JP4694114B2 - Amphoteric polymer substance having L-lysine residue excellent in antithrombotic property, antithrombotic agent comprising the polymer substance, and medical device having the antithrombotic agent fixed thereto - Google Patents

Amphoteric polymer substance having L-lysine residue excellent in antithrombotic property, antithrombotic agent comprising the polymer substance, and medical device having the antithrombotic agent fixed thereto Download PDF

Info

Publication number
JP4694114B2
JP4694114B2 JP2003281499A JP2003281499A JP4694114B2 JP 4694114 B2 JP4694114 B2 JP 4694114B2 JP 2003281499 A JP2003281499 A JP 2003281499A JP 2003281499 A JP2003281499 A JP 2003281499A JP 4694114 B2 JP4694114 B2 JP 4694114B2
Authority
JP
Japan
Prior art keywords
lysma
polymer substance
antithrombotic
shows
lysine residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003281499A
Other languages
Japanese (ja)
Other versions
JP2005048061A (en
Inventor
浩平 白石
益士 光田
一男 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Kinki University
Original Assignee
JMS Co Ltd
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd, Kinki University filed Critical JMS Co Ltd
Priority to JP2003281499A priority Critical patent/JP4694114B2/en
Publication of JP2005048061A publication Critical patent/JP2005048061A/en
Application granted granted Critical
Publication of JP4694114B2 publication Critical patent/JP4694114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、抗血栓性に優れたL−リジン残基を有する両性高分子物質、該高分子物質からなる抗血栓剤、及び該抗血栓剤を固定した医療用器具に関する。 The present invention relates to an amphoteric polymer substance having an L-lysine residue having excellent antithrombotic properties, an antithrombotic agent comprising the polymer substance, and a medical device to which the antithrombotic agent is fixed .

近年、合成高分子材料は人工臓器、カテーテルをはじめとする医療用材料に広く用いられている。その代表的なものは、医療用高分子材料としてはポリエステル、ポリ塩化ビニル、ポリスチレン、ポリメチルメタクリレート、ポリテトラフルオロエチレン等の疎水性高分子や、ポリビニルアルコール、ポリエーテルウレタン、メタクリル酸2−ヒドロキシエチル、ポリアクリルアミド、セルロース等の親水性材料である。これら従来の材料の大部分は、主にその物理的、機械的特性に着目され、使用されている。   In recent years, synthetic polymer materials have been widely used for medical materials such as artificial organs and catheters. Representative examples of the medical polymer material include hydrophobic polymers such as polyester, polyvinyl chloride, polystyrene, polymethyl methacrylate, polytetrafluoroethylene, polyvinyl alcohol, polyether urethane, 2-hydroxy methacrylate. It is a hydrophilic material such as ethyl, polyacrylamide, or cellulose. Most of these conventional materials are mainly used with attention paid to their physical and mechanical properties.

一方、医療技術の進歩に伴って、生体組織や血液と材料が接触する機会は増加しており、材料の生体親和性が大きな関心時となってきている。材料表面での血液凝固の防止に関しては、従来ヘパリンに代表される抗血液凝固剤の連続投与が行なわれてきたが、最近では、脂質代謝異常、出血時間の延長、血小板の減少、アレルギー反応といった長期にわたるヘパリン投与の影響が問題になってきている。これらの問題を解消するため、ヘパリンを必要としないあるいは使用量を低減させることのできる、抗血栓性を備えた血液接触材料の開発が望まれている。   On the other hand, with the advancement of medical technology, the opportunity for contact between a living tissue or blood and a material is increasing, and the biocompatibility of the material has become a time of great interest. Concerning the prevention of blood coagulation on the surface of the material, continuous administration of anticoagulants represented by heparin has been carried out, but recently, abnormal lipid metabolism, prolonged bleeding time, decreased platelets, allergic reactions, etc. The effects of long-term heparin administration are becoming a problem. In order to solve these problems, it is desired to develop a blood contact material having antithrombogenicity that does not require heparin or can reduce the amount of use.

これら血液接触材料の開発を目的として、従来から医療用器具の血液と接触する表面に高分子を基材とした、抗血栓性を有する表面修飾を施す方式が実施されている。それらの修飾は主として、表面に物理的・化学的特徴を有する高分子材料をコーティングし、血液の凝固を最小限に抑制する方法と表面に抗血栓性物質を含浸付着させた高分子材料をコーティングし、そこから抗血栓性物質を徐放させる方法に大別される。前者に関する方法として、例えば特許文献1、特許文献2及び特許文献3が挙げられる。   For the purpose of developing these blood contact materials, a method of applying surface modification having antithrombotic properties using a polymer as a base material on the surface of a medical device that comes into contact with blood has been conventionally performed. These modifications mainly involve coating a polymer material with physical and chemical characteristics on the surface, and a method for minimizing blood coagulation and a polymer material impregnated with an antithrombotic substance on the surface. From there, it is roughly classified into methods for slowly releasing antithrombotic substances. Examples of the former method include Patent Document 1, Patent Document 2, and Patent Document 3.

特許文献1では、合成高分子中に血液適合性に優れるホスホリルコリン基、ならびに親水性と架橋性に優れるラクタム基を有する単量体単位やN−アルキル(メタ)アクリルアミド単位を含む合成高分子が物理的・化学的処理で容易に不溶化され、血液適合性に優れた材料となることに着目したものである。血小板の粘着、凝集、血漿タンパク質の付着を抑制する効果のある2−メタクリロイルオキシエチルホスホリルコリン(MPC)共重合体が長時間にわたって表面に保持されて血液の付着を最小限に抑制する効果が示されている。   In Patent Document 1, a synthetic polymer containing a monomer unit or N-alkyl (meth) acrylamide unit having a phosphorylcholine group excellent in blood compatibility and a lactam group excellent in hydrophilicity and crosslinkability in a synthetic polymer is physically used. It is focused on the fact that it is easily insolubilized by chemical and chemical treatment and becomes a material with excellent blood compatibility. 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer, which has the effect of suppressing platelet adhesion, aggregation, and plasma protein adhesion, is retained on the surface for a long time, and is effective in suppressing blood adhesion to a minimum. ing.

特許文献2では、炭素数2〜10のオレフィンモノマー及び炭素数4〜15のジエンモノマーからなる群の中から選ばれる少なくとも一種のモノマーから誘導された繰り返し単位を有する少なくとも一種のポリマー100重量部と、造核剤0.003〜1.0重量部とからなる組成物を含有する材料がその表面に結晶領域と非結晶領域とからなるミクロ相分離構造を有し、もしくは吸着してもその脱着が容易という特徴に着目したものである。特許文献1同様、血液の付着を最小限に抑制する効果が示されている。   In Patent Document 2, 100 parts by weight of at least one polymer having a repeating unit derived from at least one monomer selected from the group consisting of olefin monomers having 2 to 10 carbon atoms and diene monomers having 4 to 15 carbon atoms; The material containing a composition comprising 0.003 to 1.0 parts by weight of a nucleating agent has a microphase separation structure consisting of a crystalline region and an amorphous region on its surface, or is desorbed even if adsorbed It focuses on the feature that is easy. Similar to Patent Document 1, an effect of minimizing the adhesion of blood is shown.

特許文献3は、リン酸カルシウムとチタンを主成分とする生体適合性多孔質結晶化ガラスにウロキナーゼや組織プラスミノーゲン活性化因子(以下、t−PAと省略する)などの線溶酵素を固定化することで、生体適合性に優れ、かつ血液中のプラスミノーゲンを連続的にプラスミンに変換しうる機能が付与された血栓溶解能を有する生体適合性材料に関する発明である。   Patent Document 3 immobilizes fibrinolytic enzymes such as urokinase and tissue plasminogen activator (hereinafter abbreviated as t-PA) on a biocompatible porous crystallized glass mainly composed of calcium phosphate and titanium. Thus, the invention relates to a biocompatible material having a thrombolytic ability, which is excellent in biocompatibility and has a function capable of continuously converting plasminogen in blood into plasmin.

後者に関する方法としては、例えば特許文献4が挙げられる。これは、(2R,4R)−4−メチル−1−[N2−((RS)−3−メチル−1,2,3,4−テトラヒドロ−8−キノリンスルホニル)−L−アルギニル]−2−ピペリジンカルボン酸水和物(以下、アルガトロバン<抗血栓剤として臨床的に用いられている。ヘパリンやウロキナーゼなどの抗血栓性物質とは異なり、アルコール等の有機溶剤に溶解する>と記す)を2種以上の混合溶液で溶解して高分子基材に塗布する事により、表面からアルガトロバンが徐々に放出されることに着目したものである。   As a method regarding the latter, patent document 4 is mentioned, for example. This is (2R, 4R) -4-methyl-1- [N2-((RS) -3-methyl-1,2,3,4-tetrahydro-8-quinolinesulfonyl) -L-arginyl] -2- Piperidine carboxylic acid hydrate (hereinafter referred to as argatroban <clinically used as an antithrombotic agent; unlike antithrombotic substances such as heparin and urokinase, it dissolves in organic solvents such as alcohol>) 2 It is noted that argatroban is gradually released from the surface when dissolved in a mixed solution of at least seeds and applied to a polymer substrate.

以上に述べた血液接触材料は血栓溶解性能を含む、安定した抗血栓性を発揮できる安価な材料という観点からは十分ではない。また、ウロキナーゼは人尿、t−PAはヒトの子宮や血管壁などにごくわずかしかないことから、利用に関して高価で量産することも難しい。   The blood contact material described above is not sufficient from the viewpoint of an inexpensive material that can exhibit stable antithrombotic properties including thrombus dissolution performance. In addition, urokinase is very small in human urine, and t-PA is very small in human uterus, blood vessel wall, etc., so it is expensive to use and difficult to mass-produce.

特開平7−284528号JP-A-7-284528 特開平10−99426号JP-A-10-99426 特開平7−101828号JP 7-101828 A 特開2000−060960号JP 2000-060960 A

本発明は、血栓溶解性能を含む、安定した抗血栓性を発揮するリジン残基を有する両性高分子物質、該リジン残基を有する両性高分子物質からなる抗血栓性剤、及該抗血栓性剤をその表面に固定した医療用器具を提供する事を目的としている。一般に、血液と接触した材料表面には、アルブミン、フィブリノーゲンといった血漿タンパク質が吸着し、これらタンパク質は、吸着により二次構造が変化する。この二次構造の変化により、さらなるタンパク質の吸着が促され、その結果、材料表面には多重のタンパク質吸着層が形成される。このような多重タンパク質吸着層が形成されると、これと接触する血小板が活性化され、最終的には血液を凝固させる。 The present invention relates to an amphoteric polymer substance having a lysine residue that exhibits stable antithrombotic properties including thrombolytic performance, an antithrombotic agent comprising the amphoteric polymer substance having the lysine residue, and the antithrombotic property The purpose is to provide a medical device in which an agent is fixed to the surface . In general, plasma proteins such as albumin and fibrinogen are adsorbed on the surface of a material in contact with blood, and the secondary structure of these proteins changes due to adsorption. This change in secondary structure promotes further protein adsorption, and as a result, multiple protein adsorption layers are formed on the material surface. When such a multiple protein adsorbing layer is formed, platelets in contact therewith are activated and finally coagulate blood.

血液の凝固は血液凝固系反応の活性化によって不溶性のフィブリンが形成される。凝固系には血液が接触して開始される内因系と、組織因子が血液内に流入して凝固因子と結合して開始される外因系があるが、いずれも最終的には、血液中のプロトロンビンから活性化された酵素トロンビンによって形成される。また、形成された血栓は血栓線溶系(血栓溶解)によって分解されるが、その基本原理は酵素プラスミンによるフィブリンの分解である。プラスミンは血中では前駆体プラスミノーゲンとして存在し、組織プラスミノーゲンアクチベータ(t−PA)やウロキナーゼプラスミノーゲンアクチベータといったプラスミノーゲン活性化因子によって活性化され、プラスミンとなり、フィブリンを分解する。   In blood coagulation, insoluble fibrin is formed by activation of the blood coagulation system reaction. The coagulation system includes an intrinsic system that is initiated by contact with blood, and an extrinsic system that is initiated by tissue factor flowing into the blood and binding to the coagulation factor. Formed by the enzyme thrombin activated from prothrombin. The formed thrombus is decomposed by the thrombus fibrinolysis system (thrombolysis), and its basic principle is the degradation of fibrin by the enzyme plasmin. Plasmin exists as a precursor plasminogen in the blood, and is activated by a plasminogen activator such as tissue plasminogen activator (t-PA) or urokinase plasminogen activator to form plasmin, which degrades fibrin.

本発明者らは、合成高分子による抗血栓性材料に関わる一連の研究の結果、生体に無毒で安価なアミノ酸基を有する両性電解質の合成高分子、すなわち下記化1あるいは化2で示されるL−リジン残基を有する両性高分子物質は血漿タンパク質の吸着を抑制する機能及び血液凝固を抑制する機能を有し、さらには化2で示されるL−リジン残基を有する両性高分子物質は前記各機能に加えて血栓溶解性能を併せ有することを見出し、本発明に到達することができた。なお、本発明において抗血栓性とは、上述のような機能を奏することができるものを指すAs a result of a series of studies relating to antithrombogenic materials using synthetic polymers, the present inventors have found that synthetic polymers of ampholytes having amino acid groups that are non-toxic and inexpensive to living bodies, that is, L represented by Chemical Formula 1 or Chemical Formula 2 below. The amphoteric polymer substance having a lysine residue has a function of suppressing the adsorption of plasma proteins and a function of suppressing blood coagulation, and the amphoteric polymer substance having an L-lysine residue represented by Chemical Formula 2 In addition to each function, it discovered that it had thrombus dissolution performance, and was able to reach this invention. In the present invention, the term “antithrombogenic” refers to a substance capable of exhibiting the functions as described above .

Figure 0004694114
前式中、×はH、CH 3 基あるいはCH 2 CH 3 基を意味する。
Figure 0004694114
(In the above formula, x means H, CH 3 group or CH 2 CH 3 group. )

Figure 0004694114
前式中、×はH、CH 3 基あるいはCH 2 CH 3 基を意味する。
Figure 0004694114
(In the above formula, x means H, CH 3 group or CH 2 CH 3 group. )

本発明のL−リジン残基を有する両性高分子物質は、例えば以下の製造方法によって製造することができる。
アミノ酸L−リジンのεアミノ基ならびにカルボキシル基を保護した原料をクロロホルム溶媒中でトリエチルアミン(TEA)を触媒として、メタクリル酸クロリドと反応させ、反応液を濃縮、洗浄、乾燥させ、濾過、濃縮後、石油エーテル:ジクロロメタンの混合溶媒を用いて精製して前駆体モノマーを調製した。この前駆体モノマーを2、2’アゾビスイソ酪酸ジメチルエステルと共にテトラヒドロフラン(THF)に溶かし、凍結−脱気−窒素置換を行い、減圧下でフリーラジカル重合した後、熱ヘキサンで洗浄し、トリフルオロ酢酸水溶液と反応させ、反応液を濃縮した後にジエチルエーテルで洗浄して溶液を得、該溶液を中和した後に半透膜を用いて透析し、凍結乾燥させて下記化3で示されるL−リジン残基を有する両性高分子物質[以下、P(α−LysMA)とも言う]を製造することができた
The amphoteric polymer substance having an L-lysine residue of the present invention can be produced, for example, by the following production method .
A raw material in which the ε-amino group and carboxyl group of the amino acid L-lysine are protected is reacted with methacrylic acid chloride in a chloroform solvent using triethylamine (TEA) as a catalyst, the reaction solution is concentrated, washed, dried, filtered, concentrated, The precursor monomer was prepared by purification using a mixed solvent of petroleum ether: dichloromethane . This precursor monomer is dissolved in tetrahydrofuran (THF) together with 2,2 ′ azobisisobutyric acid dimethyl ester, subjected to freezing-degassing-nitrogen substitution, free radical polymerization under reduced pressure, washing with hot hexane, and aqueous trifluoroacetic acid solution. The reaction solution is concentrated and then washed with diethyl ether to obtain a solution. The solution is neutralized, dialyzed using a semipermeable membrane, and lyophilized to obtain an L-lysine residue represented by the following chemical formula 3. An amphoteric polymer substance having a group [hereinafter also referred to as P (α-LysMA)] could be produced .

Figure 0004694114
Figure 0004694114

アミノ酸L−リジンのαアミノ基ならびにカルボキシル基を保護した原料をN、N−ジメチルホルムアミド(DMF)溶媒中でトリエチルアミン(TEA)を触媒として、メタクリル酸クロリドと反応させ、反応液を濾過して減圧濃縮した後、ヘキサンで洗浄して前駆体モノマー(固形物)を調製した。この前駆体モノマーを2、2′アゾビスイソ酪酸ジメチルエステルと共にエチルアルコールに溶かし、凍結−脱気−窒素置換を行い減圧下でフリーラジカル重合した後、熱ヘキサンで洗浄し、水酸化ナトリウム水溶液と反応させ、反応液を中和した後に半透膜を用いて透析し、凍結乾燥させて下記化4で示されるL−リジン残基を有する両性高分子物質〔以下、P(ε−LysMA)とも言う〕を製造することができたThe raw material protecting the α-amino group and carboxyl group of the amino acid L-lysine is reacted with methacrylic acid chloride in N, N-dimethylformamide (DMF) solvent using triethylamine (TEA) as a catalyst, and the reaction solution is filtered and reduced in pressure. After concentration, the precursor monomer ( solid substance ) was prepared by washing with hexane . This precursor monomer is dissolved in 2,2 'azobisisobutyric acid dimethyl ester in ethyl alcohol, subjected to freezing-degassing-nitrogen substitution, free radical polymerization under reduced pressure, washed with hot hexane, and reacted with an aqueous sodium hydroxide solution. The reaction solution was neutralized, dialyzed using a semipermeable membrane, freeze-dried, and an amphoteric polymer substance having an L-lysine residue represented by the following chemical formula 4 (hereinafter also referred to as P (ε-LysMA)). Could be manufactured .

Figure 0004694114
Figure 0004694114

従来、ヘパリン等の抗凝固剤やウロキナーゼ等の血栓溶解剤は知られている。しかしながら、これらは副作用が有ったり、その合成、精製あるいは単離が困難で有ったり、さらには医療用器具を構成する基材の表面に耐久性良く固定することが困難である等の問題が有った。これに対して本発明の前記化1あるいは化2で示されるL−リジン残基を有する両性高分子物質からなる抗血栓性剤は、血漿タンパク質吸着抑制、血液凝固阻害、及び血栓溶解性を併せ有する人体に副作用の無い剤で、血液に接触する医療用器具に広く応用が可能である。また前記化1あるいは化2で示される高分子自体も簡単な合成法で合成でき、得られた高分子の分離及び精製も簡単なので安価に入手可能である。さらには該高分子からなる抗血栓性剤は例えば下記実施例2で示すように前駆体モノマーを医療用器具を構成する基材上で重合させることにより、簡単にかつ優れた耐久性で基材の表面に固定することができる。したがって、本発明の抗血栓性剤並びに高分子材料を基材とする医療器具の生体と接触する表面に本発明の抗血栓性剤を固定した医療器具は経済性・安全性のみならず市場性にも優れている Conventionally, anticoagulants such as heparin and thrombolytic agents such as urokinase are known. However, these have side effects, are difficult to synthesize, purify or isolate, and are difficult to fix to the surface of a base material constituting a medical device with good durability. There was. On the other hand, the antithrombotic agent comprising an amphoteric polymer substance having an L-lysine residue represented by Chemical Formula 1 or Chemical Formula 2 of the present invention combines plasma protein adsorption suppression, blood coagulation inhibition, and thrombolytic properties. It has no side effects on the human body and can be widely applied to medical instruments that come into contact with blood. Further, the polymer itself represented by Chemical Formula 1 or Chemical Formula 2 can be synthesized by a simple synthesis method, and the obtained polymer can be easily separated and purified. Further, the antithrombotic agent comprising the polymer can be easily and excellently durable by polymerizing the precursor monomer on the substrate constituting the medical device as shown in Example 2 below. Can be fixed on the surface. Therefore, the medical device in which the antithrombotic agent of the present invention is fixed to the surface of the medical device based on the antithrombotic agent of the present invention and a polymer material that is in contact with the living body is not only economical and safe, but also marketable. Also excellent .

以下、実施例をP(α−LysMA)及びP(ε−LysMA)に基づいて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an Example is described based on P ((alpha) -LysMA) and P ((epsilon) -LysMA) , this invention is not limited to these.

アミノ酸L−リジンのεアミノ基をtBu基ならびにカルボキシル基をBoc基で保護した原料をクロロホルム中溶媒中でトリエチルアミン(TEA)を触媒とし、メタクリル酸クロライドと反応させ、反応液を濃縮した後、1%塩酸および水で数回洗浄し、無水硫酸マグネシウムを用いて乾燥させ、反応液をろ過した後、濃縮して得た固体を石油エーテル:ジクロロメタン(50:50vol%)の混合溶媒を用いてカラムクロマトグラフィーで精製し、白色の個体を得る。得られた白色個体と2、2'アゾビス酪酸ジメチルエステルをガラス製重合管の中でテトラヒドロフラン(THF)に溶かし、液体窒素中で凍結−脱気−窒素置換を数回行い、減圧下で密封し、60℃、20時間フリーラジカル重合した後、多量の熱ヘキサンで洗浄し、白色固体を得る。得られた白色固体をトリフルオロ酢酸水溶液で、50℃、12時間反応させた後、反応液を濃縮し、ジエチルエーテルで洗浄する。溶液を水酸化ナトリウム水溶液あるいは塩酸で中和した後、アセチルセルロース製半透膜を用いて透析し、凍結乾燥させて両性電解質のP(α−LysMA)を製造することができたこの製造方法を図1に示すA raw material obtained by protecting the ε-amino group of the amino acid L-lysine with a tBu group and a carboxyl group with a Boc group was reacted with methacrylic acid chloride in a solvent in chloroform using triethylamine (TEA) as a catalyst, and the reaction solution was concentrated. The reaction mixture was washed several times with% hydrochloric acid and water, dried over anhydrous magnesium sulfate, the reaction solution was filtered, and the solid obtained by concentration was columned with a mixed solvent of petroleum ether: dichloromethane (50:50 vol%). Purify by chromatography to obtain a white solid. The obtained white solid and 2,2 ′ azobisbutyric acid dimethyl ester are dissolved in tetrahydrofuran (THF) in a glass polymerization tube, freeze-degas-nitrogen substitution is performed several times in liquid nitrogen, and the mixture is sealed under reduced pressure. After free radical polymerization at 60 ° C. for 20 hours, it is washed with a large amount of hot hexane to obtain a white solid. The obtained white solid is reacted with an aqueous trifluoroacetic acid solution at 50 ° C. for 12 hours, and then the reaction solution is concentrated and washed with diethyl ether. The solution was neutralized with sodium hydroxide solution or hydrochloric acid, and dialyzed with acetyl cellulosic semipermeable membrane, and lyophilized was possible to produce the P (α-LysMA) ampholyte. This manufacturing method is shown in FIG .

アミノ酸L−リジンのαアミノ基をAc基ならびにカルボキシル基をMe基で保護した原料をN、N−ジメチルホルムアミド溶媒中でトリエチルアミン(TEA)を触媒とし、メタクリル酸クロライドと反応させ、反応液をろ過して減圧濃縮した後、ヘキサンで洗浄を繰り返し、白色の固体を得る。得られた白色固体と2、2'−アゾビス酪酸ジメチルエステルをガラス製重合管の中でエチルアルコールに溶かし、液体窒素中で凍結−脱気−窒素置換を数回行い、減圧下で密封し、60℃、20時間フリーラジカル重合した後、多量の熱ヘキサンで洗浄し、白色固体を得る。得られた白色固体を2N水酸化ナトリウム水溶液に溶かし、室温で12時間反応させた後、反応液を塩酸または水酸化ナトリウム水溶液で中和し、アセチルセルロース製半透膜を用いて透析し、凍結乾燥させて両性電解質のP(ε−LysMA)を製造することができた。この製造方法を図1に示す。 The raw material obtained by protecting the α-amino group of amino acid L-lysine with Ac group and carboxyl group with Me group is reacted with methacrylic acid chloride in N, N-dimethylformamide solvent using triethylamine (TEA) as a catalyst, and the reaction solution is filtered. After concentration under reduced pressure, washing with hexane is repeated to obtain a white solid. The obtained white solid and 2,2′-azobisbutyric acid dimethyl ester were dissolved in ethyl alcohol in a glass polymerization tube, freeze-deaerated-nitrogen replacement was performed several times in liquid nitrogen, and sealed under reduced pressure. After free radical polymerization at 60 ° C. for 20 hours, it is washed with a large amount of hot hexane to obtain a white solid. The obtained white solid was dissolved in 2N aqueous sodium hydroxide solution and reacted at room temperature for 12 hours. The reaction solution was neutralized with hydrochloric acid or aqueous sodium hydroxide solution, dialyzed using an acetylcellulose semipermeable membrane, and frozen. The amphoteric electrolyte P (ε-LysMA) could be produced by drying. This manufacturing method is shown in FIG.

前記P(α−LysMA)の製造行程で得られた前駆体モノマーの構造をNMRならびに元素分析から確認した。1H−NMR(CDCl3):1.4[s、9H、−C(CH3)3]、1.45[s、9H、−C(CH)3]、1.5[s、2H、−CH−]、1.7[d、2H、−CH2−]、1.9[d、2H、−CH−]、2.0[s、3H、−CH]、3.1[d、2H、−CH−]、4.5[s、1H、−CH<]、5.3[s、1H、−NH−]、5.4、5.8[s、2H、=CH2]、元素分析:C19N2H34として、計算値C:N:H=61.61%:7.60%:9.19%、実測値C:N:H=62.28%:7.46%:9.43%
前記確認データから、前記前駆体モノマーは下記化5で示される構造を有することが確認された
The structure of the obtained precursor monomers in the production process of the P (α-LysMA) was confirmed by NMR and elemental analysis. 1H-NMR (CDCl3): 1.4 [s, 9H, -C (CH3) 3], 1.45 [s, 9H, -C (CH 3) 3], 1.5 [s, 2H, -CH 2 -], 1.7 [d, 2H, -CH2 -], 1.9 [d, 2H, -CH 2 -], 2.0 [s, 3H, -CH 3], 3.1 [d, 2H, -CH 2 -], 4.5 [s, 1H, -CH <], 5.3 [s, 1H, -NH -], 5.4,5.8 [s, 2H, = CH2], Elemental analysis: As C19N2H34, calculated value C: N: H = 61.61%: 7.60%: 9.19%, measured value C: N: H = 62.28%: 7.46%: 9.43 %
From the confirmation data, it was confirmed that the precursor monomer had a structure represented by the following chemical formula 5 .

Figure 0004694114
Figure 0004694114

前記P(ε−LysMA)の製造行程で得られた前駆体モノマーの構造をNMRならびに元素分析から確認した。1H−NMR(CDCl3):1.4[s、2H、―CH−]、1.6[s、2H、−CH−]、1.8[d、2H、−CH−]、1.9[s、3H、−CH3]、2.0[s、3H、−CH]、3.3[d、2H、−CH−]、3.75[s、3H、−CH]、4.5[s、1H、−CH<]、5.4、5.8[s、2H、=CH]、6.1[s、1H、−NH−]、6.5[s、1H、−CONH−]、元素分析:C19N2H34として、計算値C:N:H=57.79%:8.14%:10.37%、実測値C:N:H=57.10%:8.32%:10.63%
前記確認データから、前記前駆体モノマーは下記化6で示される構造を有することが確認された
The structure of the obtained precursor monomers in the production process of the P (ε-LysMA) was confirmed by NMR and elemental analysis. 1H-NMR (CDCl3): 1.4 [s, 2H, -CH 2 -], 1.6 [s, 2H, -CH 2 -], 1.8 [d, 2H, -CH 2 -], 1 .9 [s, 3H, -CH3] , 2.0 [s, 3H, -CH 3], 3.3 [d, 2H, -CH 2 -], 3.75 [s, 3H, -CH 3] 4.5 [s, 1 H, —CH <], 5.4, 5.8 [s, 2 H, ═CH 2 ], 6.1 [s, 1 H, —NH—], 6.5 [s, 1H, -CONH-], elemental analysis: calculated as C19N2H34, C: N: H = 57.79%: 8.14%: 10.37%, measured value C: N: H = 57.10%: 8 .32%: 10.63%
From the confirmation data, it was confirmed that the precursor monomer had a structure represented by the following chemical formula 6 .

Figure 0004694114
Figure 0004694114

P(α−LysMA)ならびにP(ε−LysMA)がポリマー材料となったことは、1H−NMRより二重結合のピークが消失したことから確認した。また、P(α−LysMA)ならびにP(ε−LysMA)の保護基が除去されたことは、1H−NMRならびに13C−NMRより確認した。P(α−LysMA)ならびにP(ε−LysMA)が両性電解質構造になっていることを酸塩基適定法による等電点測定から確認した(図2)。図2において、●はP(α−LysMA)の測定結果、また■はP(ε−LysMA)の測定結果を示す。 The fact that P (α-LysMA) and P (ε-LysMA) became polymer materials was confirmed by disappearance of the double bond peak from 1 H-NMR. Moreover, it was confirmed by 1 H-NMR and 13 C-NMR that the protective groups for P (α-LysMA) and P (ε-LysMA) were removed. It was confirmed by isoelectric point measurement by an acid-base titration method that P (α-LysMA) and P (ε-LysMA) have an amphoteric electrolyte structure (FIG. 2). In FIG. 2, ● represents the measurement result of P (α-LysMA), and ■ represents the measurement result of P (ε-LysMA).

アルゴンプラズマ−後ポスト重合法で医療用材料である合成樹脂の基材表面への化1あるいは2で示されるリジン残基を有する両性高分子物質の固定化を実施した。プラズマ照射装置のセパラブルフラスコの底に任意の大きさに調整した基材を置き、アルゴンの流量を調節して圧力を1.3パスカルとする。高周波の負荷には容量負荷型を用い、セパラブルフラスコに巻きつけた銅板2ヶ所に高周波電源(日本電子製JRF−300型)(周波数は13.56MHz)を前記化5あるいは6で示されるリジン残基を有する両性高分子物質の前駆体モノマーを含むテトラヒドロフラン10mlと基材を入れる。重合管は液体窒素浴で凍結−脱気を繰り返し溶存酸素を取り除いた後、減圧下で密封し、60℃で振り混ぜながら所定時間ポスト重合する。ポスト重合後の基材を多量のテトラヒドロフランに24時間侵漬し、テトラヒドロフランで洗浄した後24時間真空乾燥させて化1あるいは2で示されるリジン残基を有する両性高分子物質をグラフト化した基材を得る。 Immobilization of an amphoteric polymer substance having a lysine residue represented by Chemical Formula 1 or 2 on the base material surface of a synthetic resin, which is a medical material, was performed by an argon plasma-post-post polymerization method. A base material adjusted to an arbitrary size is placed on the bottom of the separable flask of the plasma irradiation apparatus, and the pressure is adjusted to 1.3 Pascal by adjusting the flow rate of argon. Using a capacitive load type for high-frequency load, high-frequency power to the copper plate 2 places of wound separable flask (manufactured by JEOL Ltd. JRF-300 type) Lysine (frequency of 13.56 MHz) indicated a by Formula 5 or 6 10 ml of tetrahydrofuran containing a precursor monomer of an amphoteric polymer substance having a residue and a substrate are placed. The polymerization tube is repeatedly frozen and degassed in a liquid nitrogen bath to remove dissolved oxygen, sealed under reduced pressure, and post-polymerized for a predetermined time while shaking at 60 ° C. Substrates obtained by immersing the post-polymerized base material in a large amount of tetrahydrofuran for 24 hours, washing with tetrahydrofuran and then vacuum-drying for 24 hours to graft an amphoteric polymer substance having a lysine residue represented by Chemical Formula 1 or 2 Get.

本発明の抗血栓性剤を固定化する医療用機器の基材は公知の医療用材料である合成樹脂等の高分子材料であれば問題ない。表面に官能基を有していない材料であっても、表面処理によって本発明の高分子を固定化することができる。このような医療用材料としては、例えば、ポリウレタンやポリ塩化ビニル製でできたカテーテルや血液パック等、ポリテトラフルオロエチレン製でできた人工臓器等、ポリプロピレン等のポリオレフィンでできた注射器等、ナイロン等のポリアミド類で製造された人工血管等が挙げられる。 There is no problem if the base material of the medical device for immobilizing the antithrombotic agent of the present invention is a polymer material such as a synthetic resin, which is a known medical material. Even if the material does not have a functional group on the surface, the polymer of the present invention can be immobilized by surface treatment. Examples of such medical materials include catheters and blood packs made of polyurethane or polyvinyl chloride, artificial organs made of polytetrafluoroethylene, syringes made of polyolefin such as polypropylene, nylon, etc. Artificial blood vessels made of these polyamides.

上記の抗血栓剤の性医療用機器の基材への固定は公知の方法によって行なうことができるが、特にプラズマ処理を用いた固定は、医療用機器を短時間で大量に処理することができ、さらにガス中で処理を行なうために清潔を保つことができ好ましい。 The above-mentioned antithrombotic agent can be fixed to a base material of a sex medical device by a known method . In particular , fixing using plasma treatment can process a large amount of medical devices in a short time. Furthermore, since the treatment is performed in a gas, it is preferable that cleanliness can be maintained.

一般に、血液と接触した材料表面にはアルブミン、フィブリノーゲンといった血漿タンパク質が吸着・変性し、血小板が活性化されることで、血液は凝固する。そこで、血漿タンパク質を用いた蛍光測定を行い前記リジン残基を有する両性高分子物質の存在下における血漿タンパク質の吸着を定量的に測定した。測定に使用する血漿タンパク質として血液中のアルブミン、γーグロブリン、フィブリノーゲン、プラスミン、プラスミノーゲンを用いた。また、比較物質として生体適合性が知られるポリエチレングリコール(以下、PEG)を用いた場合及び前記血漿タンパク質もPEGも用いない場合についても同様に試験を行なった。この試験は前記血漿タンパク質と前記リジン残基を有する両性高分子物質を同濃度として行なった。その結果を図3〜7に示す。蛍光強度の減少は、材料とタンパク質との吸着または変性を示す。 In general, plasma proteins such as albumin and fibrinogen are adsorbed and denatured on the surface of a material in contact with blood, and blood is coagulated by activating platelets. Therefore, fluorescence measurement using plasma protein was performed to quantitatively measure the adsorption of plasma protein in the presence of the amphoteric polymer substance having the lysine residue . Albumin in the blood as a plasma protein to be used for measuring, gamma chromatography globulin, using fibrinogen, plasmin, plasminogen. In addition, the same test was performed when polyethylene glycol (hereinafter referred to as PEG) whose biocompatibility is known as a comparative substance and when neither the plasma protein nor PEG was used . In this test, the plasma protein and the amphoteric polymer substance having the lysine residue were used at the same concentration. The results are shown in FIGS. A decrease in fluorescence intensity indicates adsorption or denaturation of the material and protein.

図3は血漿タンパク質アルブミンの蛍光測定、図4は血漿タンパク質γ−グロブリンの蛍光測定、図5は血漿タンパク質フィブリノーゲンの蛍光測定、図6は血漿タンパク質プラスミンの蛍光測定及び図7は血漿タンパク質プラスミノーゲンの蛍光測定の結果である。各図は時間経過と350nm付近の最大蛍光強度をプロットしたものであり、蛍光強度の減少は材料とタンパク質との吸着または変性を示す。各図においてP(α−LysMA)及びP(ε−LysMA)を使用した場合には蛍光強度の減少は蛍光波長がシフトしていなかったことから、タンパク質の変性認められなかった。またアルブミン、γーグロブリン、フィブリノーゲン、プラスミンをやや吸着させたが、その吸着量はPEGとそれほど変わらなかった。またP(α−LysMA)はプラスミノーゲンとのみ、相互作用を示した。なお、図3〜7において、■は基材に何も固定しない場合(none)、□はP(α−LysMA)を基材に固定した場合、○PはP(ε−LysMA)を基材に固定した場合及び●はPEGを基材に吸着させた場合の試験結果をそれぞれ示す 3 is a fluorescence measurement of plasma protein albumin, FIG. 4 is a fluorescence measurement of plasma protein γ-globulin, FIG. 5 is a fluorescence measurement of plasma protein fibrinogen, FIG. 6 is a fluorescence measurement of plasma protein plasmin, and FIG. 7 is a plasma protein plasminogen. It is the result of fluorescence measurement of. Each figure is a plot of the time course and the maximum fluorescence intensity around 350 nm, and a decrease in fluorescence intensity indicates adsorption or denaturation of the material and protein. When P (α-LysMA) and P (ε-LysMA) were used in each figure, no decrease in fluorescence intensity was observed since the fluorescence wavelength did not shift. In addition, albumin, γ-globulin, fibrinogen and plasmin were adsorbed somewhat, but the adsorbed amount was not so different from that of PEG. P (α-LysMA) interacted only with plasminogen. 3 to 7, ■ indicates that nothing is fixed to the base material (none), □ indicates that P (α-LysMA) is fixed to the base material, ○ P indicates that P (ε-LysMA) is the base material And ● indicate the test results when PEG is adsorbed on the substrate .

血栓溶解作用に大きく関与しているプラスミノーゲンとリジン残基を有する両性高分子物質との相互作用を生体分子間相互作用解析装置(以下、IAsysと省略する)を用いて評価した。化学的に固定化したプラスミノーゲン表面に測定開始から2分後、プラスミノーゲン固定化表面に所定濃度のリジン残基を有する両性高分子物質を添加し、光の共鳴角の変化を追跡することで、リアルタイムに相互作用を解析し、時間経過に伴う光の共鳴角の変化をプロットした。リジン残基を有する両性高分子物質の添加における曲線はプラスミノーゲンとの特異的な相互作用を示す。その結果を図8に示す。 The interaction between plasminogen, which is greatly involved in the thrombolytic action, and the amphoteric polymer substance having a lysine residue was evaluated using a biomolecular interaction analyzer (hereinafter abbreviated as IAsys). Two minutes after the start of measurement on the chemically immobilized plasminogen surface, an amphoteric polymer substance having a predetermined concentration of lysine residue is added to the plasminogen-immobilized surface, and the change in the resonance angle of light is traced. Thus, the interaction was analyzed in real time, and the change in the resonance angle of light with time was plotted. The curve in the addition of an amphoteric polymeric substance having a lysine residue shows a specific interaction with plasminogen. The result is shown in FIG.

本発明のリジン残基を有する両性高分子物質が血漿タンパク質の吸着を抑制した理由として、該両性高分子物質の構造が挙げられる。通常、人工材料と生体成分が接触したらまず血漿タンパク質の吸着作用が進むが、本発明のリジン残基を有する両性高分子物質は血液と接触する生体膜のリン脂質表面と同様に両性電解質構造をもつ合成高分子であるため、生体成分にとって人工材料だと認識されにくい、ステルス性の材料だと考えられる。 The reason for the amphoteric polymer material having a lysine residue of the present invention suppressed the adsorption of plasma proteins, the structure of the amphoteric polymer materials. Usually, when an artificial material and a biological component come into contact with each other, the plasma protein adsorption action proceeds first. Because it is a synthetic polymer, it is considered a stealth material that is difficult to recognize as an artificial material for biological components.

本発明のリジン残基を有する両性高分子物質の血液凝固に関する影響を検討するため、発色性合成基質を用いたトロンビン活性を定量的に検討した。実験方法は以下の通りである。所定濃度のトロンビンと本発明のリジン残基を有する両性高分子物質を添加し10分間攪拌した後、トロンビンを特異的に認識して発色性を示す基質S−2238を添加してS−2238から遊離するp−ニトロアニリンの吸光度を蛍光マイクロプレートリーダを用いて120分追跡し、時間の経過に伴うp−ニトロアニリンの吸光度の変化をプロットした。得られた曲線の傾きの減少は、血液凝固活性の阻害を示す。結果を図9に示す。■は何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示す In order to examine the effect of the amphoteric polymer substance having a lysine residue of the present invention on blood coagulation, thrombin activity using a chromogenic synthetic substrate was quantitatively examined. The experimental method is as follows. After adding the amphoteric polymer substance having a predetermined concentration of thrombin and the lysine residue of the present invention and stirring for 10 minutes, a substrate S-2238 that specifically recognizes thrombin and exhibits color development is added to start from S-2238. The absorbance of liberated p-nitroaniline was followed for 120 minutes using a fluorescence microplate reader, and the change in absorbance of p-nitroaniline over time was plotted. A decrease in the slope of the resulting curve indicates inhibition of blood clotting activity. The results are shown in FIG. (2) shows the test results when nothing is added (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

血栓の主要成分はフィブリノーゲンから活性化されて形成されるフィブリンである。そこで、リジンメタクリルアミド[P(α−LysMA)及びP(ε−LysMA)]のフィブリン形成における影響を検討した。実験方法は以下の通りである。所定濃度のトロンビンとリジン残基を有する両性高分子物質を添加し10分間攪拌した後、フィブリノーゲンを添加して形成されるフィブリンの濁度変化を蛍光マイクロプレートリーダを用いて120分追跡し、時間経過とフィブリン形成に伴う濁度変化をプロットした。得られた曲線の傾きの減少は、血液凝固活性の阻害を示す。結果を図10に示す。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示すThe main component of the thrombus is fibrin formed by activation from fibrinogen. Therefore, the influence of lysine methacrylamide [P (α-LysMA) and P (ε-LysMA)] on fibrin formation was examined. The experimental method is as follows. After adding an amphoteric polymer substance having a predetermined concentration of thrombin and lysine residue and stirring for 10 minutes, the turbidity change of fibrin formed by adding fibrinogen is traced for 120 minutes using a fluorescent microplate reader. The change in turbidity with the course and fibrin formation was plotted. A decrease in the slope of the resulting curve indicates inhibition of blood clotting activity. The results are shown in FIG. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

トロンビン活性阻害におけるP(α−LysMA)及びP(ε−LysMA)の添加効果を酵素反応速度論的に検討した。結果を図11に示す。同図においては、基質濃度の逆数と反応速度の逆数をプロットしている。P(α−LysMA)及びP(ε−LysMA)の存在下において凝固因子トロンビンがその活性を抑制されたのは、生体高分子ヒルジンのトロンビン活性抑制に例えられる。ヒルジンはヒルジンが有するN末端あるいはC末端がトロンビンと結合する。特に、C末端部位がトロンビンのフィブリノーゲン結合部位と同じであることで、血液凝固を抑制している。また、トロンビン活性阻害におけるリP(α−LysMA)及びP(ε−LysMA)の添加効果を酵素反応速度論的に検討した結果。P(α−LysMA)及びP(ε−LysMA)はトロンビンの活性を反競合的に阻害した。従ってP(α−LysMA)及びP(ε−LysMA)はトロンビンの血液凝固活性部位と直接的に相互作用することで、フィブリノーゲンとトロンビンの結合を阻害し、血液凝固を抑制していると考える。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示すThe effect of addition of P (α-LysMA) and P (ε-LysMA) on thrombin activity inhibition was examined in terms of enzyme kinetics. The results are shown in FIG. In the figure, the inverse of the substrate concentration and the inverse of the reaction rate are plotted. The suppression of the activity of the coagulation factor thrombin in the presence of P (α-LysMA) and P (ε-LysMA) can be compared to the thrombin activity suppression of the biopolymer hirudin. Hirudin binds to thrombin at the N-terminal or C-terminal of hirudin. In particular, blood coagulation is suppressed because the C-terminal site is the same as the fibrinogen binding site of thrombin. Moreover, the result of having examined the addition effect of Ri P ((alpha) -LysMA) and P ((epsilon) -LysMA) in thrombin activity inhibition from an enzyme reaction kinetics. P (α-LysMA) and P (ε-LysMA) inhibited thrombin activity anti-competitively. Therefore, it is considered that P (α-LysMA) and P (ε-LysMA) directly interact with the blood coagulation active site of thrombin, thereby inhibiting the binding of fibrinogen and thrombin and suppressing blood coagulation. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

P(α−LysMA)及びP(ε−LysMA)の血栓溶解性における影響を検討するために、発色性合成基質を用いたプラスミン活性を定量的に検討した。実験方法は以下の通りである。所定濃度のプラスミンと高分子を添加し10分間攪拌した後、基質S−2251を添加してS−2251から遊離するp−ニトロアニリンの吸光度を蛍光マイクロプレートリーダを用いて120分追跡し、時間の経過に伴うp−ニトロアニリンの吸光度の変化をプロットした。得られた曲線の傾きの増大は、酵素活性の増大を示す。結果を図12に示す。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示すTo examine the effect of P (α-LysMA) and P (ε-LysMA) on thrombolysis, plasmin activity using a chromogenic synthetic substrate was quantitatively examined. The experimental method is as follows. After adding a predetermined concentration of plasmin and polymer and stirring for 10 minutes, the substrate S-2251 was added and the absorbance of p-nitroaniline released from S-2251 was traced for 120 minutes using a fluorescent microplate reader. The change in absorbance of p-nitroaniline over time was plotted. An increase in the slope of the resulting curve indicates an increase in enzyme activity. The results are shown in FIG. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

血中濃度のフィブリノーゲンとトロンビンを40分間反応させて人工的にフィブリンを作製し、このフィブリンにP(α−LysMA)あるいはP(ε−LysMA)およびプラスミンを添加し、フィブリン分解によって生じる濁度の変化を240分追跡した。プラスミン添加後の濁度の低下が大きいほど、フィブリン分解を促進していることを示す。結果を図13に示す。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示すFibrin is artificially prepared by reacting blood concentrations of fibrinogen and thrombin for 40 minutes, and P (α-LysMA) or P (ε-LysMA) and plasmin are added to the fibrin, and the turbidity generated by fibrin degradation is increased . Changes were followed for 240 minutes. It shows that fibrin degradation is accelerated | stimulated, so that the fall of the turbidity after plasmin addition is large. The results are shown in FIG. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

S−2251を用いたプラスミノーゲン/t−PA活性を定量的に検討した。実験方法は以下の通りである。プラスミノーゲンおよびP(α−LysMA)及びP(ε−LysMA)を添加して10分間攪拌した後、S−2251およびt−PAを加え、p−ニトロアニリンの吸光度を蛍光マイクロプレートリーダを用いて240分追跡した。得られた曲線の傾きの増大は、酵素活性の増大を示す。結果を図14に示す。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示すPlasminogen / t-PA activity using S-2251 was quantitatively examined. The experimental method is as follows. Plasminogen, P (α-LysMA) and P (ε-LysMA) were added and stirred for 10 minutes, S-2251 and t-PA were added, and the absorbance of p-nitroaniline was measured using a fluorescence microplate reader. Followed for 240 minutes. An increase in the slope of the resulting curve indicates an increase in enzyme activity. The results are shown in FIG. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

人工的に作製したフィブリンを用いてプラスミノーゲン/t−PA活性を測定した。人工的に作製したフィブリンにP(α−LysMA)あるいはP(ε−LysMA)およびプラスミノーゲンを添加し、10分間攪拌した後、t−PAを加えてフィブリン分解によって生じる濁度の変化を240分追跡した。t−PA添加後に得られた直線の傾きが大きいほど、プラスミノーゲン/t−PA活性におけるフィブリン分解を促進していることを示す。結果を図15に示す。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示すPlasminogen / t-PA activity was measured using artificially prepared fibrin. After adding P (α-LysMA) or P (ε-LysMA) and plasminogen to artificially prepared fibrin and stirring for 10 minutes, t-PA was added to change the turbidity caused by fibrin degradation. Tracked minutes. The larger the slope of the straight line obtained after the addition of t-PA, the more the fibrin degradation in plasminogen / t-PA activity is promoted. The results are shown in FIG. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

プラスミン反応系におけるリジンメタクリルアミド[P(α−LysMA)及びP(ε−LysMA)の添加効果を酵素反応速度論から検討した。結果を図16に示す。基質濃度の逆数を横軸に、反応速度の逆数を縦軸にプロットし、Lineweaver−Burk
Plotから評価した。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示す
The effect of addition of lysine methacrylamide [P (α-LysMA) and P (ε-LysMA) in the plasmin reaction system was examined from the enzyme kinetics. The results are shown in FIG. Plot the reciprocal of the substrate concentration on the horizontal axis and the reciprocal of the reaction rate on the vertical axis, Lineweaver-Burk
Evaluated from Plot. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

プラスミノーゲン/t−PA反応系における高分子の添加効果を酵素反応速度論から検討した。結果を図17に示す。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示す。基質濃度の逆数を横軸に、反応速度の逆数を縦軸にプロットし、Lineweaver−Burk
Plotから評価した。■は基材に何も添加しない場合(none)、▲はP(α−LysMA)を添加した場合、●はP(ε−LysMA)を添加した場合試験結果をそれぞれ示す
The effect of polymer addition in the plasminogen / t-PA reaction system was examined from the enzyme kinetics. The results are shown in FIG. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added . Plot the reciprocal of the substrate concentration on the horizontal axis and the reciprocal of the reaction rate on the vertical axis, Lineweaver-Burk
Evaluated from Plot. (2) shows the test results when nothing is added to the substrate (none), ▲ shows the results when P (α-LysMA) is added, and ● shows the results when P (ε-LysMA) is added .

以下に、本発明のP(α−LysMA)が血液中のプラスミノーゲンと特異的に相互作用を示して、血栓溶解性を増大させたメカニズムを示す。
血中に存在するプラスミノーゲンにはフィブリンが有するアミノ酸L−リジンのεアミノ基を特異的に認識する部位(リジン結合部位)があり、プラスミノーゲンはそのリジン結合部位を介してフィブリンと結合し、血栓溶解性を示す。また、フィブリン上で血栓溶解作用が起こる時、プラスミンはプラスミン阻害因子であるα2−プラスミンインヒビターとの結合部位であるリジン結合部位がフィブリンによって占拠されているため、血栓溶解作用の阻害を受けることなくフィブリンを分解することができる。したがって、前記P(α−LysMA)はL−リジンのεアミノ基とカルボキシル基がフリーの状態となっているため、プラスミノーゲンのリジン結合部位と特異的に相互作用を示し血栓溶解性を増大させているが、P(ε−LysMA)はL−リジンのαアミノ基とカルボキシル基がフリーの状態となっているため、プラスミノーゲンのリジン結合部位と特異的に相互作用を示さず、血栓溶解性には直接影響を与えないと考える。
Hereinafter, a mechanism in which P (α-LysMA) of the present invention specifically interacts with plasminogen in blood to increase the thrombolytic property will be described.
The plasminogen present in the blood has a site (lysine binding site) that specifically recognizes the ε-amino group of the amino acid L-lysine of fibrin, and plasminogen binds to fibrin through the lysine binding site. And exhibits thrombolytic properties. In addition, when thrombolytic action occurs on fibrin, plasmin does not receive inhibition of thrombolytic action because the lysine binding site, which is the binding site with α2-plasmin inhibitor, which is a plasmin inhibitor, is occupied by fibrin. It can degrade fibrin. Therefore, since P (α-LysMA) is free of the ε-amino group and carboxyl group of L-lysine, it interacts specifically with the lysine binding site of plasminogen and increases thrombosolubility. However, P (ε-LysMA) does not specifically interact with the lysine binding site of plasminogen because the α-amino group and carboxyl group of L-lysine are free. The solubility is not considered to be directly affected.

また、前記の各試験結果はP(α−LysMA)及びP(ε−LysMA)について行なったが、前記の化1および化2において、Xが例えば、H、−CH2CH3等の構造であっても、抗血栓性における同様の性能を示すと考えられる。 Moreover, although each said test result was performed about P ((alpha) -LysMA) and P ((epsilon) -LysMA), in said chemical formula 1 and chemical formula 2, even if X is structures, such as H and -CH2CH3, for example. It is considered that the same performance in antithrombogenicity is exhibited.

本発明のリジン残基を有する両性高分子物質の製造法を示す図である It is a figure which shows the manufacturing method of the amphoteric polymer substance which has a lysine residue of this invention. 酸塩基適定法による高分子組成物の等電点測定の測定結果を示す図である It is a figure which shows the measurement result of the isoelectric point measurement of the polymer composition by an acid base determination method. 血漿タンパク質アルブミンの蛍光測定の結果を示す図である It is a figure which shows the result of the fluorescence measurement of plasma protein albumin. 血漿タンパク質γ−グロブリンの蛍光測定の結果を示す図である It is a figure which shows the result of the fluorescence measurement of plasma protein (gamma) -globulin. 血漿タンパク質フィブリノーゲンの蛍光測定の結果を示す図である It is a figure which shows the result of the fluorescence measurement of plasma protein fibrinogen. 血漿タンパク質プラスミンの蛍光測定の結果を示す図である It is a figure which shows the result of the fluorescence measurement of plasma protein plasmin. 血漿タンパク質プラスミノーゲンの蛍光測定の結果を示す図である It is a figure which shows the result of the fluorescence measurement of plasma protein plasminogen. IAsys測定による分子間相互作用解析の結果を示す図である It is a figure which shows the result of the molecular interaction analysis by IAsys measurement. 基質S−2238を用いたトロンビン活性阻害評価の結果を示す図である It is a figure which shows the result of thrombin activity inhibition evaluation using the substrate S-2238. 本発明の高分子組成物のフィブリン形成阻害試験の結果を示す図である It is a figure which shows the result of the fibrin formation inhibition test of the polymer composition of this invention. 基質S−2238を用いたトロンビン活性阻害の速度論的解析の結果を示す図である It is a figure which shows the result of the kinetic analysis of thrombin activity inhibition using the substrate S-2238. 基質S−2251を用いたプラスミン活性評価の結果を示す図である It is a figure which shows the result of plasmin activity evaluation using substrate S-2251. プラスミン活性による人工フィブリンの分解を濁度変化の追跡によって評価した。The degradation of artificial fibrin by plasmin activity was evaluated by following turbidity change. 基質S−2251を用いたプラスミノーゲン/t−PA活性評価を示す図である It is a figure which shows plasminogen / t-PA activity evaluation using substrate S-2251. プラスミノーゲン/t−PA活性における人工フィブリンの分解を濁度変化の追跡によって評価した評価の結果を示す図である It is a figure which shows the result of the evaluation which evaluated degradation of the artificial fibrin in plasminogen / t-PA activity by tracking turbidity change. プラスミン活性における酵素反応速度論的解析の結果を示す図である It is a figure which shows the result of the enzyme reaction kinetic analysis in plasmin activity. プラスミノーゲン/t−PA活性における酵素反応速度論的解析の結果を示す図である It is a figure which shows the result of the enzyme kinetic analysis in plasminogen / t-PA activity.

Claims (5)

下記化1で表されるL−リジン残基を有する両性高分子物質からなる抗血栓剤
Figure 0004694114
(前式中、XはH、CH3基あるいはCH 2 CH3基を意味する。)
An antithrombotic agent comprising an amphoteric polymer substance having an L-lysine residue represented by the following chemical formula 1 .
Figure 0004694114
(In the above formula, X means H, CH 3 group or CH 2 CH 3 group.)
下記化2で表されるL−リジン残基を有する両性高分子物質からなる抗血栓剤
Figure 0004694114
(前式中、XはH、CH3基あるいはCH2CH3基を意味する。)
An antithrombotic agent comprising an amphoteric polymer substance having an L-lysine residue represented by the following chemical formula 2 .
Figure 0004694114
(In the above formula, X means H, CH 3 group or CH 2 CH 3 group.)
請求項1または2に記載の抗血栓剤を、高分子材料を基材とする医療器具の生体と接触する表面に固定したことを特徴とする医療器具。 A medical device, wherein the antithrombotic agent according to claim 1 or 2 is fixed to a surface of a medical device based on a polymer material that comes into contact with a living body. 化1あるいは化2で表される両性高分子物質の前駆体モノマーを医療用器具の基材表面で重合することによって請求項1または2に記載の抗血栓剤を前記医療用器具の基板表面に固定したものであることを特徴とする請求項3記載の医療用器具。 The antithrombotic agent according to claim 1 or 2 is applied to the substrate surface of the medical device by polymerizing a precursor monomer of the amphoteric polymer substance represented by Chemical Formula 1 or Chemical Formula 2 on the surface of the base material of the medical device. The medical instrument according to claim 3 , wherein the medical instrument is fixed. ε−アミノ基ならびにカルボキシル基を保護基で保護したアミノ酸L−リジンをメタクリル酸クロリドと反応させて得た前駆体モノマーを重合し該重合後に前記保護基を除去して製造することを特徴とする下記化3で示されるリジン残基を有する両性高分子物質の製造方法。
Figure 0004694114
A precursor monomer obtained by reacting an amino acid L-lysine in which an ε-amino group and a carboxyl group are protected with a protecting group with methacrylic acid chloride is polymerized, and the protecting group is removed after the polymerization. A method for producing an amphoteric polymer substance having a lysine residue represented by the following chemical formula 3.
Figure 0004694114
JP2003281499A 2003-07-29 2003-07-29 Amphoteric polymer substance having L-lysine residue excellent in antithrombotic property, antithrombotic agent comprising the polymer substance, and medical device having the antithrombotic agent fixed thereto Expired - Fee Related JP4694114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281499A JP4694114B2 (en) 2003-07-29 2003-07-29 Amphoteric polymer substance having L-lysine residue excellent in antithrombotic property, antithrombotic agent comprising the polymer substance, and medical device having the antithrombotic agent fixed thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281499A JP4694114B2 (en) 2003-07-29 2003-07-29 Amphoteric polymer substance having L-lysine residue excellent in antithrombotic property, antithrombotic agent comprising the polymer substance, and medical device having the antithrombotic agent fixed thereto

Publications (2)

Publication Number Publication Date
JP2005048061A JP2005048061A (en) 2005-02-24
JP4694114B2 true JP4694114B2 (en) 2011-06-08

Family

ID=34266985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281499A Expired - Fee Related JP4694114B2 (en) 2003-07-29 2003-07-29 Amphoteric polymer substance having L-lysine residue excellent in antithrombotic property, antithrombotic agent comprising the polymer substance, and medical device having the antithrombotic agent fixed thereto

Country Status (1)

Country Link
JP (1) JP4694114B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702700B (en) * 2022-05-09 2023-11-21 江苏恰瑞生物科技有限公司 Preparation method of anticoagulant filler for blood perfusion device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310228A (en) * 1996-05-22 1997-12-02 Toyobo Co Ltd Highly salt water-absorbing fiber having conjugate structure and its production
JPH11130822A (en) * 1997-10-31 1999-05-18 Kao Corp Hydrophilic polymer and humectant containing the same
WO2000032560A1 (en) * 1998-12-03 2000-06-08 Pola Chemical Industries Inc. Novel compound, polymer prepared from the compound, and composition comprising the polymer
JP2000281726A (en) * 1999-01-26 2000-10-10 Kumamoto Prefecture Amino acid acryloyl monomer and manufacture thereof
JP2002003456A (en) * 2000-06-26 2002-01-09 Nippon Shokubai Co Ltd Betaine-type monomer, method for producing the same and polymer thereof
JP2002138113A (en) * 2000-11-01 2002-05-14 National Institute Of Advanced Industrial & Technology Polymer having amino acid residue in side chain and gelled product thereof
JP2002348205A (en) * 2001-05-25 2002-12-04 Lion Corp External skin preparation composition and solubilizing agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310228A (en) * 1996-05-22 1997-12-02 Toyobo Co Ltd Highly salt water-absorbing fiber having conjugate structure and its production
JPH11130822A (en) * 1997-10-31 1999-05-18 Kao Corp Hydrophilic polymer and humectant containing the same
WO2000032560A1 (en) * 1998-12-03 2000-06-08 Pola Chemical Industries Inc. Novel compound, polymer prepared from the compound, and composition comprising the polymer
JP2000281726A (en) * 1999-01-26 2000-10-10 Kumamoto Prefecture Amino acid acryloyl monomer and manufacture thereof
JP2002003456A (en) * 2000-06-26 2002-01-09 Nippon Shokubai Co Ltd Betaine-type monomer, method for producing the same and polymer thereof
JP2002138113A (en) * 2000-11-01 2002-05-14 National Institute Of Advanced Industrial & Technology Polymer having amino acid residue in side chain and gelled product thereof
JP2002348205A (en) * 2001-05-25 2002-12-04 Lion Corp External skin preparation composition and solubilizing agent

Also Published As

Publication number Publication date
JP2005048061A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US5945457A (en) Process for preparing biologically compatible polymers and their use in medical devices
JP2004512397A (en) Hydrophobic multi-complex heparin conjugate, production method and use thereof
KR101458485B1 (en) Hydrophilic polymer compound having anticoagulation effect
TW201311774A (en) Hydrophobic polymer compound having anticoagulant activity
JP2000279512A (en) Material for medical treatment and manufacture thereof
JP4694114B2 (en) Amphoteric polymer substance having L-lysine residue excellent in antithrombotic property, antithrombotic agent comprising the polymer substance, and medical device having the antithrombotic agent fixed thereto
CN111087613B (en) Activity-controllable anticoagulant degradable high polymer material and synthesis method thereof
Du et al. Surface modification of polyisobutylene via grafting amino acid-based poly (acryloyl-6-aminocaproic acid) as multifunctional material
JP2004298223A (en) Biocompatible material
JPH0415063A (en) Antithrombotic material having human thrombomoduline fixed
JP3043096B2 (en) Antithrombotic medical material, medical device, and method for producing antithrombotic medical material
CN115624657B (en) Coating agent, preparation method and application thereof
Vulić et al. Heparin-containing block copolymers: Part II In vitro and ex vivo blood compatibility
JPH07236690A (en) Method for fixing fibrinogenolysis active material
KR100863078B1 (en) Thrombin derivative and method for preparation therefore, anhydrothrombin derivative and method for preparation therefore, composition for causing platelet aggregation, method for causing platelet aggregation, clinical test drug, method for clinical test, inhibitor for thrombus formation, adsorbent and method for preparation therefore, method for preparation of purified blood coagulation factor ?
JP2710444B2 (en) Manufacturing method of medical materials
JPH0333340B2 (en)
JPH0366904B2 (en)
JPH0975446A (en) Medical base material provided with antithrombic function
JPH04146766A (en) Anti-thrombogenic medical material and medical apparatus
JPH0928790A (en) Medical treating material
JPS603496B2 (en) medical catheter
CN116041595A (en) Thrombolytic coating agent, preparation method and application thereof
CN117942429A (en) Anticoagulation membrane material, preparation method thereof and medical instrument
JPH0744951B2 (en) Anticoagulant medical material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees