JP4696297B2 - Ultrashort pulse laser generation method and apparatus - Google Patents

Ultrashort pulse laser generation method and apparatus Download PDF

Info

Publication number
JP4696297B2
JP4696297B2 JP2005066369A JP2005066369A JP4696297B2 JP 4696297 B2 JP4696297 B2 JP 4696297B2 JP 2005066369 A JP2005066369 A JP 2005066369A JP 2005066369 A JP2005066369 A JP 2005066369A JP 4696297 B2 JP4696297 B2 JP 4696297B2
Authority
JP
Japan
Prior art keywords
laser
pulse
pulse laser
ultrashort pulse
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005066369A
Other languages
Japanese (ja)
Other versions
JP2006251247A (en
Inventor
栄一 高橋
ロゼフ レオニード
裕治 松本
芳郎 大和田野
猛征 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005066369A priority Critical patent/JP4696297B2/en
Publication of JP2006251247A publication Critical patent/JP2006251247A/en
Application granted granted Critical
Publication of JP4696297B2 publication Critical patent/JP4696297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、超高速分光、情報通信、レーザー加工などに使用される技術に関する。   The present invention relates to a technique used for ultrafast spectroscopy, information communication, laser processing, and the like.

これまでに、レーザー装置から出力されたレーザーパルスのパルス幅を短くするために、スペクトル幅を拡大する様々な手法が提案されている。   So far, various methods for expanding the spectrum width have been proposed in order to shorten the pulse width of the laser pulse output from the laser apparatus.

その一つとして、高強度短パルスレーザーの自己位相変調によりスペクトル幅を拡大する方法が示されている(非特許文献1参照)。   As one of them, a method of expanding the spectrum width by self-phase modulation of a high-intensity short pulse laser is shown (see Non-Patent Document 1).

また、自己位相変調の強度による制限を解決するために、誘起位相変調を用いる手法が発明された(下記特許文献1参照)。   In order to solve the limitation due to the intensity of self-phase modulation, a method using induced phase modulation has been invented (see Patent Document 1 below).

これらの、レーザー強度に依存する非線形屈折率を用いるスペクトル幅拡大法においては、一般的に数十GW/cm2以上の高い強度を必要とするために、大がかりなレーザーシステムを必要とするだけではなく、スペクトル中の位相が一様な分布をしていないため、圧縮して得られる超短パルスは、時間的前後にプレパルス、ポストパルスを伴う様な整った形ではないパルスとなる。 In these spectral width expansion methods using a nonlinear refractive index that depends on the laser intensity, a high intensity of tens of GW / cm 2 or more is generally required. In addition, since the phase in the spectrum does not have a uniform distribution, the ultrashort pulse obtained by compression becomes a pulse that does not have a well-formed shape with pre-pulses and post-pulses before and after time.

一方、他のスペクトル幅の拡大手法の一つとして、ラマン散乱による方法、特にインパルシブラマン法が示された(非特許文献2参照)。この方法においては、まずパルス幅が分子振動周期よりも短い、高強度パルスレーザーをラマン媒質中に入射することによって先んじて分子振動を駆動して誘電分極波を励起し、時間的に遅れて入射された比較的強度の弱い短パルスレーザーのスペクトル幅を拡大し、超短パルスを得た。   On the other hand, as another method for expanding the spectral width, a method based on Raman scattering, particularly the impulsive Braman method has been shown (see Non-Patent Document 2). In this method, first, a high-intensity pulsed laser whose pulse width is shorter than the molecular vibration period is incident on the Raman medium to drive the molecular vibration first to excite the dielectric polarization wave, which is incident with a delay in time. The spectral width of the comparatively weak short pulse laser was expanded to obtain ultrashort pulses.

この方法においても、分子振動を駆動するレーザーは、超高強度、超短パルスレーザーを用いる必要があるため、装置が大型かつ複雑となること、強度がラマン媒質をプラズマ化することで制限されていること、ラマン媒質として長い振動周期を有する分子に制限されるなど、応用上の問題点があった。   Also in this method, the laser that drives molecular vibrations must use an ultra-high intensity and ultra-short pulse laser, so that the apparatus becomes large and complicated, and the intensity is limited by converting the Raman medium into plasma. In addition, there are problems in application such as being restricted to molecules having a long vibration period as a Raman medium.

一方、効率よく上記の誘電分極波を形成する他の方法として、ラマン遷移分の振動数差を有する2色光励起による方法が示された(非特許文献3参照)。   On the other hand, as another method for efficiently forming the above-mentioned dielectric polarization wave, a method by two-color light excitation having a frequency difference corresponding to the Raman transition has been shown (see Non-Patent Document 3).

また、2波長パラメトリックラマン散乱法により励起光から高次ストークス群が形成され、それらが超短パルスのパルス列を形成する可能性が示された(特許文献2参照)。この方法においては、超短パルスは、パルス列で得られるため、応用上問題があった。
M. Nisoli, “A novel high energypulse compression system: generation of multi-gigawatt sub 5fs pulses” , Appl. Phys. B(1997) p 189 N.Zhavoronkov, and G. Korn, “Generation of Single Intense Short Optical Pulses byUltrafast Molecular Phase Modulation”, Phys. Rev. Lett. 2002 Vol. 88, No.20,203901 Eimerl,R.S.Hargrove, and J.A. Paisner, “Efficient Frequency Conversion by StimulatedRaman Scattering” Phys. Rev. Lett. (1981) Vol. 46, No.10 p. 651 特開2001−83558号公報 特開平6−21550号公報
Further, it has been shown that high-order Stokes groups are formed from excitation light by the two-wavelength parametric Raman scattering method, and that they form a pulse train of ultrashort pulses (see Patent Document 2). This method has a problem in application because the ultrashort pulse is obtained by a pulse train.
M. Nisoli, “A novel high energypulse compression system: generation of multi-gigawatt sub 5fs pulses”, Appl. Phys. B (1997) p 189 N. Zhavoronkov, and G. Korn, “Generation of Single Intense Short Optical Pulses by Ultrafast Molecular Phase Modulation”, Phys. Rev. Lett. 2002 Vol. 88, No. 20, 203901 Eimerl, RSHargrove, and JA Paisner, “Efficient Frequency Conversion by Stimulated Raman Scattering” Phys. Rev. Lett. (1981) Vol. 46, No. 10 p. 651 JP 2001-83558 A JP-A-6-21550

超短パルスレーザー源としては、非常にコンパクトであり、かつ安定なファイバーレーザーが注目されている。しかしながら、レーザー媒質としてエルビウムやイットリビウムを用いるため、パルス幅は、100fs程度に留まっている。このパルス幅をチタンサファイヤレーザーで実現されている10fs以下にすることができれば、超高速現象に関する研究を飛躍的に進展させることが可能となる。したがって、本願発明の課題は、形の整ったフェムト秒超短パルスを得るための、容易かつ小型なシステムサイズを実現可能な超短パルスレーザーを開発することである。   As an ultrashort pulse laser source, a very compact and stable fiber laser has been attracting attention. However, since erbium or yttrium is used as the laser medium, the pulse width remains at about 100 fs. If the pulse width can be reduced to 10 fs or less, which is realized with a titanium sapphire laser, research on ultra-high-speed phenomena can be greatly advanced. Therefore, an object of the present invention is to develop an ultrashort pulse laser capable of realizing an easy and small system size for obtaining a well-formed femtosecond ultrashort pulse.

ラマン媒質のラマン遷移に相当する振動数差を有する2色のレーザーを用いてラマン分極波を効率よく励起して、そこに被影響光としてプローブレーザー光を入射することによって、スペクトル幅の拡大を行い、圧縮後超短パルスを得る。   The spectrum width can be expanded by efficiently exciting the Raman polarization wave using two-color lasers having a frequency difference corresponding to the Raman transition of the Raman medium and injecting the probe laser light as the affected light. To obtain ultrashort pulses after compression.

従来、ファイバーレーザーのパルス幅よりも短いレーザーパルスを得るためにはチタンサファイヤレーザー等の大型で安定性に欠けるレーザー光源を必要としていた。本願発明により、小型の装置により、ファイバー出力を直接数フェムト台に変換しうることとなり、超高速現象の分光計測などの応用に対して、非常にコンパクト、且つ高安定なシステムを供給することができる。   Conventionally, in order to obtain a laser pulse shorter than the pulse width of a fiber laser, a large-sized laser light source such as a titanium sapphire laser and lacking stability has been required. According to the present invention, the fiber output can be directly converted to a few femto level by a small device, and a very compact and highly stable system can be supplied for applications such as spectroscopic measurement of ultra-high speed phenomena. it can.

以下に、図面を用いて詳細に説明する。   Below, it demonstrates in detail using drawing.

図1に示すように、ラマン媒質の準位差に相当する振動数差を有する、波長λ1とλ2の2色の励起レーザー光を出力させる。それぞれの波長のレーザーは周波数を安定化した連続レーザーから発振され、必要な強度にまで増幅された後、ラマン媒質に入射させる。ラマン媒質としては、ここでは重水素を用いたが、メタン、窒素、六フッ化硫黄等でもよい。   As shown in FIG. 1, two colors of excitation laser light having wavelengths λ1 and λ2 having a frequency difference corresponding to the level difference of the Raman medium are output. Each wavelength laser is oscillated from a continuous laser whose frequency is stabilized, amplified to a required intensity, and then incident on a Raman medium. Here, deuterium is used as the Raman medium, but methane, nitrogen, sulfur hexafluoride, or the like may be used.

具体例として、KrFレーザーと重水素の回転ラマン遷移(回転量子数J=0から2)を用いる。狭スペクトル幅で連続発振する2台のチタンサファイヤレーザー出力の3倍高調波をKrFレーザーで増幅する。重水素の場合は、波数Ω=179cm-1であり、波長248.0nmのKrFレーザーを用いた場合は、およそ1nmの波長差を有する2色のレーザー光となる。その2色のレーザー光を反射率が50%の部分反射鏡を用いることで同一の光軸を伝搬するレーザービームとしてラマン媒質に入射する。   As a specific example, a rotational Raman transition of KrF laser and deuterium (rotational quantum number J = 0 to 2) is used. The KrF laser amplifies the third harmonic of the output of two titanium sapphire lasers that continuously oscillate with a narrow spectral width. In the case of deuterium, the wave number Ω = 179 cm −1, and when a KrF laser with a wavelength of 248.0 nm is used, the laser light has two colors having a wavelength difference of about 1 nm. The laser beams of the two colors are incident on the Raman medium as laser beams propagating on the same optical axis by using a partial reflection mirror having a reflectance of 50%.

この2色光励起によりラマン媒質は、効率的に励起されて、大きな分極波を媒質中に有するようになる。上記重水素の場合、数ナノ秒以上のパルス幅を有する2色光励起により、振動は定常状態に達する。   The Raman medium is efficiently excited by this two-color light excitation, and has a large polarization wave in the medium. In the case of the above deuterium, the vibration reaches a steady state by excitation with two-color light having a pulse width of several nanoseconds or more.

ここで、プローブレーザー光を入射する。プローブ光は、分極波と共に伝搬し、スペクトル幅の拡大の効果を受ける。そのプローブ光を波長選択鏡3により分離して取り出すために、プローブ光の波長λ3は、励起光の波長λ1,λ2とは異なっている。また、励起光と同軸にしてラマン媒質中に入射させるために、波長選択鏡3を用いている。このプローブ光のパルス幅は、分極波の振動周期以下であることが、圧縮後単一パルスを得るためには望ましい。   Here, probe laser light is incident. The probe light propagates together with the polarization wave and is subjected to the effect of expanding the spectrum width. Since the probe light is separated and extracted by the wavelength selection mirror 3, the wavelength λ3 of the probe light is different from the wavelengths λ1 and λ2 of the excitation light. Further, the wavelength selective mirror 3 is used in order to make it enter the Raman medium coaxially with the excitation light. In order to obtain a single pulse after compression, it is desirable that the pulse width of the probe light is equal to or less than the vibration period of the polarization wave.

上記、重水素の条件においては、例えば、ファイバーレーザーをプローブレーザーとして用いて、出力波長780nm、パルス幅200fs以下のプローブ光を入射すると、スペクトル幅が拡大される。   Under the above deuterium condition, for example, when a fiber laser is used as a probe laser and probe light having an output wavelength of 780 nm and a pulse width of 200 fs or less is incident, the spectrum width is expanded.

図2にそのスペクトル拡大の様子を示す。2色励起レーザーにより励起された分極波は、時間的に変動する屈折率に相当し、およそ光速の位相速度で共に伝搬するプローブ光のスペクトルを時間的に周波数が変化する様に拡大する。   FIG. 2 shows how the spectrum is expanded. The polarized wave excited by the two-color excitation laser corresponds to a refractive index that varies with time, and expands the spectrum of the probe light that propagates together at a phase velocity of approximately the speed of light so that the frequency changes with time.

スペクトル幅が拡大されたプローブパルスは、媒質から出力後、分散鏡など適切な光学素子を用いることでパルス幅を圧縮することができる。   The probe pulse with an expanded spectrum width can be compressed by using an appropriate optical element such as a dispersion mirror after being output from the medium.

図2においては、よりシステムが単純になる方法の例として、媒質の有する分散と、プローブ光の受ける周波数の時間変化(チャープ)の向きを適切に調整することによって、媒質中でプローブ光が圧縮された場合を示している。   In FIG. 2, as an example of a method that simplifies the system, the probe light is compressed in the medium by appropriately adjusting the dispersion of the medium and the direction of the temporal change (chirp) of the frequency received by the probe light. Shows the case.

プローブパルスと分極波の位相関係に応じて、スペクトルのチャープの向きが異なるので、安定した超短パルス生成のためには、相対的な位相関係を発振器ミラー等の位置を変化させて一定に保つための、フィードバックシステムを付加すること、あるいは、プローブ短パルス発振器からの出力を分けて、そのチャープパルスを2色励起レーザー光として用いる等の方法が考えられる。   Since the direction of the chirp of the spectrum differs depending on the phase relationship between the probe pulse and the polarization wave, the relative phase relationship is kept constant by changing the position of the oscillator mirror etc. for stable ultrashort pulse generation. For this purpose, a method of adding a feedback system, or dividing the output from the probe short pulse oscillator and using the chirped pulse as two-color excitation laser light can be considered.

本願発明は、短パルスレーザーによる超高速現象の診断又は分析に用いることができる。   The present invention can be used for diagnosis or analysis of an ultrafast phenomenon using a short pulse laser.

本願発明に係る装置の概念図Conceptual diagram of an apparatus according to the present invention 本願発明の機能説明図Functional explanatory diagram of the present invention

Claims (2)

超短パルスレーザー発生方法であって、KrFレーザーにより増幅した波長の異なる2色のレーザー光を用いて、重水素からなるラマン媒質の回転ラマン遷移を励起し、該励起により生じる誘電分極の場に基づいて第3のレーザー光のスペクトル幅を拡大し、超短パルスを形成することを特徴とする超短パルスレーザー発生方法。 An ultra-short pulse laser generation method that excites rotational Raman transition of a Raman medium composed of deuterium using two-color laser beams with different wavelengths amplified by a KrF laser. An ultrashort pulse laser generation method characterized in that the spectrum width of the third laser beam is expanded based on the above to form an ultrashort pulse. 超短パルスレーザー発生装置であって、KrFレーザーにより増幅した波長の異なる2色のパルスレーザー光を、重水素からなるラマン媒質に入射し、次いで、該2色のパルスレーザーよりもパルス幅の短いパルスレーザー光を該媒質中へ注入することを特徴とする超短パルスレーザー発生装置。 An ultrashort pulse laser generator, in which two-color pulse laser light amplified by a KrF laser is incident on a Raman medium composed of deuterium, and then has a pulse width shorter than that of the two-color pulse laser. An ultrashort pulse laser generator characterized by injecting pulsed laser light into the medium.
JP2005066369A 2005-03-09 2005-03-09 Ultrashort pulse laser generation method and apparatus Expired - Fee Related JP4696297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066369A JP4696297B2 (en) 2005-03-09 2005-03-09 Ultrashort pulse laser generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066369A JP4696297B2 (en) 2005-03-09 2005-03-09 Ultrashort pulse laser generation method and apparatus

Publications (2)

Publication Number Publication Date
JP2006251247A JP2006251247A (en) 2006-09-21
JP4696297B2 true JP4696297B2 (en) 2011-06-08

Family

ID=37091840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066369A Expired - Fee Related JP4696297B2 (en) 2005-03-09 2005-03-09 Ultrashort pulse laser generation method and apparatus

Country Status (1)

Country Link
JP (1) JP4696297B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105616A (en) * 2017-12-15 2019-06-27 株式会社日立製作所 Laser ultrasonic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278790A (en) * 1988-04-30 1989-11-09 Nobuhiko Ishibashi Laser device
JP2003066501A (en) * 2001-08-29 2003-03-05 Japan Science & Technology Corp Laser modulation device and laser modulation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278790A (en) * 1988-04-30 1989-11-09 Nobuhiko Ishibashi Laser device
JP2003066501A (en) * 2001-08-29 2003-03-05 Japan Science & Technology Corp Laser modulation device and laser modulation method

Also Published As

Publication number Publication date
JP2006251247A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
Jalali et al. Prospects for silicon mid-IR Raman lasers
KR102459787B1 (en) Optical Frequency Comb Generator with Carrier Envelope Offset Frequency Detection
Burgoyne et al. Programmable lasers: design and applications
WO2008015438A1 (en) Optical wave generator
JP5376652B2 (en) Laser apparatus and laser amplification method
JP7168659B2 (en) Tunable light source with broadband output
Granados et al. Spectral synthesis of multimode lasers to the Fourier limit in integrated Fabry–Perot diamond resonators
JP2006518866A (en) Generation of tunable picosecond light pulses in the visible spectral region
US20140254618A1 (en) Chirped quasi phase-matched optical parametric amplifier/difference frequency generator (cqpm opa/dfg)-based optical tuning method, apparatus, and applications
JP4017116B2 (en) Terahertz light generator
JP4696297B2 (en) Ultrashort pulse laser generation method and apparatus
JP7135076B2 (en) Light source with multi-longitudinal mode continuous wave output based on multi-mode resonant OPO technology
JP7328598B2 (en) Light source for multimodal nonlinear optical microscopy
JP2021536133A (en) Pulse configurable fiber laser unit
Nielsen Mode locked fiber lasers: theoretical and experimental developments
Bao et al. Multi-soliton Complex in Nonlinear Cavities
Granados et al. Efficient linewidth compression to the Fourier limit via resonant phonon interaction in diamond
Crystal Development of a Widely Tunable All Fiber Laser Source for Raman Spectroscopy/Microscopy
Smetanin et al. Multiwavelength Generation of Stokes Radiation Components with a Small Wavelength Spacing under Stimulated Raman Scattering in a SrMoO4 Crystal
Taylor et al. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: Application towards Yb+ fast quantum-logic
Shen et al. Tunable dual-color picosecond pulses from passive synchronized fiber lasers for coherent anti-Stokes Raman imaging
Fu et al. Experimental study on slow light based on all-optical wavelength conversion and dispersion medium
US20060050745A1 (en) Method and system for generating ultrashort laser pulses
Zhang et al. Tailored photon-pair generation in optical fiber through dual-pump spontaneous four-wave mixing
Tauser et al. Two alternative approaches to broadband visible light generation with mode-locked Erbium fiber lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees