JP4694439B2 - Method for producing porous metal - Google Patents

Method for producing porous metal Download PDF

Info

Publication number
JP4694439B2
JP4694439B2 JP2006212147A JP2006212147A JP4694439B2 JP 4694439 B2 JP4694439 B2 JP 4694439B2 JP 2006212147 A JP2006212147 A JP 2006212147A JP 2006212147 A JP2006212147 A JP 2006212147A JP 4694439 B2 JP4694439 B2 JP 4694439B2
Authority
JP
Japan
Prior art keywords
porous
pores
metal
molded body
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006212147A
Other languages
Japanese (ja)
Other versions
JP2008038185A (en
Inventor
金孫 廖
浩史 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2006212147A priority Critical patent/JP4694439B2/en
Publication of JP2008038185A publication Critical patent/JP2008038185A/en
Application granted granted Critical
Publication of JP4694439B2 publication Critical patent/JP4694439B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は多孔質金属の製造方法に関する。   The present invention relates to a method for producing a porous metal.

多孔質金属は、その表面および内部に、小さいものでは数十nm、大きいものでは数mmの穴(気孔)が形成され、その体積に占める気孔の割合(気孔率)が大きくなるにつれて体積あたりの質量は低下し、例えば、気孔率が30%の体積あたりの質量は、気孔がないバルク金属の質量の70%となる。   Porous metal has pores (pores) of several tens of nanometers on the surface and inside, and several millimeters on the large ones, and as the proportion of the pores (porosity) in the volume increases, The mass decreases. For example, the mass per volume with a porosity of 30% is 70% of the mass of the bulk metal without porosity.

この多孔質金属の中の気孔は外部から衝撃が加わることにより押し潰され、その際に衝撃エネルギーを吸収する。そのため、この多孔質金属は軽量な衝撃吸収材として、自動車のバンパー等への適用が期待される。   The pores in the porous metal are crushed by an external impact and absorb the impact energy. Therefore, this porous metal is expected to be applied to automobile bumpers and the like as a lightweight shock absorber.

また、その気孔率を高めると、多孔質金属中に個々に独立していた気孔が接触し、それらが連結する。気孔が互いに連結すれば、その多孔質金属の一方から他方に流体を流動させることができる。この連結した気孔の内壁に触媒を担持させると、この気孔の中を流体が流動する間に触媒反応が生じ、いわゆる触媒フィルタとして機能させることができる。   Moreover, when the porosity is increased, individually independent pores in the porous metal come into contact with each other and are connected. If the pores are connected to each other, fluid can flow from one of the porous metals to the other. When a catalyst is supported on the inner walls of the connected pores, a catalytic reaction occurs while a fluid flows in the pores, so that it can function as a so-called catalyst filter.

その他にも、防音防振材、断熱材への適用や、多孔質金属表面の凹凸による投錨効果を利用した材料間の密着性向上も期待されている。   In addition, application to soundproof and vibration-proof materials and heat insulating materials, and improvement in adhesion between materials utilizing the anchoring effect due to the unevenness of the porous metal surface are also expected.

このような広い利用が望まれる多孔質金属を作るべく、金属内に気孔を生じさせるには、例えば、多孔質金属の原料となる金属粉末と、高温で分解消失するバインダ樹脂とを混ぜて混合体とし、それを型枠に充填して焼結する製造方法がある。   In order to create a porous metal that is desired to be widely used, in order to generate pores in the metal, for example, a metal powder that is a raw material of the porous metal and a binder resin that decomposes and disappears at a high temperature are mixed and mixed. There is a manufacturing method in which a body is formed and filled into a mold and sintered.

この製造方法は、焼結時に金属粉末同士の接触部が溶融して結合し、この金属粉末間に充填されたバインダ樹脂が分解消失してその部分が気孔となる。つまり、初めに混合したバインダ樹脂の比率がそのまま気孔率となるので、金属粉末とバインダ樹脂の混合比率で気孔率を調整できる。また、この金属粉末とバインダ樹脂とを焼結前に均一に混合すれば、その全体が一様な気孔率の多孔質金属とし得る。   In this manufacturing method, the contact portion between the metal powders is melted and bonded during sintering, and the binder resin filled between the metal powders decomposes and disappears to become pores. That is, since the ratio of the binder resin mixed first becomes the porosity as it is, the porosity can be adjusted by the mixing ratio of the metal powder and the binder resin. Moreover, if this metal powder and binder resin are mixed uniformly before sintering, the whole can be made into a porous metal having a uniform porosity.

しかし、この製造方法は、混合したバインダ樹脂が焼結中に完全に分解消失せずに多孔質金属内に残留し、この多孔質金属の特性が劣化することが懸念される。また、金属粉末とバインダ樹脂との混合体は、熱処理炉の中で焼結されるため、その圧縮成形体の最大サイズは熱処理炉のサイズで制限され、熱処理炉のサイズを超える多孔質金属は製造できない。このため、この多孔質金属を防音パネル等に用いる場合、大型の多孔質金属が必要なので、この多孔質金属を接合して大型化する必要がある。   However, in this manufacturing method, there is a concern that the mixed binder resin does not completely decompose and disappear during sintering but remains in the porous metal, and the properties of the porous metal deteriorate. In addition, since the mixture of the metal powder and the binder resin is sintered in a heat treatment furnace, the maximum size of the compression molded body is limited by the size of the heat treatment furnace. It cannot be manufactured. For this reason, when this porous metal is used for a soundproof panel or the like, a large porous metal is required. Therefore, it is necessary to increase the size by joining the porous metal.

一般的に、2つの部材を接合して大型化するには、その部材の面同士を密接して接着剤や溶接等で接合する。しかし、多孔質金属の表面には多数の気孔が露出しているので、気孔露出面同士を対向しても、実際に両者が密接している面積は非常に小さく、十分な接合強度を得ることが難しい。また、多孔質金属同士を溶接すると、その熱により溶接界面近傍で溶融が生じ、その部分で気孔が消失するため、消失した気孔の体積に相当する多孔質金属の体積が減少し、溶接部分における寸法精度が劣化する恐れがある。   In general, in order to join two members and increase the size, the surfaces of the members are brought into close contact with each other and joined by an adhesive or welding. However, since a large number of pores are exposed on the surface of the porous metal, even if the exposed surfaces of the pores face each other, the area where they are actually in close contact with each other is very small, and sufficient bonding strength can be obtained. Is difficult. Also, when porous metals are welded together, melting occurs near the weld interface due to the heat, and pores disappear at that portion, so the volume of the porous metal corresponding to the lost pore volume decreases, Dimensional accuracy may deteriorate.

このように、一般的には接合が困難な多孔質金属同士、または多孔質金属と非多孔質金属とを接合するために、両者の接合面が密着するように圧力を負荷し、その接合面にこの多孔質金属と同種の金属を供給し、レーザ溶接により接合する技術が提案されている(特許文献1 段落番号0019〜0028参照)。
この技術は、例えば、多孔質ステンレスと非多孔質のバルクステンレスとを接合する場合、これらの接合面に5〜20kPaの圧力を負荷し、この接合面に高マンガン系のオーステナイト鋼を供給して、良好な接合強度を得るようにしている。
特開2001−276582号公報
Thus, in general, in order to join porous metals that are difficult to join or between a porous metal and a non-porous metal, pressure is applied so that the joint surfaces of the two are in close contact, and the joint surfaces A technique of supplying the same type of metal as the porous metal and joining them by laser welding has been proposed (see Patent Document 1, paragraph numbers 0019 to 0028).
In this technique, for example, when porous stainless steel and non-porous bulk stainless steel are joined, a pressure of 5 to 20 kPa is applied to these joining surfaces, and high manganese austenitic steel is supplied to the joining surfaces. In order to obtain good bonding strength.
JP 2001-276582 A

その他に、一つの部材中に多孔質部分と非多孔質部分を作り分ける技術も提案されている(特許文献2 図1参照)。
この技術は、アルミニウム合金を片方の電極としてアーク放電を発生させ、そのアーク放電中に水素を予め含有したアルミニウム合金粉末を供給して、アルミニウム合金表面に堆積させ、そのアルミニウム合金中の水素をアーク放電中でガス化し、そのガスがアーク放電で溶融したアルミニウム合金中に取り込まれて、気孔を形成し、アーク放電を行った場所のみ、部分的に多孔質アルミニウム層が形成される。
特開2004−114054号公報
In addition, a technique in which a porous portion and a non-porous portion are separately formed in one member has been proposed (see Patent Document 2 FIG. 1).
This technology generates an arc discharge using an aluminum alloy as one electrode, supplies aluminum alloy powder containing hydrogen in advance during the arc discharge, deposits it on the surface of the aluminum alloy, and arcs the hydrogen in the aluminum alloy. Gasification occurs in the discharge, and the gas is taken into the aluminum alloy melted by the arc discharge to form pores, and a porous aluminum layer is partially formed only at the place where the arc discharge is performed.
JP 2004-114054 A

特許文献1に示す技術は、その接合工程で2つの部材の接合面に圧力を負荷する際に、各部材の一部を治具等で挟んで両者を固定する。しかし、その部材が小さかったり、挟む箇所の形状が複雑であったりすると、その部材同士をしっかりと挟むことができなかったり、挟む際の圧力によってその部材が変形・破損したりする恐れがある。このため、そのような恐れが問題となる場合は、この技術を適用できない。   In the technique shown in Patent Document 1, when a pressure is applied to the joining surfaces of two members in the joining process, a part of each member is sandwiched by a jig or the like and both are fixed. However, if the member is small or the shape of the sandwiched portion is complicated, the members may not be firmly sandwiched, or the member may be deformed or damaged by the pressure when sandwiched. For this reason, when such a fear becomes a problem, this technique cannot be applied.

特許文献2に示す技術は、アーク放電中に、予め水素を含有したアルミニウム合金粉末を供給するため、そのアルミニウム合金粉末のコストが高くつく上、所定量のアルミニウム合金粉末をアーク放電中に安定して供給するのが煩わしく、また、均一な多孔質材料を得るために、溶接の向きも制限される。   The technique shown in Patent Document 2 supplies aluminum alloy powder containing hydrogen in advance during arc discharge, which increases the cost of the aluminum alloy powder and stabilizes a predetermined amount of aluminum alloy powder during arc discharge. In order to obtain a uniform porous material, the direction of welding is also limited.

また、多孔質部分が供給した粉末の体積分だけ盛り上がり、多孔質化した部分と非多孔質化部分との間の段差が非常に大きい。さらに、このように製造されたアルミニウム多孔質体は、多孔質体と非多孔質体の複合体ではあるが、多孔質体の形成位置や多孔質または非多孔質部分の深さ等の制御が非常に困難であり、多孔質化の後、機械加工する必要がある。   In addition, the volume of the powder supplied by the porous portion rises, and the level difference between the porous portion and the non-porous portion is very large. Furthermore, although the aluminum porous body manufactured in this way is a composite of a porous body and a non-porous body, the control of the formation position of the porous body and the depth of the porous or non-porous portion is possible. It is very difficult and needs to be machined after being made porous.

この発明は、このような現状に鑑み、簡便に多孔質化を図ると共に、所定位置において所定深さまで多孔質化することができ、多孔質化した部材同士の接合が簡単にできるようにすることを課題とする。   In view of such a current situation, the present invention can be easily made porous, can be made porous at a predetermined position to a predetermined depth, and can easily join porous members. Is an issue.

上記の課題を解決するため、この発明は、金属粉末を所定形状の成形体に成形し、その成形体の所定位置にアーク放電、レーザ照射、プラズマ照射の少なくとも一つの加熱処理を行い、その成形体の所定位置において所定深さまで溶融することとしたのである。   In order to solve the above-described problems, the present invention forms a metal powder into a molded body having a predetermined shape, performs at least one heat treatment of arc discharge, laser irradiation, and plasma irradiation on a predetermined position of the molded body. It was decided to melt to a predetermined depth at a predetermined position on the body.

上記成形体の成形方法の一つとして、金属粉末を圧縮、または焼結する工程を経て所定形状の成形体とする方法が適用できる。   As one of the molding methods of the molded body, a method of forming a molded body having a predetermined shape through a process of compressing or sintering metal powder can be applied.

上記圧縮工程は、例えば圧縮成形であり、上記金属粉末を型枠に充填し、この金属粉末を加圧して押し固めて成形体、またはビレットとする。この成形体、またはビレットの中に残存する気孔の量は、押し固める際の圧力の大きさを変えることで調節でき、気孔率を低下させる場合は加圧力を増大させる。この圧縮成形において、必ずしも加熱する必要はないが、加熱することにより金属粉末中の気孔が型枠の外に抜けやすくなるので、より短時間で成形を完了できる。なお、圧縮工程として、金属粉末を所定の温度に加熱した後に、この粉末を押出装置のコンテナに充填し、これを加圧して、所定形状および寸法の成形体に押出成形してもよい。   The compression process is, for example, compression molding. The metal powder is filled in a mold, and the metal powder is pressed and pressed to form a molded body or billet. The amount of pores remaining in the molded body or billet can be adjusted by changing the pressure level at the time of compaction, and the pressurizing force is increased when the porosity is lowered. In this compression molding, it is not always necessary to heat, but by heating, the pores in the metal powder easily come out of the mold, so that the molding can be completed in a shorter time. In addition, as a compression process, after heating metal powder to predetermined | prescribed temperature, this powder may be filled into the container of an extrusion apparatus, this may be pressurized, and may be extrusion-molded to the molded object of a predetermined shape and a dimension.

また、上記焼結工程は、例えば焼結成形であり、この金属粉末を型枠に充填して、この金属の融点に至らない程度の高温まで昇温し、一般的には数時間加熱して成形体、またはビレットとする。この加熱の際、この金属粉末への加圧の有無は、所望の気孔率によって適宜選択され、圧縮成形と同様、気孔率を低下させる場合は加圧力を増大させる。   In addition, the sintering step is, for example, sintering molding. The metal powder is filled in a mold, and the temperature is raised to a high temperature that does not reach the melting point of the metal, and generally heated for several hours. A compact or billet is used. At the time of this heating, the presence or absence of pressurization to the metal powder is appropriately selected depending on the desired porosity, and the pressurizing force is increased when the porosity is reduced, as in compression molding.

この焼結は、圧縮成形と異なり、隣接する金属粉末の接触部分が一部溶融し、それを室温に冷却すると固化し、隣接する金属粉末が連結して一体化する。そのため、金属粉末を単に押し固めた圧縮成形の場合と比較して、その成形体の機械強度は増しており、その成形体が衝撃等で破損する恐れが少ない。   In this sintering, unlike compression molding, a contact portion between adjacent metal powders is partially melted and solidified when cooled to room temperature, and adjacent metal powders are connected and integrated. Therefore, the mechanical strength of the molded body is increased as compared with the case of compression molding in which metal powder is simply pressed and compacted, and the molded body is less likely to be damaged by impact or the like.

上記圧縮成形または焼結成形で得られたビレットを所定の温度に加熱した後に、このビレットを押出装置のコンテナに充填し、所定形状と寸法の成形体に押出成形する。このようにして得られた成形体は強度が高く、また、その形状と寸法は押出成形の際に用いる金型を交換することで自在に変えることができる。   After the billet obtained by the compression molding or the sintering molding is heated to a predetermined temperature, the billet is filled in a container of an extrusion apparatus and extruded into a molded body having a predetermined shape and size. The molded body thus obtained has high strength, and its shape and dimensions can be freely changed by exchanging a mold used for extrusion molding.

このようにして得られた成形体の中には微細な気孔が高密度に残存し、続く加熱処理によってこの成形体の所定位置において所定深さまで溶融し、その溶融時に、この微細な気孔が表面エネルギーを低下するために凝集して、巨視的な気孔となって、効率よく多孔質化がなされる。   In the molded body thus obtained, fine pores remain at a high density, and are melted to a predetermined depth at a predetermined position of this molded body by the subsequent heat treatment. Agglomerates to reduce energy to form macroscopic pores, and the pores are efficiently made.

この発明によると、多孔質化する部分に新たに金属粉末を供給することなく、上記成形体の所定位置において所定深さまで直接アーク放電等で加熱処理を行ない、その部分のみを多孔質化するので、加熱処理を行った多孔質部分と、加熱処理を行わなかった非多孔質化部分との間の段差が小さい。また、非多孔質部分には微細な気孔が高密度に残存しているが、その気孔によって成形体の表面はほとんど荒れない(粗面とならない)。   According to this invention, heat treatment is performed directly by arc discharge or the like at a predetermined position of the molded body to a predetermined depth without newly supplying metal powder to the porous portion, and only that portion is made porous. The level difference between the porous portion that has been subjected to the heat treatment and the non-porous portion that has not been subjected to the heat treatment is small. Further, fine pores remain in the non-porous portion at a high density, but the surface of the molded body is hardly roughened (not roughened) by the pores.

上記加熱処理を上記成形体の周縁部以外に施すと、周縁部は非多孔質部が残存し、平坦な表面状態が維持される。この成形体を複数枚並べて、その周縁部の端面で突き合わせると、それらを溶接、または機械的手法により接合することができる。この接合が溶接による場合、接合箇所が溶接時に溶融して多孔質化するため、接合後の成形体全体を多孔質化することができる。   When the heat treatment is applied to a portion other than the peripheral portion of the molded body, a non-porous portion remains in the peripheral portion, and a flat surface state is maintained. When a plurality of the molded bodies are arranged and abutted at the end face of the peripheral edge, they can be joined by welding or a mechanical technique. When this joining is performed by welding, the joining portion is melted and made porous at the time of welding, so that the entire formed body after joining can be made porous.

この発明の実施形態としては、金属粉末を圧縮、または焼結工程を経て所定形状の成形体に成形し、その成形体に加熱処理を施してその所定位置において所定深さまで溶融し、溶融部内の微細な気孔を凝集させて巨視的な気孔とする構成を採用する。   As an embodiment of the present invention, a metal powder is compressed or sintered to form a molded body having a predetermined shape, and the molded body is subjected to heat treatment and melted to a predetermined depth at the predetermined position. A configuration is adopted in which fine pores are aggregated to form macroscopic pores.

加熱手段としては、アーク放電、レーザ照射、プラズマ照射から選択するのが好ましい。これらの方法は、発生した熱を所望の位置に集中して照射できるので、電圧、電流等を調整すれば、容易に成形体の溶融部の溶融範囲、深さ及び凝固速度を制御できる点で優れている。これらの方法と同等に、簡便に成形体の溶融部の溶融範囲、深さ及び凝固速度が制御できるのであれば、その加熱方法はこれらに限定されない。 The heating means is preferably selected from arc discharge, laser irradiation, and plasma irradiation. Since these methods can irradiate the generated heat in a concentrated position at a desired position, it is possible to easily control the melting range, depth and solidification rate of the melted part of the molded body by adjusting the voltage, current, etc. Are better. The heating method is not limited to these methods as long as the melting range, depth, and solidification rate of the melted portion of the molded body can be easily controlled in the same manner as these methods.

上記金属粉末として、マグネシウム、アルミニウム、チタンを採用できる。これらの金属は比強度が高いので軽量化と高強度を両立できる。また、それらに各種の金属を添加した合金も同様に軽量化と高強度を両立できる。その際、添加する各元素は、添加による機械強度等の諸特性の向上を考慮して適宜に選択する。   Magnesium, aluminum, and titanium can be adopted as the metal powder. Since these metals have high specific strength, it is possible to achieve both weight reduction and high strength. Also, alloys obtained by adding various metals to them can achieve both weight reduction and high strength. At that time, each element to be added is appropriately selected in consideration of improvement of various properties such as mechanical strength due to the addition.

そのマグネシウム合金は、例えば、機械強度向上のためにアルミニウム、亜鉛を、耐食性向上のためにマンガンを、耐熱性向上のためにイットリウム、カルシウム、ストロンチウム、銀、珪素、希土類元素を、結晶粒の微細化のためにジルコニウムを、酸化防止のためにベリリウム、カルシウムを各々添加したものとする。これらの各元素は前記諸特性の向上のために複数組み合わせて添加することもできる。   The magnesium alloy is composed of, for example, aluminum and zinc for improving mechanical strength, manganese for improving corrosion resistance, yttrium, calcium, strontium, silver, silicon and rare earth elements for improving heat resistance. It is assumed that zirconium is added for oxidization and beryllium and calcium are added for oxidation prevention. A plurality of these elements can be added in combination to improve the various characteristics.

アルミニウム合金は、例えば、機械強度向上のために銅、マンガン、珪素、マグネシウム、亜鉛、ニッケルを添加したものとする。これらの各元素も複数組み合わせて添加することもできる。   For example, copper, manganese, silicon, magnesium, zinc, and nickel are added to the aluminum alloy to improve mechanical strength. A plurality of these elements can also be added in combination.

チタン合金は、例えば、耐食性向上のためにパラジウムを、耐熱性向上のためにアルミニウム、錫を、延性向上のためにバナジウムを、冷間加工性と機械強度の向上のためにバナジウム、クロム、錫、アルミニウムを各々添加したものとする。これらの各元素も同様に前記諸特性の向上のために複数組み合わせて添加することもできる。   Titanium alloys include, for example, palladium for improving corrosion resistance, aluminum and tin for improving heat resistance, vanadium for improving ductility, and vanadium, chromium and tin for improving cold workability and mechanical strength. Each aluminum is added. Similarly, a plurality of these elements can be added in combination to improve the various characteristics.

上記圧縮成形で金属粉末をビレットとする場合、型枠から取り出した際にこのビレットが破損しないように、金属粉末への負荷圧力は100MPa以上であることが望ましい。   When the metal powder is made into a billet in the compression molding, it is desirable that the load pressure on the metal powder is 100 MPa or more so that the billet is not damaged when taken out from the mold.

また、上記焼結成形で金属粉末をビレットとする場合、その焼結条件は、合金の種類により異なり、マグネシウム合金は400〜500℃、アルミニウム合金は500〜650℃、チタン合金は900〜1300℃の各温度範囲で、各々0.1〜1時間熱処理される。この処理で隣接する金属粉末の接触部分が一部溶融し、それを室温に冷却すると溶融部分が固化し、隣接する金属粉末が連結して一体化する。そのため、成形体の強度が向上し、焼結処理後の加熱処理においてこの焼結体が破損する恐れが少ない。この焼結を加圧下で行うと、大気圧下で行った場合と比べて、その気孔率をより低下することができる。   Further, when the metal powder is made into a billet in the above-described sintering molding, the sintering condition varies depending on the type of the alloy, the magnesium alloy is 400 to 500 ° C, the aluminum alloy is 500 to 650 ° C, and the titanium alloy is 900 to 1300 ° C. Each of these temperature ranges is heat treated for 0.1 to 1 hour. By this treatment, the contact portion of the adjacent metal powder is partially melted, and when it is cooled to room temperature, the molten portion is solidified and the adjacent metal powder is connected and integrated. Therefore, the strength of the molded body is improved, and there is little possibility that the sintered body is damaged in the heat treatment after the sintering treatment. When this sintering is performed under pressure, the porosity can be further reduced as compared with the case where the sintering is performed under atmospheric pressure.

上記ビレットを押出成形して成形体とするには、このビレットを300℃以上に加熱して押出装置のコンテナに充填し、このビレットに100kg/cm以上の圧力を負荷して、このコンテナからビレットを押し出す。 In order to extrude the billet into a molded body, the billet is heated to 300 ° C. or higher and filled into a container of an extrusion apparatus, and a pressure of 100 kg / cm 2 or more is applied to the billet, Extrude the billet.

上記ビレットが押出成形時に破損するのを防止するため、圧縮成形または焼結成形でビレットを作製するのが好ましいが、上記押出装置のコンテナに金属粉末を直接、連続的に供給して、その金属粉末に加圧・加熱処理を施し、この押出装置内で直接ビレットを形成して、これを押出成形することもできる。   In order to prevent the billet from being damaged at the time of extrusion molding, it is preferable to produce the billet by compression molding or sintering molding. However, the metal powder is directly supplied continuously to the container of the extrusion device, and the metal It is also possible to subject the powder to pressure and heat treatment, directly form a billet in the extrusion apparatus, and then extrude the powder.

この成形体にアーク放電等の加熱処理を行うと、成形体の所定位置において所定深さまで溶融し、この溶融領域中に残存していた上記気孔が凝集する。この気孔は金属粉末と同等の大きさ以下で非常に微細であるが、この微細な気孔が多数凝集すると、最大で直径が数百μm程度の巨視的な気孔となり、この巨視的な気孔が表面の溶融層に取り込まれて固化し、多孔質層が形成される。   When heat treatment such as arc discharge is performed on the molded body, the molded body is melted to a predetermined depth at a predetermined position of the molded body, and the pores remaining in the melted region are aggregated. These pores are very fine with a size equal to or smaller than that of metal powder. However, when a large number of these fine pores aggregate, they become macroscopic pores with a diameter of about several hundred μm at the maximum. Is taken into the molten layer and solidified to form a porous layer.

上記金属粉末の表面に水酸化物被膜を形成すると、この金属粉末からなる成形体は水酸化物が全域に均一に分散されたものとなり、その成形体にアーク放電等の加熱処理を行うことにより、成形体の中に均一に分散した水酸化物が、この加熱に伴い分解して水素ガスとなり、この水素ガスは表面の溶融層に取り込まれて気孔を形成する。   When a hydroxide coating is formed on the surface of the metal powder, the compact made of the metal powder has the hydroxide uniformly dispersed throughout the entire area, and the compact is subjected to heat treatment such as arc discharge. The hydroxide uniformly dispersed in the molded body is decomposed by this heating to become hydrogen gas, and this hydrogen gas is taken into the molten layer on the surface to form pores.

このため、この溶融層には、この水素ガスに起因する気孔と、上記隙間が凝集した気孔とが同時に取り込まれるので、アーク放電等の加熱処理の条件が同一であれば、金属粉末の表面に水酸化物被膜を形成した場合、しなかった場合と比較して気孔率が高くなる。   For this reason, since the pores resulting from the hydrogen gas and the pores in which the gaps are aggregated are simultaneously taken into this molten layer, if the heat treatment conditions such as arc discharge are the same, the surface of the metal powder When the hydroxide film is formed, the porosity is higher than when the hydroxide film is not formed.

上記気孔のサイズおよび気孔率は、例えば、加熱時の入熱量を大きくすると、成形体の表面からより深い領域まで溶融し、その溶融領域中の上記隙間が気孔に取り込まれるので、気孔のサイズは増大し、気孔率も高くなる。また、冷却時の冷却速度が小さいと、成形体の表面層が溶融している間に、その溶融した領域から気孔が大気中に放出され、溶融した表面層の中の気孔率が低くなる。   For example, when the amount of heat input during heating is increased, the pore size and porosity are melted from the surface of the molded body to a deeper region, and the gap in the melted region is taken into the pores. Increases porosity. If the cooling rate during cooling is low, pores are released from the melted region into the atmosphere while the surface layer of the molded body is melted, and the porosity in the melted surface layer is lowered.

特にサイズの大きな気孔は溶融した領域からの浮上速度が大きいので、小さい気孔が溶融した領域に主に残存し、気孔の平均サイズは低下する。このような加熱条件およびその後の冷却条件を考慮して気孔のサイズおよび気孔率は調節する。   Large pores in particular have a high ascent rate from the melted region, so that small pores mainly remain in the melted region, and the average pore size decreases. The pore size and porosity are adjusted in consideration of such heating conditions and subsequent cooling conditions.

上記水酸化物被膜は、10〜40℃の大気中で1日〜2週間、または、100〜120℃の水蒸気中で1〜5分間処理することで形成される。この温度以上の高温で処理すると、表面に酸化物被膜が形成され、この酸化物被膜は上記加熱処理で分解せずガスを発生しないので、多孔質層の形成に寄与しない。また、これ以下の温度で処理しても水酸化物被膜が形成され難く、その形成効率が低い。そのため、水酸化物被膜の形成は、この温度領域で行う必要がある。   The hydroxide film is formed by treatment in an atmosphere of 10 to 40 ° C. for 1 day to 2 weeks or in water vapor of 100 to 120 ° C. for 1 to 5 minutes. When the treatment is performed at a temperature higher than this temperature, an oxide film is formed on the surface, and this oxide film is not decomposed by the heat treatment and does not generate gas, so that it does not contribute to the formation of the porous layer. Moreover, even if it processes at the temperature below this, a hydroxide film is hard to be formed and its formation efficiency is low. Therefore, it is necessary to form the hydroxide film in this temperature range.

この発明によると、加熱処理が施された多孔質金属の表面は大きな段差が形成されず、平坦性が維持されているが、その多孔質金属の用途によっては、その多孔質部分に意図的に段差を設けたい場合も生じることが想定される。その場合、多孔質化のための加熱処理の途中で、そのアーク放電等の中に、ワイヤー状や棒状のフィラーを連続的に供給すれば、そのフィラーが溶融してその多孔質部の表面に段差を形成できる。また、2つの部材間に隙間がある場合の溶接や部分的に部材を肉厚にして機械強度を確保するための肉盛溶接も同時にできる。   According to the present invention, the surface of the porous metal subjected to the heat treatment is not formed with a large step and the flatness is maintained, but depending on the use of the porous metal, the porous portion is intentionally formed. It is assumed that a step may be provided. In that case, if a wire-like or rod-like filler is continuously fed into the arc discharge, etc. during the heat treatment for making the porous material, the filler melts to the surface of the porous portion. A step can be formed. Also, welding when there is a gap between two members and overlay welding for securing mechanical strength by partially thickening the members can be performed at the same time.

従来例のように水素を予め含有したアルミニウム合金粉末等の多孔質化用物質を供給することなく、直接成形体の表面を加熱処理した。   The surface of the compact was directly heat-treated without supplying a porous material such as aluminum alloy powder containing hydrogen in advance as in the conventional example.

図1にこの発明の一実施例における多孔質金属Aの断面写真を示し、また図2に、この多孔質金属Aの断面の光学顕微鏡写真を示す。この成形体は、粒径が5mm以下のマグネシウム合金(AZ31D:Mg−3wt%Al−1wt%Zn)粉末を型枠に充填し、温度が300℃、圧力が400MPaの処理条件で圧縮成形してビレットとした後、そのビレットを400℃で押出成形したもので、その成形体の表面に半導体レーザ(出力4kW)を4m/分の走査速度でこの成形体の表面を走査して照射した。   FIG. 1 shows a cross-sectional photograph of the porous metal A in one embodiment of the present invention, and FIG. 2 shows an optical micrograph of the cross-section of the porous metal A. This compact is filled with a magnesium alloy (AZ31D: Mg-3 wt% Al-1 wt% Zn) powder having a particle size of 5 mm or less in a mold, and compression-molded under processing conditions of a temperature of 300 ° C. and a pressure of 400 MPa. After forming the billet, the billet was extruded at 400 ° C., and the surface of the molded body was irradiated with a semiconductor laser (output 4 kW) at a scanning speed of 4 m / min.

上記マグネシウム合金の溶融温度は約600℃であり、このレーザ照射において、上記成形体の表面から数mmの深さまで600℃以上に加熱され、その領域が溶融する。この溶融した領域に存在する気孔が凝集して巨視的な気孔となり、多孔質化される。凝集した気孔のサイズは0.1〜0.5mm程度であり、これらが表面に露出するので、この成形体の表面が粗化される。表面が粗化されると、この成形体の表面に樹脂層等を形成する際に投錨効果が発現するので、この成形体と樹脂層等との間の密着性が向上する。   The melting temperature of the magnesium alloy is about 600 ° C. In this laser irradiation, the region is heated to 600 ° C. or more from the surface of the molded body to a depth of several millimeters, and the region melts. The pores present in the melted region aggregate to form macroscopic pores, which are made porous. The size of the aggregated pores is about 0.1 to 0.5 mm, and these are exposed on the surface, so that the surface of the molded body is roughened. When the surface is roughened, an anchoring effect is exhibited when a resin layer or the like is formed on the surface of the molded body, so that the adhesion between the molded body and the resin layer or the like is improved.

上記レーザ照射の条件を調節して、さらに深い領域まで多孔質層とし、多孔質体中の気孔の総数を増やすことができる。この気孔は外部から衝撃が加わった際にそれらが潰れ、その衝撃のエネルギーを効率的に吸収するので、この多孔質体を衝撃吸収材として用いることができる。   By adjusting the laser irradiation conditions, the porous layer can be made deeper and the total number of pores in the porous body can be increased. Since the pores are crushed when an impact is applied from the outside and the energy of the impact is efficiently absorbed, the porous body can be used as an impact absorbing material.

この発明の一実施例における断面写真Cross-sectional photograph of one embodiment of the present invention この発明の一実施例における光学顕微鏡の断面写真Sectional photograph of an optical microscope in one embodiment of the present invention

符号の説明Explanation of symbols

A 多孔質金属
1 気孔
2 金属母相部
A Porous metal 1 Pore 2 Metal matrix

Claims (2)

金属粉末の表面に水酸化物被膜を形成し、この金属粉末を圧縮成形、または焼結成形によりビレットとし、このビレットを押出成形して所定形状の成形体とし、前記成形体の表面の所定の位置をアーク放電、レーザ照射、プラズマ照射の少なくとも一つの加熱手段で集中して加熱し、所定深さまで溶融し、その溶融層内の微細な気孔を凝集させて巨視的な気孔とし、前記所定位置が、前記巨視的な気孔が前記溶融層に取り込まれて固化し得る冷却速度以上の速度で冷却されるようにした多孔質金属の製造方法。 A hydroxide film is formed on the surface of the metal powder, and the metal powder is formed into a billet by compression molding or sintering, and the billet is extruded to form a molded body having a predetermined shape. position arc discharge, laser irradiation, heating is concentrated at least one heating means of the plasma irradiation, and melted to Tokoro Teifuka is, the macroscopic pores by aggregated fine pores of the molten layer, before Symbol A method for producing a porous metal, wherein the predetermined position is cooled at a rate equal to or higher than a cooling rate at which the macroscopic pores can be taken into the molten layer and solidify. 請求項1記載の製造方法によって製造される多孔質金属の周縁部のみを非多孔質領域とし、前記多孔質金属同士をその周縁部端面で突き合わせ、その周縁部端面を溶接して連結するとともに、前記周縁部の接合箇所を多孔質化した多孔質金属の製造方法。 Only the peripheral part of the porous metal manufactured by the manufacturing method according to claim 1 is set as a non-porous region , the porous metals are butted together at the peripheral end faces, and the peripheral end faces are welded and connected, The manufacturing method of the porous metal which made the joining location of the said peripheral part porous.
JP2006212147A 2006-08-03 2006-08-03 Method for producing porous metal Expired - Fee Related JP4694439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212147A JP4694439B2 (en) 2006-08-03 2006-08-03 Method for producing porous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212147A JP4694439B2 (en) 2006-08-03 2006-08-03 Method for producing porous metal

Publications (2)

Publication Number Publication Date
JP2008038185A JP2008038185A (en) 2008-02-21
JP4694439B2 true JP4694439B2 (en) 2011-06-08

Family

ID=39173560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212147A Expired - Fee Related JP4694439B2 (en) 2006-08-03 2006-08-03 Method for producing porous metal

Country Status (1)

Country Link
JP (1) JP4694439B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021230B1 (en) 2008-07-31 2011-03-11 한국과학기술연구원 Porous sintered material, fabrication method thereof and a filter comprising the same
JP5614960B2 (en) * 2009-09-03 2014-10-29 東洋アルミニウム株式会社 Porous aluminum material with improved bending strength and method for producing the same
EP4098288A1 (en) * 2012-02-20 2022-12-07 Smith & Nephew, Inc. Methods of making porous structures
CN104399978B (en) * 2014-11-27 2017-02-08 华南理工大学 3D (Three Dimensional) forming method for large-sized porous amorphous alloy part of complex shape
CN106862573B (en) * 2017-03-23 2019-02-15 洛阳理工学院 A kind of WC-Co and CBN-Co graded composite cutter material and preparation method
CN108637256B (en) * 2018-05-25 2020-07-14 大连理工大学 Arc fuse additive manufacturing method of porous material
CN110394447B (en) * 2019-08-26 2021-12-24 上海交通大学 Preparation method of porous magnesium rare earth alloy implant based on Selective Laser Melting (SLM) additive manufacturing technology
CN112872354B (en) * 2021-01-11 2022-05-31 上海交通大学 Gradient porous metal material and preparation method thereof
KR20230048745A (en) * 2021-10-05 2023-04-12 엘지디스플레이 주식회사 Display apparatus and fabricating method of cushion plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379901A (en) * 1986-09-22 1988-04-09 Mazda Motor Corp Production of cylinder liner
JPH10251712A (en) * 1997-03-12 1998-09-22 Kubota Corp Metallic composite porous member, its production, and weld-joined body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379901A (en) * 1986-09-22 1988-04-09 Mazda Motor Corp Production of cylinder liner
JPH10251712A (en) * 1997-03-12 1998-09-22 Kubota Corp Metallic composite porous member, its production, and weld-joined body

Also Published As

Publication number Publication date
JP2008038185A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4694439B2 (en) Method for producing porous metal
CN107812941B (en) In-situ preparation method for laser additive manufacturing aluminum alloy and product thereof
JP4037901B2 (en) Method for producing aluminum composite material
JP6706608B2 (en) Manufacturing method of parts
US6689470B1 (en) Thermal protection system
EP2551040A1 (en) Method of manufacturing a component by hot isostatic pressing
KR20100098507A (en) Open cell, porous material, and a method of, and mixture for, making same
EP3253516B1 (en) Infiltrated ferrous materials
JP6488875B2 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
GB2419605A (en) Making copper composites by extrusion
CN112439902A (en) Manufacturing method of solid composite additive of high-performance structural member
JP2012041583A (en) Method for producing titanium product or titanium alloy product
KR101285484B1 (en) Composite part with structured tungsten element
JP3735712B2 (en) Method for producing porous material and molded body thereof
TW202248429A (en) Aluminum powder mixture and method for producing aluminum sintered body
JP2008007793A (en) Sintered high-strength magnesium alloy, and its manufacturing method
JP5687458B2 (en) Joining method of metal materials
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
JP4212363B2 (en) Method for producing copper composite material
US7393193B1 (en) Techniques for making a metallic product utilizing electric current in a consolidation process
WO2023181994A1 (en) Aluminum powder product for metal additive manufacturing and method for manufacturing aluminum powder molded object
US20230250512A1 (en) Aluminium material and process for producing an aluminium material
CN113601064A (en) Magnesium alloy, in particular for laser deposition welding
JP2010209374A (en) Foamed aluminum fitted with outer surface coating and method for producing the same
JP2006057147A (en) Method for producing reinforced platinum/platinum composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees