JP4694781B2 - Fuel supply device for internal combustion engine - Google Patents

Fuel supply device for internal combustion engine Download PDF

Info

Publication number
JP4694781B2
JP4694781B2 JP2003378494A JP2003378494A JP4694781B2 JP 4694781 B2 JP4694781 B2 JP 4694781B2 JP 2003378494 A JP2003378494 A JP 2003378494A JP 2003378494 A JP2003378494 A JP 2003378494A JP 4694781 B2 JP4694781 B2 JP 4694781B2
Authority
JP
Japan
Prior art keywords
value
amount
intake pressure
detected value
accelerator opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003378494A
Other languages
Japanese (ja)
Other versions
JP2005140040A (en
Inventor
邦彦 肥喜里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003378494A priority Critical patent/JP4694781B2/en
Publication of JP2005140040A publication Critical patent/JP2005140040A/en
Application granted granted Critical
Publication of JP4694781B2 publication Critical patent/JP4694781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、内燃機関の燃料供給装置に関するものであり、とくに天然ガス等の気体燃料を使用する内燃機関に好適な減速時の燃料補正に係るものである。   The present invention relates to a fuel supply device for an internal combustion engine, and more particularly to fuel correction during deceleration suitable for an internal combustion engine using a gaseous fuel such as natural gas.

ディーゼルエンジンをオットーサイクルエンジンに転用するCNGエンジン(圧縮天然ガスを燃料に使用する内燃機関)においては、吸気圧力およびエンジン回転数に基づいてスピードデンシティ法により吸入空気量を演算する手段、スロットル弁の上流または下流に空燃比が略一定の混合気を生成するべく燃料供給量を吸入空気量の演算値に応じて制御する手段、を備えるものがある。   In a CNG engine that converts a diesel engine to an Otto cycle engine (an internal combustion engine that uses compressed natural gas as fuel), a means for calculating the intake air amount by the speed density method based on the intake pressure and the engine speed, a throttle valve Some include means for controlling the fuel supply amount in accordance with the calculated value of the intake air amount so as to generate an air-fuel mixture having a substantially constant air-fuel ratio upstream or downstream.

CNGなど気体燃料を使用するのでなく、ガソリン燃料を使用する内燃機関において、加減速時の燃料噴射量を適正に維持するべく、壁流燃料(吸気通路の壁面に付着し、液状のまま壁面を伝わってシリンダへ流れ込む)の過不足分を補正するようにしたものが開示される(特許文献1)。
特開平10−18882号
In an internal combustion engine that uses gasoline fuel instead of gas fuel such as CNG, in order to maintain the fuel injection amount at the time of acceleration / deceleration appropriately, wall flow fuel (attached to the wall surface of the intake passage and the wall surface remains liquid A method is disclosed in which the excess / deficiency of the fluid flowing into the cylinder is corrected (Patent Document 1).
JP-A-10-18882

天然ガスなど気体燃料を使用する内燃機関においては、ガソリン燃料を使用する内燃機関の場合と異なり、壁流燃料の発生がないため、その過不足分の燃料補正を行う必要はないが、吸気圧力を検出する吸気圧力センサの出力遅れにより、とくにアクセルペダルの踏み量が閉側へ大きく急変するような減速時において、燃料供給の減量制御が遅れて余分な燃料供給が継続され、減速時の空燃比がリッチになり、排気特性が一時的に悪化する可能性が考えられる。 In the internal combustion engine using a gaseous fuel such as natural gas, unlike the case of an internal combustion engine using gasoline fuel, because there is no generation of wall flow fuel need not perform the fuel correction for the excess and deficiency, intake pressure Due to the delay in the output of the intake pressure sensor that detects the engine , especially during deceleration where the amount of depression of the accelerator pedal changes suddenly to the closed side, the fuel supply reduction control is delayed, and excess fuel supply continues, causing There is a possibility that the fuel ratio becomes rich and the exhaust characteristics temporarily deteriorate.

この発明は、このような課題の改善に有効な手段の提供を目的とする。   An object of this invention is to provide an effective means for improving such a subject.

第1の発明は、エンジンのインテークマニホールド内部の吸気圧力を検出する手段と、吸気圧力の検出値を用いて吸入空気量を演算する手段と、アクセルペダルの踏み量に応じて開閉されるスロットル弁の上流または下流に空燃比が略一定の混合気を生成するべく吸入空気量の演算値に応じた燃料供給量を計算する手段と、この計算値に基づいて燃料供給量を制御する手段と、を備える天然ガスなど気体燃料を使用する車両の過給機付き内燃機関において、エンジン回転数を検出する手段、アクセルペダルの踏み量をアクセル開度として検出する手段、アクセル開度とエンジン回転数とから規定される過給吸入空気量に対応する吸気圧力値に相当するブーストリミッタ値をマップデータとして格納する手段、エンジン回転数の検出値およびアクセル開度の検出値に基づいて前記マップデータからこれらの検出値に対応するブーストリミッタ値を求め、吸気圧力の検出値を監視しつつ過給圧をブーストリミッタ値以下に制御する手段と、を備え、前記吸入空気量を演算する手段は、エンジン回転数の検出値およびアクセル開度の検出値に対応する前記ブーストリミッタ値とそのときの吸気圧力の検出値を比較する手段と、その比較結果に基づいて吸気圧力の検出値<ブーストリミッタの設定値のときは吸気圧力の検出値を用いて吸入空気量を演算する手段と、同じく吸気圧力の検出値≧ブーストリミッタ値のときは吸気圧力の検出遅れに伴う減速時の燃料供給量の制御遅れを防止すべく吸気圧力の検出値に代えてブーストリミッタ値を用いて吸入空気量を演算する手段と、を備えることを特徴とする。 According to a first aspect of the present invention, there is provided a means for detecting an intake pressure inside an intake manifold of an engine, a means for calculating an intake air amount using a detected value of the intake pressure, and a throttle valve that is opened / closed in accordance with a depression amount of an accelerator pedal Means for calculating a fuel supply amount in accordance with a calculated value of the intake air amount so as to generate an air-fuel mixture having a substantially constant air-fuel ratio upstream or downstream of the control unit, and means for controlling the fuel supply amount based on the calculated value; in supercharged internal combustion engine of a vehicle that uses a gas fuel such as natural gas and means for detecting an engine speed, means for detecting a depression amount of an accelerator pedal as an accelerator opening, the accelerator opening and the engine speed means for storing the boost limit value as a map data corresponding to the intake pressure value corresponding to the supercharge intake air amount defined by the number, the detected value of the engine speed Contact Based on the detected value of the fine accelerator opening obtains a boost limiter value corresponding to these detected values from said map data, and means for controlling the supercharge pressure below a boost limiter value while monitoring the detection value of the intake pressure, The means for calculating the intake air amount includes means for comparing the boost limiter value corresponding to the detected value of the engine speed and the detected value of the accelerator opening with the detected value of the intake pressure at that time, and the comparison Based on the result, when the detected value of the intake pressure <the set value of the boost limiter, means for calculating the intake air amount using the detected value of the intake pressure, and similarly, when the detected value of the intake pressure ≥ the boost limiter value, the intake pressure Means for calculating the intake air amount using a boost limiter value instead of the detected value of the intake pressure in order to prevent a delay in the control of the fuel supply amount during deceleration due to a detection delay of Characterized in that that.

第2の発明は、第1の発明において、アクセル開度の検出値に基づいて制御の1実行周期TDECあたりのアクセル開度の閉側への変化量△θを演算する手段、その変化量△θが所定値以上になるとそのときのアクセル開度の検出値および変化量△θに応じた割合で燃料供給量を所定時間だけ減量補正する手段、を備えることを特徴とする。 According to a second invention, in the first invention, means for calculating a change amount Δθ to the closing side of the accelerator opening per one execution cycle TDEC of control based on the detected value of the accelerator opening, and the change amount And means for correcting the fuel supply amount to decrease by a predetermined time at a rate corresponding to the detected value of the accelerator opening and the amount of change Δθ when Δθ becomes a predetermined value or more.

第3の発明は、第2の発明において、アクセル開度の閉側への変化量△θが所定値以上になるとそのときのアクセル開度の検出値および変化量△θに応じた割合で燃料供給量を所定時間だけ減量補正する手段は、所定時間が経過するとアクセル開度の検出値および変化量△θに応じた割合を徐々に補正量0へ積分減衰処理する手段、を備えることを特徴とする。 According to a third aspect, in the second aspect, when the amount of change Δθ toward the closing side of the accelerator opening is equal to or greater than a predetermined value, the fuel is detected at a rate corresponding to the detected value of the accelerator opening and the amount of change Δθ. It means for correcting the supply amount by a predetermined time weight loss, and means for integrating attenuation process gradually to the correction amount 0 ratio according to the detected value and the variation △ theta accelerator opening when a predetermined time has elapsed, in that it comprises Features.

第4の発明は、第1の発明〜第3の発明の何れか1つにおいて、停車時およびアイドル運転に近い低速走行中は無条件に吸気圧力の検出値を用いて吸入空気量を演算する手段、を備えることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the intake air amount is unconditionally calculated using the detected value of the intake pressure when the vehicle is stopped and during low-speed traveling close to idle operation. characterized in that it comprises a means.

第1の発明によれば、アクセルペダルが閉側へ戻される減速時においては、アクセル開度の検出値が低下するに連れてブーストリミッタ値が低下する。吸気圧力の検出値の出力遅れにより、ブーストリミッタ値が吸気圧力の検出値を下回ると、燃料供給量を規定する吸入空気量の演算に吸気圧力の検出値の代わりにブーストリミッタ値が用いられるので、吸気圧力の検出値がブーストリミッタ値を超える分(吸気圧力の検出値の出力遅れ分)の燃料供給量を減らせることになる。このため、吸気圧力の検出値の出力遅れにより、減速時の空燃比がリッチとなり、排気特性が一時的に悪化する、のを防止することができる。 According to the first aspect, at the time of deceleration when the accelerator pedal is returned to the closing side, the boost limiter value decreases as the detected value of the accelerator opening decreases. If the boost limiter value falls below the intake pressure detection value due to the output delay of the intake pressure detection value, the boost limiter value is used instead of the intake pressure detection value to calculate the intake air amount that defines the fuel supply amount. Therefore, the fuel supply amount corresponding to the detected value of the intake pressure exceeding the boost limit value (the output delay of the detected value of the intake pressure) can be reduced. Therefore, it is possible to prevent the exhaust characteristic from being temporarily deteriorated due to the rich air-fuel ratio during deceleration due to the output delay of the detected value of the intake pressure.

第2の発明によれば、アクセルペダルが閉側へ戻される減速時においては、制御の1実行周期TDECあたりのアクセル開度の閉側への変化量△θが所定値以上になるとそのときのアクセル開度および変化量△θに対応する割合で燃料供給量が所定時間だけ減量補正されるため、実開度(実際のアクセル開度)に対する検出手段が持つ出力遅れに起因する余分な燃料噴射量を減らせるため、減速時の空燃比がリッチとなり、排気特性が一時的に悪化する、のを防止することができる。
According to the second invention, at the time of deceleration when the accelerator pedal is returned to the closing side, when the change amount Δθ to the closing side of the accelerator opening per one execution cycle TDEC of the control becomes a predetermined value or more, Since the fuel supply amount is corrected to decrease by a predetermined time at a rate corresponding to the accelerator opening and the change amount Δθ, excess fuel injection due to the output delay of the detection means with respect to the actual opening (actual accelerator opening) Since the amount can be reduced, it is possible to prevent the air-fuel ratio at the time of deceleration from becoming rich and exhaust characteristics from temporarily deteriorating.

第3の発明によれば、アクセルペダルが閉側へ戻される減速時においては、アクセル開度の検出値に基づいて演算される変化量△θが所定値以上になるとそのときのアクセル開度および変化量△θに対応する割合で燃料供給量が所定時間だけ減量補正されるが、所定時間が経過すると、燃料供給の補正量が積分減衰処理により0へ徐々に縮小させるため、エンジン回転数の変動も小さく抑えられるAccording to the third invention, at the time of deceleration when the accelerator pedal is returned to the closing side, if the change amount Δθ calculated based on the detected value of the accelerator opening becomes equal to or greater than a predetermined value, the accelerator opening at that time and The fuel supply amount is corrected to decrease by a predetermined time at a rate corresponding to the change amount Δθ, but when the predetermined time elapses, the fuel supply correction amount is gradually reduced to 0 by the integral attenuation process. Fluctuations can be kept small .

第4の発明によれば、停車時およびアイドル運転に近い低速走行中においては、負荷条件によって吸気圧力の検出値がブーストリミッタ値を超えやすくなるが、無条件に吸気圧力の検出値を用いて吸入空気量が演算されるので、エンストの発生を防止できるのである。吸気圧力の検出値よりも低いブーストリミッタ値を用いて吸入空気量を演算すると、吸気圧力の検出値がブーストリミッタ値を超える分だけ燃料供給量が減られるため、エンストを起こしかねないのであるAccording to the fourth aspect of the invention, the detected value of the intake pressure is likely to exceed the boost limiter value depending on the load condition when the vehicle is stopped and during low-speed traveling close to idle operation, but the detected value of the intake pressure is used unconditionally. Since the intake air amount is calculated, the occurrence of engine stall can be prevented. If the intake air amount is calculated using a boost limiter value lower than the intake pressure detection value, the fuel supply amount is reduced by the amount that the intake pressure detection value exceeds the boost limit value, which may cause engine stall .

図1において、10は車両に搭載される過給機付きエンジンであり、燃料にCNG(圧縮天然ガス)が使用される。エンジン10の吸気通路11にスロットル弁12が介装され、その上流に燃料供給装置14のノズル15が配置される。スロットル弁12は、エンジン10への吸気流量を制御するものであり、アクセルペダルの踏み量(アクセル開度)に応じて開閉される。13はアイドル運転時のエンジン回転を目標アイドル回転に制御するISC(アイドル・スピード・コントロール)バルブである。   In FIG. 1, 10 is an engine with a supercharger mounted on a vehicle, and CNG (compressed natural gas) is used as fuel. A throttle valve 12 is interposed in the intake passage 11 of the engine 10, and a nozzle 15 of the fuel supply device 14 is disposed upstream thereof. The throttle valve 12 controls the intake flow rate to the engine 10 and is opened and closed according to the amount of depression of the accelerator pedal (accelerator opening). Reference numeral 13 denotes an ISC (idle speed control) valve that controls the engine speed during idling to a target idling speed.

燃料供給装置14は、ガスボンベ(図示せず)からノズル15へ燃料(CNG)を供給する配管が備えられ、配管にガス制御弁16(噴射弁)のほか、図示しないが、ガスボンベからガス制御弁16への順に高圧燃料遮断弁,ガスレギュレータ,低圧燃料遮断弁が介装される。高圧燃料遮断弁,低圧燃料遮断弁、はイグニッションスイッチのONにより開弁する一方、イグニッションスイッチのOFFにより閉弁するように制御される。ガスレギュレータは、高圧燃料を所定の低圧燃料に調圧(減圧)するものであり、ガス制御弁16は、空燃比が略一定の混合気を生成するべく、ノズル15への低圧燃料の供給量(噴射量)を運転状態に応じて制御するものである。   The fuel supply device 14 is provided with a pipe for supplying fuel (CNG) from a gas cylinder (not shown) to the nozzle 15. In addition to the gas control valve 16 (injection valve), the gas supply valve from the gas cylinder is not shown. A high-pressure fuel shut-off valve, a gas regulator, and a low-pressure fuel shut-off valve are installed in this order. The high-pressure fuel shut-off valve and the low-pressure fuel shut-off valve are controlled to open when the ignition switch is turned on and close when the ignition switch is turned off. The gas regulator regulates (depressurizes) the high-pressure fuel to a predetermined low-pressure fuel, and the gas control valve 16 supplies the low-pressure fuel to the nozzle 15 so as to generate an air-fuel mixture having a substantially constant air-fuel ratio. The (injection amount) is controlled according to the operating state.

17はエンジンの点火プラグであり、混合気はエンジンの気筒(シリンダ)に吸入され、点火プラグ17により、圧縮行程の死点付近で点火される。点火プラグ17は、運転状態に応じた最適な点火時期に制御される。   Reference numeral 17 denotes an engine spark plug. The air-fuel mixture is drawn into a cylinder of the engine, and is ignited by the spark plug 17 near the dead center of the compression stroke. The spark plug 17 is controlled to an optimal ignition timing according to the operating state.

ガス制御弁16,点火プラグ17,ISCバルブ13,等を制御するのがエンジンコントロールユニット20であり、アクセルペダルの踏み量を検出するアクセル開度センサ21、クランク角およびエンジン回転数を検出するクランク角センサ22、吸気圧力(インテークマニホールドの内部圧力)を検出する吸気圧力センサ23、が設けられる。   The engine control unit 20 controls the gas control valve 16, the spark plug 17, the ISC valve 13, etc., and an accelerator opening sensor 21 that detects the amount of depression of the accelerator pedal, a crank angle that detects the crank angle and the engine speed. An angle sensor 22 and an intake pressure sensor 23 for detecting intake pressure (intake manifold internal pressure) are provided.

エンジンコントロールユニット20は、ガス制御弁16の燃料噴射量を制御する手段、点火プラグ17の点火時期を制御する手段、ISCバルブ13の開度を制御する手段、等のほか、過給圧をブーストリミッタ値以下に抑えるように制御する手段を備える。図1において、ブーストリミッタ補正手段30は、過給圧をブーストリミッタ値以下に抑えるように制御する手段の一部を構成すると共にガス制御弁16の燃料噴射量を制御する手段の一部を構成するものである。   The engine control unit 20 boosts the boost pressure in addition to means for controlling the fuel injection amount of the gas control valve 16, means for controlling the ignition timing of the spark plug 17, means for controlling the opening of the ISC valve 13, etc. Means for controlling to keep the limiter value or less is provided. In FIG. 1, the boost limiter correcting means 30 constitutes a part of a means for controlling the supercharging pressure to be below the boost limit value and also constitutes a part of a means for controlling the fuel injection amount of the gas control valve 16. To do.

過給圧をブーストリミッタ値以下に抑えるように制御する手段においては、ブーストリミッタ値に基づいて過給圧(吸気圧力センサ23の検出信号)を監視しつつ、過給圧がブーストリミッタ値を超えると排気バイパス等により過給圧をブーストリミッタ値以下に低下させる制御が行われる。   In the means for controlling the boost pressure to be equal to or lower than the boost limit value, the boost pressure exceeds the boost limit value while monitoring the boost pressure (detection signal of the intake pressure sensor 23) based on the boost limit value. Then, control is performed to reduce the supercharging pressure below the boost limit value by exhaust bypass or the like.

ブーストリミッタ補正手段30においては、エンジン回転数およびアクセル開度に規定されるブーストリミッタ値のマップデータ(図4のようなブーストリミッタマップ)が格納され、エンジン回転数の検出信号およびアクセル開度の検出信号に基づいて図4のマップデータから求められるブーストリミッタ値を出力するのである。負荷SW24(エアコン等の操作スイッチ)が備えられ、負荷SW24のON-OFFにより、ブーストリミッタ値を補正する機能が設定される。   The boost limiter correction means 30 stores the map data (boost limiter map as shown in FIG. 4) of the boost limit value defined by the engine speed and the accelerator opening, and the engine speed detection signal and the accelerator opening Based on the detection signal, a boost limiter value obtained from the map data of FIG. 4 is output. A load SW24 (operation switch such as an air conditioner) is provided, and a function for correcting the boost limiter value is set by turning the load SW24 on and off.

ガス制御弁16の燃料噴射量を制御する手段においては、ブーストリミッタ補正手段30の出力(ブーストリミッタ値)および吸気圧力センサ23の出力(検出信号)が比較器31に入力され、小さい方が吸入空気量算出手段32へ出力される。比較器31は、吸気圧力センサ23の出力≧補正手段30の出力(ブーストリミッタ値)の場合、吸入空気量の算出に用いられる吸気圧力として補正手段30の出力(ブーストリミッタ値)、吸気圧力センサ23の出力<補正手段30の出力(ブーストリミッタ値)の場合、同じく吸気圧力センサ23の検出信号、を出力する。ブーストリミッタ補正手段30においては、車速センサ25が設けられ、停車時およびアイドル運転に近い低速走行中は、吸気圧力センサ23の検出信号を無条件に出力させるべく信号を比較器31に与える機能が設定される。   In the means for controlling the fuel injection amount of the gas control valve 16, the output of the boost limiter correcting means 30 (boost limiter value) and the output of the intake pressure sensor 23 (detection signal) are inputted to the comparator 31, and the smaller one is inhaled. It is output to the air amount calculation means 32. When the output of the intake pressure sensor 23 is equal to or greater than the output of the correction means 30 (boost limiter value), the comparator 31 outputs the output of the correction means 30 (boost limiter value) as the intake pressure used to calculate the intake air amount, and the intake pressure sensor. If the output of 23 <the output of the correction means 30 (boost limiter value), the detection signal of the intake pressure sensor 23 is also output. The boost limiter correction means 30 is provided with a vehicle speed sensor 25, and has a function of giving a signal to the comparator 31 so as to output the detection signal of the intake pressure sensor 23 unconditionally when the vehicle is stopped and during low-speed traveling close to idle operation. Is set.

吸入空気量算出手段32においては、比較器31の出力(吸気圧力センサ23の出力または補正手段30の出力),エンジン回転センサの検出信号,吸気温度(インテークマニホールドの内部温度)を検出する吸気温度センサ(図示せず)の検出信号,に基づいてスピードデンシティ法により吸入空気量が計算される。 In the intake air amount calculation means 32, the intake air temperature for detecting the output of the comparator 31 (the output of the intake pressure sensor 23 or the output of the correction means 30), the detection signal of the engine rotation sensor, and the intake air temperature (internal temperature of the intake manifold). An intake air amount is calculated by a speed density method based on a detection signal of a sensor (not shown).

減速時燃料減量補正手段においては、アクセル開度およびその閉側への変化量△θに規定される補正係数Kdecのマップデータ(図5のような減速時燃料減量補正マップ)が格納される。変化量△θは、アクセル開度センサ21の出力(検出信号)に基づいて、△θ=前回の検出値−今回の検出値、に算出される。変化量△θが所定値(DDTVODEC)以上になると、そのときのアクセル開度および変化量△θに基づいて図5のマップデータからこれらに対応する補正係数Kdecを求め、所定時間(TKDEC)が経過するまで補正係数Kdecの出力を一定に保持する一方、所定時間(TKDEC)が経過すると、補正係数Kdecを所定の割合で徐々に0へ縮小させる処理(積分減衰制御)を行うのである。   In the deceleration fuel reduction correction means, map data (a deceleration fuel reduction correction map as shown in FIG. 5) of the correction coefficient Kdec defined by the accelerator opening and the amount of change Δθ toward the closing side is stored. Based on the output (detection signal) of the accelerator opening sensor 21, the change amount Δθ is calculated as Δθ = previous detection value−current detection value. When the amount of change Δθ is equal to or greater than a predetermined value (DDTVODEC), a correction coefficient Kdec corresponding to these is obtained from the map data of FIG. 5 based on the accelerator opening and the amount of change Δθ at that time, and the predetermined time (TKDEC) is While the output of the correction coefficient Kdec is kept constant until it elapses, when the predetermined time (TKDEC) elapses, the correction coefficient Kdec is gradually reduced to 0 at a predetermined rate (integral attenuation control).

燃料噴射量算出手段34においては、吸入空気量(算出手段32の出力)に応じたガス制御弁の燃料噴射量Te(有効噴射パルス幅)を計算する。有効噴射パルス幅Teは、減速時燃料減量補正手段33からの補正係数Kdecに基づいて、補正係数Kdec=0に減衰されるまで間は、Te=Te×(1−Kdec)に減量補正される。   The fuel injection amount calculation means 34 calculates the fuel injection amount Te (effective injection pulse width) of the gas control valve according to the intake air amount (output of the calculation means 32). The effective injection pulse width Te is corrected to decrease to Te = Te × (1−Kdec) until it is attenuated to the correction coefficient Kdec = 0 based on the correction coefficient Kdec from the fuel decrease correction means 33 during deceleration. .

図2は、吸入空気量の算出に係る制御内容を説明するフローチャートであり、所定の実行周期毎に繰り返される。S1においては、車速センサ25の検出値に基づいて、車速≧ブーストリミッタ判定車速、かどうかを判定する。ブーストリミッタ判定車速は、吸入空気量GAの計算にブーストリミッタ値が許容される条件を判定するための基準値であり、吸気圧力センサ23の出力よりも低いブーストリミッタ値を吸入空気量GAの計算に用いると、エンストを起こしかねない車速値(例えば、1km/h〜10km/h)に設定される。S1の判定がyesのときは、S2へ進む一方、S1の判定がnoのときは、S7において、吸気圧力Pd=吸気圧力センサ23の出力、を設定する。   FIG. 2 is a flowchart for explaining the control contents related to the calculation of the intake air amount, and is repeated every predetermined execution cycle. In S1, based on the detection value of the vehicle speed sensor 25, it is determined whether vehicle speed ≧ boost limiter determination vehicle speed. The boost limiter determination vehicle speed is a reference value for determining the conditions under which the boost limiter value is allowed for the calculation of the intake air amount GA, and a boost limiter value lower than the output of the intake pressure sensor 23 is calculated for the intake air amount GA. If it is used, the vehicle speed value (for example, 1 km / h to 10 km / h) that may cause engine stall is set. When the determination of S1 is yes, the process proceeds to S2, while when the determination of S1 is no, the intake pressure Pd = the output of the intake pressure sensor 23 is set at S7.

S2においては、アクセル開度センサ21の検出値、S3においては、クランク角センサ22の検出値(エンジン回転数)、を読み取る。S4においては、これらの検出値に基づいて、ブーストリミッタマップからアクセル開度およびエンジン回転数に対応するブーストリミッタ値を求める。S5においては、吸気圧力センサ23の出力≧ブーストリミッタ値、かどうかを判定する。S5の判定がyesのときは、S6において、吸入空気量GAの計算に用いられる吸気圧力Pd=ブーストリミッタ値を設定する一方、S5の判定がnoのときは、S7において、同じく吸気圧力Pd=吸気圧力センサの出力を設定する。   In S2, the detection value of the accelerator opening sensor 21 is read, and in S3, the detection value (engine speed) of the crank angle sensor 22 is read. In S4, based on these detected values, a boost limiter value corresponding to the accelerator opening and the engine speed is obtained from the boost limiter map. In S5, it is determined whether or not the output of the intake pressure sensor 23 ≧ the boost limiter value. When the determination of S5 is yes, the intake pressure Pd = boost limiter value used for calculation of the intake air amount GA is set at S6. On the other hand, when the determination of S5 is no, the intake pressure Pd = Sets the output of the intake pressure sensor.

S8においては、S6の吸気圧力Pb(ブーストリミッタ値)またはS7の吸気圧力Pb(吸気圧力センサ23の出力)を用いて、吸入空気量GA=K×Pd/Tb×N、を計算する。Kは吸入空気量係数,Pdは吸気圧力(kpa 絶対圧力),Tbは吸気温度(K 絶対温度),Nはエンジン回転数である。吸入空気量GAの計算値に基づいて、所定空燃比の混合気を生成するに必要な燃料噴射量Teが計算され、減速時燃料減量補正係数Kdecの出力がない場合、吸入空気量GAの計算値に相応する燃料噴射量信号がガス制御弁16へ出力される。   In S8, the intake air amount GA = K × Pd / Tb × N is calculated using the intake pressure Pb (boost limiter value) in S6 or the intake pressure Pb (output of the intake pressure sensor 23) in S7. K is the intake air volume coefficient, Pd is the intake pressure (kpa absolute pressure), Tb is the intake air temperature (K absolute temperature), and N is the engine speed. Based on the calculated value of the intake air amount GA, the fuel injection amount Te required to generate the air-fuel mixture with the predetermined air-fuel ratio is calculated, and if there is no output of the fuel reduction correction coefficient Kdec during deceleration, the intake air amount GA is calculated A fuel injection amount signal corresponding to the value is output to the gas control valve 16.

図6は、減速時における、エンジン回転数、アクセル開度センサ21の出力、吸気圧力センサ23の出力,ブーストリミッタ値、吸入空気量、空気過剰率λ、の変化を例示するタイミングチャートである。アクセルペダルが閉側へ戻され、開度センサ21の出力が低下すると、スロットル弁12の閉側への動作により、吸気圧力(実際の吸気圧力)が低下する。ブーストリミッタ値も、エンジン回転数およびアクセル開度の低下に伴って低下する。   FIG. 6 is a timing chart illustrating changes in the engine speed, the output of the accelerator opening sensor 21, the output of the intake pressure sensor 23, the boost limiter value, the intake air amount, and the excess air ratio λ during deceleration. When the accelerator pedal is returned to the closing side and the output of the opening degree sensor 21 decreases, the intake pressure (actual intake pressure) decreases due to the operation of the throttle valve 12 toward the closing side. The boost limiter value also decreases as the engine speed and accelerator opening decrease.

吸気圧力センサ23の出力は、ブーストリミッタ値に遅れて低下する(図中の点線、参照)が、吸気圧力センサ23の出力≧ブーストリミッタ値になると、その間は吸入空気量GAの計算にブーストリミッタ値が用いられるのである。このため、吸気圧力センサ23の出力を用いて吸入空気量GAの計算を継続する場合に較べると、吸気圧力センサ23の出力遅れに起因する余分な燃料噴射量が抑えられ、空気過剰率λの低下も小さくなり、減速時の排気特性が悪化するのを防止することができる。 The output of the intake pressure sensor 23 decreases after the boost limiter value (see the dotted line in the figure). However, when the output of the intake pressure sensor 23 ≥ the boost limiter value, the boost limiter is used for calculating the intake air amount GA during that time. The value is used. Therefore, compared with the case where the calculation of the intake air amount GA is continued using the output of the intake pressure sensor 23, the excessive fuel injection amount due to the output delay of the intake pressure sensor 23 is suppressed, and the excess air ratio λ The decrease is also reduced, and the exhaust characteristics during deceleration can be prevented from deteriorating.

図3は、減速時燃料減量補正に係る制御内容を説明するフローチャートであり、所定の実行周期毎に繰り返される。S11においては、アクセル開度センサ21の出力に基づいて算出される変化量△θと所定値(DDTVODEC)との比較により、変化量△θ≧所定値(DDTVODEC)かどうかを判定する。S1の判定がyesのときは、S12へ進む一方、S11の判定がnoのときは、RETURNへ至る。   FIG. 3 is a flowchart for explaining the control contents related to the fuel reduction correction during deceleration, and is repeated every predetermined execution cycle. In S11, it is determined whether or not the change amount Δθ ≧ the predetermined value (DDTVODEC) by comparing the change amount Δθ calculated based on the output of the accelerator opening sensor 21 with a predetermined value (DDTVODEC). When the determination of S1 is yes, the process proceeds to S12, while when the determination of S11 is no, the process proceeds to RETURN.

S12においては、アクセル開度を検出する(アクセル開度センサ21の出力を読み取る)。S13においては、アクセル開度の変化量△θを計算する。つまり、S11において、変化量△θ≧所定値(DDTVODEC)、が成立すると、S12およびS13において、その時点のアクセル開度および変化量△θを確定するのである。   In S12, the accelerator opening is detected (the output of the accelerator opening sensor 21 is read). In S13, the change amount Δθ of the accelerator opening is calculated. That is, when the change amount Δθ ≧ predetermined value (DDTVODEC) is established in S11, the accelerator opening and the change amount Δθ at that time are determined in S12 and S13.

S14においては、減速時燃料減量補正マップからアクセル開度(確定値)および変化量△θ(確定値)に対応する減速時燃料減量補正係数Kdecを求める。S15においては、吸入空気量GA(図2のS8における算出値)に応じた燃料噴射量Te(有効噴射パルス幅)をTe=Te×(1−Kdec)に減量補正する。S16においては、所定時間(TKDEC)が経過するまで減速時燃料減量補正係数Kdecを保持する。すなわち、所定時間(TKDEC)が経過するまでの間は、S11の処理〜S14の処理がパスされ、実行周期毎にS15の処理〜S16の処理が繰り返されるのである。   In S14, a deceleration fuel decrease correction coefficient Kdec corresponding to the accelerator opening (determined value) and the change amount Δθ (determined value) is obtained from the deceleration fuel decrease correction map. In S15, the fuel injection amount Te (effective injection pulse width) corresponding to the intake air amount GA (calculated value in S8 in FIG. 2) is corrected to decrease to Te = Te × (1−Kdec). In S16, the fuel decrease correction coefficient Kdec during deceleration is held until a predetermined time (TKDEC) elapses. That is, until the predetermined time (TKDEC) elapses, the processing from S11 to S14 is passed, and the processing from S15 to S16 is repeated every execution cycle.

S16において、所定時間(TKDEC)が経過すると、S17において、減速時燃料減量補正係数Kdecを徐々に0へ縮小させる処理(積分減衰制御)を開始する。この処理により、(1−Kdec)が次第に大きくなり、有効噴射パルス幅Teが減速時燃料減量補正の解除状態へ徐々に戻される。S17においては、減速時補正係数Kdecの積分減衰処理により、Kdec≦0に達するまでの間は、S1の処理〜S16の処理がパスされ、Kdec≦0に達すると、S18において、Kdec=0に設定する。その後は、所定の実行周期毎にS11から既述の処理が繰り返されるのである。   When the predetermined time (TKDEC) elapses in S16, a process (integral damping control) for gradually reducing the deceleration fuel reduction correction coefficient Kdec to 0 is started in S17. As a result of this process, (1-Kdec) gradually increases, and the effective injection pulse width Te is gradually returned to the release state of the deceleration fuel reduction correction. In S17, the process from S1 to S16 is passed by the integral attenuation process of the deceleration correction coefficient Kdec until Kdec ≦ 0, and when Kdec ≦ 0 is reached, Kdec = 0 is set in S18. Set. Thereafter, the above-described processing is repeated from S11 every predetermined execution cycle.

図7は、減速時燃料減量補正に係る制御を説明するタイミングチャートである。ペダルが閉側へ戻されると、アクセル開度センサ21の出力は、実開度(実際のアクセル開度)に遅れて低下する。この出力遅れにより、図中の点線のように余分な燃料噴射が継続され、空気過剰率λが大きく低下するようになるが、アクセル開度の閉側への変化量△θが所定値(DDTVDEC)以上になると、そのときのアクセル開度および変化量△θに対応する補正係数Kdecに基づいて、燃料供給量Te(実行周期毎に吸入空気量GAから計算される有効噴射パルス幅)が所定時間(TKDEC)だけTe=Te×(1−Kdec)に補正されるため、実開度(実際のアクセル開度)に対するアクセル開度センサ21の出力遅れに起因する空気過剰率λの低下が小さく抑えられるのである。所定時間(DDTVDEC)が経過すると、燃料供給の補正量が積分減衰処理により0へ徐々に縮小させるため、減速燃料減量補正の解除に伴うエンジン回転数の変動も小さく抑えられる。   FIG. 7 is a timing chart for explaining the control related to fuel reduction correction during deceleration. When the pedal is returned to the closing side, the output of the accelerator opening sensor 21 decreases with a delay from the actual opening (actual accelerator opening). Due to this output delay, excess fuel injection continues as indicated by the dotted line in the figure, and the excess air ratio λ decreases greatly. However, the change amount Δθ of the accelerator opening to the closed side is a predetermined value (DDTVDEC ), The fuel supply amount Te (the effective injection pulse width calculated from the intake air amount GA at each execution cycle) is predetermined based on the correction coefficient Kdec corresponding to the accelerator opening and change amount Δθ at that time Since the time (TKDEC) is corrected to Te = Te × (1−Kdec), the decrease in the excess air ratio λ caused by the output delay of the accelerator opening sensor 21 with respect to the actual opening (actual accelerator opening) is small. It can be suppressed. When the predetermined time (DDTVDEC) elapses, the fuel supply correction amount is gradually reduced to 0 by the integral attenuation process, so that fluctuations in the engine speed associated with the cancellation of the deceleration fuel reduction correction can be kept small.

この実施形態においては、図2の制御および図3の制御により、吸気圧力センサ23の出力遅れに起因する余分な燃料供給量およびアクセル開度センサ21の出力遅れに起因する余分な燃料供給量を減らせるため、減速時の排気特性が一時的に悪化する、のを高度に防止できるのである。   In this embodiment, the excess fuel supply amount caused by the output delay of the intake pressure sensor 23 and the excess fuel supply amount caused by the output delay of the accelerator opening sensor 21 are obtained by the control of FIG. 2 and the control of FIG. Therefore, the exhaust characteristics during deceleration can be prevented from being temporarily deteriorated.

この発明の実施形態に係るシステム概要図である。It is a system outline figure concerning the embodiment of this invention. 同じくコントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit similarly. 同じくコントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit similarly. 同じくブーストリミッタマップを例示する特性図である。It is a characteristic view which similarly illustrates a boost limiter map. 同じく減速時燃料減量補正マップを例示する特性図である。It is a characteristic view which similarly illustrates the fuel reduction correction map during deceleration. 同じく制御内容を説明するタイミングチャートである。It is a timing chart explaining the contents of control similarly. 同じく制御内容を説明するタイミングチャートである。It is a timing chart explaining the contents of control similarly.

符号の説明Explanation of symbols

11 吸気通路
12 スロットル弁
13 ISCバルブ
14 燃料供給装置
15 燃料供給装置のノズル
16 燃料供給装置のガス制御弁(噴射弁)
17 点火プラグ
20 コントロールユニット
11 Intake passage
12 Throttle valve
13 ISC valve
14 Fuel supply system
15 Fuel supply nozzle
16 Gas control valve (injection valve) of fuel supply system
17 Spark plug
20 Control unit

Claims (4)

エンジンのインテークマニホールド内部の吸気圧力を検出する手段と、
吸気圧力の検出値を用いて吸入空気量を演算する手段と、
アクセルペダルの踏み量に応じて開閉されるスロットル弁の上流または下流に空燃比が略一定の混合気を生成するべく吸入空気量の演算値に応じた燃料供給量を計算する手段と、
この計算値に基づいて燃料供給量を制御する手段と、
を備える天然ガスなど気体燃料を使用する車両の過給機付き内燃機関において、
エンジン回転数を検出する手段
アクセルペダルの踏み量をアクセル開度として検出する手段
アクセル開度とエンジン回転数とから規定される過給吸入空気量に対応する吸気圧力値に相当するブーストリミッタ値をマップデータとして格納する手段
エンジン回転数の検出値およびアクセル開度の検出値に基づいて前記マップデータからこれらの検出値に対応するブーストリミッタ値を求め、吸気圧力の検出値を監視しつつ過給圧をブーストリミッタ値以下に制御する手段と、を備え、
前記吸入空気量を演算する手段は、エンジン回転数の検出値およびアクセル開度の検出値に対応する前記ブーストリミッタ値とそのときの吸気圧力の検出値を比較する手段と、その比較結果に基づいて吸気圧力の検出値<ブーストリミッタの設定値のときは吸気圧力の検出値を用いて吸入空気量を演算する手段と、同じく吸気圧力の検出値≧ブーストリミッタ値のときは吸気圧力の検出遅れに伴う減速時の燃料供給量の制御遅れを防止すべく吸気圧力の検出値に代えてブーストリミッタ値を用いて吸入空気量を演算する手段と、を備えることを特徴とする内燃機関の燃料供給装置。
Means for detecting the intake pressure inside the intake manifold of the engine;
Means for calculating the intake air amount using the detected value of the intake pressure;
Means for calculating a fuel supply amount according to a calculated value of an intake air amount so as to generate an air-fuel mixture having a substantially constant air-fuel ratio upstream or downstream of a throttle valve that is opened and closed according to the amount of depression of an accelerator pedal;
Means for controlling the fuel supply amount based on the calculated value;
In an internal combustion engine with a supercharger for a vehicle that uses a gaseous fuel such as natural gas,
It means for detecting an engine speed,
It means for detecting a depression amount of an accelerator pedal as an accelerator opening,
And means for storing the boost limit value as a map data corresponding to the intake pressure value corresponding to the supercharge intake air amount defined by the accelerator opening and the engine speed,
Based on the detected value of the engine speed and the detected value of the accelerator opening, the boost limit values corresponding to these detected values are obtained from the map data, and the boost pressure is less than the boost limit value while monitoring the detected intake pressure value. and means for controlling the,
The means for calculating the intake air amount is based on the comparison result between the boost limiter value corresponding to the detected value of the engine speed and the detected value of the accelerator opening and the detected value of the intake pressure at that time. When the detected value of intake pressure <the set value of boost limiter, means for calculating the intake air amount using the detected value of intake pressure, and when the detected value of intake pressure ≥ boost limiter value, the detection delay of intake pressure Means for calculating an intake air amount using a boost limiter value instead of a detected value of the intake pressure in order to prevent a delay in control of the fuel supply amount at the time of deceleration due to the fuel supply of the internal combustion engine apparatus.
アクセル開度の検出値に基づいて制御の1実行周期TDECあたりのアクセル開度の閉側への変化量△θを演算する手段、その変化量△θが所定値以上になるとそのときのアクセル開度の検出値および変化量△θに応じた割合で燃料供給量を所定時間だけ減量補正する手段、を備えることを特徴とする請求項1に係る内燃機関の燃料供給装置。 Means for calculating a change amount △ theta to the closed side of the accelerator opening per execution cycle TDEC control based on the detected value of the accelerator opening degree, when the amount of change △ theta is equal to or greater than a predetermined value the accelerator at the time The fuel supply device for an internal combustion engine according to claim 1, further comprising means for correcting the fuel supply amount to decrease by a predetermined time at a rate corresponding to the detected value of the opening and the change amount Δθ. アクセル開度の閉側への変化量△θが所定値以上になるとそのときのアクセル開度の検出値および変化量△θに応じた割合で燃料供給量を所定時間だけ減量補正する手段は、所定時間が経過するとアクセル開度の検出値および変化量△θに応じた割合を徐々に補正量0へ積分減衰処理する手段、を備えることを特徴とする請求項2に係る内燃機関の燃料供給装置。 When the change amount Δθ to the closing side of the accelerator opening becomes equal to or greater than a predetermined value, the means for correcting the decrease in the fuel supply amount for a predetermined time at a ratio according to the detected value of the accelerator opening and the change amount Δθ at that time, 3. A fuel for an internal combustion engine according to claim 2, further comprising means for performing integral attenuation processing for gradually adjusting the ratio corresponding to the detected value of the accelerator opening and the change amount Δθ to a correction amount of 0 when a predetermined time has elapsed. Feeding device. 停車時およびアイドル運転に近い低速走行中は無条件に吸気圧力の検出値を用いて吸入空気量を演算する手段、を備えることを特徴とする請求項1〜請求項3の何れか1つに係る内燃機関の燃料供給装置。 4. The apparatus according to claim 1, further comprising: a unit that unconditionally calculates the intake air amount using the detected value of the intake pressure when the vehicle is stopped and during low-speed traveling close to idle operation. A fuel supply device for an internal combustion engine.
JP2003378494A 2003-11-07 2003-11-07 Fuel supply device for internal combustion engine Expired - Fee Related JP4694781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378494A JP4694781B2 (en) 2003-11-07 2003-11-07 Fuel supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378494A JP4694781B2 (en) 2003-11-07 2003-11-07 Fuel supply device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005140040A JP2005140040A (en) 2005-06-02
JP4694781B2 true JP4694781B2 (en) 2011-06-08

Family

ID=34688862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378494A Expired - Fee Related JP4694781B2 (en) 2003-11-07 2003-11-07 Fuel supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4694781B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1012234A2 (en) * 2009-02-27 2016-03-29 Mitsubishi Heavy Ind Ltd control method to control an engine of a pre-combustion chamber type
JP5387431B2 (en) * 2010-02-04 2014-01-15 スズキ株式会社 Gas fuel injection control device for vehicle engine
CN110748425B (en) * 2019-09-30 2021-03-26 同济大学 Natural gas engine transient air-fuel ratio control method

Also Published As

Publication number Publication date
JP2005140040A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US9890718B2 (en) Control apparatus for internal combustion engine
US9261031B2 (en) Control device for internal combustion engine and method for controlling internal combustion engine
US5698780A (en) Method and apparatus for detecting a malfunction in an intake pressure sensor of an engine
US5704340A (en) Excess air rate detecting apparatus and an excess air rate control apparatus for an engine
US10273892B2 (en) Fuel supply system for an internal combustion engine
JP4292209B2 (en) Engine control apparatus and control method
US10330034B2 (en) Device and method for predicting the exhaust gas recirculation rate
JP5381653B2 (en) Control device for an internal combustion engine with a supercharger
US20130085658A1 (en) Control device for internal combustion engine
EP0675275A2 (en) A method and an apparatus for altitude compensation for spark-ignited turbocharged internal combusion engines
JP5146619B2 (en) Control device for internal combustion engine
US9702321B2 (en) Fuel supply system for an internal combustion engine
US11549452B2 (en) Method to control the combustion of an internal combustion engine
JP3966243B2 (en) Internal combustion engine
JP4694781B2 (en) Fuel supply device for internal combustion engine
JP2006152932A (en) Controller of internal combustion engine
JPS6365173A (en) Ignition timing controller for engine
JP4349989B2 (en) Engine control device
CN115839273A (en) Method for controlling a hydrogen internal combustion engine
JP2019120204A (en) Engine control device
JP7479903B2 (en) Method for controlling combustion in an internal combustion engine
JP3956458B2 (en) Fuel injection control device for internal combustion engine
JPS59192858A (en) Canister purge controlling apparatus
JP2018076828A (en) Control device of engine
JPH08144811A (en) Fuel supply amount controller for internal combustion engine with supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees