JP4696283B2 - High-precision control method of liquid crystal light beam deflector considering wavefront curvature - Google Patents

High-precision control method of liquid crystal light beam deflector considering wavefront curvature Download PDF

Info

Publication number
JP4696283B2
JP4696283B2 JP2004173996A JP2004173996A JP4696283B2 JP 4696283 B2 JP4696283 B2 JP 4696283B2 JP 2004173996 A JP2004173996 A JP 2004173996A JP 2004173996 A JP2004173996 A JP 2004173996A JP 4696283 B2 JP4696283 B2 JP 4696283B2
Authority
JP
Japan
Prior art keywords
liquid crystal
wavefront
phase
light beam
ladder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173996A
Other languages
Japanese (ja)
Other versions
JP2005352257A (en
Inventor
雅之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2004173996A priority Critical patent/JP4696283B2/en
Publication of JP2005352257A publication Critical patent/JP2005352257A/en
Application granted granted Critical
Publication of JP4696283B2 publication Critical patent/JP4696283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、例えば光宇宙通信や光無線通信などの空間光通信を行う場合に光アンテナの光学系に適用することができるもので、光アンテナの光学系に適用して光ビームの偏向を制御する波面曲率を考慮した液晶光ビーム偏向器の高精度制御方法に関しており、特に、液晶の電圧と透過光位相の間の非線型性による偏向角と共に変動する位相歪がある場合でも、偏向角によらずそれらの液晶の非線型性による位相歪を抑え、高効率でビームの偏向を可能にする制御方法に関している。   The present invention can be applied to an optical system of an optical antenna when performing spatial optical communication such as optical space communication and optical wireless communication, for example, and is applied to the optical system of an optical antenna to control the deflection of a light beam. In particular, the liquid crystal light beam deflector takes into account the wavefront curvature, and in particular, even if there is a phase distortion that varies with the deflection angle due to nonlinearity between the liquid crystal voltage and the transmitted light phase, the deflection angle The present invention relates to a control method that suppresses phase distortion due to the non-linearity of the liquid crystal and enables beam deflection with high efficiency.

図1は、(a)衛星と地上局との光宇宙通信や(b)建物間の光無線通信などの、空間光通信の様子を示している。このような通信方法で、送信局あるいは受信局が移動してしまう場合は、光アンテナをその移動にあわせて制御する必要がある事は、既によく知られている。また、このための制御には、液晶光ビーム偏向器が簡便なものとして用いられる場合がある。このような液晶光ビーム偏向器は、図1に示す空間光通信用の光デバイスとして、また、通信用途に限らず、レーザ光学やその応用など、より一般の能動光学部品としても利用されている。   FIG. 1 shows a state of spatial optical communication such as (a) optical space communication between a satellite and a ground station and (b) optical wireless communication between buildings. It is already well known that when a transmitting station or a receiving station moves by such a communication method, it is necessary to control the optical antenna in accordance with the movement. In some cases, the liquid crystal light beam deflector is used for the control for this purpose. Such a liquid crystal light beam deflector is used as an optical device for spatial light communication shown in FIG. 1 and also as a more general active optical component such as laser optics and its application, not limited to communication applications. .

従来、非特許文献1あるいは2に記載されている様に、液晶を用いた光偏向装置でこれまでに提案されたものの多くは、液晶の屈折率変化により境界面での屈折や反射を2値的に変化させるものであり、連続的な偏向を目的としたものではなくスイツチングを目的としたものが多い。それら2値的な偏向を想定したものにおいては、その屈折率勾配分布の位相折り返しは固定されており、位相の動的なブレージング(接続)は考慮されず、そのため、連続的な偏向への拡張は不可能となっていた。ここで、位相のブレージンクとは、その波面位相が隣接する電極に印加した電圧によって偏向された波面位相と滑らかに繋がることを意味する。   Conventionally, as described in Non-Patent Document 1 or 2, many of the optical deflecting devices using liquid crystal that have been proposed so far have binary refraction and reflection at the boundary surface due to the change in the refractive index of the liquid crystal. Many of them are intended for switching, not for continuous deflection. In those assuming binary deflection, the phase wrapping of the refractive index gradient distribution is fixed, and dynamic phase blazing (connection) is not taken into account, so it is extended to continuous deflection. Was impossible. Here, the phase brazing means that the wavefront phase is smoothly connected to the wavefront phase deflected by the voltage applied to the adjacent electrode.

また、特許文献1「光偏向器と光走査装置と情報読み取り装置」には、透明電極間に電圧を印加して液晶内に平行縞を現させる装置が開示されている。これは、その平行縞を回折格子として使い、回折により偏向させるものである。これは、後に説明するように、本発明に係る偏向器とは作動原理が相違する。   Patent Document 1 “Optical Deflector, Optical Scanning Device, and Information Reading Device” discloses a device that applies parallel voltage between transparent electrodes to cause parallel stripes to appear in liquid crystal. In this method, the parallel stripes are used as a diffraction grating and deflected by diffraction. As will be described later, this is different in operating principle from the deflector according to the present invention.

また、特許文献2「屈折率分布型光偏向器及び光偏向方法」には、印加電圧による電位勾配を使って屈折率勾配を制御する方法が開示されている。しかしこれには、非線形性を考慮した波面曲率の微調すなわち焦点調整まではできない、という特徴があり、この点で本発明とは相違する。   Patent Document 2 “Gradient Index Optical Deflector and Optical Deflection Method” discloses a method of controlling a refractive index gradient using a potential gradient caused by an applied voltage. However, this is characterized in that fine adjustment of the wavefront curvature in consideration of non-linearity, that is, focus adjustment cannot be performed, and this is different from the present invention.

液晶光ビーム偏向器のひとつである抵抗電極型液晶光ビーム偏向器のうち、特に、梯子型電極付液晶光ビーム偏向器の(a)正面図と(b)側面図を図2に示す。このタイプの液晶偏向器は、図3(a)に示すように、液晶パネルにストライブ状に形成した電極面を抵抗率を持った材料で作り、電極セルの両端にかけた駆動電圧がセル面に電位勾配をつくり、それに合わせた形でホモジニアス配向の液晶層に、電位勾配のある電圧を印加し、屈折率勾配を発生させるものである。ここで、ホモジニアス配向(Homogeneous alignment)とは、2枚の基板間に挟まれた液晶分子群の長軸方向が基板面に平行である配向である。これは、並列配向とも言われている。この結果、図3(b)に示すように、液晶パネルに屈折率の分布ができ、入射したレーザ光は、この屈折率の分布に従って偏向される。   Among the resistive electrode type liquid crystal light beam deflectors which are one of the liquid crystal light beam deflectors, FIG. 2 shows a (a) front view and (b) side view of a liquid crystal light beam deflector with a ladder electrode. In this type of liquid crystal deflector, as shown in FIG. 3A, the electrode surface formed in a stripe shape on the liquid crystal panel is made of a material having resistivity, and the drive voltage applied to both ends of the electrode cell is applied to the cell surface. A potential gradient is generated, and a voltage with a potential gradient is applied to a homogeneously aligned liquid crystal layer in accordance with the potential gradient to generate a refractive index gradient. Here, the homogeneous alignment is an alignment in which the major axis direction of the liquid crystal molecule group sandwiched between two substrates is parallel to the substrate surface. This is also called parallel orientation. As a result, as shown in FIG. 3B, a refractive index distribution is formed on the liquid crystal panel, and the incident laser light is deflected according to the refractive index distribution.

その場合に、液晶に印加された電圧と透過光波面位相との間の非線形性により、偏向角と共に変動する位相波面曲率歪みを生ずる。高効率で光ビームの偏向を可能にするためには、偏向角の大きさに無関係に、その液晶の非線形性に起因する位相波面曲率歪みを抑える必要があった。   In that case, the nonlinearity between the voltage applied to the liquid crystal and the transmitted light wavefront phase causes phase wavefront curvature distortion that varies with the deflection angle. In order to enable the deflection of the light beam with high efficiency, it is necessary to suppress the phase wavefront curvature distortion caused by the nonlinearity of the liquid crystal regardless of the magnitude of the deflection angle.

また、従来、液晶デバイスにおいては、連続的な偏向が可能であるが、液晶層の厚みは一定として屈折率の変化を作るために、透過波面の精度は液晶の持つ当該液晶への印加電圧と当該液晶を透過する光の位相シフトとの間の非線形性の影響を受けることになる。   Conventionally, in a liquid crystal device, continuous deflection is possible, but in order to create a change in refractive index with a constant thickness of the liquid crystal layer, the accuracy of the transmitted wavefront is equal to the voltage applied to the liquid crystal that the liquid crystal has. It will be influenced by nonlinearity between the phase shift of light passing through the liquid crystal.

そこで、液晶分子のプレティルト角を最適設計することにより、液晶分子の立ち上り部分での線形動作領域の拡大を行なわなければならないと言う問題を残すことになった。ここで、プレティルト角とは、液晶に電圧印加する前に液晶分子が予め配向している角度を言い、縦型液晶では液晶層に垂直な直線に対する角度で、横型液晶では液晶層面に対する角度である。   Therefore, the optimal design of the pretilt angle of the liquid crystal molecules left the problem that the linear operation region must be expanded at the rising edge of the liquid crystal molecules. Here, the pretilt angle is an angle at which liquid crystal molecules are pre-aligned before applying a voltage to the liquid crystal. In the vertical liquid crystal, the angle is relative to a straight line perpendicular to the liquid crystal layer, and in the horizontal liquid crystal, the angle is relative to the liquid crystal layer surface. .

さらに、残された微小ながらも光学部品としては無視できない非線型誤差及び飽和曲線部をどのように処理するかに関しては制御方法を工夫しなければ、波面精度への影響の改善を図れないと言った問題を残すことになった。たとえば、波晶レンズによる光線の収束及び梯子型電極を用いた光ビームの偏向などはそれぞれ個別の課題として存在していた。
特開平7−261203号公報 特開平7−64123号公報 W. Klaus, at al., “Efficient liquid crystal wavefront modulators” Proc. SPIE, vol3015, pp.84-92 (1997) W. Klaus, et al., “Adaptive LC lens array and its application,” Proc. SPIE, 3635, pp. 60-73 (1999)
Furthermore, it is said that the effect on the wavefront accuracy cannot be improved unless the control method is devised for processing the nonlinear error and saturation curve that cannot be ignored as an optical component even though they remain. Ended up leaving problems. For example, the convergence of the light beam by the corrugated lens and the deflection of the light beam using the ladder-type electrode exist as separate problems.
JP 7-261203 A JP 7-64123 A W. Klaus, at al., “Efficient liquid crystal wavefront modulators” Proc. SPIE, vol3015, pp.84-92 (1997) W. Klaus, et al., “Adaptive LC lens array and its application,” Proc. SPIE, 3635, pp. 60-73 (1999)

図12は、液晶パネルに印加する電圧に対する液晶開口面での波面位相の状態(リターデーション)を示す。この図から液晶の非線形性、すなわち、印加電圧と透過光波面位相が非線形関係に有ることが分かる。   FIG. 12 shows the state (retardation) of the wavefront phase at the liquid crystal aperture with respect to the voltage applied to the liquid crystal panel. From this figure, it can be seen that the nonlinearity of the liquid crystal, that is, the applied voltage and the transmitted light wavefront phase have a nonlinear relationship.

一般に、液晶層の厚みは一定として、連続的な偏向が可能であるようにするように屈折率を変化させると、透過波面の精度は液晶の非線形性の影響を受ける事が知られている。そのため、通常は、液晶分子のプレティルト角の最適設計により液晶分子の立ち上り部分での線形動作領域の拡大が行われている。しかし、微小な非線型誤差及び飽和曲線部が残されており、これをどのように処理するかが問題である。   In general, it is known that if the refractive index is changed so that the thickness of the liquid crystal layer is constant and continuous deflection is possible, the accuracy of the transmitted wavefront is affected by the nonlinearity of the liquid crystal. For this reason, normally, the linear operation region is expanded at the rising edge of the liquid crystal molecules by the optimum design of the pretilt angle of the liquid crystal molecules. However, minute nonlinear errors and saturation curve portions remain, and how to deal with them is a problem.

本発明では、上記の残された微小な非線型誤差及び飽和曲線部をどのよう処理するかに関して、その屈折率の制御法の工夫により波面精度への影響の改善を図っている。この改善により、波面の収束と偏向とを統合し、さらに、変更角や波面の収束率に関わらず連続的な動作を可能にする液晶波面変調器を実現するものである。   In the present invention, with respect to how to process the remaining non-linear error and saturation curve portion, the influence on the wavefront accuracy is improved by devising the control method of the refractive index. This improvement realizes a liquid crystal wavefront modulator that integrates wavefront convergence and deflection, and enables continuous operation regardless of the change angle and the wavefront convergence rate.

本発明はこのような課題に鑑みてなされたものであり、液晶光ビーム偏向器の動作を制御する方法において、波晶光ビーム偏向器の透過光線の波面歪みを低減し、任意の偏向角度に対して高効率のビーム偏向を可能にする液晶光ビーム偏向器の高精度制御方法を提供することを目的とする。   The present invention has been made in view of such problems, and in a method for controlling the operation of a liquid crystal light beam deflector, the wavefront distortion of the transmitted light of the wave crystal light beam deflector is reduced, and an arbitrary deflection angle is obtained. Another object of the present invention is to provide a highly accurate control method of a liquid crystal light beam deflector that enables highly efficient beam deflection.

位相波面曲率歪みを抑制することにより、偏向時のビーム制御精度の向上が図れると同時に、液晶の電気光学特性を非線形領域まで利用できるようなる。また前記の抑制の結果として、光ビーム偏向器単体で波面曲率の補正、すなわちフォーカス装置を兼ねることが可能となり、液晶のもつ軽便性と合わせることで、小型高精度化を図ることができるレーザ偏向光学系を提供できるようになる。   By suppressing the phase wavefront curvature distortion, the beam control accuracy at the time of deflection can be improved, and at the same time, the electro-optical characteristics of the liquid crystal can be used up to the nonlinear region. Also, as a result of the above suppression, it becomes possible to correct the wavefront curvature with a single light beam deflector, that is, to also serve as a focusing device. An optical system can be provided.

また、位相波面曲率歪みを抑制するために、本発明においては、位相波面曲率の2次微分の導出により、液晶の非線形性によって生ずる波面曲率歪の量を事前にリアルタイムで算出できるようにした。これにより、偏向を目的として波面傾斜を与えたときに液晶の変調範囲に対して傾斜が急な場合など、2パイ周期での位相折り返しが必要な際にも、波面歪みを最小とする最良な折り返し方法の算出が可能となる。さらにこれを評価関数として逐次的に電極毎の位相を計算するアルゴリズムを構成する。すなわち、光強度の強い開口中心へ優先的に最良値を与えて初期値にし、波面の曲率となるよう最適の条件でブレージング(接続)を施しながら周辺部へ位相面を延長する。その際、波面曲率の評価にバイアス値を与えることで、波面曲率の微調整が可能となる。   In order to suppress the phase wavefront curvature distortion, in the present invention, the amount of wavefront curvature distortion caused by the nonlinearity of the liquid crystal can be calculated in real time in advance by deriving the second derivative of the phase wavefront curvature. This makes it the best to minimize wavefront distortion even when phase wrapping in 2 pi cycles is required, such as when the tilt is steep with respect to the modulation range of the liquid crystal when the wavefront tilt is given for the purpose of deflection. The return method can be calculated. Further, an algorithm for sequentially calculating the phase for each electrode is constructed using this as an evaluation function. That is, the best value is preferentially given to the center of the aperture with high light intensity to be the initial value, and the phase plane is extended to the peripheral part while performing brazing (connection) under optimum conditions so as to obtain the wavefront curvature. At this time, by giving a bias value to the evaluation of the wavefront curvature, the wavefront curvature can be finely adjusted.

上記の特徴をもつ本発明は、ホモジニアス配向の液晶層を介してストライプ紋様を持った梯子型電極の複数が光を通すことのできる他の電極と対向配置された液晶パネルにおいて、
それぞれの上記梯子型電極と光を通すことのできる上記電極間に電圧を印加すると共に、前記梯子型電極のストライプ横断方向で、且つ、前記液晶層内に電位差勾配を作るべく、前記ストライプ間に電圧を印加することにより、前記液晶層内で、且つ、前記梯子型電極のストライプ横断方向に沿って屈折率勾配を発生させる際に、
それぞれの前記梯子型電極のストライプ横断方向変位に対する、前記屈折率勾配のある液晶層を透過する光ビームの波面位相の二次微分、を導出して、波面曲率歪み量をリアルタイムで算出し、
上記梯子型電極における順次隣接する波面位相の位相差については、算出された該波面曲率歪み量を小さくする前記梯子型電極の波面位相を、光強度が強い開口中心に近い電極から周辺部へと順次選択して、前記波面位相が全体として滑らかになるようにするブレージングを行う
The present invention having the above features is a liquid crystal panel in which a plurality of ladder-type electrodes having a stripe pattern are arranged opposite to other electrodes through which light can pass through a homogeneously oriented liquid crystal layer.
A voltage is applied between each of the ladder-type electrodes and the electrodes through which light can pass, and between the stripes in order to create a potential difference gradient in the transverse direction of the stripe of the ladder-type electrode and in the liquid crystal layer. By applying a voltage, a refractive index gradient is generated in the liquid crystal layer and along the crossing direction of the stripe of the ladder electrode.
Deriving the second derivative of the wavefront phase of the light beam transmitted through the liquid crystal layer having the refractive index gradient with respect to the displacement of each ladder electrode in the stripe transverse direction, and calculating the amount of wavefront curvature distortion in real time,
Regarding the phase difference between sequentially adjacent wavefront phases in the ladder-type electrode, the wavefront phase of the ladder-type electrode that reduces the calculated wavefront curvature distortion amount is changed from the electrode near the center of the opening where the light intensity is strong to the peripheral portion. Blazing is performed by sequentially selecting and smoothing the wavefront phase as a whole .

波面傾斜が緩慢である場合は、連続な波面を用いることが最良であるのは明らかであるが、波面傾斜が急になるにつれて液晶の非線型性の影響は増大する。また一方では、調整する波面位相が液晶の位相変調範囲に収まらなくなる場合があるが、その場合は、光振動の周期性を利用して2パイ周期で位相の折り返しを行う。上記のような場合にも目的とする波面傾斜に応じて液晶の非線型性を加味しながら最適な位相の折り返しを行うことが可能となる。   Obviously, if the wavefront tilt is slow, it is best to use a continuous wavefront, but the effect of the non-linearity of the liquid crystal increases as the wavefront tilt increases. On the other hand, the wavefront phase to be adjusted may not be within the phase modulation range of the liquid crystal. In this case, the phase is turned back with a period of 2 pi using the periodicity of the optical vibration. Even in the above case, it is possible to perform the optimal phase folding while taking into account the nonlinearity of the liquid crystal according to the target wavefront inclination.

また、上記の様に、前記位相シフトを計算する際に、(1)前記液晶パネルの光ビームの強い部分へ優先的に波面位相の境界条件を与えて初期値にし、(2)上記位相シフトによる等位相面が波面の曲率となるように上記ブレージングを施しながら液晶パネルの光ビームの弱い部分へ波面位相を延長するようにする。 Further, as described above, when calculating the phase shift, (1) a wavefront phase boundary condition is preferentially given to the strong part of the light beam of the liquid crystal panel to obtain an initial value, and (2) the phase shift is calculated. The wavefront phase is extended to the weak part of the light beam of the liquid crystal panel while performing the above brazing so that the equiphase surface by the above becomes the curvature of the wavefront.

また、上記のようにブレージングを施す際に、適宜、上記梯子型電極に与える電圧の計算値にバイアス値を与えることで、波面曲率の微調整をする。この処置により同一デバイス単体で、焦点調整することができるようになる。 Further, when performing brazing as described above , the wavefront curvature is finely adjusted by giving a bias value to the calculated value of the voltage applied to the ladder-type electrode as appropriate. This treatment makes it possible to perform focus adjustment with the same device alone.

また、上記のような液晶パネル2枚、第1と第2の液晶パネル、が光ビームを連鎖して入射するように配置され、第1の液晶パネルのストライプ方向が第2の液晶パネルのストライプ方向に直交あるいは斜交するように配置されている場合に、第1の液晶パネルと第2の液晶パネルのいずれかの液晶パネルを上記の方法で制御することで、上記の課題を解決できる。   Further, the two liquid crystal panels as described above, the first and second liquid crystal panels are arranged so as to be incident with the light beams being chained, and the stripe direction of the first liquid crystal panel is the stripe of the second liquid crystal panel. In the case where the liquid crystal panels are arranged so as to be orthogonal or oblique to the direction, the above-described problem can be solved by controlling one of the first liquid crystal panel and the second liquid crystal panel by the above method.

本発明では、液晶デバイスのうち抵抗電極型のビーム偏向器に関して、その制御方法を工夫して、液晶の非線形性による残留波面誤差を改善した。この改善は、位相のブレージングを行なう過程に最適処理を加えることで波面の曲率を制御し、理論値に迫る高精度化を実現することによるものである。また、ビーム偏向器本来の機能である高精度化に加え、波面曲率の制御により同じデバイス単体で焦点調整の実現も可能となる。   In the present invention, the residual wavefront error due to the nonlinearity of the liquid crystal is improved by devising the control method for the resistive electrode type beam deflector of the liquid crystal device. This improvement is due to the fact that the wavefront curvature is controlled by adding an optimal process to the phase brazing process, and the accuracy close to the theoretical value is achieved. In addition to the high accuracy that is the original function of the beam deflector, the focus adjustment can be realized by the same device alone by controlling the wavefront curvature.

一般に、液晶を用いて連続的にビーム偏向を行う場合、液晶の非線形歪みもそれにしたがって変化してしまい、単純な位相補正板による補正などが行いにくいことがある。本発明を適用した場合は、偏向方向などのパラメータが連続的に変化した場合でも有効であることである。   In general, when beam deflection is performed continuously using liquid crystal, the nonlinear distortion of the liquid crystal changes accordingly, and correction with a simple phase correction plate may be difficult. When the present invention is applied, it is effective even when parameters such as the deflection direction are continuously changed.

具体的な例として、図4〜図6に、前述の位相がブレージングされた様子を示す。図4は、波面位相が偏向器全体として中央が凹面になるように左右対称に収束する場合である。また、図5は、波面位相が偏向器全体として一方に勾配をもって偏向する場合である。また、図6は、波面位相が偏向器全体として凹面を形成しながら一方に偏向する場合である。いずれも波面位相はブレージングされているため、位相シフトは生じている。また、いずれの位相誤差も士0.1ラジアン以内に収まっているのが分かる。 As a specific example, FIGS. 4 to 6 show a state in which the aforementioned phase is blazed. FIG. 4 shows a case where the wavefront phase converges symmetrically so that the center of the deflector is concave. FIG. 5 shows a case where the wavefront phase is deflected with a gradient to one side as a whole deflector. FIG. 6 shows a case where the wavefront phase is deflected to one side while forming a concave surface as the entire deflector. In both cases, the wavefront phase is blazed, so that a phase shift occurs . It can also be seen that all phase errors are within 0.1 radians.

以下に、この発明の実施の形態を図面に基づいて詳細に説明する。以下の説明においては、同じ機能あるいは類似の機能をもった装置に、特別な理由がない場合には、同じ符号を用いる。   Embodiments of the present invention will be described below in detail with reference to the drawings. In the following description, devices having the same function or similar functions are denoted by the same reference numerals unless there is a special reason.

本発明を実施するための最良の形態であるレーザ光の発振から検出までの光学系を図7に示す。図7(a)は、無限遠へのビーム偏向の場合のブロック図であり、図7(b)は、液晶開口面を観察する際のビーム偏向の場合のブロック図である。   FIG. 7 shows an optical system from laser light oscillation to detection which is the best mode for carrying out the present invention. FIG. 7A is a block diagram in the case of beam deflection to infinity, and FIG. 7B is a block diagram in the case of beam deflection when observing the liquid crystal aperture.

図7(a)には、4分の1波長板3を介して、図3に示すものと同じ構造のX軸方向の偏向を制御する液晶パネル2とY軸方向の偏向を制御する液晶パネル4が光軸方向に順に並び、これを1つのユニットとしている。図7(a)では、入射方向から偏光角90゜の偏光子1、前記ユニット、レンズ5の順序に配置されている。また、図2(b)では、同様に偏光角45゜の偏光子7、前記ユニット、偏光角45゜の検光子8、レンズ5の順序に並べた光学系が示されている。   7A shows a liquid crystal panel 2 that controls the deflection in the X-axis direction and a liquid crystal panel that controls the deflection in the Y-axis direction, having the same structure as that shown in FIG. 4 are arranged in order in the direction of the optical axis, and this is taken as one unit. In FIG. 7A, the polarizer 1, the unit, and the lens 5 having a polarization angle of 90 ° from the incident direction are arranged in this order. FIG. 2B also shows an optical system in which the polarizer 7 having a polarization angle of 45 °, the unit, the analyzer 8 having a polarization angle of 45 °, and the lens 5 are arranged in this order.

さらに、図7(b)では、前記レンズによって結んだ像を受光器6のCCD(Charge Coupled Device:電荷結合素子)で受光し、その結果をパーソナルコンピュータ(PC)10で信号処理しDAC9(ディジタルアナログコンバータ)アレイを介して、前記2つの液晶パネルを制御していることを示している。ここで、CCDによる受光結果の出力は、ビームプロファイラ12にも切り替えて記録可能である。DACアレイは、PCからの偏向用ディジタル信号をアナログ信号に変換し、このアナログ信号を液晶パネルに電圧として印加している。   Further, in FIG. 7B, an image formed by the lens is received by a CCD (Charge Coupled Device) of the light receiver 6, and the result is signal-processed by a personal computer (PC) 10 and DAC 9 (digital It shows that the two liquid crystal panels are controlled via an analog converter array. Here, the output of the light reception result by the CCD can be switched and recorded also on the beam profiler 12. The DAC array converts a deflection digital signal from the PC into an analog signal, and applies the analog signal as a voltage to the liquid crystal panel.

図7(a)に示すビーム偏向光学系におけるビーム偏向の結果、結んだ像を図8(a)に示す。また、焦点調整の結果、結んだ像を図8(b)に示す。図8(c)は各像の相対強度を示す。   FIG. 8A shows an image formed as a result of the beam deflection in the beam deflection optical system shown in FIG. Further, FIG. 8B shows an image formed as a result of the focus adjustment. FIG. 8C shows the relative intensity of each image.

図9(a)に焦点パラメータに対する結像の状態を、また、図9(b)に焦点パラメータに対するピーク強度を示す。   FIG. 9A shows the state of imaging with respect to the focus parameter, and FIG. 9B shows the peak intensity with respect to the focus parameter.

図10にビーム偏向光学系における液晶開口面での波面の位相の遅れ(Phase Retardation : リターデーション)を示す。図10(a)は、ビームが直進した場合の液晶開口面での波面位相の状態を示す。何の縞模様も現れていない。また、図10(b)は、ビームが収束した場合の液晶開口面での波面位相の状態を示す。同心円状の縞模様が形成されているが、中心はビームの軸上から逸れていない。また、図10(c)は、ビームが偏向した場合の液晶開口面での波面位相の状態を示す。波の側面の軌跡のような縞が現れている。また、図10(d)は、ビームが偏向し、且つ、収束した場合の液晶開口面での波面位相の状態を示す。中心がビームの軸上から逸れている同心円状の縞模様が形成されている。   FIG. 10 shows the phase delay of the wave front at the liquid crystal aperture surface in the beam deflection optical system (Phase Retardation). FIG. 10A shows the state of the wavefront phase at the liquid crystal aperture when the beam travels straight. No stripes appear. FIG. 10B shows the state of the wavefront phase at the liquid crystal aperture when the beam converges. Concentric stripes are formed, but the center is not deviated from the beam axis. FIG. 10C shows the state of the wavefront phase at the liquid crystal aperture when the beam is deflected. Stripes like the trajectory of the side of the wave appear. FIG. 10D shows the state of the wavefront phase at the liquid crystal aperture when the beam is deflected and converged. A concentric striped pattern whose center is off the axis of the beam is formed.

なお、これらが連続的な波面変化(偏向、収束、発散)に対しても働き得ることは、数式及び計算機シミュレーションでも確認された。   It has been confirmed by mathematical formulas and computer simulations that these can also work for continuous wavefront changes (deflection, convergence, divergence).

また、図7(b)で、パーソナルコンピュータ(PC)10からの信号処理の結果をDAC9アレイを介して、前記2つの液晶パネルを制御する際には、図11に示すように、それぞれの梯子型電極の受け持つ位相差を2π以内に計算処理することができる。例えば、図11(a)に示すように、該波面位相に隣接する波面位相が2πを超える位相差である場合に、図11(b)に示すように、それぞれの梯子型電極の受け持つ位相差を2π以内にして、その総和が、擬似的に上記の総合的な位相差に等しくなるようにする。これは、光波の周期性から容易に理解でき、この処理により、印加電圧を低下させ、液晶の非線形性による残留波面誤差を改善することができる。 Further, in FIG. 7B, when the two liquid crystal panels are controlled via the DAC 9 array based on the signal processing results from the personal computer (PC) 10, as shown in FIG. The phase difference of the mold electrode can be calculated within 2π. For example, as shown in FIG. 11 (a), when the wavefront phase adjacent to the wavefront phase is a phase difference exceeding 2π, as shown in FIG. Is within 2π so that the sum is pseudo-equal to the total phase difference. This can be readily understood from the periodicity of light waves by the process, the applied voltage is lowered and can you to improve residual wavefront errors due to the nonlinearity property of the liquid crystal.

本発明は、空間光通信における、光アンテナの光学系補正用に用いることで、ビーム指向性の高精度な偏向及び焦点(フォーカス)の調整を小型の液晶素子一つで実現できることになり、低駆動電力で超小型の光アンテナの実現が期待できる。また、宇宙用の光デバイスとしても、通信用途に限らず、レーザ光学やその応用など、より一般の能動光学部品としても利用できる。   By using the present invention for optical system correction of an optical antenna in spatial light communication, highly accurate deflection and focus adjustment of beam directivity can be realized with a single small liquid crystal element. Realization of an ultra-small optical antenna with driving power can be expected. In addition, the optical device for space can be used not only as a communication application but also as a more general active optical component such as laser optics or its application.

また、ビーム偏向精度の向上が図れると同時に、液晶の電気光学特性を非線形領域まで利用するように制御パラメータを設定すれば、波面曲率を制御することも可能となる。結果として、ビーム偏向器単体で波面曲率の補正、すなわちフォーカス装置を兼ねることが可能となり、液晶のもつ軽便性と合わせれば、レーザ偏向光学系の小型高精度化を図ることができる。   Further, the beam deflection accuracy can be improved, and at the same time, the wavefront curvature can be controlled by setting the control parameters so that the electro-optical characteristics of the liquid crystal are used up to the nonlinear region. As a result, it becomes possible to correct the wavefront curvature of the beam deflector alone, that is, to also serve as a focusing device. When combined with the convenience of liquid crystal, the laser deflection optical system can be made smaller and more precise.

液晶パネルを用いたビーム偏向デバイスは、電源を含めた全システムでも腕時計サイズ並みの構成を可能にする。したがって、通信用システムであれば、複雑になりがちな光アンテナの構造を簡略化できる。   The beam deflection device using a liquid crystal panel enables a structure equivalent to a wristwatch size in the entire system including the power supply. Therefore, if it is a communication system, the structure of the optical antenna that tends to be complicated can be simplified.

空間光通信(衛星と地上局との光宇宙通信や、地上のビル間の光無線通信)概念図である。It is a conceptual diagram of space optical communication (optical space communication between a satellite and a ground station and optical wireless communication between buildings on the ground). 梯子型電極忖液晶光ビーム偏光器の(a)正面図と(b)側面図である。It is (a) front view and (b) side view of a ladder-type electrode-liquid crystal light beam polarizer. 梯子型電極付液晶光ビーム偏向器の(a)平面図と(b)断面図である。It is (a) top view and (b) sectional drawing of a liquid crystal light beam deflector with a ladder type electrode. 電極に対応する波面位相および位相誤差(収束)を示す図である。It is a figure which shows the wave front phase and phase error (convergence) corresponding to an electrode. 電極に対応する波面位相および位相誤差(偏向)を示す図である。It is a figure which shows the wave front phase and phase error (deflection) corresponding to an electrode. 電極に対応する波面位相および位相誤差(偏向と収束)を示す図である。It is a figure which shows the wave front phase and phase error (deflection and convergence) corresponding to an electrode. レーザ光の発振から検出までのビーム偏向光学系を示す概略模式断面図で、(a)無限遠へのビーム偏向を示す図、(b)液晶開口面を観察する際のビーム偏向を示す図、である。FIG. 2 is a schematic cross-sectional view showing a beam deflection optical system from oscillation to detection of laser light, (a) a diagram showing beam deflection to infinity, (b) a diagram showing beam deflection when observing a liquid crystal opening surface, It is. ビーム偏向光学系による結像を示す図で、(a)ビーム偏向の結像図、(b)焦点調整の結像図、(c)各像の相対強度を表す図、である。It is a figure which shows the image formation by a beam deflection optical system, (a) An image figure of beam deflection, (b) An image figure of focus adjustment, (c) A figure showing the relative intensity of each image. 焦点パラメータによる結像と強度を示す図で、(a)焦点パラメータに対する結像図、(b)焦点パラメータに対するピーク強度を表す図、である。It is a figure which shows the imaging and intensity | strength by a focus parameter, (a) The imaging figure with respect to a focus parameter, (b) The figure showing the peak intensity with respect to a focus parameter. ビーム偏向光学系における液晶開口面での波面位相の状態を示す図で、(a)直進、(b)収束、(c)偏向、(d)偏向と収束(右下図)、の場合を示す図である。This figure shows the state of wavefront phase at the liquid crystal aperture in the beam deflection optical system, and shows the cases of (a) going straight, (b) convergence, (c) deflection, (d) deflection and convergence (bottom right). It is. 該波面位相に隣接する波面位相が2πを超える位相差である場合に、それぞれ2π未満の位相差になるように位相シフトして擬似的に等しくすることを説明するための図である。It is a figure for demonstrating making a phase shift so that it may become a phase difference of less than 2pi, respectively, and making it pseudo-equal when a wavefront phase adjacent to this wavefront phase exceeds 2π. ビーム偏向光学系における液晶印加電圧に対する液晶開口面でのリターデーションを示す図である。It is a figure which shows the retardation in the liquid crystal opening surface with respect to the liquid crystal applied voltage in a beam deflection optical system.

符号の説明Explanation of symbols

1 偏光子
2 液晶パネル
3 4分の1波長板
4 液晶パネル
5 レンズ
6 撮像器
7 偏光子
8 検光子
9 ディジタルアナログコンピュータ
10 パーソナルコンピュータ
11 スイッチ
12 ビームプロファイラ
DESCRIPTION OF SYMBOLS 1 Polarizer 2 Liquid crystal panel 3 1/4 wavelength plate 4 Liquid crystal panel 5 Lens 6 Imager 7 Polarizer 8 Analyzer 9 Digital analog computer 10 Personal computer 11 Switch 12 Beam profiler

Claims (4)

ホモジニアス配向の液晶層を介してストライプ紋様を持った梯子型電極の複数が光を通すことのできる他の電極と対向配置された液晶パネルにおいて、
それぞれの上記梯子型電極と光を通すことのできる上記電極間に電圧を印加すると共に、前記梯子型電極のストライプ横断方向で、且つ、前記液晶層内に電位差勾配を作るべく、前記ストライプ間に電圧を印加することにより、前記液晶層内で、且つ、前記梯子型電極のストライプ横断方向に沿って屈折率勾配を発生させる際に、
それぞれの前記梯子型電極のストライプ横断方向変位に対する、前記屈折率勾配のある液晶層を透過する光ビームの波面位相の二次微分、を導出して、波面曲率歪み量をリアルタイムで算出し、
上記梯子型電極における順次隣接する波面位相の位相差については、算出された該波面曲率歪み量を小さくする前記梯子型電極の波面位相を、光強度が強い開口中心に近い電極から周辺部へと順次選択して、前記波面位相が全体として滑らかになるようにするブレージングを行うことを特徴とする波面曲率を考慮した液晶光ビーム偏向器の高精度制御方法。
In a liquid crystal panel in which a plurality of ladder-type electrodes with stripe patterns are arranged opposite to other electrodes that can transmit light through a homogeneously oriented liquid crystal layer,
A voltage is applied between each of the ladder-type electrodes and the electrodes through which light can pass, and between the stripes in order to create a potential difference gradient in the transverse direction of the stripe of the ladder-type electrode and in the liquid crystal layer. By applying a voltage, a refractive index gradient is generated in the liquid crystal layer and along the crossing direction of the stripe of the ladder electrode.
Deriving the second derivative of the wavefront phase of the light beam transmitted through the liquid crystal layer having the refractive index gradient with respect to the displacement of each ladder electrode in the stripe transverse direction, and calculating the amount of wavefront curvature distortion in real time,
Regarding the phase difference between sequentially adjacent wavefront phases in the ladder-type electrode, the wavefront phase of the ladder-type electrode that reduces the calculated wavefront curvature distortion amount is changed from the electrode near the center of the opening where the light intensity is strong to the peripheral portion. A high-precision control method for a liquid crystal light beam deflector in consideration of wavefront curvature, characterized by performing brazing so that the wavefront phases are smoothed as a whole by selecting them sequentially.
請求項1に記載の波面曲率を考慮した液晶光ビーム偏向器の高精度制御方法において、
逐次、前記梯子型電極毎に前記波面位相を計算し、該波面位相に隣接する波面位相が2πを超えるものから選択することで、擬似的に2π未満の位相差になるように2パイ周期で位相の折り返しを行って位相シフトを行うものであって、
前記位相シフトを行う際に、
(1)前記液晶パネルの光ビームの強い部分へ優先的に波面位相の境界条件を与えて初期値にし、
(2)上記位相シフトによる等位相面が波面の曲率となるように上記ブレージングを施しながら液晶パネルの光ビームの弱い部分へ波面位相を延長することを特徴とする波面曲率を考慮した液晶光ビーム偏向器の高精度制御方法。
In the high-precision control method of the liquid crystal light beam deflector in consideration of the wavefront curvature according to claim 1,
Sequentially, the wavefront phase is calculated for each of the ladder-type electrodes, and the wavefront phase adjacent to the wavefront phase is selected from those exceeding 2π, so that the phase difference is less than 2π in a quasi-two cycle. Phase wrapping and phase shifting,
When performing the phase shift,
(1) A wavefront phase boundary condition is preferentially given to the strong part of the light beam of the liquid crystal panel to an initial value,
(2) A liquid crystal light beam considering the wavefront curvature, characterized by extending the wavefront phase to a weak part of the light beam of the liquid crystal panel while performing the above brazing so that the equiphase surface by the phase shift has the curvature of the wavefront. High-precision control method of deflector.
請求項2に記載の波面曲率を考慮した液晶光ビーム偏向器の高精度制御方法において、
前記ブレージングを施す際に、上記梯子型電極に与える電圧の計算値にバイアス値を加減して波面曲率の調整を行い、
同一デバイス単体で、焦点調整することを特徴とする波面曲率を考慮した液晶光ビーム偏向器の高精度制御方法。
In the high-precision control method of the liquid crystal light beam deflector in consideration of the wavefront curvature according to claim 2,
When performing the brazing, adjust the wavefront curvature by adjusting the bias value to the calculated value of the voltage applied to the ladder electrode,
A high-precision control method for a liquid crystal light beam deflector in consideration of wavefront curvature, characterized in that the focus is adjusted by a single device.
ホモジニアス配向の液晶層を介してストライプ紋様を持った梯子型電極が他の光を通すことのできる電極と対向配置された液晶パネルである、第1の液晶パネルと第2の液晶パネルとが光ビームを連鎖して入射するように配置され、
第1の液晶パネルのストライプ方向が第2の液晶パネルのストライプ方向に直交あるいは斜交するように配置されている場合に、
請求項1ないし請求項3のいずれか1つに記載の波面曲率を考慮した液晶光ビーム偏向器の高精度制御方法を、第1の液晶パネルと第2の液晶パネルのいずれかの液晶パネルに適用することを特徴とする波面曲率を考慮した液晶光ビーム偏向器の高精度制御方法。
The first liquid crystal panel and the second liquid crystal panel are light beams in which a ladder-type electrode having a stripe pattern is disposed opposite to an electrode through which light can pass through a homogeneously aligned liquid crystal layer. Arranged so that the beams are incident in a chain,
When the stripe direction of the first liquid crystal panel is arranged so as to be orthogonal or oblique to the stripe direction of the second liquid crystal panel,
The high-precision control method for a liquid crystal light beam deflector in consideration of the wavefront curvature according to any one of claims 1 to 3 is applied to any one of the first liquid crystal panel and the second liquid crystal panel. A high-precision control method for a liquid crystal light beam deflector in consideration of wavefront curvature, which is applied.
JP2004173996A 2004-06-11 2004-06-11 High-precision control method of liquid crystal light beam deflector considering wavefront curvature Expired - Fee Related JP4696283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173996A JP4696283B2 (en) 2004-06-11 2004-06-11 High-precision control method of liquid crystal light beam deflector considering wavefront curvature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173996A JP4696283B2 (en) 2004-06-11 2004-06-11 High-precision control method of liquid crystal light beam deflector considering wavefront curvature

Publications (2)

Publication Number Publication Date
JP2005352257A JP2005352257A (en) 2005-12-22
JP4696283B2 true JP4696283B2 (en) 2011-06-08

Family

ID=35586780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173996A Expired - Fee Related JP4696283B2 (en) 2004-06-11 2004-06-11 High-precision control method of liquid crystal light beam deflector considering wavefront curvature

Country Status (1)

Country Link
JP (1) JP4696283B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI522675B (en) * 2009-12-01 2016-02-21 Seereal Technologies Sa Phase modulator for modulating voluntarily polarized optical interacting with a phase modulator and a display for displaying two- and / or three-dimensional image contents
CN106249325B (en) * 2016-10-14 2017-12-19 北京信息科技大学 A kind of quick focus adjustment method of bionical vision based on liquid lens
JP7031137B2 (en) * 2017-04-10 2022-03-08 凸版印刷株式会社 Laser scanning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937539A (en) * 1987-08-19 1990-06-26 Hughes Aircraft Company Phased array for optical beam control
JPH10221703A (en) * 1997-02-07 1998-08-21 Citizen Watch Co Ltd Electrode structure for efficient wave front modulation of liquid crystal
JP2000121945A (en) * 1998-10-14 2000-04-28 Olympus Optical Co Ltd Condenser device
JP2003295153A (en) * 2002-01-31 2003-10-15 Citizen Watch Co Ltd Optical deflection apparatus and optical deflection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937539A (en) * 1987-08-19 1990-06-26 Hughes Aircraft Company Phased array for optical beam control
JPH10221703A (en) * 1997-02-07 1998-08-21 Citizen Watch Co Ltd Electrode structure for efficient wave front modulation of liquid crystal
JP2000121945A (en) * 1998-10-14 2000-04-28 Olympus Optical Co Ltd Condenser device
JP2003295153A (en) * 2002-01-31 2003-10-15 Citizen Watch Co Ltd Optical deflection apparatus and optical deflection method

Also Published As

Publication number Publication date
JP2005352257A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US11409184B2 (en) Acousto-optic deflector with multiple output beams
US20090244415A1 (en) Liquid crystal optical modulation element, liquid crystal optical modulation device and method for driving liquid crystal optical modulation element
US20080297731A1 (en) Apparent speckle reduction apparatus and method for mems laser projection system
US6469822B1 (en) Optical phased array device and the method therefor
US10989982B2 (en) System, method and apparatus for non-mechanical optical and photonic beam steering
JP2004511017A (en) Frequency modulated liquid crystal beam steering device
JP2003295153A (en) Optical deflection apparatus and optical deflection method
US7626754B2 (en) Light steering using an array of tunable phase delay elements
WO2022005554A1 (en) System, method and apparatus for non-mechanical optical and photonic beam steering
US6958851B2 (en) Electronically modulated prism
US20180120600A1 (en) Control system using a phase modulation capable acousto-optic modulator for diverting laser output intensity noise to a first order laser light beam and related methods
US11664905B2 (en) Optically-steered RF imaging receiver using photonic spatial beam processing
Otón et al. Diffractive and refractive liquid crystal devices based on multilayer matrices
JP4094864B2 (en) Optical deflection element and driving method thereof
KR101597039B1 (en) Optical modulator and exposure head
JP4696283B2 (en) High-precision control method of liquid crystal light beam deflector considering wavefront curvature
WO2022087307A1 (en) System, method and apparatus for high speed non-mechanical atmospheric compensation
US6643054B1 (en) Beam deflector, switching system comprising beam deflectors as well as method for selectively coupling terminals for optical signals
JPH0611672A (en) Total-reflection type electron-optics modulator
US5138482A (en) Light modular and recording device employing same
WO2021238751A1 (en) Liquid crystal on silicon device
JP2002244167A (en) Beam deflection plate, switching system having the beam deflection plate, and method of selectively coupling terminal with respect to light signal
Zhu Irregular virtual optical phased array
US11835839B2 (en) System, method and apparatus for high speed non-mechanical atmospheric compensation
US20230324762A1 (en) System, method and apparatus for non-mechanical optical and photonic beam steering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees