the strain hardening start point. However, in FIG. 4, the stress-strain curve in the strain hardening region is drawn with a curve in order to express an arbitrary relationship.
In equation (1), substituting 0.5 as the Poisson's ratio ν for plastic deformation, the following equation (2) is obtained.
Figure 0004696893

鋼管の圧縮局部座屈歪εcrと管径管厚比(D/t)の関係が前述の(2)式に示されている。そこで、横軸に管径管厚比(D/t)を取り、縦軸に圧縮局部座屈歪εcrを取って(2)をグラフ表示すると図5のようになる。
図5から分かるように、鋼管のD/tが小さい(厚肉鋼管)場合には圧縮局部座屈歪εcrは大きく、鋼管のD/tの増加、すなわち鋼管の薄肉化と共に圧縮局部座屈歪εcrが減少する。そして、圧縮局部座屈歪εcrが歪硬化開始歪εHと一致したところで圧縮局部座屈歪εcrは急激に減少し、以降の圧縮局部座屈歪εcrは降伏歪εyとほぼ同じ歪となる。
The relationship between the compression local buckling strain ε cr of the steel pipe and the pipe diameter pipe thickness ratio (D / t) is shown in the aforementioned equation (2). Accordingly, FIG. 5 shows a graph of (2) with the pipe diameter ratio (D / t) on the horizontal axis and the compression local buckling strain ε cr on the vertical axis.
As can be seen from FIG. 5, when the D / t of the steel pipe is small (thick-walled steel pipe), the compression local buckling strain ε cr is large, and the D / t of the steel pipe increases, that is, the compression local buckling with the thinning of the steel pipe. The strain ε cr decreases. Then, when the compression local buckling strain ε cr coincides with the strain hardening initiation strain ε H , the compression local buckling strain ε cr rapidly decreases, and the subsequent compression local buckling strain ε cr is almost the same as the yield strain ε y. It becomes distortion.

図5から降伏棚モデルの鋼管の座屈性能が低い理由として、圧縮局部座屈歪εcrが歪硬化開始歪εHと一致したところで圧縮局部座屈歪は急激に減少してしまうことが上げられる。これは、降伏棚領域では、応力が増加しない状態で変形が進行するため、降伏棚領域で座屈する鋼管は降伏歪の直後に座屈波形が成長し、圧縮局部座屈歪は近似的には降伏歪となってしまうからである。 From FIG. 5, the reason for the low buckling performance of the yield-shelf model steel pipe is that when the compression local buckling strain ε cr coincides with the strain hardening initiation strain ε H , the compression local buckling strain rapidly decreases. It is done. This is because, in the yield shelf region, deformation progresses without increasing the stress, so the buckling waveform grows immediately after the yield strain in steel pipes buckling in the yield shelf region, and the compression local buckling strain is approximately This is because yield strain occurs.

以上検討したように、降伏棚モデルの鋼管の変形性能が低い理由として降伏棚領域で座屈する鋼管の圧縮局部座屈歪は近似的には降伏歪となってしまうことが挙げられる。このことから、降伏棚モデルの鋼管はその応力歪曲線における歪硬化開始歪εHの値、換言すれば降伏棚の長さが鋼管の変形性能に関連していると考えられる。
すなわち、歪硬化開始歪εHの値が小さい、すなわち降伏棚の長さが短い鋼管は、歪硬化開始歪εHの値が大きい、すなわち降伏棚の長さが長いものよりも変形性能に優れると考えられる。
したがって、降伏棚モデルの鋼管の変形性能を評価するのに歪硬化開始歪εHの値を指標とすることが有効である。
As discussed above, the reason why the deformation performance of the steel pipe of the yield shelf model is low is that the compression local buckling strain of the steel pipe buckling in the yield shelf region is approximately yield strain. From this, it is considered that the yield strain model steel pipe of the yield shelf model is related to the deformation performance of the steel pipe, in other words, the value of the strain hardening initiation strain ε H in other words, the length of the yield shelf.
That is, a steel pipe having a small strain hardening initiation strain ε H , that is, a short yield shelf length, is superior in deformation performance to a steel tube having a large strain hardening initiation strain ε H , that is, a long yield shelf length. it is conceivable that.
Therefore, it is effective to use the value of strain hardening onset strain ε H as an index to evaluate the deformation performance of the steel pipe of the yield shelf model.

発明者は降伏棚長さの他に変形性能を評価する指標についてさらに検討を重ねた。
そして、発明者は(2)式によれば、ETcr/Escrが大きくなることで圧縮局部座屈歪εcrが大きくなることに着目した。図4からわかるように、ETcrは応力歪曲線における傾きであることから、降伏棚終点近傍において応力歪曲線の傾きが大きいことが圧縮局部座屈歪εcrを大きくすることになっているとの知見を得た。
このことから、降伏棚モデルの鋼管の変形性能を評価するのに応力歪曲線の傾きを指標とすることが有効であることを見出した。
The inventor conducted further studies on an index for evaluating deformation performance in addition to the yield shelf length.
The inventor paid attention to the fact that the compression local buckling strain ε cr increases as E Tcr / E scr increases according to the equation (2). As can be seen from FIG. 4, since E Tcr is the slope in the stress strain curve, a large slope of the stress strain curve in the vicinity of the yield shelf end point increases the compression local buckling strain ε cr . I got the knowledge.
From this, it was found that it is effective to use the slope of the stress-strain curve as an index for evaluating the deformation performance of the steel pipe of the yield shelf model.

以上のように応力歪曲線の形状に着目することで、変形性能を評価することが可能となる。ここで着目する応力歪曲線の形状とは、降伏棚の長さと、歪硬化域の接線勾配の大きさである。   As described above, the deformation performance can be evaluated by paying attention to the shape of the stress-strain curve. The stress-strain curve shape of interest here is the length of the yield shelf and the magnitude of the tangential gradient in the strain hardening zone.

以上が応力歪曲線の形状によって鋼管の変形性能を評価できることの(2)式に基づく図式的な説明である。
発明者はこのことを数式を用いて定量的な評価方法を案出すべく、上記の基礎式を変形して降伏棚モデルの圧縮座屈歪を表す数式を案出し、さらに検討を進めた。
以下、この点につき詳細に説明する。
The above is a schematic explanation based on the equation (2) that the deformation performance of the steel pipe can be evaluated by the shape of the stress strain curve.
In order to devise a quantitative evaluation method using mathematical formulas, the inventor has devised a mathematical formula that expresses the compression buckling strain of the yield shelf model by modifying the basic formula described above, and further studied.
Hereinafter, this point will be described in detail.

図4に示す応力歪曲線の歪硬化域における応力と歪の関係を、傾きがmEの直線で表すと図6のようになり、歪硬化域における応力と歪の関係、接線係数Eおよび割線係数Eは次式のように表される。

Figure 0004696893
The relationship between stress and strain in the strain hardening region of the stress-strain curve shown in FIG. 4, the slope becomes as shown in FIG. 6 is represented by a straight line of mE, relationship between stress and strain in the strain hardening region, the tangent modulus E T and secant factor E S is expressed by the following equation.
Figure 0004696893

(6)式の歪を圧縮局部座屈歪εcrで表して(2)式に代入すると次式が得られる。

Figure 0004696893
When the strain in equation (6) is expressed as a compression local buckling strain ε cr and substituted into equation (2), the following equation is obtained.
Figure 0004696893

(7)式を圧縮局部座屈歪εcrについて解くと、歪硬化領域における鋼管の圧縮局部座屈歪は(8)式のように表される。

Figure 0004696893
さらに、(8)式を下記(9)式のように変形し、(9)式の右辺第二項を一次近似すると、局部座屈歪εcrは(10)式のように表される。 When the equation (7) is solved with respect to the compression local buckling strain ε cr , the compression local buckling strain of the steel pipe in the strain hardening region is expressed as the equation (8).
Figure 0004696893
Further, when the equation (8) is transformed as the following equation (9) and the second term on the right side of the equation (9) is linearly approximated, the local buckling strain ε cr is expressed as the equation (10).

Figure 0004696893
Figure 0004696893

上記より降伏棚モデルの鋼管の圧縮局部座屈歪εcrは下記の数式(11)で表すことができる。

Figure 0004696893
From the above, the compression local buckling strain ε cr of the steel pipe of the yield shelf model can be expressed by the following formula (11).
Figure 0004696893

上記のように、降伏棚モデルの鋼管の圧縮局部座屈歪εcrを数式(11)に示すように、応力歪曲線の傾きを表す歪硬化係数mと、降伏棚の長さの指標となる歪硬化開始歪εHで表現できたので、以下においては、この数式(11)を用いて鋼管の局部座屈特性を評価する方法を具体的に説明する。 As described above, the compression buckling strain ε cr of the steel pipe of the yield shelf model is an index of the strain hardening coefficient m representing the slope of the stress strain curve and the length of the yield shelf as shown in Equation (11). Since it can be expressed by the strain hardening initiation strain ε H , a method for evaluating the local buckling characteristics of the steel pipe using this equation (11) will be specifically described below.

なお、降伏棚モデルの圧縮局部座屈歪を推定する(11)式の適用範囲は、圧縮局部座屈歪と歪硬化開始歪を等値することによって、管径管厚比D/tについて次式のように表すことができる。すなわち、降伏棚型モデルの応力歪曲線の特性が与えられた場合、適用可能な鋼管の最大管径管厚比(D/t)maxは(12)式で表される。したがって、(D/t)maxよりも大きいD/tを有する鋼管については、局部座屈歪推定式である(11)式を適用できないことになる。

Figure 0004696893
It should be noted that the range of application of the equation (11) for estimating the compression local buckling strain of the yield shelf model is as follows for the pipe diameter ratio D / t by equalizing the compression local buckling strain and the strain hardening onset strain: It can be expressed as That is, when the stress-strain curve characteristic of the yield shelf type model is given, the maximum pipe thickness ratio (D / t) max of the applicable steel pipe is expressed by equation (12). Therefore, the equation (11), which is a local buckling strain estimation equation, cannot be applied to a steel pipe having a D / t larger than (D / t) max.
Figure 0004696893

管径D、管厚t、要求局部座屈歪εreqが与えられたときに降伏棚モデルの材料を用いて鋼管を製造したときに当該鋼管が前記要求局部座屈歪εreqを満たしてパイプライン用の鋼管として適用できるためには、以下の要件を満たす必要がある。
(1)鋼管の圧縮局部座屈歪εcrが要求局部座屈歪εreqよりも大きいこと
(2)鋼管の局部座屈が降伏棚領域で生じないこと、換言すれば鋼管の局部座屈が歪硬化領域で生ずること
(3)歪硬化開始歪が降伏歪よりも大きいこと
つまり、上記の(1)〜(3)のすべての条件を満たす場合には当該鋼管はパイプライン用鋼管として適用可能と評価でき、上記の(1)〜(3)のいずれかの条件を満たさない場合には、該鋼管はパイプライン用鋼管として適用できないと評価できる。
When a steel pipe is manufactured using the material of the yield shelf model when a pipe diameter D, a pipe thickness t, and a required local buckling strain ε req are given, the steel pipe satisfies the required local buckling strain ε req when the pipe is manufactured. In order to be applicable as a steel pipe for lines, the following requirements must be satisfied.
(1) The compression local buckling strain ε cr of the steel pipe is larger than the required local buckling strain ε req. (2) The local buckling of the steel pipe does not occur in the yield shelf region, in other words, the local buckling of the steel pipe is not caused. Occurring in the strain hardening region (3) The strain hardening starting strain is larger than the yield strain In other words, when all the conditions (1) to (3) are satisfied, the steel pipe can be applied as a steel pipe for a pipeline. If any of the above conditions (1) to (3) is not satisfied, it can be evaluated that the steel pipe cannot be applied as a steel pipe for pipelines.

図7は上記の3つの条件を、縦軸がεy横軸がεHからなる座標面に領域とし表示したものである。
以下においては、上記の3つの条件についてそれが必要とされる理由を説明すると共に、その条件を図で示した図7について説明する。
FIG. 7 shows the above three conditions as regions on a coordinate plane in which the vertical axis is ε y and the horizontal axis is ε H.
In the following, the reason why the above three conditions are required will be described, and FIG. 7 showing the conditions will be described.

(1)鋼管の圧縮局部座屈歪εcrが要求局部座屈歪εreqよりも大きい条件
実際のパイプライン用の鋼管の設計においては、局部座屈歪の要求値(要求局部座屈歪εreq)が与えられる。
したがって、当該鋼管をパイプライン用の鋼管として用いることができるためには、当該鋼管の圧縮局部座屈歪εcrが要求局部座屈歪値εreqよりも大きいことが必要条件となる。つまり、当該鋼管をパイプライン用の鋼管として用いることができるかどうかを評価するには、当該鋼管の圧縮局部座屈歪εcrが要求局部座屈歪εreqの値よりも大きいかどうかを判定することが必要となる。
鋼管の圧縮局部座屈歪εcrが要求局部座屈歪εreqの値よりも大きいことを数式(11)を用いて表現すると、下式(13)のようになる。

Figure 0004696893
(1) Conditions under which the compression local buckling strain ε cr of the steel pipe is larger than the required local buckling strain ε req In the actual design of a steel pipe for a pipeline, the required value of the local buckling strain (the required local buckling strain ε req ).
Therefore, in order to be able to use the steel pipe as a steel pipe for a pipeline, it is a necessary condition that the compression local buckling strain ε cr of the steel pipe is larger than the required local buckling strain value ε req . In other words, to evaluate whether the steel pipe can be used as a steel pipe for pipelines, determine whether the compression local buckling strain ε cr of the steel pipe is greater than the value of the required local buckling strain ε req It is necessary to do.
When expressing that the compression local buckling strain ε cr of the steel pipe is larger than the value of the required local buckling strain ε req using the equation (11), the following equation (13) is obtained.
Figure 0004696893

(13)式をεy/mについて整理すると下記の(14)式が得られ、(13)式の不等号を満足するεy/mおよびεHは図7の直線(a)以下の領域となる。また、直線(a)は(14)式の不等号を等号で置き換えた(15)式で表される。直線(a)の上におけるεy/mとεHの組み合わせは、εcrとεreqが等しくなることを表している。 When the equation (13) is arranged with respect to ε y / m, the following equation (14) is obtained, and ε y / m and ε H satisfying the inequality sign of the equation (13) are represented by the region below the straight line (a) in FIG. Become. The straight line (a) is expressed by the equation (15) in which the inequality sign in the equation (14) is replaced with an equal sign. The combination of ε y / m and ε H on the straight line (a) indicates that ε cr and ε req are equal.

Figure 0004696893
Figure 0004696893

また、安全側に考えれば、εcrはεreqよりも大きいことが要求されるから、選択されるεy/mとεHは、直線(a)と平行で下方に位置する直線上の値となる。換言すれば、直線(a)と平行で下方に位置する直線上のεy/mとεHの組み合わせを選択すると、εcrはεreqよりも大きくなる。
もっとも、εreqはεcrの最大値(最大圧縮局部座屈歪εcrmax)を超えることはできない。したがって、直線(a)と平行で下方にも限界値が存在するが、この限界値については後述する。
In addition, from the viewpoint of safety, ε cr is required to be larger than ε req , and thus ε y / m and ε H to be selected are values on a straight line positioned below and parallel to the straight line (a). It becomes. In other words, if a combination of ε y / m and ε H on the straight line parallel to the straight line (a) is selected, ε cr becomes larger than ε req .
However, ε req cannot exceed the maximum value of ε cr (maximum compression local buckling strain ε crmax ). Therefore, a limit value exists parallel to the straight line (a) and below, and this limit value will be described later.

(2)鋼管の局部座屈が降伏棚領域で生じないこと、換言すれば鋼管の局部座屈が歪硬化領域で生ずるための条件
鋼管が歪硬化領域で局部座屈するためには、圧縮局部座屈歪εcrが歪硬化開始歪εH以上であることが必要条件となる。この条件は、(13)式の左辺の歪硬化開始歪εreqを歪硬化開始歪εHで置き換えることによって下記の(16)式のように表すことができる。
(2) The condition that local buckling of the steel pipe does not occur in the yield shelf region, in other words, the condition for the local buckling of the steel pipe to occur in the strain hardening region. It is a necessary condition that the bending strain ε cr is not less than the strain hardening initiation strain ε H. This condition can be expressed as the following equation (16) by replacing the strain hardening starting strain ε req on the left side of the equation (13) with the strain hardening starting strain ε H.

Figure 0004696893
Figure 0004696893

(16)式をεy/mについて整理すると下記の(17)式が得られ、(17)式の不等号を満足するεy/mおよびεHの値は図7の曲線(b)以下の領域となる。また、図7の曲線(b)は(17)式の不等号を等号で置き換えた(18)式で表される。直線(b)の上におけるεy/mとεHは、鋼管に付与できる圧縮局部座屈歪εcrと歪硬化開始歪εreqが等しくなることを表している。 When the equation (16) is arranged with respect to ε y / m, the following equation (17) is obtained, and the values of ε y / m and ε H that satisfy the inequality sign of the equation (17) are those below the curve (b) in FIG. It becomes an area. Further, the curve (b) in FIG. 7 is expressed by the equation (18) in which the inequality sign in the equation (17) is replaced with an equal sign. Ε y / m and ε H on the straight line (b) indicate that the compression local buckling strain ε cr and the strain hardening initiation strain ε req that can be applied to the steel pipe are equal.

Figure 0004696893
Figure 0004696893

また、直線(a)と曲線(b)の交点Aの横軸の座標(εH)Aは、与えられた要求局部座屈歪εreqであり、縦軸の座標(εy/m)Aは上記(18)式に与えられた要求局部座屈歪εreqを代入することで下記の(19)式で示すように表される。

Figure 0004696893
Also, the horizontal coordinate (ε H ) A of the intersection A of the straight line (a) and the curve (b) is a given required local buckling strain ε req , and the vertical coordinate (ε y / m) A Is expressed by the following equation (19) by substituting the required local buckling strain ε req given to the above equation (18).
Figure 0004696893

(17)式およびこれを線図で示した図7の曲線(b)からすると、歪硬化開始歪εHはどこまでも大きくなることが許容されているようにも思える。しかしながら、歪硬化開始歪εHは降伏棚の長さを規定するものであり、当然にその最大値が存在する。そこで、この最大値について検討する。 From the equation (17) and the curve (b) of FIG. 7 showing this as a diagram, it seems that the strain hardening initiation strain ε H is allowed to increase to any extent. However, the strain hardening initiation strain ε H defines the length of the yield shelf, and naturally has a maximum value. Therefore, this maximum value is examined.

(17)式を歪硬化開始歪εHについて整理するとεHの二次方程式である下記の(20)式が得られる。

Figure 0004696893
By arranging the equation (17) for the strain hardening starting strain ε H , the following equation (20) which is a quadratic equation of ε H is obtained.
Figure 0004696893

(20)式の二次方程式が実根を持つためには、(21)式に示すように判別式が正である必要がある。このことから、εy/mとt/Dの関係が(22)式のように表される。(22)式が曲線(b)の定義域を縦軸について示しており、曲線(b)の縦軸に関する最小値は(23)式となる。(23)式が曲線(b)のB点の縦軸の座標である。

Figure 0004696893
In order for the quadratic equation of equation (20) to have a real root, the discriminant must be positive as shown in equation (21). From this, the relationship between ε y / m and t / D is expressed as in equation (22). Equation (22) shows the domain of the curve (b) with respect to the vertical axis, and the minimum value for the vertical axis of the curve (b) is equation (23). Equation (23) is the coordinate of the vertical axis of point B of curve (b).
Figure 0004696893

(22)式の関係が成立する場合、(20)式を満足する解の範囲は(24)式および(25)式で表される。

Figure 0004696893
When the relationship of equation (22) holds, the range of solutions that satisfy equation (20) is expressed by equations (24) and (25).
Figure 0004696893

(24)式はεHが有限の値であることを表しているが、(25)式はεHが無限大となることを許容している。εHは有限の値であることから、(20)式の解として(24)式が採用され、(25)式は却下される。また、(23)式で与えられるεy/mの最小値を(24)式に代入すると、曲線(b)におけるB点の横軸の座標が(26)式のように求められる。

Figure 0004696893
Equation (24) represents that ε H is a finite value, but equation (25) allows ε H to be infinite. Since ε H is a finite value, equation (24) is adopted as a solution of equation (20), and equation (25) is rejected. Further, when the minimum value of ε y / m given by equation (23) is substituted into equation (24), the coordinate of the horizontal axis of point B in curve (b) is obtained as in equation (26).
Figure 0004696893

式(26)で表されるB点の横軸の座標(εH)Bは最大圧縮局部座屈歪εcrmaxを示している。したがって、前述したように直線(a)を下方に平行移動したときに、下方に平行移動できる限界値は下方に平行移動した直線がB点を通るときである。そこで、以下ではこの直線を直線(c)として、直線(c)表す式を求める。
仮にこの直線(c)を下記の式(27)のように表現する。

Figure 0004696893
The coordinate (ε H ) B on the horizontal axis of the point B represented by the equation (26) indicates the maximum compression local buckling strain ε crmax . Therefore, as described above, when the straight line (a) is translated downward, the limit value that can be translated downward is when the straight line translated downward passes through point B. Therefore, in the following, this straight line is defined as a straight line (c), and an expression representing the straight line (c) is obtained.
Temporarily, this straight line (c) is expressed as the following formula (27).
Figure 0004696893

直線(c)がB点を通ることから、B点の座標を(27)式に代入することによって(27)式は(28)式のように表される。

Figure 0004696893
Since the straight line (c) passes through the point B, the equation (27) is expressed as the equation (28) by substituting the coordinates of the point B into the equation (27).
Figure 0004696893

(3)歪硬化開始歪が降伏歪よりも大きいこと
歪硬化開始歪が降伏歪よりも大きい条件は次式(29)で与えられる。

Figure 0004696893
(3) The strain hardening initiation strain is greater than the yield strain The condition that the strain hardening initiation strain is greater than the yield strain is given by the following equation (29).
Figure 0004696893

図7の直線(d)はεH=εyを表しており、歪硬化開始歪εHが降伏歪εyよりも大きいことが必要条件であるから、解の領域は直線(d)の右側となる。 The straight line (d) in FIG. 7 represents ε H = ε y , and since it is a necessary condition that the strain hardening initiation strain ε H is larger than the yield strain ε y , the solution region is on the right side of the straight line (d). It becomes.

以上のように、図7に示したように解領域が求まった。したがって、管径Dと管厚tが既知の鋼管が要求局部座屈歪εreqよりも大きい圧縮局部座屈歪εcrを与えるかどうかを評価するには、応力歪曲線の降伏歪εy、歪硬化係数m、歪硬化開始歪εHが、直線(a)、(c)、(d)、曲線(b)で囲まれた領域内にあるかどうかを判断すればよいことになる。
この関係を式で表すと、下記の2式となる。
As described above, the solution area is obtained as shown in FIG. Therefore, to evaluate whether a steel pipe with a known pipe diameter D and pipe thickness t gives a compression local buckling strain ε cr greater than the required local buckling strain ε req , the yield strain ε y of the stress strain curve, It is only necessary to determine whether the strain hardening coefficient m and the strain hardening starting strain ε H are within the region surrounded by the straight lines (a), (c), (d), and the curve (b).
This relationship is expressed by the following two expressions.

Figure 0004696893
Figure 0004696893

なお、上記の説明では鋼管の材料における降伏歪εy、歪硬化係数m、歪硬化開始歪εHを取得して、これらが縦軸をεy/m、横軸をεHとした座標面において上記式(30)(31)で規定される特定の領域内にあるかどうかによって当該材料で鋼管を製造したときの局部座屈特性の評価方法について述べた。
しかし、ここで示した考え方は局部座屈特性の評価方法のみならず、管径D、管厚tおよび要求局部座屈歪εreqが与えられた鋼管の材質設計方法にも適用できる。つまり、管径D、管厚tおよび要求局部座屈歪εreqが与えられた鋼管の材質設計に際して、降伏歪εy、歪硬化係数m、歪硬化開始歪εHが、縦軸をεy/m、横軸をεHとした座標面において、前述の特定領域内にあるように降伏歪εy、歪硬化係数m、歪硬化開始歪εHを決定するようにすればよい。
In the above description, the yield plane ε y , strain hardening coefficient m, and strain hardening starting strain ε H in the steel pipe material are obtained, and these are coordinate planes with the vertical axis ε y / m and the horizontal axis ε H Describes the evaluation method of local buckling characteristics when a steel pipe is manufactured with the material depending on whether it is in a specific region defined by the above formulas (30) and (31).
However, the concept shown here can be applied not only to a method for evaluating local buckling characteristics, but also to a material design method for a steel pipe given a pipe diameter D, a pipe thickness t, and a required local buckling strain ε req . That is, when designing the material of the steel pipe given the pipe diameter D, the pipe thickness t, and the required local buckling strain ε req , the yield strain ε y , the strain hardening coefficient m, and the strain hardening starting strain ε H are ε y on the vertical axis. The yield strain ε y , the strain hardening coefficient m, and the strain hardening start strain ε H may be determined so as to be within the specific region described above on the coordinate plane with / m and the horizontal axis ε H.

本発明は以上の検討を前提になされたものであり、具体的には以下の構成を有するものである。   The present invention has been made on the premise of the above examination, and specifically has the following configuration.

(1)本発明に係る鋼管の局部座屈特性評価方法は、管径D、管厚tおよび要求局部座屈歪εreqが与えられた鋼管の局部座屈特性評価方法であって、応力歪特性上に降伏棚を有する材料の応力歪特性を取得し、取得された応力歪特性における応力歪曲線の降伏歪εy、歪硬化係数m、歪硬化開始歪εHが、縦軸をεy/m、横軸をεHとした座標面において、下式で示される領域内にあるかどうかを判断し、当該領域内にある場合には当該鋼管を塑性設計を前提とされる構造物に適用可能性ありと評価し、当該領域内にない場合には当該鋼管を塑性設計を前提とされる構造物に適用可能性なしと評価することを特徴とするものである。

Figure 0004696893
(1) A method for evaluating local buckling characteristics of a steel pipe according to the present invention is a method for evaluating local buckling characteristics of a steel pipe given a pipe diameter D, a pipe thickness t, and a required local buckling strain ε req , and includes stress strain Obtain the stress-strain characteristics of the material with the yield shelf on the characteristics, and yield strain ε y , strain hardening coefficient m, strain hardening start strain ε H of the stress-strain curve in the acquired stress-strain characteristics, and the vertical axis is ε y / m, in the coordinate plane with ε H as the horizontal axis, it is judged whether it is in the area shown by the following formula. If it is in the area, the steel pipe is changed to a structure that assumes plastic design. The steel pipe is evaluated as having applicability, and when it is not within the region, the steel pipe is evaluated as having no applicability to a structure that is premised on plastic design.
Figure 0004696893

(2)また、本発明に係る鋼管の材質設計方法は、管径D、管厚tおよび要求局部座屈歪εreqが与えられた鋼管の材質設計方法であって、応力歪特性上に降伏棚を有する材料の応力歪特性を決定するに際し、設計対象の材料の応力歪曲線の降伏歪εy、歪硬化係数m、歪硬化開始歪εHが、縦軸をεy/m、横軸をεHとした座標面において、下式で示される領域内にあるように降伏歪εy、歪硬化係数m、歪硬化開始歪εHこれらの応力歪特性を決定することを特徴とするものである。

Figure 0004696893
(2) The steel pipe material design method according to the present invention is a steel pipe material design method in which the pipe diameter D, the pipe thickness t, and the required local buckling strain ε req are given. In determining the stress-strain characteristics of the material having a shelf, the yield strain ε y , strain hardening coefficient m, strain hardening starting strain ε H of the stress strain curve of the material to be designed is ε y / m on the vertical axis, and the horizontal axis Yield strain ε y , strain hardening coefficient m, strain hardening onset strain ε H to determine these stress-strain characteristics in the coordinate plane where ε H is in the region represented by the following formula It is.
Figure 0004696893

(3)また、本発明に係る鋼管の製造方法は、上記(2)の鋼管の材質設計方法を用いたものであることを特徴とするものである。 (3) Moreover, the manufacturing method of the steel pipe which concerns on this invention uses the material design method of the said steel pipe of said (2), It is characterized by the above-mentioned.

本発明の鋼管の局部座屈特性評価方法によれば、鋼管の局部座屈性能の優劣を簡易に判定できるので、当該鋼管の用途の判別が簡易にできる。   According to the method for evaluating local buckling characteristics of a steel pipe according to the present invention, since the superiority or inferiority of local buckling performance of the steel pipe can be easily determined, the use of the steel pipe can be easily determined.

[実施の形態1]
本実施の形態においては、表1に示す応力歪特性を有する9種類の材料を用いて外径D=762.0mm、管厚t=15.24mm (D/t=50)の鋼管を製造したときに、当該鋼管が局部座屈歪の要求値εreq=0.5%とされるX80グレードのラインパイプ用の鋼管として適用できるかどうかの評価を本発明に基づいて行った。そして、その評価が妥当かどうかをFEM解析によって検証した。
[Embodiment 1]
In the present embodiment, when a steel pipe having an outer diameter D = 762.0 mm and a pipe thickness t = 15.24 mm (D / t = 50) is manufactured using nine kinds of materials having the stress-strain characteristics shown in Table 1. Based on the present invention, whether or not the steel pipe can be applied as a steel pipe for an X80 grade line pipe having a local buckling strain requirement value ε req = 0.5% was evaluated. And whether the evaluation was appropriate was verified by FEM analysis.

Figure 0004696893
Figure 0004696893

表1にはX80グレードのラインパイプに関する9種類の材料の応力歪特性を示しており、各材料の降伏歪εyは0.0029(0.29%)、歪硬化開始歪εHは0.003(0.3%)、0.005(0.5%)、0.010(1.0%)である。また、歪硬化係数mEの係数はm=0.015、0.020、0.025とした。表1の(D/t)maxは、これらの値を(12)式に代入して求めた値である。また、P-1〜P-9に対応する応力歪曲線を図8、図9、図10に示す。 Table 1 shows the stress-strain characteristics of nine types of materials related to X80 grade line pipes. Yield strain ε y of each material is 0.0029 (0.29%), strain hardening onset strain ε H is 0.003 (0.3%), 0.005 (0.5%) and 0.010 (1.0%). The coefficients of the strain hardening coefficient mE were set to m = 0.015, 0.020, and 0.025. (D / t) max in Table 1 is a value obtained by substituting these values into equation (12). Further, stress strain curves corresponding to P-1 to P-9 are shown in FIGS.

降伏棚モデルの局部座屈特性評価方法を示す下式に、D=762.0mm、t=15.24mm、εy=0.29%、εreq=0.5%を代入し、縦軸をεy/m、横軸をεHとした座標面において、下式の示す領域を示した図11を示す。 Substitute D = 762.0mm, t = 15.24mm, ε y = 0.29%, ε req = 0.5% in the following formula showing the local buckling property evaluation method of the yield shelf model, the vertical axis is ε y / m, horizontal FIG. 11 shows a region represented by the following expression on the coordinate plane with the axis ε H.

Figure 0004696893
Figure 0004696893

図11には表1に示した9種類の各材料について座標点(εy/m, εH)をプロットしてある。また、図11において、上式の領域内にあるものは白丸で示し、領域外のものは黒丸で示してある。
図11から分かるように、解領域の中にプロットされているのはP-2、P-3、P-5およびP-6である。このことから、P-2、P-3、P-5およびP-6が合格と評価され、これら4ケースの材質設計条件で鋼管を製造することができれば、鋼管の圧縮局部座屈歪εcrは要求局部座屈歪εreqを満足するものとされる。
In FIG. 11, coordinate points (ε y / m, ε H ) are plotted for each of the nine types of materials shown in Table 1. Further, in FIG. 11, those within the above formula area are indicated by white circles, and those outside the area are indicated by black circles.
As can be seen from FIG. 11, P-2, P-3, P-5 and P-6 are plotted in the solution region. Therefore, if P-2, P-3, P-5 and P-6 are evaluated as acceptable and a steel pipe can be manufactured under the material design conditions of these four cases, then the compression local buckling strain ε cr of the steel pipe Satisfies the required local buckling strain ε req .

次に、上記の評価が正しいかどうかをFEM解析によって検証した。
FEMで圧縮座屈解析を行なう鋼管の外径をD=762.0mm、管厚をt=15.24mm (D/t=50)と設定して解析を実施する。圧縮座屈解析の結果を表2に示す。
Next, whether or not the above evaluation was correct was verified by FEM analysis.
Set the outer diameter of the steel pipe for compression buckling analysis by FEM to D = 762.0mm and the pipe thickness to t = 15.24mm (D / t = 50). Table 2 shows the results of the compression buckling analysis.

Figure 0004696893
Figure 0004696893

表2には図11の領域による判定結果を併せて記載している。
表2に示すように、P-2、P-3、P-5、P-6の4ケースについてのFEMによるこれら4つの解析モデルの圧縮局部座屈歪εcrは、それぞれ0.58%、0.82%、0.51%および0.85%である。
このように、P-2、P-3、P-5、P-6の4ケースについてはそれぞれの座屈歪が要求局部座屈歪(0.5%)よりも大きい値である。
そして、表2から明らかなように、図11の領域によってP-2、P-3、P-5、P-6の4ケースを合格と判定した結果と一致している。
したがって、本発明によって評価することがFEM解析結果と一致しており、本発明が実効性があることが検証された。
Table 2 also shows the determination result based on the region of FIG.
As shown in Table 2, the compression local buckling strains ε cr of these four analytical models by FEM for the four cases P-2, P-3, P-5, and P-6 are 0.58% and 0.82%, respectively. , 0.51% and 0.85%.
As described above, in the four cases P-2, P-3, P-5, and P-6, each buckling strain is larger than the required local buckling strain (0.5%).
As is apparent from Table 2, the results of the four cases P-2, P-3, P-5, and P-6 are determined to be acceptable by the region shown in FIG.
Therefore, the evaluation according to the present invention is consistent with the FEM analysis result, and it was verified that the present invention is effective.

[実施の形態2]
本実施の形態においては、表3に示す応力歪特性を有する10種類の材料を用いて外径D=762.0mm、管厚t=15.6mm (D/t=48.8)の鋼管を製造したときに、当該鋼管が局部座屈歪の要求値εreq=0.5%とされるX80グレードのラインパイプ用の鋼管として適用できるかどうかの評価を本発明に基づいて行った。
また、表3に示す同様の材料を用いて、外径D=914.4mm、管厚t=15.2mmの鋼管を製造したときに、当該鋼管が局部座屈歪の要求値εreq=0.4%とされるX80グレードのラインパイプ用の鋼管として適用できるかどうかについての評価を行った。
そして、何れのケースについてもその評価が妥当かどうかをFEM解析によって検証した。
[Embodiment 2]
In this embodiment, when a steel pipe having an outer diameter D = 762.0 mm and a pipe thickness t = 15.6 mm (D / t = 48.8) is manufactured using 10 kinds of materials having the stress-strain characteristics shown in Table 3. Based on the present invention, whether or not the steel pipe can be applied as a steel pipe for an X80 grade line pipe having a local buckling strain requirement value ε req = 0.5% was evaluated.
Further, when a steel pipe having an outer diameter D = 914.4 mm and a pipe thickness t = 15.2 mm was manufactured using the same material shown in Table 3, the steel pipe had a required value of local buckling strain ε req = 0.4%. It was evaluated whether it can be applied as a steel pipe for X80 grade line pipe.
Then, whether or not the evaluation is appropriate in any case was verified by FEM analysis.

Figure 0004696893
Figure 0004696893

表3に示すように、応力歪曲線の降伏歪εyは0.17〜0.31%であり、歪硬化開始歪εHは0.17〜2.0%である。また、歪硬化係数mEの係数は0.006〜0.025である。また、表中の(D/t)maxはこれらの値を(12)式に代入して求めた値である。 As shown in Table 3, the yield strain ε y of the stress-strain curve is 0.17 to 0.31%, and the strain hardening onset strain ε H is 0.17 to 2.0%. The strain hardening coefficient mE is 0.006 to 0.025. Further, (D / t) max in the table is a value obtained by substituting these values into the equation (12).

図12は、降伏棚モデルの局部座屈特性評価方法を示す前述の式(30)(31)に、D=762.0mm、t=15.6mm、εreq=0.5%および表3に示したεyを代入し、縦軸をεy/m、横軸をεHとした座標面において、上記3式の示す領域を示したものである。図12には表3に示した10種類の各材料について座標点(εy/m, εH)をプロットしてある。
図12を見ると、Q-1、Q-2およびQ-3が解領域(合格の範囲)にプロットされており、Q-4〜Q-10は解領域の外側(不合格の範囲)にプロットされている。
FIG. 12 shows the above-described equations (30) and (31) showing the method for evaluating the local buckling characteristics of the yield shelf model, in which D = 762.0 mm, t = 15.6 mm, ε req = 0.5%, and ε y shown in Table 3. In the coordinate plane where the vertical axis is ε y / m and the horizontal axis is ε H. In FIG. 12, coordinate points (ε y / m, ε H ) are plotted for each of the ten types of materials shown in Table 3.
Looking at FIG. 12, Q-1, Q-2 and Q-3 are plotted in the solution region (pass range), and Q-4 to Q-10 are outside the solution region (fail range). It is plotted.

図13は、降伏棚モデルの局部座屈特性評価方法を示す前述の式(30)(31)に、D=914.4mm、t=15.2mm、εreq=0.4%および表3に示したεyを代入し、縦軸をεy/m、横軸をεHとした座標面において、上記3式の示す領域を示したものである。図13には表3に示した10種類の各材料について座標点(εy/m, εH)をプロットしてある。
図13見ると、D=762.0mmの鋼管と同様に、Q-1、Q-2およびQ-3が解領域(合格の範囲)にプロットされており、Q-4〜Q-10は解領域の外側(不合格の範囲)にプロットされている。
FIG. 13 is a graph showing the method for evaluating the local buckling characteristics of the yield shelf model. In the equations (30) and (31), D = 914.4 mm, t = 15.2 mm, ε req = 0.4%, and ε y shown in Table 3 In the coordinate plane where the vertical axis is ε y / m and the horizontal axis is ε H. In FIG. 13, coordinate points (ε y / m, ε H ) are plotted for each of the ten types of materials shown in Table 3.
As shown in FIG. 13, Q-1, Q-2 and Q-3 are plotted in the solution region (acceptable range), and the solution region of Q-4 to Q-10 is the same as the steel pipe of D = 762.0mm. Is plotted on the outside (failed range).

次に、上記の評価が正しいかどうかをFEM解析によって検証した。
D=762.0mmの鋼管とD=914.4mmの鋼管について、FEM解析で求めた圧縮局部座屈歪を表4に示す。D=762.0mmの鋼管の圧縮局部座屈歪は0.28〜0.63%で、D=914.4mmの鋼管では0.28〜0.50%である。

Figure 0004696893
Next, whether or not the above evaluation was correct was verified by FEM analysis.
Table 4 shows the compression local buckling strains obtained by FEM analysis for the steel pipe of D = 762.0 mm and the steel pipe of D = 914.4 mm. The compression local buckling strain of steel pipe with D = 762.0mm is 0.28 ~ 0.63%, and the steel pipe with D = 914.4mm is 0.28 ~ 0.50%.
Figure 0004696893

図12、図13のダイアグラムによる判定結果をFEMの解と比較して照査した結果をそれぞれ、表5、表6に示す。表5、表6に示す圧縮局部座屈歪は、表4の値を転記したものである。   Tables 5 and 6 show the results of checking the determination results based on the diagrams of FIGS. 12 and 13 in comparison with the FEM solution, respectively. The compression local buckling strains shown in Tables 5 and 6 are the values in Table 4 transcribed.

Figure 0004696893
Figure 0004696893

Figure 0004696893
Figure 0004696893

表5を見れば、D=762.0mmの鋼管の要求座屈歪を0.5%と設定した場合、Q-1〜Q-3が合格し、その他の材料特性は不合格となることが分かる。
また、表6を見れば、D=914.4mmの鋼管の要求座屈歪を0.4%と設定した場合、Q-1〜Q-3が合格し、その他の材料特性は不合格となることが分かる。
いずれの場合についても、図12、図13のダイアグラムによる判定結果とFEMの結果が一致しており、本発明が実効性があることが検証された。
Table 5 shows that when the required buckling strain of a steel pipe having D = 762.0 mm is set to 0.5%, Q-1 to Q-3 pass and other material properties fail.
Table 6 shows that when the required buckling strain of a steel pipe with D = 914.4 mm is set to 0.4%, Q-1 to Q-3 pass and other material properties fail. .
In any case, the determination results based on the diagrams of FIGS. 12 and 13 and the FEM results coincide with each other, and it was verified that the present invention is effective.

なお、上記の説明では鋼管材料における降伏歪εy、歪硬化係数m、歪硬化開始歪εHを取得して、これらが縦軸をεy/m、横軸をεHとした座標面において上記式(30)(31)で規定される特定の領域内にあるかどうかによって当該材料で鋼管を製造したときの局部座屈特性評価方法の具体例について述べた。
しかし、ここで示した考え方は局部座屈特性の評価方法のみならず、管径D、管厚tおよび要求局部座屈歪εreqが与えられた鋼管の材質設計方法にも適用できる。つまり、管径D、管厚tおよび要求局部座屈歪εreqが与えられた鋼管の材質設計に際して、降伏歪εy、歪硬化係数m、歪硬化開始歪εHが、縦軸をεy/m、横軸をεHとした座標面において、前述の特定領域内にあるように降伏歪εy、歪硬化係数m、歪硬化開始歪εHを決定するようにすればよい。
In the above description, the yield strain ε y , the strain hardening coefficient m, and the strain hardening starting strain ε H in the steel pipe material are acquired, and these are in the coordinate plane where the vertical axis is ε y / m and the horizontal axis is ε H. A specific example of a method for evaluating local buckling characteristics when a steel pipe is manufactured from the material depending on whether it is within a specific region defined by the above formulas (30) and (31) has been described.
However, the concept shown here can be applied not only to a method for evaluating local buckling characteristics, but also to a material design method for a steel pipe given a pipe diameter D, a pipe thickness t, and a required local buckling strain ε req . That is, when designing the material of the steel pipe given the pipe diameter D, the pipe thickness t, and the required local buckling strain ε req , the yield strain ε y , the strain hardening coefficient m, and the strain hardening starting strain ε H are ε y on the vertical axis. The yield strain ε y , the strain hardening coefficient m, and the strain hardening start strain ε H may be determined so as to be within the specific region described above on the coordinate plane with / m and the horizontal axis ε H.

具体的には、D=762.0mm、t=15.24mm、εreq=0.5%という要件を満たす鋼管の材質設計を行う場合には、前述の式(30)(31)にこれらの値を代入し、縦軸をεy/m、横軸をεHとした座標面において、式(30)(31)の示す領域を図11のように描く。そして、図11で示される解領域内になるように降伏歪εy、歪硬化係数m、歪硬化開始歪εHを決定する。このような、歪硬化係数m、歪硬化開始歪εHを有する材料であれば、D=762.0mm、t=15.24mm、εreq=0.5%という要件を満たす。このようにすれば、鋼管の材料の満たすべき材質つまり、応力歪特性を簡易に決定できるので、効率的な設計が可能となる。 Specifically, when designing a steel pipe material that satisfies the requirements of D = 762.0 mm, t = 15.24 mm, and ε req = 0.5%, these values are substituted into the above equations (30) and (31). In the coordinate plane where the vertical axis is ε y / m and the horizontal axis is ε H , the regions indicated by the equations (30) and (31) are drawn as shown in FIG. Then, the yield strain ε y , the strain hardening coefficient m, and the strain hardening start strain ε H are determined so as to be within the solution region shown in FIG. A material having such a strain hardening coefficient m and strain hardening starting strain ε H satisfies the requirements of D = 762.0 mm, t = 15.24 mm, and ε req = 0.5%. In this way, the material to be filled with the steel pipe material, that is, the stress-strain characteristic can be easily determined, so that efficient design becomes possible.

なお、上記の説明にでは圧縮局部座屈歪について説明したが、圧縮局部座屈歪と曲げ局部座屈歪とは約1対2という定量的な関係があるので、このような定量的な関係を用いれば本願の考え方は曲げ局部座屈歪にも適用できる。   In the above description, the compression local buckling strain has been described. However, since the compression local buckling strain and the bending local buckling strain have a quantitative relationship of about 1: 2, such a quantitative relationship. Can be applied to bending local buckling strain.

鋼材の応力歪曲線の説明図である。It is explanatory drawing of the stress-strain curve of steel materials. 降伏棚型の鋼材の応力歪曲線の説明図である。It is explanatory drawing of the stress-strain curve of a yield shelf type steel material. 本発明の考え方を説明する説明図である。It is explanatory drawing explaining the view of this invention. 降伏棚型の鋼材により形成された鋼管の応力歪曲線の説明図である。It is explanatory drawing of the stress strain curve of the steel pipe formed with the yield shelf type steel material. 鋼管の座屈歪と管径/管厚の管径を示すグラフである。It is a graph which shows the buckling distortion of a steel pipe, and the pipe diameter of pipe diameter / pipe thickness. 歪硬化領域を直線で示した降伏棚モデルの応力歪曲線である。It is the stress-strain curve of the yield shelf model which showed the strain hardening area | region with the straight line. 本発明の局部座屈特性評価方法に係る領域を示したグラフである。It is the graph which showed the area | region which concerns on the local buckling characteristic evaluation method of this invention. 本発明の一実施形態に係る評価の対象とした材料の応力歪曲線である(その1)。It is the stress-strain curve of the material made into the object of evaluation which concerns on one Embodiment of this invention (the 1). 本発明の一実施形態に係る評価の対象とした材料の応力歪曲線である(その2)。It is the stress-strain curve of the material made into the evaluation object which concerns on one Embodiment of this invention (the 2). 本発明の一実施形態に係る評価の対象とした材料の応力歪曲線である(その3)。It is the stress strain curve of the material made into the evaluation object which concerns on one Embodiment of this invention (the 3). 本発明の一実施形態の局部座屈特性評価方法に係る領域を示したグラフである。It is the graph which showed the area | region which concerns on the local buckling characteristic evaluation method of one Embodiment of this invention. 本発明の他の実施形態の局部座屈特性評価方法に係る領域を示したグラフである。It is the graph which showed the area | region which concerns on the local buckling characteristic evaluation method of other embodiment of this invention. 本発明の他の実施形態の局部座屈特性評価方法に係る領域を示したグラフである。It is the graph which showed the area | region which concerns on the local buckling characteristic evaluation method of other embodiment of this invention.

Claims (3)

管径D、管厚tおよび要求局部座屈歪εreqが与えられた鋼管の局部座屈特性評価方法であって、応力歪特性上に降伏棚を有する材料の応力歪特性を取得し、取得された応力歪特性における応力歪曲線の降伏歪εy、歪硬化係数m、歪硬化開始歪εHが、縦軸をεy/m、横軸をεHとした座標面において、下式で示される領域内にあるかどうかを判断し、当該領域内にある場合には当該鋼管を塑性設計を前提とされる構造物に適用可能性ありと評価し、当該領域内にない場合には当該鋼管を塑性設計を前提とされる構造物に適用可能性なしと評価することを特徴とする鋼管の局部座屈特性評価方法。
Figure 0004696893
A method for evaluating the local buckling characteristics of a steel pipe given a pipe diameter D, a pipe thickness t and a required local buckling strain ε req , and acquiring and obtaining the stress strain characteristics of a material having a yield shelf on the stress strain characteristics In the coordinate plane where the yield strain ε y , strain hardening coefficient m, strain hardening starting strain ε H of the stress strain curve in the obtained stress strain characteristic is ε y / m on the vertical axis and ε H on the horizontal axis, It is judged whether it is in the indicated area, and if it is in that area, the steel pipe is evaluated as applicable to a structure that assumes plastic design, and if it is not in that area, the A method for evaluating local buckling characteristics of a steel pipe, characterized in that the steel pipe is evaluated as having no applicability to a structure premised on plastic design.
Figure 0004696893
管径D、管厚tおよび要求局部座屈歪εreqが与えられた鋼管の材質設計方法であって、応力歪特性上に降伏棚を有する材料の応力歪特性を決定するに際し、設計対象の材料の応力歪曲線の降伏歪εy、歪硬化係数m、歪硬化開始歪εHが、縦軸をεy/m、横軸をεHとした座標面において、下式で示される領域内にあるように降伏歪εy、歪硬化係数m、歪硬化開始歪εHを決定することを特徴とする鋼管の材質設計方法。
Figure 0004696893
A steel pipe material design method in which a pipe diameter D, a pipe thickness t, and a required local buckling strain ε req are given, and in determining the stress strain characteristics of a material having a yield shelf on the stress strain characteristics, In the coordinate plane where the yield strain ε y , strain hardening coefficient m, strain hardening starting strain ε H of the stress-strain curve of the material is ε y / m on the vertical axis and ε H on the horizontal axis. A material design method for a steel pipe, characterized in that a yield strain ε y , a strain hardening coefficient m, and a strain hardening starting strain ε H are determined as described in the above.
Figure 0004696893
請求項2に記載の鋼管の材質設計方法を用いて鋼管を製造することを特徴とする鋼管の製造方法

A method for producing a steel pipe, comprising producing a steel pipe using the material design method for a steel pipe according to claim 2.

JP2005362651A 2005-12-16 2005-12-16 Method for evaluating local buckling performance of steel pipe, material design method for steel pipe, and method for manufacturing steel pipe Active JP4696893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362651A JP4696893B2 (en) 2005-12-16 2005-12-16 Method for evaluating local buckling performance of steel pipe, material design method for steel pipe, and method for manufacturing steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362651A JP4696893B2 (en) 2005-12-16 2005-12-16 Method for evaluating local buckling performance of steel pipe, material design method for steel pipe, and method for manufacturing steel pipe

Publications (2)

Publication Number Publication Date
JP2007163392A JP2007163392A (en) 2007-06-28
JP4696893B2 true JP4696893B2 (en) 2011-06-08

Family

ID=38246448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362651A Active JP4696893B2 (en) 2005-12-16 2005-12-16 Method for evaluating local buckling performance of steel pipe, material design method for steel pipe, and method for manufacturing steel pipe

Country Status (1)

Country Link
JP (1) JP4696893B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1843143B1 (en) * 2005-12-15 2021-02-03 JFE Steel Corporation Methods for evaluating local buckling capability of steel pipe
JP5884418B2 (en) * 2011-11-10 2016-03-15 Jfeスチール株式会社 Usage limit prediction method for joint structures
JP5773913B2 (en) * 2012-03-06 2015-09-02 東京瓦斯株式会社 Buckling resistance evaluation method and buckling resistance evaluation apparatus for steel pipeline
CN106153459A (en) * 2015-04-02 2016-11-23 陕西飞机工业(集团)有限公司 A kind of metal material method of evaluating performance based on aircaft configuration selection
CN111766136B (en) * 2020-08-14 2023-06-06 中国石油天然气集团有限公司 Method for obtaining tensile performance parameters of steel plate for manufacturing pipe and steel plate selection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194503A (en) * 2000-12-28 2002-07-10 Nkk Corp Steel tube with superior buckling resistance, and production method and evaluation system for the same
JP2005196748A (en) * 2003-12-10 2005-07-21 Jfe Steel Kk Pipe material design method, manufacturing method of pipe, pipe, and pipeline
JP2006002893A (en) * 2004-06-18 2006-01-05 Jfe Steel Kk Local buckling performance evaluating method for steel pipe, steel pipe designing method, steel pipe manufacturing method, and steel pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196244A (en) * 1996-01-19 1997-07-29 Nkk Corp Steel pipe excellent in aseismic characteristic
JPH09196243A (en) * 1996-01-19 1997-07-29 Nkk Corp Steel pipe excellent in aseismic performance
JPH09202922A (en) * 1996-01-26 1997-08-05 Nkk Corp Production of line pipe having high strength and high toughness and excellent in earthquake-proofing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194503A (en) * 2000-12-28 2002-07-10 Nkk Corp Steel tube with superior buckling resistance, and production method and evaluation system for the same
JP2005196748A (en) * 2003-12-10 2005-07-21 Jfe Steel Kk Pipe material design method, manufacturing method of pipe, pipe, and pipeline
JP2006002893A (en) * 2004-06-18 2006-01-05 Jfe Steel Kk Local buckling performance evaluating method for steel pipe, steel pipe designing method, steel pipe manufacturing method, and steel pipe

Also Published As

Publication number Publication date
JP2007163392A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
EP1843143B1 (en) Methods for evaluating local buckling capability of steel pipe
CN111896373B (en) Test and calculation method for determining equivalent plastic strain forming limit diagram
Yahiaoui et al. Piping elbows with cracks Part 2: global finite element and experimental plastic loads under opening bending
CN110795879B (en) Method for calculating continuous bending bearing capacity of concrete filled steel tube member
JP4696893B2 (en) Method for evaluating local buckling performance of steel pipe, material design method for steel pipe, and method for manufacturing steel pipe
Hyun et al. On acquiring true stress–strain curves for sheet specimens using tensile test and FE analysis based on a local necking criterion
Shu et al. Experimental and numerical study of cold-drawn duplex stainless steel square tube columns
Qian KI–T estimation for embedded flaws in pipes–Part II: Circumferentially oriented cracks
Zhang et al. Modeling of burst pressure for internal pressurized pipe elbow considering the effect of yield to tensile strength ratio
Berg et al. Ultimate fracture capacity of pressurised pipes with defects–comparisons of large scale testing and numerical simulations
Xu et al. Full-field geometric imperfection and effect on cross-section capacity of circular steel tubes
CN111595704A (en) Method for predicting fatigue life of continuous oil pipe
Amaro et al. CTOA testing of pipeline steels using MDCB specimens
WO2005057070A1 (en) Method of determining strain hardening characteristics of line pipe
JP4720344B2 (en) Steel pipe, pipeline using the steel pipe
Wang et al. Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines
JP4613524B2 (en) Method for evaluating local buckling performance of steel pipe, steel pipe design method, steel pipe manufacturing method, steel pipe
Farrahi et al. On the material modeling of the autofrettaged pressure vessel steels
Budden et al. Numerical validation of a strain-based failure assessment diagram approach to fracture
Shim et al. Bulging factor for axial surface cracks in pipes
Li et al. The Effect of Loss of Constraint on the Initiation of Ductile Fracture in a Mini-CT
Tran et al. Influence of cold-formed angle on high strength steel material properties
Lei et al. Stress intensity factor estimation for defective pipe elbows
Li et al. A Study On Critical Thinning In Thin‐walled Tube Bending Of Al‐Alloy 5052O Via Coupled Ductile Fracture Criteria
Xu et al. Review of Pressure Vessel Code Rules on Cold Forming Limits and Heat Treatment Requirements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R150 Certificate of patent or registration of utility model

Ref document number: 4696893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250