JP4693198B2 - Biochip - Google Patents

Biochip Download PDF

Info

Publication number
JP4693198B2
JP4693198B2 JP25567099A JP25567099A JP4693198B2 JP 4693198 B2 JP4693198 B2 JP 4693198B2 JP 25567099 A JP25567099 A JP 25567099A JP 25567099 A JP25567099 A JP 25567099A JP 4693198 B2 JP4693198 B2 JP 4693198B2
Authority
JP
Japan
Prior art keywords
region
electrophoresis
biochip
dna
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25567099A
Other languages
Japanese (ja)
Other versions
JP2001078766A (en
Inventor
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP25567099A priority Critical patent/JP4693198B2/en
Publication of JP2001078766A publication Critical patent/JP2001078766A/en
Application granted granted Critical
Publication of JP4693198B2 publication Critical patent/JP4693198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、DNA,RNAのチップいわゆるバイオチップに関し、特にその品質向上および作製容易化のための改善に関するものである。
【0002】
【従来の技術】
DNAチップ作製方法の1つに、プローブ用DNA(以下プローブDNAという)の溶液をピンによってスライドガラスあるいはシリコン等の基板上に例えばスタンプ方式で付着させる方法がある。RNAについてもこれと同様の方法で作製される。
【0003】
【発明が解決しようとする課題】
しかしながら、この場合、目的とするプローブDNAがライブラリとして市販されていたり、あるいは自分で精製したりするが、それが本当に目的とするDNAであるかどうか不明の場合が多い。
【0004】
そこで、通常、チップを作製する前に電気泳動を行ってプローブ用溶液が目的とするDNAであるかどうかを確認する作業を行なっている。しかし、このような作業は二度手間であり、時間と費用がかかるという課題があった。
【0005】
本発明の目的は、上記の課題を解決するもので、1つのバイオチップ内に電気泳動領域とハイブリダイゼーション領域を有し、電気泳動を行なってプローブ溶液が目的のバイオであることを容易に確認することのできるバイオチップを提供することにある。
【0006】
なお、ハイブリダイゼーションとは、一本鎖に変性された核酸が適当な条件下で相補的な塩基配列を含む別の一本鎖の核酸と配列に特異な水素結合を介してハイブリッドを形成することを利用した分析法であり、具体的には、既知の配列を有する核酸をプローブとして用い、試料中にターゲットとなる相補的な配列がないかを調べる。この際に、プローブとターゲットにより形成されたハイブリッドに標識を付けることにより、試料中の相補的配列の検出および定量が可能である。
【0007】
【課題を解決するための手段】
このような目的を達成するために、請求項1の発明では、基板上にDNAまたはRNAのプローブ溶液を付着させたバイオチップであって、前記基板上の重複しない隣接した位置に電気泳動領域とハイブリダイゼーション領域とを有し、両方の前記領域にまたがって前記プローブ溶液を付着させ前記電気泳動領域に付着した前記プローブ溶液を電気泳動により同定できるように構成されたことを特徴とする。
【0008】
このような構成によれば、ハイブリダイゼーション領域に付着したプローブ用溶液の分子が目的とする分子かどうかが電気泳動領域における電気泳動により容易に確認できる。
【0009】
また、電気泳動領域とハイブリダイゼーション領域とはプローブ溶液ごとに隣接した位置に設けてお、プローブ溶液は、電気泳動領域とハイブリダイゼーション領域とにまたがるように付着させるので、1個所の付着で済む利点がある。
【0011】
【発明の実施の形態】
以下図面を用いて本発明を詳しく説明する。図1は本発明に係るバイオチップの一実施例を示す構成図である。本実施例ではDNAチップを例にとっている。図において、基板1上に電気泳動領域Aとハイブリダイゼーション領域Bが用意され、2個1組でプローブDNA溶液が電気泳動領域Aとハイブリダイゼーション領域Bにそれぞれ付着される。図では、ハイブダイゼーション領域Bに付着したプローブDNA溶液を実線の○印で、また電気泳動領域Aに付着したプローブDNA溶液を破線の○印でそれぞれ示してある。
【0012】
電気泳動領域Aには電気泳動用のゲルが付着してあり、そこにプローブDNA溶液をスポットしている。図示しない手段により電圧を印加してそのプローブDNAを電気泳動させる。電気泳動の読み取りは、通常の電気泳動と同様に、蛍光発光などを用いて読み取ることができる。
【0013】
セルのプローブDNAが目的のものであることが確認(すなわち、同定)されれば、次にサンプル液を流して、通常のDNAチップと同様に、ハイブリダイゼーションを行う。このようにして、目的の分子のバイオチップを容易に作製することができる。
【0014】
なお、本発明は実施例に限定されるものではない。例えば、バイオチップはDNAけでなく、RNAでも適用可能である。また、電気泳動後、その部分をレーザや機械的手段により削除してもよい。削除すれば、ゲルのハイブリダイゼーションへの影響が小さくなる。
【0015】
また、プローブDNA溶液は、図2または図3に示すように、電気泳動領域Aとハイブリダイゼーション領域Bの両領域をまたぐように付着してもよい。破線部分が付着DNA溶液である。
【0016】
また、電気泳動の読み取りはカメラではなく、顕微鏡下でもよい。また、電気泳動領域Aとハイブリダイゼーション領域Bとは、図4に示すようにプローブ溶液ごとに離れていてもよい。ハイブリダイゼーション時は、ハイブリダイゼーション領域Bの部分にのみテスト用のサンプル溶液を流せばよい。
【0017】
【発明の効果】
以上説明したように本発明によれば、1つのバイオチップ内に電気泳動領域とハイブリダイゼーション領域を設け、電気泳動領域で電気泳動を行なって目的のバイオであることを確認して目的のバイオチップを容易に作製することができる。
【図面の簡単な説明】
【図1】本発明に係るバイオチップの一実施例を示す構成図である。
【図2】バイオチップの他の実施例を示す図である。
【図3】バイオチップの更に他の実施例を示す図である。
【図4】バイオチップの更に他の実施例を示す図である。
【符号の説明】
1 基板
A 電気泳動領域
B ハイブリダイゼーション領域
[0001]
BACKGROUND OF THE INVENTION
The present invention, DNA, chip relates called biochip RN A, and in particular to improvements to the quality and manufacturing ease.
[0002]
[Prior art]
One of the DNA chip manufacturing methods, there is a method of adhering with a solution eg stamp method on a substrate such as a slide glass or silicon by a pin of DNA probe (hereinafter referred to as probe DNA). RNA is also produced by the same method.
[0003]
[Problems to be solved by the invention]
However, in this case, the target probe DNA is commercially available as a library or purified by itself, but it is often unclear whether or not it is the target DNA.
[0004]
Therefore, usually, before the chip is manufactured, electrophoresis is performed to check whether the probe solution is the target DNA. However, such work is troublesome twice, and there is a problem that it takes time and money.
[0005]
The object of the present invention is to solve the above-mentioned problems. It has an electrophoresis region and a hybridization region in one biochip, and it is easily confirmed that the probe solution is the target bio by performing electrophoresis. It is to provide a biochip that can be used.
[0006]
Hybridization means that a nucleic acid denatured into a single strand forms a hybrid with another single-stranded nucleic acid containing a complementary base sequence under appropriate conditions through a hydrogen bond specific to the sequence. Specifically, a nucleic acid having a known sequence is used as a probe, and a sample is examined for a complementary sequence as a target. At this time, by labeling the hybrid formed by the probe and the target, the complementary sequence in the sample can be detected and quantified.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, the invention of claim 1 is a biochip in which a probe solution of DNA or RNA is attached on a substrate, and an electrophoretic region and a non-overlapping adjacent position on the substrate. and a hybridizing region, across both the area by attaching the probe solution, characterized in that it is configured so that the probe solution adhered to the electrophoretic region can be identified by electrophoresis.
[0008]
According to such a configuration, whether or not the molecule of the probe solution attached to the hybridization region is the target molecule can be easily confirmed by electrophoresis in the electrophoresis region.
[0009]
Further, the electrophoresis region and the region of hybridization can contact provided at a position adjacent to each probe solution, the probe solution, so attached to to span the electrophoretic region and hybridizing region, it requires only one position adhesion of There are advantages.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a biochip according to the present invention. In this embodiment, a DNA chip is taken as an example. In the figure, an electrophoresis region A and a hybridization region B are prepared on a substrate 1, and a probe DNA solution is attached to each of the electrophoresis region A and the hybridization region B in pairs. In the figure, the probe DNA solution adhered to the hive Li die internalization region B by the solid line in ○ mark, also are shown, respectively probe DNA solution adhered to electrophoresis region A in dashed ○ mark.
[0012]
An electrophoresis gel is attached to the electrophoresis region A, and a probe DNA solution is spotted on the gel. A voltage is applied by means (not shown) to cause electrophoresis of the probe DNA. Electrophoretic reading can be performed using fluorescence emission or the like, as in normal electrophoresis.
[0013]
If it is confirmed (that is, identified) that the probe DNA of the cell is the target, then the sample solution is flowed and hybridization is performed in the same manner as in a normal DNA chip. In this way, a biochip of the target molecule can be easily produced.
[0014]
In addition, this invention is not limited to an Example. For example, biochips not just DNA, DNA that is also applicable in RN A. Further, after electrophoresis, the portion may be deleted by a laser or mechanical means. If deleted, the effect on gel hybridization is reduced.
[0015]
Further, the probe DNA solution may be attached so as to straddle both the electrophoresis region A and the hybridization region B as shown in FIG. 2 or FIG. The broken line portion is the attached DNA solution.
[0016]
Further, electrophoresis reading may be performed under a microscope instead of a camera. Moreover, the electrophoresis region A and the hybridization region B may be separated for each probe solution as shown in FIG. At the time of hybridization, it is only necessary to flow the test sample solution only to the portion of the hybridization region B.
[0017]
【The invention's effect】
As described above, according to the present invention, an electrophoresis region and a hybridization region are provided in one biochip, and electrophoresis is performed in the electrophoresis region to confirm that the target biochip is the target biochip. Can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a biochip according to the present invention.
FIG. 2 is a diagram showing another embodiment of a biochip.
FIG. 3 is a view showing still another embodiment of the biochip.
FIG. 4 is a view showing still another embodiment of the biochip.
[Explanation of symbols]
1 Substrate A Electrophoresis region B Hybridization region

Claims (1)

基板上にDNAまたはRNAのプローブ溶液を付着させたバイオチップであって、
前記基板上の重複しない隣接した位置に電気泳動領域とハイブリダイゼーション領域とを有し
両方の前記領域にまたがって前記プローブ溶液を付着させ前記電気泳動領域に付着した前記プローブ溶液を電気泳動により同定できるように構成されたことを特徴とするバイオチップ。
A biochip having a DNA or RNA probe solution attached on a substrate,
Having an electrophoresis region and a hybridization region at adjacent positions on the substrate that do not overlap,
Across both the area by attaching the probe solution, biochip, characterized in that it is configured to be identified by the probe solution electrophoresis attached to the electrophoretic region.
JP25567099A 1999-09-09 1999-09-09 Biochip Expired - Fee Related JP4693198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25567099A JP4693198B2 (en) 1999-09-09 1999-09-09 Biochip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25567099A JP4693198B2 (en) 1999-09-09 1999-09-09 Biochip

Publications (2)

Publication Number Publication Date
JP2001078766A JP2001078766A (en) 2001-03-27
JP4693198B2 true JP4693198B2 (en) 2011-06-01

Family

ID=17281995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25567099A Expired - Fee Related JP4693198B2 (en) 1999-09-09 1999-09-09 Biochip

Country Status (1)

Country Link
JP (1) JP4693198B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538746B2 (en) 2005-09-21 2010-09-08 横河電機株式会社 Biochip and analyzer
JP5601746B2 (en) * 2006-03-16 2014-10-08 日本ソフトウェアマネジメント株式会社 Two-step nucleic acid test method using the same sample

Also Published As

Publication number Publication date
JP2001078766A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
EP4428246A2 (en) Methods of measuring mislocalization of an analyte
EP4107285B1 (en) Methods and compositions for integrated in situ spatial assay
US11175258B2 (en) Systems and methods for electronic detection with nanoFETs
JP5700911B2 (en) Composition comprising oriented and immobilized macromolecules and method for producing the same
JP4580875B2 (en) Primer design method for nucleic acid detection method
EP1843157B1 (en) Method of detecting bio-molecules using field effect transistor without fixing bio-molecules on the gate sensing surface
JP2001525193A (en) Self-addressable self-assembled microelectronic integrated systems, component devices, mechanisms, methods and methods for molecular biological analysis and diagnostics
JPH09504910A (en) Self-addressable, self-assembled miniature electronic systems and devices for molecular biological analysis and diagnostics
US20190203289A1 (en) Gene sequencing chip and sequencing method thereof, and gene sequencing device
EP2184602A1 (en) Micro-channel chip for electrophoresis and method for electrophoresis
JP2000270896A5 (en)
US20040019005A1 (en) Methods for parallel measurement of genetic variations
JP2008271806A (en) Nucleic acid primer set and nucleic acid probe for detecting genotype of serum amyloid a1(saa1)
US20070111224A1 (en) Electrochemical sensor for detecting biomolecule, metthod of manufacturing the same, and method of detecting biomolecule using the same
JP4693198B2 (en) Biochip
KR100477043B1 (en) Base Sequence Detecting Electrode, Base Sequence Detecting Device and Base Sequence Detecting Method
WO2019203728A1 (en) Linearization and labeling of single-stranded dna for optical sequence analysis
JP4261077B2 (en) Method for producing nucleic acid chain-immobilized carrier
US20180133679A1 (en) Methods of manufacturing semiconductor arrays
JP2002303626A (en) Dna microarray
DE10126798A1 (en) Highly parallel determination of analytes, useful e.g. for diagnostic detection of proteins, by immobilization then contacting with surface carrying specific probes
JP4946560B2 (en) Gene polymorphism detection method
US20090269746A1 (en) Microsequencer-whole genome sequencer
EP1687442B1 (en) Nucleic acid detection
US20020177146A1 (en) Method of analyzing double stranded DNA

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080507

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees