JP4695916B2 - Optical modulator and spatial light modulator provided with the optical modulator - Google Patents

Optical modulator and spatial light modulator provided with the optical modulator Download PDF

Info

Publication number
JP4695916B2
JP4695916B2 JP2005133282A JP2005133282A JP4695916B2 JP 4695916 B2 JP4695916 B2 JP 4695916B2 JP 2005133282 A JP2005133282 A JP 2005133282A JP 2005133282 A JP2005133282 A JP 2005133282A JP 4695916 B2 JP4695916 B2 JP 4695916B2
Authority
JP
Japan
Prior art keywords
metal thin
thin film
dielectric
optical modulator
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005133282A
Other languages
Japanese (ja)
Other versions
JP2006308981A (en
Inventor
耕久 稲生
亮 黒田
朋宏 山田
昌也 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005133282A priority Critical patent/JP4695916B2/en
Publication of JP2006308981A publication Critical patent/JP2006308981A/en
Application granted granted Critical
Publication of JP4695916B2 publication Critical patent/JP4695916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光変調器、該光変調器を備えた空間光変調器に関し、特に金属薄板を透過する光の波長を制御できるようにした光変調器、及び該光変調器を備えた空間光変調器に関する。   The present invention relates to an optical modulator and a spatial light modulator including the optical modulator, and more particularly to an optical modulator capable of controlling the wavelength of light transmitted through a metal thin plate, and the spatial light including the optical modulator. Relates to the modulator.

従来において、金属薄膜に光波長程度のサイズの微小開口及び表面形状(突起や窪みなど)を周期的に配列させることで、その金属薄膜に光を照射したとき、金属薄膜を透過する特定の波長の光強度が増大することが知られている。
さらに、この透過光強度の増大の原因が、金属薄膜表面に入射する光と金属薄膜に励起される表面プラズモンモードと共鳴的に相互作用することに起因するということについても、明らかとされている。
また、金属薄膜の一方の表面に屈折率可変の材料を用い、その屈折率を変化させることで特定波長の透過光強度を増大させたり、特定波長の透過光強度の増大を抑える、という動作によって透過する光の強度変調を行う光変調器について報告がされている。
Conventionally, a specific wavelength that penetrates a metal thin film when the metal thin film is irradiated with light by periodically arranging minute openings and surface shapes (protrusions, depressions, etc.) having a size equivalent to the light wavelength on the metal thin film. It is known that the light intensity increases.
Furthermore, it has also been clarified that the cause of this increase in transmitted light intensity is due to resonance interaction between the light incident on the surface of the metal thin film and the surface plasmon mode excited by the metal thin film. .
Also, by using a material with a variable refractive index on one surface of the metal thin film and changing the refractive index, the transmitted light intensity at a specific wavelength is increased, or the increase in transmitted light intensity at a specific wavelength is suppressed. There have been reports on optical modulators that modulate the intensity of transmitted light.

特許文献1では、以上のような金属薄膜を複数並べて、独立に屈折率可変材料を制御することで表示装置に応用することが提案されている。
また、以上ような金属薄膜の表面を異なる屈折率の媒体で挟んだ場合に比べ、ほぼ屈折率が等しい媒体で挟んだ場合の方がある特定波長の光の透過光強度の増大率が大きいことも報告されている。さらに、特許文献2では、このような現象を用いて近接場光学顕微鏡用のプローブ、露光用マスク、集光装置、等を構成することが提案されている。
米国特許第6,040,936号明細書 特開2001−133618号公報
Patent Document 1 proposes that a plurality of metal thin films as described above are arranged and applied to a display device by independently controlling the refractive index variable material.
Also, compared to the case where the surface of the metal thin film is sandwiched between media having different refractive indexes, the rate of increase in transmitted light intensity of a specific wavelength is greater when sandwiched between media having substantially the same refractive index. Has also been reported. Furthermore, Patent Document 2 proposes that such a phenomenon is used to configure a probe for a near-field optical microscope, an exposure mask, a condensing device, and the like.
US Pat. No. 6,040,936 JP 2001-133618 A

ところで、上記従来技術のものにおいては、周期的に配列した微小開口等による周期構造を有する金属薄膜表面に、屈折率可変の材料を配置して屈折率を変化させることにより、金属薄膜を透過する光の強度を変調することに主眼が置かれ、透過波長の制御を行うことについて十分に考慮されたものではない。すなわち、上記従来技術のものでは、金属薄膜を透過する光の波長は金属薄膜表面に形成された周期構造に応じた特定波長しか得ることができないものであり、仮に、このような従来技術のもので所望の透過波長を得ようとすれば、例えば周期的に配列した微小開口の周期配列を変えること等により、上記の金属薄膜表面に形成された周期構造を所望の透過波長に合わせて変化させることが必要となる。
しかしながら、所望の透過波長に合わせてこのように金属薄膜表面に形成された周期構造を変化させるには、各透過波長に応じて金属薄膜表面に周期的に配列した微小開口の周期配列等について、設計から作製までを最初から行うことが必要となり、工程数の増加やコストの増大を招くことになる。
By the way, in the above prior art, the refractive index is changed by arranging a material having a variable refractive index on the surface of the metal thin film having a periodic structure such as periodically arranged microscopic apertures, thereby transmitting the metal thin film. The main focus is on modulating the intensity of light, and the consideration of controlling the transmission wavelength is not sufficient. That is, in the above prior art, the wavelength of the light transmitted through the metal thin film can only obtain a specific wavelength according to the periodic structure formed on the surface of the metal thin film. In order to obtain a desired transmission wavelength, the periodic structure formed on the surface of the metal thin film is changed in accordance with the desired transmission wavelength, for example, by changing the periodic arrangement of periodically arranged microscopic apertures. It will be necessary.
However, in order to change the periodic structure formed on the surface of the metal thin film according to the desired transmission wavelength, the periodic arrangement of the micro openings periodically arranged on the surface of the metal thin film according to each transmission wavelength, etc. It is necessary to start from design to production from the beginning, which leads to an increase in the number of processes and an increase in cost.

本発明は、上記課題に鑑み、金属薄板に周期的に配列した微小開口による周期構造を変えることなく、金属薄板を透過する光の強度の変調だけでなく、光の波長についても制御可能とした光変調器、該光変調器を備えた空間光変調器を提供することを目的とするものである。   In view of the above problems, the present invention makes it possible to control not only the intensity of light transmitted through a thin metal plate, but also the wavelength of light without changing the periodic structure by the microscopic openings periodically arranged on the thin metal plate. An object of the present invention is to provide an optical modulator and a spatial light modulator provided with the optical modulator.

本発明は、上記課題を達成するために、以下のように構成した光変調器を提供するものである。
すなわち、本発明の光変調器は、光を変調する光変調器であって、
周期的に配列された微小開口を有する金属薄膜と、該金属薄膜に対向して配置された誘電体と、
前記金属薄膜と前記誘電体とを対向方向に相対移動させ、前記金属薄膜と前記誘電体とを密着させる移動手段と、を有し、
前記移動手段による前記金属薄膜と前記誘電体との密着もしくは剥離の制御によって前記金属薄膜の周囲の誘電率を変化させ、前記金属薄膜を透過する光の透過率の波長依存性を制御することを特徴としている。
The present invention, in order to achieve the above object, there is provided an optical modulator which is constructed as follows.
That is, the optical modulator of the present invention is an optical modulator that modulates light,
A metal thin film having periodically arranged microscopic apertures, and a dielectric disposed opposite the metal thin film,
Wherein the metal thin film dielectric and are relatively moved in the opposite direction, anda moving means for Ru is adhered to said metal thin film and the dielectric,
The controller controls the by adhesion or control of the release of the metal thin film and the dielectric to change the dielectric constant of the surrounding of the metal thin film, the wavelength dependence of the transmittance of light passing through the thin metal film of said moving means It is a feature.

本発明によれば、金属薄板に周期的に配列した微小開口による周期構造を変えることなく、金属薄板を透過する光の強度の変調だけでなく、光の波長についても制御可能とした光変調器、該光変調器を備えた空間光変調器を実現することができる。   According to the present invention, an optical modulator capable of controlling not only the intensity of light transmitted through the metal thin plate but also the wavelength of the light without changing the periodic structure by the micro openings periodically arranged on the metal thin plate. A spatial light modulator including the light modulator can be realized.

本発明を実施するための最良の形態を、以下の実施例により説明する。 The best mode for carrying out the present invention will be described by the following examples.

[実施例1]
実施例1においては、本発明を適用して光変調器を構成した。
図1に本実施例の光変調器の構成を説明する概略図を示す。図1(a)は光変調器における第1誘電体、金属薄膜、第2誘電体による3層構成の分解斜視図、図1(b)は光変調器の断面構成を示す図である。
また、図2本実施例における光変調器に光源が配置された構成を示す。
図1において、100は光変調器、101は金属薄膜、102は第1の誘電体、103は第2の誘電体、104は支持部材である。
[Example 1]
In the first embodiment, the present invention is applied to configure an optical modulator.
FIG. 1 is a schematic diagram illustrating the configuration of the optical modulator of this embodiment. FIG. 1A is an exploded perspective view of a three-layer configuration of a first dielectric, a metal thin film, and a second dielectric in the optical modulator, and FIG. 1B is a diagram showing a cross-sectional configuration of the optical modulator.
FIG. 2 shows a configuration in which a light source is arranged in the optical modulator in this embodiment.
In FIG. 1, 100 is an optical modulator, 101 is a metal thin film, 102 is a first dielectric, 103 is a second dielectric, and 104 is a support member.

光変調器100は、金属薄膜101と、金属薄膜101の一方の面に対向して配置された第1の誘電体102と、金属薄膜101のもう一方の面に対向して配置された第2の誘電体103と、支持部材104によって構成されている。
この光変調器100は、図1(a)に示されるように第1の誘電体、金属薄膜、第2の誘電体の3層によって構成されている。また、図1(b)に示されているように、支持部材104によって第1の誘電体及び第2の誘電体と金属薄膜との間に空隙を設けている。
また、金属薄膜101には、透過する光の波長程度の周期Pで周期的に透過する光の波長以下の微小開口として直径dの孔が配列されている。このときの周期的な配列とは、周期Pでの正方格子状に配列していてもよいし、三角格子状に配列されていてもよく、配列の仕方は限定されない。この金属薄膜101と第1及び第2の誘電体との間の空隙には、例えば空気のようにある誘電率(このときの空気の誘電率:εair)を有する媒体が充填されている。
The optical modulator 100 includes a metal thin film 101, a first dielectric 102 disposed to face one surface of the metal thin film 101, and a second dielectric disposed to face the other surface of the metal thin film 101. The dielectric 103 and the support member 104 are configured.
As shown in FIG. 1A, the optical modulator 100 includes three layers of a first dielectric, a metal thin film, and a second dielectric. In addition, as shown in FIG. 1B, the support member 104 provides a gap between the first dielectric, the second dielectric, and the metal thin film.
In addition, holes having a diameter d are arranged in the metal thin film 101 as minute openings having a period equal to or less than the wavelength of light that is periodically transmitted with a period P that is approximately the wavelength of the transmitted light. The periodic arrangement at this time may be arranged in a square lattice pattern in the period P or may be arranged in a triangular lattice shape, and the arrangement method is not limited. A space between the metal thin film 101 and the first and second dielectrics is filled with a medium having a certain dielectric constant (dielectric constant of air at this time: εair) such as air.

つぎに、本実施例の光変調器の動作について説明する。
図2に示すように光変調器100に光源201から波長がブロードに広がっている照明光202を導入すると、金属薄膜101に形成された孔の直径、配列の周期、金属薄膜が有する誘電率及び、金属薄膜周囲の誘電率に応じた表面プラズモンモードが励起される。その表面プラズモンモードに対応した照明光202に含まれるある特定の波長の光(λ1)が相互作用し、金属薄膜を透過する光(λ1)の強度が増大される。
このとき、強度が増大された光(λ1)の透過率は、その他の波長の光の透過率を比較すると非常に差が大きくなる。このときの状態を「状態(1)」とし、透過率を図3に、光変調器における金属薄膜101と第1の誘電体102及び第2の誘電体103の位置関係を図4(a)に示す。
Next, the operation of the optical modulator of this embodiment will be described.
As shown in FIG. 2, when the illumination light 202 having a broad wavelength is introduced from the light source 201 to the optical modulator 100, the diameter of the holes formed in the metal thin film 101, the period of the arrangement, the dielectric constant of the metal thin film, and The surface plasmon mode corresponding to the dielectric constant around the metal thin film is excited. The light (λ1) having a specific wavelength included in the illumination light 202 corresponding to the surface plasmon mode interacts, and the intensity of the light (λ1) transmitted through the metal thin film is increased.
At this time, the transmittance of the light (λ1) having an increased intensity is greatly different from the transmittance of light of other wavelengths. The state at this time is referred to as “state (1)”, the transmittance is shown in FIG. 3, and the positional relationship between the metal thin film 101, the first dielectric 102 and the second dielectric 103 in the optical modulator is shown in FIG. Shown in

次に、図示しない相対移動手段を用いて金属薄膜101を移動し、金属薄膜101を第1の誘電体102に実質的に全体を密着させる(図4(b)参照)。このとき、第1の誘電体の誘電率ε1は、空気よりも大きい。金属薄膜101の周囲の誘電率が変化するため、金属表面に励起される表面プラズモンモードが変化し、そのプラズモンモードに応じた光(λ2)の透過率が増大し、λ2の波長の光が特異的に、金属薄膜101を透過する。このときの状態を「状態(2)」とし、透過率を図3に、金属薄膜101と第1の誘電体102の密着状態を図4(b)に示す。   Next, the metal thin film 101 is moved by using a relative movement means (not shown), and the metal thin film 101 is brought into close contact with the first dielectric 102 substantially (see FIG. 4B). At this time, the dielectric constant ε1 of the first dielectric is larger than that of air. Since the dielectric constant around the metal thin film 101 changes, the surface plasmon mode excited on the metal surface changes, the transmittance of light (λ2) corresponding to the plasmon mode increases, and light with a wavelength of λ2 is unique. Therefore, the metal thin film 101 is transmitted. The state at this time is “state (2)”, the transmittance is shown in FIG. 3, and the contact state between the metal thin film 101 and the first dielectric 102 is shown in FIG.

さらに、状態(2)で密着した金属薄膜101を第1の誘電体102から図示しない相対移動手段を用いて剥離し、金属薄膜101を第2の誘電体103に実質的に全体を密着させる(図4(c)参照)。このとき、第2の誘電体の誘電率ε2は、第1の誘電体の誘電率ε1と比較し更に大きいとする。状態(2)からさらに、金属薄膜101の周囲の誘電率が変化しているため、金属表面に励起される表面プラズモンモードが変化し、そのプラズモンモードに応じた光(λ3)の透過率が増大し、λ2の波長の光が特異的に金属薄膜101を透過する。このときの状態を「状態(3)」とし、透過率を図3に、金属薄膜101と第2の誘電体103の密着状態を図4(c)に示す。   Further, the metal thin film 101 adhered in the state (2) is peeled off from the first dielectric 102 using a relative moving means (not shown), and the metal thin film 101 is substantially adhered to the second dielectric 103 (see FIG. (Refer FIG.4 (c)). At this time, the dielectric constant ε2 of the second dielectric is assumed to be larger than the dielectric constant ε1 of the first dielectric. Since the dielectric constant around the metal thin film 101 is changed further from the state (2), the surface plasmon mode excited on the metal surface is changed, and the transmittance of light (λ3) corresponding to the plasmon mode is increased. Then, light having a wavelength of λ2 is transmitted through the metal thin film 101 specifically. The state at this time is referred to as “state (3)”, the transmittance is shown in FIG. 3, and the contact state between the metal thin film 101 and the second dielectric 103 is shown in FIG.

これらの現象は定性的には、次式により理解できる(特許文献1から引用)。

Figure 0004695916
These phenomena can be qualitatively understood from the following equation (cited from Patent Document 1).
Figure 0004695916

このときのλmaxとは、透過光強度が最大となる波長、Pは金属薄膜に形成した孔の配列の周期、εmは金属薄膜の誘電率、εdは金属薄膜周囲の誘電体の誘電率である。状態(1)の場合、εdは空気の誘電率となりほぼ1であると考えられる。
また、iとjについては回折の次数である。金属薄膜101の周囲の屈折率が1から1.4に変化すると、周期P=400nm,金属薄膜誘電率εm=−10.545+0.835iとし、透過光の最低次数として(i,j)=(0,1)とすると上記の式から、透過率が最大となる波長はおおよそ440nmから690nmまで長波長側にシフトする。実際には、上記式では定性的な現象を表すことはできるが、定量的に議論するためには、様々な補正項を用いる必要がある。
そこで、補正を加味して数値計算を行った一例を示す。金属薄膜として石英基板上に成膜した金(Au)を用い、微小開口として50nm×300nmの長方形開口とした場合、金属薄膜を透過する透過率が図7のグラフに示すようになった。
Here, λmax is the wavelength at which the transmitted light intensity is maximum, P is the period of the arrangement of holes formed in the metal thin film, εm is the dielectric constant of the metal thin film, and εd is the dielectric constant of the dielectric around the metal thin film. . In the case of the state (1), εd is a dielectric constant of air and is considered to be approximately 1.
Also, i and j are diffraction orders. When the refractive index around the metal thin film 101 changes from 1 to 1.4, the period P = 400 nm, the metal thin film dielectric constant εm = −10.545 + 0.835i, and the minimum order of transmitted light is (i, j) = ( 0, 1), from the above formula, the wavelength at which the transmittance is maximum shifts from about 440 nm to 690 nm toward the long wavelength side. Actually, the above equation can represent a qualitative phenomenon, but various correction terms need to be used for quantitative discussion.
Therefore, an example in which numerical calculation is performed with correction added will be shown. When gold (Au) formed on a quartz substrate was used as the metal thin film and the rectangular opening was a 50 nm × 300 nm rectangular opening, the transmittance through the metal thin film was as shown in the graph of FIG.

図7は、Au上に屈折率1、1.33、1.375の材料が存在する場合の3種類のスペクトルが示された図である。この図からわかるように、金属薄膜の一方の面の屈折率が1から1.33と大きくなると、透過率が最大になるピーク波長は1040nmから1260nmへと、長波長側にシフトする。
この計算に用いた構成の場合、660nm/indexという値で透過率が大きいピークが長波長側にシフトした。上述した式は金属と誘電体の界面に励起される表面プラズモン波長から考えられる式であるため、金属薄膜を透過する光の波長は、金属薄膜の一方の表面とそれに面する誘電体に関する上式の関係と、金属薄膜のもう一方の表面とそれに面する誘電体に関する上式の関係との積のような関係で決まると考えられる。しかし、金属薄膜の一方の表面に面する誘電体の誘電率を大きくするだけでも、透過する波長が長波長にシフトすることが計算結果から明らかとなった。
FIG. 7 is a diagram showing three types of spectra when a material having a refractive index of 1, 1.33, and 1.375 is present on Au. As can be seen from this figure, when the refractive index of one surface of the metal thin film increases from 1 to 1.33, the peak wavelength at which the transmittance is maximized shifts from 1040 nm to 1260 nm toward the longer wavelength side.
In the case of the configuration used for this calculation, a peak having a large transmittance at a value of 660 nm / index shifted to the long wavelength side. Since the above equation is an equation that can be considered from the surface plasmon wavelength excited at the interface between the metal and the dielectric, the wavelength of the light transmitted through the metal thin film is the above equation for one surface of the metal thin film and the dielectric facing it. And the relationship between the other surface of the metal thin film and the relationship of the above equation for the dielectric facing the metal thin film. However, it has become clear from the calculation results that the transmission wavelength shifts to a long wavelength only by increasing the dielectric constant of the dielectric facing one surface of the metal thin film.

前述した本実施例の光変調器では、状態が3通りあり、各々の状態では金属薄膜の周囲に空気(状態(1))、第1の誘電体と空気(状態(2))、第2の誘電体と空気(状態(3))が存在しており、これら3つの誘電体の誘電率は、εair<ε1<ε2の関係とした。透過率が増大される波長の関係は、λ1<λ2<λ3となり、誘電率が大きい誘電体が金属薄膜周囲にある場合の方が、透過光強度が増大される波長が長波長側へシフトする。   In the optical modulator of this embodiment described above, there are three states, and in each state, air (state (1)), first dielectric and air (state (2)), second around the metal thin film. And dielectric (air (3)) exist, and the dielectric constants of these three dielectrics have a relationship of εair <ε1 <ε2. The relationship of the wavelength at which the transmittance is increased is λ1 <λ2 <λ3, and the wavelength at which the transmitted light intensity is increased is shifted to the longer wavelength side when the dielectric having a large dielectric constant is around the metal thin film. .

以上のように構成することで、透過光の波長を3種類に分割することが可能な光変調器を実現することができる。
さらに、この光変調器を2次元的に配列し、各光変調器を駆動することで空間光変調器を実現することができる。その際、これらの光変調器を独立して駆動する構成を採ることができる。
また、本実施例で説明した、第1の誘電体と第2の誘電体で挟まれた空気で充填された箇所が、空気である必要はなく、状態(1)において透過させたい波長に応じて材料を選択することが可能であり、真空、水、アルコールなど様々な流動可能な材料を充填してもよく、本発明においては空気に限定されるものではない。また、第1及び第2の誘電体としてどのような誘電体を選択してもよい。
その際には、上記流動可能な媒体の誘電率をε0、第1の誘電体の誘電率をε1、第2の誘電体の誘電率をε2とするとき、これらの誘電率が、
ε0<ε1<ε2を満たす関係とする。
By configuring as described above, an optical modulator capable of dividing the wavelength of transmitted light into three types can be realized.
Further, a spatial light modulator can be realized by two-dimensionally arranging the light modulators and driving each light modulator. In that case, the structure which drives these optical modulators independently can be taken.
Also, the portion filled with air between the first dielectric and the second dielectric described in this embodiment does not need to be air, and depends on the wavelength to be transmitted in the state (1). The material can be selected, and various flowable materials such as vacuum, water, and alcohol may be filled, and the present invention is not limited to air. Any dielectric may be selected as the first and second dielectrics.
In that case, when the dielectric constant of the fluid medium is ε0, the dielectric constant of the first dielectric is ε1, and the dielectric constant of the second dielectric is ε2, these dielectric constants are:
The relation satisfying ε0 <ε1 <ε2.

また、本実施例では、光源201から波長がブロード光の照明光202を照射しているが、状態(1)、(2)、(3)において透過率が高いλ1,λ2,λ3の波長の単色光を3種類同時に照明していてもよく、光源201から照射する照明光202の波長はブロード光等に限定されるものではない。
また、本実施例では図示していない金属薄膜駆動装置としては、図8に示すように金属薄膜101と第1の誘電体102及び第2の誘電体103の間に電圧を印加する電圧印加手段801で生じる静電力によって駆動する装置であってもよいし、図9に示すように誘電体と金属薄膜に挟まれた空間の圧力を変化させる圧力制御手段901を用いて圧力によって金属薄膜を撓ませてもよく、本発明においては金属薄膜101を駆動し第1の誘電体102及び第2の誘電体103に実質的に全体を密着させるための駆動方法であればよく、例に挙げた駆動方法に限定されるものではない。
In this embodiment, the illumination light 202 having a broad wavelength is emitted from the light source 201. However, in the states (1), (2), and (3), the transmittances of the wavelengths λ1, λ2, and λ3 are high. Three types of monochromatic light may be illuminated simultaneously, and the wavelength of the illumination light 202 emitted from the light source 201 is not limited to broad light or the like.
Further, as a metal thin film driving device not shown in the present embodiment, voltage applying means for applying a voltage between the metal thin film 101 and the first dielectric 102 and the second dielectric 103 as shown in FIG. The device driven by the electrostatic force generated in 801 may be used, or as shown in FIG. 9, the metal thin film is bent by pressure using pressure control means 901 that changes the pressure in the space between the dielectric and the metal thin film. In the present invention, any driving method may be used as long as it is a driving method for driving the metal thin film 101 so that the first dielectric 102 and the second dielectric 103 are substantially in close contact with each other. The method is not limited.

[実施例2]
実施例2においては、本発明を適用して実施例1とは別の形態の光変調器を構成した。
図5に本実施例の光変調器の構成を説明する概略図を示す。図5において、301は金属薄膜、302は金属薄膜支持誘電体、303は誘電体、304は支持部材、305は光源である。
[Example 2]
In the second embodiment, the present invention is applied to configure an optical modulator of a different form from the first embodiment.
FIG. 5 is a schematic diagram for explaining the configuration of the optical modulator of this embodiment. In FIG. 5, 301 is a metal thin film, 302 is a metal thin film supporting dielectric, 303 is a dielectric, 304 is a supporting member, and 305 is a light source.

光変調器300は、金属薄膜301が金属薄膜支持誘電体302上に成膜され、金属薄膜301と対向して誘電体303が配置し、支持部材304によって金属薄膜301と金属薄膜支持誘電体302が支持されている。
金属薄膜301と誘電体303との間には、例えば空気(εair≒1)が充填されているとする。このときの誘電体303と金属薄膜支持誘電体302の誘電率を、εa、εbとする。
さらに、図示しない金属薄膜駆動装置によって金属薄膜301及び支持部材304を駆動し、金属薄膜301を誘電体303に実質的に全面に密着する構成となっている。
この金属薄膜駆動装置としては、実施例1にも示したが、静電力による駆動や、圧力制御による駆動など様々な駆動方式が挙げられるが、本発明はこのような駆動方式に限定されるものではない。
In the optical modulator 300, a metal thin film 301 is formed on a metal thin film supporting dielectric 302, a dielectric 303 is disposed opposite to the metal thin film 301, and the metal thin film 301 and the metal thin film supporting dielectric 302 are supported by a support member 304. Is supported.
It is assumed that, for example, air (εair≈1) is filled between the metal thin film 301 and the dielectric 303. The dielectric constants of the dielectric 303 and the metal thin film supporting dielectric 302 at this time are εa and εb.
Further, the metal thin film 301 and the support member 304 are driven by a metal thin film driving device (not shown), and the metal thin film 301 is in close contact with the dielectric 303 substantially on the entire surface.
As the metal thin film driving device, as shown in the first embodiment, various driving methods such as driving by electrostatic force and driving by pressure control can be mentioned, but the present invention is limited to such driving method. is not.

この金属薄膜301には、実施例1と同様に、透過する光の波長程度の周期Pで周期的に透過する光の波長以下の微小開口として直径dの孔が配列されており、その周期的な配列のされ方は、正方格子状や三角格子状などが挙げられるが、本発明はこのような格子の種類に限定されるものではない。
金属薄膜301/金属薄膜支持誘電体302の金属薄膜支持部材側から波長がブロードな光を照射すると、金属薄膜301の誘電率と金属薄膜支持誘電体302の誘電率と微小開口の周期Pとに対応した波長の光(λa)が特異的に金属薄膜を透過する。この状態を「状態A」とする。
In the metal thin film 301, as in the first embodiment, holes having a diameter d are arranged as minute openings having a period equal to or less than the wavelength of light that is periodically transmitted with a period P approximately equal to the wavelength of the transmitted light. Examples of the proper arrangement include a square lattice shape and a triangular lattice shape, but the present invention is not limited to such a lattice type.
When light having a broad wavelength is irradiated from the side of the metal thin film 301 / metal thin film supporting dielectric 302, the dielectric constant of the metal thin film 301, the dielectric constant of the metal thin film supporting dielectric 302, and the period P of the minute aperture are obtained. The corresponding wavelength light (λa) is specifically transmitted through the metal thin film. This state is referred to as “state A”.

次に、図6のように図示しない金属薄膜駆動装置を用いて金属薄膜301/金属薄膜支持誘電体302を駆動し金属薄膜301表面を誘電体303に実質的に全面を密着させる。このことにより金属薄膜301表面の誘電率が、εairからεaへ変化するため、金属薄膜301を透過する光の波長が変化する。または、特許文献2にあるように、εa=εbとすることで、特定波長の透過光強度がさらに増大する。この状態を「状態B」とする。
さらに、金属薄膜駆動装置を用いて誘電体303から金属薄膜301/金属薄膜支持誘電体302を剥離して「状態A」に戻すことで、金属薄膜301を透過する光の波長及び強度も、「状態A」に戻すことができる。
Next, the metal thin film 301 / metal thin film supporting dielectric 302 is driven using a metal thin film drive device (not shown) as shown in FIG. 6 so that the entire surface of the metal thin film 301 is in close contact with the dielectric 303. As a result, the dielectric constant on the surface of the metal thin film 301 changes from εair to εa, so that the wavelength of light transmitted through the metal thin film 301 changes. Alternatively, as described in Patent Document 2, by setting εa = εb, the transmitted light intensity at a specific wavelength is further increased. This state is referred to as “state B”.
Further, by peeling the metal thin film 301 / metal thin film supporting dielectric 302 from the dielectric 303 using the metal thin film driving device and returning to the “state A”, the wavelength and intensity of the light transmitted through the metal thin film 301 are also “ It can return to state A ”.

このように、金属薄膜301を駆動し、金属薄膜301と誘電体303との密着及び剥離の制御を行うことで、光変調器300を透過する光の波長及び強度を変化させることができる。さらに、本光変調器を2次元的に配列し、各光変調器を駆動することで空間光変調器が実現できる。   In this way, by driving the metal thin film 301 and controlling the adhesion and peeling between the metal thin film 301 and the dielectric 303, the wavelength and intensity of the light transmitted through the optical modulator 300 can be changed. Furthermore, a spatial light modulator can be realized by two-dimensionally arranging this optical modulator and driving each optical modulator.

本発明の実施例1における光変調器の構成を説明する概略図であり、(a)は光変調器における第1誘電体、金属薄膜、第2誘電体による3層構成の分解斜視図、(b)は光変調器の断面構成を示す図。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic explaining the structure of the optical modulator in Example 1 of this invention, (a) is a disassembled perspective view of the 3 layer structure by the 1st dielectric material in the optical modulator, a metal thin film, and the 2nd dielectric material, FIG. 4B is a diagram illustrating a cross-sectional configuration of the optical modulator. 本発明の実施例1における光変調器と光源の構成を示す概略図。Schematic which shows the structure of the optical modulator and light source in Example 1 of this invention. 本発明の実施例1における光変調器によって変調された透過光のスペクトルの模式図。The schematic diagram of the spectrum of the transmitted light modulated by the optical modulator in Example 1 of this invention. 本発明の実施例1における光変調器の動作時の状態の説明図。FIG. 3 is an explanatory diagram of a state during operation of the optical modulator according to the first embodiment of the present invention. 本発明の実施例2における光変調器の構成の概略図。FIG. 5 is a schematic diagram of a configuration of an optical modulator according to a second embodiment of the present invention. 本発明の実施例2における光変調器の動作時の説明図。Explanatory drawing at the time of operation | movement of the optical modulator in Example 2 of this invention. 本発明の原理について説明する計算結果を示す図。The figure which shows the calculation result explaining the principle of this invention. 本発明の実施例における光変調器の動作手段に用いられる静電力による構成例を示す図。The figure which shows the structural example by the electrostatic force used for the operation means of the optical modulator in the Example of this invention. 本発明の実施例における光変調器の動作手段に用いられる圧力制御による構成例を示す図。The figure which shows the structural example by the pressure control used for the operation means of the optical modulator in the Example of this invention.

符号の説明Explanation of symbols

100:光変調器
101:金属薄膜
102:第1の誘電体
103:第2の誘電体
104:支持部材
201:光源
202:照明光
100: light modulator 101: metal thin film 102: first dielectric 103: second dielectric 104: support member 201: light source 202: illumination light

Claims (8)

光を変調する光変調器であって、
周期的に配列された微小開口を有する金属薄膜と、該金属薄膜に対向して配置された誘電体と、
前記金属薄膜と前記誘電体とを対向方向に相対移動させ、前記金属薄膜と前記誘電体とを密着させる移動手段と、を有し、
前記移動手段による前記金属薄膜と前記誘電体との密着もしくは剥離の制御によって前記金属薄膜の周囲の誘電率を変化させ、前記金属薄膜を透過する光の透過率の波長依存性を制御することを特徴とする光変調器。
An optical modulator for modulating light,
A metal thin film having periodically arranged microscopic apertures, and a dielectric disposed opposite the metal thin film,
Moving the metal thin film and the dielectric relative to each other in a facing direction, and bringing the metal thin film and the dielectric into close contact with each other;
The wavelength dependence of the transmittance of the light transmitted through the metal thin film is controlled by changing the dielectric constant around the metal thin film by controlling the adhesion or peeling between the metal thin film and the dielectric by the moving means. Characteristic light modulator.
前記金属薄膜に対向して配置された誘電体は、前記金属薄膜の表面に対向して配置された第1の誘電体と、前記金属薄膜の裏面に対向して配置された第2の誘電体とによって構成されていることを特徴とする請求項1に記載の光変調器。   The dielectric disposed opposite the metal thin film includes a first dielectric disposed opposite the surface of the metal thin film and a second dielectric disposed opposite the back surface of the metal thin film. The optical modulator according to claim 1, comprising: 前記金属薄膜と前記第1の誘電体及び前記第2の誘電体との間には、流動可能な媒体が充填され、該媒体の誘電率をε0、前記第1の誘電体の誘電率をε1、前記第2の誘電体の誘電率をε2とするとき、これらの誘電率が次式の関係を満たすことを特徴とする請求項2に記載の光変調器。
ε0<ε1<ε2
A flowable medium is filled between the metal thin film and the first dielectric and the second dielectric. The dielectric constant of the medium is ε0, and the dielectric constant of the first dielectric is ε1. The optical modulator according to claim 2, wherein when the dielectric constant of the second dielectric is ε2, these dielectric constants satisfy the relationship of the following equation.
ε0 <ε1 <ε2
前記金属薄膜は、前記金属薄膜に対向して配置された前記誘電体の誘電率に等しい誘電率を有する金属薄膜支持誘電体上に成膜され、前記移動手段による前記金属薄膜と前記誘電体との密着もしくは剥離の制御により前記金属薄膜の周囲の誘電率を変化させることによって、該金属薄膜を透過する光の波長及び強度を変化させることを特徴とする請求項1に記載の光変調器。 The metal thin film is deposited on the metal thin supporting dielectric having equal dielectric constant to the dielectric constant of the dielectric which is disposed opposite to the metal thin film, and the metal thin film by the moving means and the dielectric 2. The optical modulator according to claim 1, wherein a wavelength and intensity of light transmitted through the metal thin film are changed by changing a dielectric constant around the metal thin film by controlling adhesion or peeling of the metal thin film . 前記移動手段が、静電力による駆動手段であることを特徴とする請求項1〜4のいずれか1項に記載の光変調器。   The optical modulator according to claim 1, wherein the moving unit is a driving unit using electrostatic force. 前記移動手段が、圧力による駆動手段であることを特徴とする請求項1〜4のいずれか1項に記載の光変調器。   The optical modulator according to claim 1, wherein the moving unit is a driving unit using pressure. 請求項1〜6のいずれか1項に記載の光変調器を複数備え、これらの光変調器を二次元的に配列して構成したことを特徴とする空間光変調器。   A spatial light modulator comprising a plurality of the optical modulators according to any one of claims 1 to 6 and two-dimensionally arranging these optical modulators. 前記空間光変調器は、前記二次元的に配列された各光変調器が独立して駆動できるように構成されていることを特徴とする請求項7に記載の空間光変調器。   The spatial light modulator according to claim 7, wherein the spatial light modulator is configured such that each of the two-dimensionally arranged light modulators can be driven independently.
JP2005133282A 2005-04-28 2005-04-28 Optical modulator and spatial light modulator provided with the optical modulator Expired - Fee Related JP4695916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133282A JP4695916B2 (en) 2005-04-28 2005-04-28 Optical modulator and spatial light modulator provided with the optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133282A JP4695916B2 (en) 2005-04-28 2005-04-28 Optical modulator and spatial light modulator provided with the optical modulator

Publications (2)

Publication Number Publication Date
JP2006308981A JP2006308981A (en) 2006-11-09
JP4695916B2 true JP4695916B2 (en) 2011-06-08

Family

ID=37475923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133282A Expired - Fee Related JP4695916B2 (en) 2005-04-28 2005-04-28 Optical modulator and spatial light modulator provided with the optical modulator

Country Status (1)

Country Link
JP (1) JP4695916B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043681A (en) * 2009-08-21 2011-03-03 Canon Inc Optical apparatus, optical detector, optical modulator, imaging apparatus, and camera
JP6094961B2 (en) * 2012-02-08 2017-03-15 国立大学法人 香川大学 Plasmon chip
KR101849973B1 (en) * 2012-03-28 2018-04-18 삼성전자주식회사 Spatial light modulator
JP2015087526A (en) * 2013-10-30 2015-05-07 旭化成株式会社 Infrared bandpass filter
JP6598184B2 (en) * 2014-05-22 2019-10-30 国立大学法人豊橋技術科学大学 COLOR FILTER, AND LIGHT EMITTING DEVICE AND DISPLAY DEVICE USING THE SAME

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254405A (en) * 1989-03-28 1990-10-15 Matsushita Electric Ind Co Ltd Space optical modulator
JP2000111851A (en) * 1998-10-08 2000-04-21 Nec Corp Optical transmission control unit using metal thin film having through hole having diameter less than wavelength
JP2001133618A (en) * 1999-11-05 2001-05-18 Nec Corp Optical transmission equipment
JP2002062505A (en) * 2000-08-14 2002-02-28 Canon Inc Projection type display deice and interference modulation element used therefor
JP2003195201A (en) * 2001-12-27 2003-07-09 Fuji Photo Film Co Ltd Optical modulation element, optical modulation element array and exposure device using the same
US20040080726A1 (en) * 2002-10-11 2004-04-29 Wonjoo Suh Photonic crystal reflectors/filters and displacement sensing applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254405A (en) * 1989-03-28 1990-10-15 Matsushita Electric Ind Co Ltd Space optical modulator
JP2000111851A (en) * 1998-10-08 2000-04-21 Nec Corp Optical transmission control unit using metal thin film having through hole having diameter less than wavelength
JP2001133618A (en) * 1999-11-05 2001-05-18 Nec Corp Optical transmission equipment
JP2005070778A (en) * 1999-11-05 2005-03-17 Nec Corp Optical element, spatial optical filter, probe for scan type near field optical microscope, and mask for photolithographic print
JP2002062505A (en) * 2000-08-14 2002-02-28 Canon Inc Projection type display deice and interference modulation element used therefor
JP2003195201A (en) * 2001-12-27 2003-07-09 Fuji Photo Film Co Ltd Optical modulation element, optical modulation element array and exposure device using the same
US20040080726A1 (en) * 2002-10-11 2004-04-29 Wonjoo Suh Photonic crystal reflectors/filters and displacement sensing applications

Also Published As

Publication number Publication date
JP2006308981A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4520402B2 (en) Multi-wavelength light switching element, multi-wavelength light switching device, color light switching element, color light switching device, multi-wavelength light switching element array, color light switching element array, multi-color image display device and color image display device
JP4695916B2 (en) Optical modulator and spatial light modulator provided with the optical modulator
KR101258484B1 (en) Spatial light modulator with integrated optical structure
JP4431196B2 (en) Interferometric modulation
JP2007240617A (en) Light controlling element, display device, and stress measuring device
JP4267465B2 (en) REFLECTIVE COLOR DISPLAY ELEMENT, ITS MANUFACTURING METHOD, AND INFORMATION DISPLAY DEVICE PROVIDED WITH THE DISPLAY ELEMENT
US20050195370A1 (en) Transmissive/reflective light engine
TW200406633A (en) MEMS-actuated color light modulator and methods
KR100919537B1 (en) Display apparatus of the diffractive optical modulator having multiple light source for reducing the speckle
US20070048628A1 (en) Plasmonic array for maskless lithography
KR20060091595A (en) Color display apparatus using diffraction-type optical modulator of one panel
Carstensen et al. Holographic resonant laser printing of metasurfaces using plasmonic template
JP6598184B2 (en) COLOR FILTER, AND LIGHT EMITTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP4633005B2 (en) Optical switching unit, optical switching unit array and image display device
JP2011099936A (en) Subwavelength grating and display device
JP2005031172A (en) Display element
JP2004361834A (en) Color wheel and spectral apparatus and image display apparatus equipped with the same
JP4236080B2 (en) Manufacturing method of color filter
JPH11160635A (en) Optical element and manufacturing method thereof and device using it
JP2003186154A5 (en)
JP7052065B2 (en) Image forming device and image forming method
See et al. Quantum dot emission modulation using piezoelectric photonic crystal MEMS resonators
JP2004205653A (en) Optical modulation element, optical modulation element array, display element, method of manufacturing optical modulation element and method of manufacturing optical modulation element array
JP2004309782A (en) Light modulation element, light modulation element array furnished with light modulation element, and image display
KR20160049515A (en) Display device using mems element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees