JP4691633B2 - Method for producing tin-containing granular magnetic oxide particles - Google Patents

Method for producing tin-containing granular magnetic oxide particles Download PDF

Info

Publication number
JP4691633B2
JP4691633B2 JP2001153867A JP2001153867A JP4691633B2 JP 4691633 B2 JP4691633 B2 JP 4691633B2 JP 2001153867 A JP2001153867 A JP 2001153867A JP 2001153867 A JP2001153867 A JP 2001153867A JP 4691633 B2 JP4691633 B2 JP 4691633B2
Authority
JP
Japan
Prior art keywords
oxide particles
tin
magnetic oxide
granular magnetic
containing granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001153867A
Other languages
Japanese (ja)
Other versions
JP2002068749A (en
Inventor
光春 田渕
友成 竹内
博之 蔭山
龍哉 中村
浩光 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000154247A external-priority patent/JP2001351811A/en
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001153867A priority Critical patent/JP4691633B2/en
Publication of JP2002068749A publication Critical patent/JP2002068749A/en
Application granted granted Critical
Publication of JP4691633B2 publication Critical patent/JP4691633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Hard Magnetic Materials (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、錫含有粒状磁性酸化物粒子製造方法に関し、詳しくは、黒色度が高く、磁化値が小さく、且つ、分散性に優れた錫含有粒状磁性酸化物粒子製造方法に関する。本発明に係る錫含有粒状磁性酸化物粒子は、塗料用、印刷インキ用、ゴム・プラスチック用の着色顔料、磁性トナー用材料、磁性キヤリア用材料などとして有用である。
【0002】
【従来の技術】
粒状磁性酸化物粒子は、黒色を呈しているため、塗料用、印刷インキ用、ゴム・プラスチック用の黒色着色顔料として広く使用されている。また、強磁性粒子であることから、樹脂中に混合分散させて複合体粒子とすることにより静電複写のための磁性トナーおよび磁性キヤリアとしても使用されている。
【0003】
着色顔料を含有する塗膜の諸特性は、塗膜中における顔料の分散性に依存する。例えば、顔料のビヒクルや樹脂中の分散が良好であれば、色調が鮮明となるとともに、着色力、隠ぺい力等の材料粒子の特性も向上する。また、塗膜の光沢、鮮映性、機械的性質、塗膜の耐透気性なども良好となり、塗膜の耐久性が向上する。それ故、ビヒクルや樹脂に対する優れた分散性が要求されている。
【0004】
また、静電複写機器の小型化、高速化などの高速性能に伴い、高濃度現像および高解像度が可能な磁性トナー及び磁性キヤリアが求められているが、これらの特性は、樹脂中に含有される磁性粒子の諸特性およびその分散性と密接に関係する。
【0005】
例えば、高濃度現像を可能にするために、樹脂中の磁性粒子の含有量を大きくすると、磁性粒子の磁気的な凝集により現像した後の潜像上に磁性トナ―が凝集塊として存在するため、細かい潜像を忠実に再現することが難しく、高解像度の画が得られなくなる。また、樹脂中の磁性粒子の分散性が悪いと、磁性粒子が均一に分散されないために、磁性トナ―粒子に磁気的な偏りを生じたり、樹脂中の磁性粒子の含有量が少なくなる。その結果、高濃度現像を行うことが出来ず、且つ、高解像度の画も得られなくなる。
【0006】
高画像濃度および高解像度を達成するためには、樹脂中に含まれる磁性粒子の含有量を多くしても磁気的な凝集力を生じない様に、磁性粒子の磁化値を出来るだけ小さくすると共に、樹脂中の磁性粒子の分散性を高くし、且つ、十分な黒色度を有する様に、粒状磁性粒子中のFe2+の含有量をできるだけ多くすることも要求されている。
【0007】
磁化値の小さい粒状磁性酸化物粒子は、ヘマタイトあるいはヘマタイト+マグネタイトを24.0〜99.2重量%と、Sn化合物をSn換算で0.8〜76.0重量%と、−C−C−あるいは−C=C−を分子中に有する液体状物質あるいは固体状物質を0.1〜4.0重量%とを混合し、得られた混合物を不活性ガス中で1200〜1450℃で焼成して得られる(特開平7−115009号公報)。しかしながら、この方法で得られる粒状磁性酸化物粒子は、1200〜1450℃で焼成して得られる粒子であるため、フーバー式マラー法(JIS K5101(1991)9.1)によりグラインドメーターを使用した顔料分散試験において10mm以上の連続した線を3本以上発現した時の溝の深さの値が100μmであり、分散性が優れているとは言い難いものである。
【0008】
また、分散性の良い磁性酸化物粒子は、第一鉄塩水溶液に珪酸塩およびMn、Zn、Ni、Cu、Co、Cr、Cd、Al、SnおよびMgから選ばれる1種以上の金属塩を鉄元素に対して0.2〜4.0重量%となるように添加した後、水酸化ナトリウム等のアルカリ性水溶液を加え、得られた水酸化第一鉄を含む水溶液のpHを7以上に維持しながら空気を吹き込んで水酸化第一鉄を酸化して磁性酸化鉄種晶を生成させ、次いで硫酸第一鉄などの第一鉄塩水溶液を添加し、得られた水溶液のpHを6〜10に維持しながら空気を吹き込んで磁性酸化鉄種晶を成長させることにより得られる(特開平11−249335号公報)。しかしながら、当該公報には、Mn、Zn、Ni、Cu、Co、Cr、Cd、Al、SnおよびMgから選ばれる1種以上の金属塩の量が多くなると、得られる磁性酸化物粒子の分散性が低下すると示唆されている。
【0009】
【発明が解決しようとする課題】
本発明の目的は、十分な黒色度を有し、磁化値の小さい、且つ、分散性の優れた粒状磁性酸化物粒子製造方法を提供するにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討した結果、例えば、第一鉄塩水溶液と第一鉄に対してSn換算で10〜30mol%の錫化合物水溶液とアルカリ性水溶液とを混合し、得られた鉄-錫含有沈殿物を含む懸濁液を水熱処理して得られる特定の錫含有粒状磁性酸化物粒子により、上記課題を解決出来ることを見い出し、本発明を完成するに至った。
【0011】
本発明は、上記の知見に基づき完成されたものであり、その要旨は、下記の化学式で表されるスピネル型結晶から成り、Fe2+の含有量が17〜22重量%、格子定数が8.41〜8.49Å、印加磁界79.6kA/mでの磁化値が20〜50Am2/kg、フーバー式マラー法(JIS K5101(1991)9.1)によりグラインドメーターを使用した顔料分散試験において10mm以上の連続した線を3本以上発現した時の溝の深さの値が40μm以下である含有粒状磁性酸化物粒子の製造方法であって、第一鉄塩水溶液と第一鉄に対してSn換算で10〜30mol%の錫化合物水溶液とアルカリ性水溶液とを混合し、得られた鉄-錫含有沈殿物を含む懸濁液を、101〜300℃で0.5〜48時間水熱処理することを特徴とする錫含有粒状磁性酸化物粒子の製造方法に存する。
【0012】
【化2】
Fe3-xSnx4
(式中、xは0.14〜0.48である)
【0014】
【発明の実施の形態】
以下、本発明を説明する。本発明に係る錫含有粒状磁性酸化物粒子は、前記の化学式で表されるスピネル型結晶から成る。スピネル型結晶格子中のSn元素の有無は、X線回折パターンより得られる格子定数のSn含有量に対する変化を測定することにより確認できる。スピネル型結晶格子中にSn元素を有していない場合は、磁化値の小さい粒状磁性粒子を得ることが出来ない。
【0015】
錫含有粒状磁性酸化物粒子のSn元素の含有量は、前記化学式に従い、7〜22重量%(x=0.14〜0.48) 、好ましくは10〜20重量%である。Sn元素の含有量が7重量%未満の場合は、目的の磁化値を得ることが出来ない。Sn元素の含有量が22重量%を超える場合は、粒状磁性酸化物粒子の製造過程で、Sn化合物が析出し、粒状磁性酸化物粒子の分散性や黒色度を悪化する。
【0016】
錫含有粒状磁性酸化物粒子のFe2+の含有量は、17〜22重量%、好ましくは18〜22重量%である。Fe2+含有量が17重量%未満の場合は、粒状磁性酸化物粒子の黒色度が不十分である。Fe2+含有量が22重量%を超える場合は、粒状磁性酸化物粒子としての黒色度は十分に高いものであるが、酸化安定性が悪く、空気中での取り扱いが困難となる。
【0017】
錫含有粒状磁性酸化物粒子の格子定数は、8.41〜8.49Å、好ましくは、8.43〜8.48Åである。スピネル型結晶格子中に含有されるSn元素量が多くなる程格子定数が大きくなる傾向にある。例えば、Sn元素の含有量が7.8重量%のとき、格子定数が8.41Å程度であり、Sn元素の含有量が21.7重量%のとき、格子定数が8.49Å程度である。格子定数が8.41Å未満の場合、粒状磁性酸化物粒子の黒色度が不十分であり、格子定数が8.49Åを超えると、粒状磁性酸化物粒子の酸化安定性が悪くなる。
【0018】
錫含有粒状磁性酸化物粒子の印加磁界79.6kA/mでの磁化値は、20〜50Am2/kg、好ましくは25〜45Am2/kgである。スピネル型結晶格子中に含有されるSn元素の含有量が多くなる程磁化値が低下する傾向にあり、Sn元素の含有量が21.7重量%のとき、磁化値が20Am2/kg程度である。磁化値が20Am2/kg未満の場合は、磁性トナーが飛散し易くなり、高解像度の画が得られなくなる。磁化値が50Am2/kgを超える場合は、磁気凝集力が大きく、ビヒクルや樹脂中における分散性が劣り、高濃度および高解像度画が得られなくなる。
【0019】
錫含有粒状磁性酸化物粒子の分散性は、フーバー式マラー法(JIS K5101(1991)9.1)によりグラインドメーターを使用した顔料分散試験において10mm以上の連続した線が3本以上発現し始めた時の溝の深さの値で示す。本発明の錫含有粒状磁性酸化物粒子の10mm以上の連続した線が3本以上発現し始めた時の溝の深さの値は、40μm以下、好ましくは30μm以下、より好ましくは20μm以下である。10mm以上の連続した線が3本以上発現し始めた時の溝の深さの値が40μmを超える場合は、ビヒクルや樹脂中における分散性が劣り、高濃度および高解像度画が得られなくなる。
【0020】
錫含有粒状磁性酸化物粒子の黒色度は、JISK5101(1991)6.1に記載の方法で得られたペーストを6milのフイルムアプリケーターを使用して、ミラーコート紙上に塗膜を形成し、分光測色計を使用してJIS Z 8729により測色して、表色指数a*値で示す。本発明の錫含有粒状磁性酸化物粒子のa*値は、通常+1.5以下、好ましくは+1.0以下、より好ましくは+0.5以下である。a*値が+1.5を超える場合には、赤味が強くなり十分な黒色度を有する粒子を得ることができないことがある。
【0021】
錫含有粒状磁性酸化物粒子の平均粒子径は、通常0.1〜0.3μm、好ましくは0.15〜0.25μmである。平均粒子径が0.1μm未満の場合は、磁性酸化物粒子相互間の凝集力が大きく分散性が困難となる傾向にある。平均粒子径が0.3μmを超える場合は、磁性酸化物粒子の着色力が低下する傾向にある。磁性トナーでは、一個の磁性トナーに含まれる磁性酸化物粒子の個数が少なくなったり、また、磁性トナー粒子中の磁性酸化物粒子の分布に偏りが生じ易くなり、磁性トナーの帯電性能の均一性が損なわれることがある。
【0022】
次に、本発明の錫含有粒状磁性酸化物粒子の製造方法について説明する。本発明の製造方法においては、先ず、第一鉄塩水溶液と第一鉄に対してSn換算で10〜30mol%の錫化合物水溶液とアルカリ性水溶液とを混合する。この場合、第一鉄塩水溶液と第一鉄に対してSn換算で10〜30mol%の錫化合物水溶液とを混合し、次いで得られた混合液にアルカリ性水溶液を添加することが好ましい。即ち、先ず、第一鉄塩水溶液と第一鉄に対してSn換算で10〜30mol%の錫化合物水溶液とを混合して、鉄−錫混合溶液を得る。詳しくは、水に第一鉄塩(鉄元素換算で、通常0.1〜10モル程度、好ましくは0.5〜5モル程度)を溶解する。別に、水またはアルコール水溶液中に錫化合物(鉄元素換算で、通常0.001〜5モル程度、好ましくは0.5〜2モル程度)を溶解する。得られた第一鉄塩水溶液と錫化合物水溶液を混合して鉄−錫混合溶液を得る。
【0023】
次いで、アルカリ性水溶液を、攪拌しながら鉄−錫混合溶液に徐々に滴下し、滴下後、室温下で数時間〜1日間程度攪拌して目的物である鉄−錫含有沈殿物を含む懸濁液を得る。添加されるアルカリ性水溶液の量は、鉄−錫混合溶液の鉄および錫に対して通常1当量以上で、その上限は好ましくは2.0当量、より好ましくは1.6当量である。
【0024】
得られた鉄−錫含有沈殿物を含む懸濁液を水熱処理して目的生成物を得る。すなわち、水熱反応炉(例えば、オートクレーブ)を使用して鉄−錫含有沈殿物を含む懸濁液を水熱反応処理する。好ましくはアンモニウム塩または前記アルカリ性水溶液と同一のアルカリ金属の塩の存在下で行われる。生成する錫含有粒状磁性酸化物粒子の粒度分布を考慮すれば、アンモニウム塩またはアルカリ塩の存在量は、アルカリ性水溶液1モルに対して0.5〜1.5モルが好ましい。水熱反応の条件は特に限定されるものではないが、通常101〜300℃程度、好ましくは200〜250℃程度の温度で、通常0.5〜48時間程度、好ましくは1〜10時間程度である。反応終了後、残存する未反応原料を除去するために、反応生成物を水洗し、次いで濾過し、乾燥することより、下記の式で示される錫含有粒状磁性酸化物粒子を得る。
【0025】
【化3】
Fe3-xSnx4
(式中、xは0.14〜0.48である)
【0026】
本発明の製造方法において使用する第一鉄塩水溶液としては、塩化第一鉄水溶液、硝酸第一鉄水溶液、硫酸第一鉄水溶液等が挙げられる。好ましくは硫酸第一鉄水溶液である。錫化合物水溶液としては、塩化第一錫水溶液、硝酸第一錫水溶液、硫酸第一錫水溶液等が挙げられる。好ましくは塩化第一錫水溶液である。
【0027】
アルカリ性水溶液としては、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニウム水溶液等が挙げらる。特に、水酸化ナトリウム水溶液が好ましい。これらは単独で使用してもまた2種以上を併用してもよい。
【0028】
必要により使用するアンモニウム塩またはアルカリ塩は、水熱処理に先立って鉄−錫含有沈殿物を含む懸濁液中に存在させておけば良い。アルカリ塩としては、Li塩、Na塩、K塩が挙げられる。上述のアルカリ性水溶液のアルカリ金属と同一のアルカリ金属の塩を使用した場合には、粒度分布の優れた錫含有粒状磁性酸化物粒子を得ることが出来る。
【0029】
この様にして得られた錫含有粒状磁性酸化物粒子は、粒状磁性粒子中のFe2+の含有量が大きく、十分な黒色度を有し、且つ、磁化値が小さいので磁気的な凝集力を生ぜず、更に、ビヒクルや樹脂に対する分散性も優れている。
【0030】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0031】
粒状磁性酸化物粒子全体のFeO含有量は、下記の化学分析法により求めた値で示した。すなわち、不活性ガス雰囲気下で、リン酸:硫酸が2:1(重量比)の割合の混合溶液25mlを粒状磁性酸化物粒子約0.5gに添加して溶解した。粒状磁性酸化物粒子が溶解した溶液を希釈し、該希釈溶液に指示薬としてジフェニルアミンスルホン酸を数滴加えた後、重クロム酸カリウム水溶液を用いて酸化還元滴定を行った。上記希釈液が紫色を呈した時を終点とし、該終点に至るまでに使用した重クロム酸カリウム水溶液の量から計算して求めた。
【0032】
粒状磁性酸化物のSn含有量は、「エネルギー分散型X線分析計 EDX」(日立製作所社製)で測定した。
【0033】
錫含有粒状磁性酸化物粒子の結晶相は、X線回折分析により測定した。化学組成はX線エネルギー分散スペクトル分析により評価した。
【0034】
錫含有粒状磁性酸化物粒子の磁気特性は、「振動試料型磁力計 VSM−3S−15」(東英工業社製)を用いて外部磁場79.6kA/mの下で測定した値で示した。
【0035】
錫含有粒状磁性酸化物粒子の分散性は、試料1mgとビヒクルとして印刷インキ用ロジン変性フェノール樹脂系ワニス10mgとをそれぞれフーバー式マラーの下部練り板の上に乗せ、ヘラで混ぜ合わせ、練り板上に帯状に広げ、フーバー式マラー法(JIS K5101(1991)9.1)によりグラインドメーターを使用した顔料分散試験において10mm以上の連続した線を3本以上発現し始めた時の溝の深さの値を測定した。
【0036】
錫含有粒状磁性酸化物粒子の黒色度は、試料0.5gとヒマシ油1.5mlとをフーバー式マーラーで練ってペースト状とし、このペーストにクリアラッカー4.5gを加え、混練、塗料化してキャストコート紙上に6milのアプリケーターを用いて塗布した塗布片(塗膜厚み:約30μm)を作製し、 該塗料片について、多光源分光測色計MSC−IS−2D(スガ試験機株式会社製)を用いて、JIS Z 8729により測色して、表色指数a*値で示した。ここで、a*値は赤味の程度を表わし、a*値が小さいほど黒色度が優れていることを示す。
【0037】
錫含有粒状磁性酸化物粒子の形状は、透過型電子顕微鏡(倍率2万倍)および走査型電子顕微鏡(倍率4万倍)により観察して判定した。粒状磁性酸化物粒子の平均粒子径は、透過型電子顕微鏡により撮影した写真(倍率1万倍)を4倍に拡大して、300個についてマーチン径により求めた。
【0038】
錫含有粒状磁性酸化物粒子の粒度分布は、上述の方法により求めた平均粒径(d)と標準偏差(σ)から、式:変化係数(%)=(σ/d)x100により算出した変化係数で示した。変化係数の値が小さい程、粒度分布が優れていることを示し、変化係数が30%以下あれば、粒度分布が良好であり、好ましくは25%以下である。変化係数が30%を超えると、粒度分布が悪く顔料としての分散性に劣り、種々の特性が損なわれることがある。
【0039】
実施例1
塩化第一スズ2水和物4.06gに150mlの水を加え、攪拌して溶解した。別に、硫酸第一鉄7水和物45.0gに150mlの水を加え、攪拌して溶解した。両溶液を攪拌しながら混合し、Fe−Sn混合水溶液(Sn:Fe(モル比)=1:9)を得た。水酸化ナトリウム22.0gに水300mlを加えて溶解し、得られた水溶液を攪拌しながら、上記Fe−Sn混合水溶液に徐々に滴下し、滴下後、更に数時間攪拌してFe−Sn含有沈殿物(Sn:Fe(モル比)=1:9)を得た。得られたFe−Sn含有沈殿物の懸濁液を水熱反応炉(オートクレーブ)中で、220℃で1時間水熱処理した。水熱処理終了後、生成物を水で洗浄して、過剰に存在する水酸化ナトリウムを除去し、濾過、乾燥して、粒状生成物を得た。
【0040】
得られた粒状生成物は、八面体形状の微粒子であり、その組成はFe2.84Sn0.16O4であった。粒状生成物の平均粒子径は0.23μmで、格子定数は8.412Åで、Fe2+含有量は21.4重量%で、Sn元素含有量は7.8重量%で、79.6kA/mの磁場での磁化値は48.5Am2/kgで、黒色度a*値は+0.3であった。分散性は、JIS K5101(1991)の顔料分散試験法のフーバー式マラー法によりグラインドメーターを使用した顔料分散試験により評価した結果、溝の深さ20μm以上には3本の10mm以上連続した線の存在が全く認められなかった。得られた粒状生成物の変化係数は28%であった。
【0041】
実施例2
塩化第一スズ2水和物4.06gに150mlの水を加え、攪拌して溶解した。別に、硫酸第一鉄7水和物45.0gに150mlの水を加え、攪拌して溶解した。両溶液を攪拌しながら混合し、Fe−Sn混合水溶液(Sn:Fe(モル比)=1:9)を得た。塩化ナトリウム38.0gと水酸化ナトリウム22.0gに水300mlを加えて溶解し、得られた水溶液を攪拌しながら、上記Fe−Sn混合水溶液に徐々に滴下し、滴下後、更に数時間攪拌してFe−Sn含有沈殿物(Sn:Fe(モル比)=1:9)を得た。得られたFe−Sn含有沈殿物を含む懸濁液を水熱反応炉(オートクレーブ)中で、220℃で1時間水熱処理した。水熱処理終了後、生成物を水で洗浄して、過剰に存在する水酸化ナトリウムを除去し、濾過、乾燥して、粒状生成物を得た。
【0042】
得られた粒状生成物は、八面体形状の微粒子であり、その組成はFe2.84Sn0.16O4であった。粒状生成物の平均粒子径は0.23μmで、格子定数は8.412Åで、Fe2+含有量は21.4重量%で、Sn元素含有量は7.8重量%で、79.6kA/mの磁場での磁化値は48.5Am2/kgで、黒色度a*値は+0.3であった。分散性は、JIS K5101(1991)の顔料分散試験法のフーバー式マラー法によりグラインドメーターを使用した顔料分散試験により評価した結果、溝の深さ20μm以上には3本の10mm以上連続した線の存在が全く認められなかった。得られた粒状生成物の変化係数は22%であった。
【0043】
実施例3
無水塩化第一スズ6.83gに150mlのメタノールを加え、攪拌して溶解した。別に、硫酸第一鉄7水和物40.0gに150mlの水を加え、攪拌して溶解した。両溶液を攪拌しながら混合し、Fe−Sn混合水溶液(Sn:Fe(モル比)=2:8)を得た。塩化ナトリウム38.0gと水酸化ナトリウム22.0gに水300mlを加えて溶解し、得られた水溶液を攪拌しながら、上記Fe−Sn混合物に徐々に滴下し、滴下後、更に数時間攪拌してFe−Sn含有沈殿物Sn:Fe(モル比)=2:8)を得た。得られたFe−Sn含有沈殿物の懸濁液を水熱反応炉(オートクレーブ)中で、220℃で1時間水熱処理した。水熱処理終了後、生成物を水で洗浄して、過剰に存在する水酸化ナトリウム及び他のアルカリ塩類を除去し、濾過、乾燥して、粒状生成物を得た。
【0044】
得られた粒状生成物は、八面体形状の微粒子であり、その組成はFe2.65Sn0.35O4であった。粒状生成物の平均粒子径は0.18μmで、格子定数は8.470Åで、Fe2+含有量は20.5重量%で、Sn元素含有量は16.4重量%で、79.6kA/mの磁場での磁化値は35.1Am2/kgで、黒色度a*値は;0.5であった。分散性は、JIS K5101−1991の顔料分散試験法のフーバー式マラー法により評価した結果、30μm以上には10mm以上の連続した線の存在が全く認められなかった。得られた粒状生成物の変化係数は21%であった。
【0045】
実施例4
無水塩化第一スズ10.23gに150mlのメタノールを加え、攪拌して溶解した。別に、硫酸第一鉄7水和物35.0gに150mlの水を加え、攪拌して溶解した。両溶液を攪拌しながら混合し、Fe−Sn混合物(Sn:Fe(モル比)=3:7)を得た。塩化ナトリウム38.0gと水酸化ナトリウム22.0gに水300mlを加えて溶解し、得られた水溶液を攪拌しながら、上記Fe−Sn混合物に徐々に滴下し、滴下後、更に数時間攪拌してFe−Sn共沈物Sn:Fe(モル比)=3:7)を得た。得られたFe−Sn共沈物を水熱反応炉(オートクレーブ)中で、220℃で1時間水熱処理した。水熱処理終了後、生成物を水で洗浄して、過剰に存在する水酸化ナトリウム及び他のアルカリ塩類を除去し、濾過、乾燥して、粒状生成物を得た。
【0046】
得られた粒状生成物は、八面体形状の微粒子であり、その組成はFe2.52Sn0.48O4であった。粒状生成物の平均粒子径は0.13μmで、格子定数は8.487Åで、Fe2+含有量は18.1重量%で、Sn元素含有量は21.8重量%で、79.6kA/mの磁場での磁化値は21.5Am2/kgで、黒色度a*値は+0.7であった。分散性は、JIS K5101−1991の顔料分散試験法のフーバー式マラー法により評価した結果、30μm以上には10mm以上の連続した線の存在が全く認められなかった。得られた粒状生成物の変化係数は23%であった。
【0047】
【発明の効果】
錫含有粒状磁性酸化物粒子は、Fe2+の含有量が大きく、粒度分布に優れ且つ十分な黒色度を有し、磁化値が小さいので磁気的な凝集力を生ずることがなく、ビヒクルや樹脂に対する分散性も優れている。それ故、塗料用、印刷インキ用、ゴム・プラスチック用の着色顔料、磁性トナー用材料、磁性キヤリア用材料などとして有用である。また、比較的低い温度で錫含有粒状磁性酸化物粒子を製造することが出来るので、工業的に有益な方法である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a tin-containing granular magnetic oxide particles, particularly, high blackness, the magnetization value is small, and a method for producing a superior tin-containing granular magnetic oxide particles in dispersion. The tin-containing granular magnetic oxide particles according to the present invention are useful as coloring pigments for paints, printing inks, rubber / plastics, magnetic toner materials, magnetic carrier materials, and the like.
[0002]
[Prior art]
Since the granular magnetic oxide particles are black, they are widely used as black coloring pigments for paints, printing inks, rubbers and plastics. Further, since it is a ferromagnetic particle, it is also used as a magnetic toner and a magnetic carrier for electrostatic copying by mixing and dispersing in a resin to form composite particles.
[0003]
Various properties of the coating film containing the color pigment depend on the dispersibility of the pigment in the coating film. For example, if the dispersion of the pigment in the vehicle or resin is good, the color tone becomes clear and the characteristics of the material particles such as coloring power and hiding power are improved. Further, the gloss, sharpness, mechanical properties, and air resistance of the coating film are also improved, and the durability of the coating film is improved. Therefore, excellent dispersibility for vehicles and resins is required.
[0004]
In addition, along with high speed performance such as miniaturization and high speed of electrostatic copying machines, magnetic toner and magnetic carrier capable of high density development and high resolution are required, but these characteristics are contained in the resin. It is closely related to the properties and dispersibility of magnetic particles.
[0005]
For example, if the content of magnetic particles in the resin is increased in order to enable high-density development, the magnetic toner exists as an aggregate on the latent image after development due to magnetic aggregation of the magnetic particles. It is difficult to faithfully reproduce a fine latent image, and a high-resolution image cannot be obtained. Further, if the dispersibility of the magnetic particles in the resin is poor, the magnetic particles are not uniformly dispersed, so that the magnetic toner particles are magnetically biased or the content of the magnetic particles in the resin is reduced. As a result, high density development cannot be performed, and high resolution images cannot be obtained.
[0006]
In order to achieve high image density and high resolution, the magnetization value of the magnetic particles should be made as small as possible so that magnetic cohesion does not occur even if the content of the magnetic particles contained in the resin is increased. It is also required to increase the content of Fe 2+ in the granular magnetic particles as much as possible so as to increase the dispersibility of the magnetic particles in the resin and to have sufficient blackness .
[0007]
The granular magnetic oxide particles having a small magnetization value include 24.0 to 99.2% by weight of hematite or hematite + magnetite, 0.8 to 76.0% by weight of Sn compound in terms of Sn, and —C—C— Alternatively, a liquid substance or a solid substance having —C═C— in the molecule is mixed with 0.1 to 4.0% by weight, and the obtained mixture is fired at 1200 to 1450 ° C. in an inert gas. (Japanese Patent Laid-Open No. 7-115009). However, since the granular magnetic oxide particles obtained by this method are particles obtained by firing at 1200 to 1450 ° C., a pigment using a grindometer according to the Hoover-type Muller method (JIS K5101 (1991) 9.1). In the dispersion test, the value of the groove depth when 3 or more continuous lines of 10 mm or more are developed is 100 μm, and it is difficult to say that the dispersibility is excellent.
[0008]
In addition, the magnetic oxide particles having good dispersibility include a silicate and one or more metal salts selected from Mn, Zn, Ni, Cu, Co, Cr, Cd, Al, Sn, and Mg in a ferrous salt aqueous solution. After adding 0.2 to 4.0% by weight with respect to iron element, an alkaline aqueous solution such as sodium hydroxide is added, and the pH of the obtained aqueous solution containing ferrous hydroxide is maintained at 7 or more. While blowing air, the ferrous hydroxide was oxidized to form a magnetic iron oxide seed crystal, and then an aqueous ferrous salt solution such as ferrous sulfate was added, and the pH of the obtained aqueous solution was adjusted to 6-10. The magnetic iron oxide seed crystal is grown by blowing air while maintaining the temperature (Japanese Patent Laid-Open No. 11-249335). However, in this publication, when the amount of one or more metal salts selected from Mn, Zn, Ni, Cu, Co, Cr, Cd, Al, Sn, and Mg increases, the dispersibility of the obtained magnetic oxide particles Has been suggested to decline.
[0009]
[Problems to be solved by the invention]
An object of the present invention has a sufficient degree of blackness, a small magnetization, and is to provide a method for producing a dispersion having excellent granular magnetic oxide particles.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors, for example, mixed a 10-30 mol% tin compound aqueous solution and an alkaline aqueous solution in terms of Sn with respect to the ferrous salt aqueous solution and ferrous iron, It has been found that the above problems can be solved by specific tin-containing granular magnetic oxide particles obtained by hydrothermally treating the obtained suspension containing the iron-tin-containing precipitate, and the present invention has been completed.
[0011]
The present invention has been completed based on the above findings, and the gist of the present invention consists of spinel crystals represented by the following chemical formula, the content of Fe 2+ is 17 to 22% by weight, and the lattice constant is 8 In a pigment dispersion test using a grindometer according to the Hoover-type Muller method (JIS K5101 (1991) 9.1) with a magnetization value of 20 to 50 Am 2 / kg at an applied magnetic field of 79.6 kA / m at 41 to 8.49 mm. A method for producing tin- containing granular magnetic oxide particles having a groove depth value of 40 μm or less when three or more continuous lines of 10 mm or more are developed , wherein the ferrous salt aqueous solution and ferrous iron are used. Then, 10-30 mol% tin compound aqueous solution and alkaline aqueous solution in terms of Sn are mixed, and the resulting suspension containing the iron-tin-containing precipitate is hydrothermally treated at 101-300 ° C. for 0.5-48 hours. With features It consists in the manufacturing method of that tin-containing granular magnetic oxide particles.
[0012]
[Chemical 2]
Fe 3-x Sn x O 4
(Wherein x is 0.14 to 0.48)
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below. The tin-containing granular magnetic oxide particles according to the present invention consist of spinel crystals represented by the above chemical formula. The presence or absence of Sn element in the spinel crystal lattice can be confirmed by measuring the change of the lattice constant obtained from the X-ray diffraction pattern with respect to the Sn content. When the Sn element is not contained in the spinel crystal lattice, granular magnetic particles having a small magnetization value cannot be obtained.
[0015]
The content of Sn element in the tin-containing granular magnetic oxide particles is 7 to 22% by weight (x = 0.14 to 0.48), preferably 10 to 20% by weight, according to the chemical formula. If the Sn element content is less than 7% by weight, the desired magnetization value cannot be obtained. When the content of Sn element exceeds 22% by weight, the Sn compound is precipitated in the production process of the granular magnetic oxide particles, and the dispersibility and blackness of the granular magnetic oxide particles are deteriorated.
[0016]
The content of Fe 2+ in the tin-containing granular magnetic oxide particles is 17 to 22% by weight, preferably 18 to 22% by weight. When the Fe 2+ content is less than 17% by weight, the blackness of the granular magnetic oxide particles is insufficient. When the Fe 2+ content exceeds 22% by weight, the blackness as the granular magnetic oxide particles is sufficiently high, but the oxidation stability is poor and handling in air becomes difficult.
[0017]
The lattice constant of the tin-containing granular magnetic oxide particles is 8.41-8.49 mm, preferably 8.43-8.48 mm. As the amount of Sn element contained in the spinel crystal lattice increases, the lattice constant tends to increase. For example, when the Sn element content is 7.8% by weight, the lattice constant is about 8.41%, and when the Sn element content is 21.7% by weight, the lattice constant is about 8.49%. When the lattice constant is less than 8.41Å, the blackness of the granular magnetic oxide particles is insufficient, and when the lattice constant exceeds 8.49Å, the oxidation stability of the granular magnetic oxide particles is deteriorated.
[0018]
The magnetization value of the tin-containing granular magnetic oxide particles at an applied magnetic field of 79.6 kA / m is 20 to 50 Am 2 / kg, preferably 25 to 45 Am 2 / kg. The magnetization value tends to decrease as the content of Sn element contained in the spinel crystal lattice increases. When the content of Sn element is 21.7 wt%, the magnetization value is about 20 Am 2 / kg. is there. When the magnetization value is less than 20 Am 2 / kg, the magnetic toner is easily scattered and a high-resolution image cannot be obtained. When the magnetization value exceeds 50 Am 2 / kg, the magnetic cohesive force is large, the dispersibility in the vehicle or the resin is poor, and a high density and high resolution image cannot be obtained.
[0019]
As for the dispersibility of the tin-containing granular magnetic oxide particles, three or more continuous lines of 10 mm or more began to appear in a pigment dispersion test using a grindometer by the Hoover-type Muller method (JIS K5101 (1991) 9.1). It is indicated by the value of the depth of the groove at the time. The depth value of the groove when three or more continuous lines of 10 mm or more of the tin-containing granular magnetic oxide particles of the present invention begin to appear is 40 μm or less, preferably 30 μm or less, more preferably 20 μm or less. . When the depth value of the groove when three or more continuous lines of 10 mm or more begin to appear exceeds 40 μm, the dispersibility in the vehicle or the resin is inferior, and a high density and high resolution image cannot be obtained.
[0020]
The blackness of the tin-containing granular magnetic oxide particles was measured by forming a coating film on a mirror-coated paper from a paste obtained by the method described in JIS K5101 (1991) 6.1 using a 6 mil film applicator, and performing spectroscopic measurement. The color is measured according to JIS Z 8729 using a colorimeter, and is indicated by the color index a * value. The a * value of the tin-containing granular magnetic oxide particles of the present invention is usually +1.5 or less, preferably +1.0 or less, more preferably +0.5 or less. When the a * value exceeds +1.5, redness becomes strong and particles having sufficient blackness may not be obtained.
[0021]
The average particle diameter of the tin-containing granular magnetic oxide particles is usually 0.1 to 0.3 μm, preferably 0.15 to 0.25 μm. When the average particle diameter is less than 0.1 μm, the cohesive force between the magnetic oxide particles tends to be large and dispersibility tends to be difficult. When the average particle diameter exceeds 0.3 μm, the coloring power of the magnetic oxide particles tends to decrease. In the magnetic toner, the number of magnetic oxide particles contained in one magnetic toner is reduced, and the distribution of the magnetic oxide particles in the magnetic toner particles tends to be biased. May be damaged.
[0022]
Next, the manufacturing method of the tin containing granular magnetic oxide particle of this invention is demonstrated. In the production method of the present invention, first, a 10-30 mol% tin compound aqueous solution and an alkaline aqueous solution in terms of Sn are mixed with respect to the ferrous salt aqueous solution and ferrous iron. In this case, it is preferable to mix 10-30 mol% tin compound aqueous solution in Sn conversion with respect to ferrous salt aqueous solution and ferrous iron, and then add alkaline aqueous solution to the obtained liquid mixture. That is, first, an iron-tin mixed solution is obtained by mixing a ferrous salt aqueous solution and a 10-30 mol% tin compound aqueous solution in terms of Sn with respect to ferrous iron. Specifically, a ferrous salt (usually about 0.1 to 10 mol, preferably about 0.5 to 5 mol in terms of iron element) is dissolved in water. Separately, a tin compound (usually about 0.001 to 5 mol, preferably about 0.5 to 2 mol in terms of iron element) is dissolved in water or an aqueous alcohol solution. The obtained ferrous salt aqueous solution and tin compound aqueous solution are mixed to obtain an iron-tin mixed solution.
[0023]
Subsequently, the alkaline aqueous solution is gradually dropped into the iron-tin mixed solution while stirring, and after the dropping, the suspension containing the target iron-tin-containing precipitate is stirred at room temperature for about several hours to one day. Get. The amount of the alkaline aqueous solution to be added is usually 1 equivalent or more with respect to iron and tin in the iron-tin mixed solution, and the upper limit is preferably 2.0 equivalents, more preferably 1.6 equivalents.
[0024]
The suspension containing the obtained iron-tin-containing precipitate is hydrothermally treated to obtain the desired product. That is, a suspension containing an iron-tin-containing precipitate is subjected to a hydrothermal reaction treatment using a hydrothermal reactor (for example, an autoclave). It is preferably carried out in the presence of an ammonium salt or the same alkali metal salt as the alkaline aqueous solution. Considering the particle size distribution of the tin-containing granular magnetic oxide particles to be produced, the amount of the ammonium salt or alkali salt is preferably 0.5 to 1.5 mol with respect to 1 mol of the alkaline aqueous solution. The conditions for the hydrothermal reaction are not particularly limited, but are usually about 101 to 300 ° C., preferably about 200 to 250 ° C., usually about 0.5 to 48 hours, preferably about 1 to 10 hours. is there. After the reaction is completed, in order to remove the remaining unreacted raw material, the reaction product is washed with water, then filtered and dried to obtain tin-containing granular magnetic oxide particles represented by the following formula.
[0025]
[Chemical 3]
Fe 3-x Sn x O 4
(Wherein x is 0.14 to 0.48)
[0026]
Examples of the ferrous salt aqueous solution used in the production method of the present invention include ferrous chloride aqueous solution, ferrous nitrate aqueous solution, and ferrous sulfate aqueous solution. A ferrous sulfate aqueous solution is preferred. Examples of the tin compound aqueous solution include stannous chloride aqueous solution, stannous nitrate aqueous solution, and stannous sulfate aqueous solution. A stannous chloride aqueous solution is preferred.
[0027]
Examples of the alkaline aqueous solution include an aqueous lithium hydroxide solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, and an aqueous ammonium solution. In particular, an aqueous sodium hydroxide solution is preferred. These may be used alone or in combination of two or more.
[0028]
If necessary, the ammonium salt or alkali salt may be present in the suspension containing the iron-tin-containing precipitate prior to the hydrothermal treatment. Examples of the alkali salt include Li salt, Na salt, and K salt. When the same alkali metal salt as the alkali metal in the alkaline aqueous solution is used, tin-containing granular magnetic oxide particles having an excellent particle size distribution can be obtained.
[0029]
The tin-containing granular magnetic oxide particles thus obtained have a large content of Fe 2+ in the granular magnetic particles, a sufficient blackness, and a small magnetization value, so that the magnetic cohesive force Furthermore, it has excellent dispersibility in vehicles and resins.
[0030]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example, unless the summary is exceeded.
[0031]
The FeO content of the entire granular magnetic oxide particles was indicated by the value obtained by the following chemical analysis method. That is, under an inert gas atmosphere, 25 ml of a mixed solution of phosphoric acid: sulfuric acid in a ratio of 2: 1 (weight ratio) was added to about 0.5 g of granular magnetic oxide particles and dissolved. The solution in which the granular magnetic oxide particles were dissolved was diluted, and after adding several drops of diphenylamine sulfonic acid as an indicator to the diluted solution, oxidation-reduction titration was performed using an aqueous potassium dichromate solution. The end point was when the diluted solution was purple, and the amount was calculated from the amount of the aqueous potassium dichromate solution used to reach the end point.
[0032]
The Sn content of the granular magnetic oxide was measured with an “energy dispersive X-ray analyzer EDX” (manufactured by Hitachi, Ltd.).
[0033]
The crystal phase of the tin-containing granular magnetic oxide particles was measured by X-ray diffraction analysis. The chemical composition was evaluated by X-ray energy dispersion spectrum analysis.
[0034]
The magnetic characteristics of the tin-containing granular magnetic oxide particles are shown by values measured under an external magnetic field of 79.6 kA / m using a “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Kogyo Co., Ltd.). .
[0035]
The dispersibility of the tin-containing granular magnetic oxide particles is as follows: 1 mg of the sample and 10 mg of rosin-modified phenolic resin varnish for printing ink as a vehicle are placed on the lower kneading plate of the Hoover type muller and mixed with a spatula. The groove depth when three or more continuous lines of 10 mm or more began to appear in a pigment dispersion test using a grindometer according to the Hoover-type Muller method (JIS K5101 (1991) 9.1). The value was measured.
[0036]
The blackness of the tin-containing granular magnetic oxide particles is obtained by kneading 0.5 g of a sample and 1.5 ml of castor oil with a Hoover-type Mahler to form a paste, adding 4.5 g of clear lacquer to the paste, kneading, and forming a paint. An application piece (coating thickness: about 30 μm) coated on a cast-coated paper using a 6 mil applicator was prepared, and the multi-light source spectrophotometer MSC-IS-2D (manufactured by Suga Test Instruments Co., Ltd.) Was measured in accordance with JIS Z 8729 and indicated by a color index a * value. Here, the a * value represents the degree of redness, and the smaller the a * value, the better the blackness.
[0037]
The shape of the tin-containing granular magnetic oxide particles was determined by observing with a transmission electron microscope (magnification 20,000 times) and a scanning electron microscope (magnification 40,000 times). The average particle diameter of the granular magnetic oxide particles was obtained by expanding the photograph taken with a transmission electron microscope (magnification 10,000 times) by 4 times and determining the Martin diameter of 300 particles.
[0038]
The particle size distribution of the tin-containing granular magnetic oxide particles is a change calculated from the average particle diameter (d) and standard deviation (σ) obtained by the above-described method according to the formula: change coefficient (%) = (σ / d) × 100 Indicated by coefficient. The smaller the change coefficient value, the better the particle size distribution. If the change coefficient is 30% or less, the particle size distribution is good, preferably 25% or less. When the change coefficient exceeds 30%, the particle size distribution is poor and the dispersibility as a pigment is inferior, and various properties may be impaired.
[0039]
Example 1
150 ml of water was added to 4.06 g of stannous chloride dihydrate and dissolved by stirring. Separately, 150 ml of water was added to 45.0 g of ferrous sulfate heptahydrate, and dissolved by stirring. Both solutions were mixed with stirring to obtain an Fe—Sn mixed aqueous solution (Sn: Fe (molar ratio) = 1: 9). 300 ml of water was added to 22.0 g of sodium hydroxide and dissolved, and the resulting aqueous solution was gradually added dropwise to the Fe—Sn mixed aqueous solution while stirring. The product (Sn: Fe (molar ratio) = 1: 9) was obtained. The obtained suspension of the Fe—Sn-containing precipitate was hydrothermally treated at 220 ° C. for 1 hour in a hydrothermal reactor (autoclave). After completion of the hydrothermal treatment, the product was washed with water to remove excess sodium hydroxide, filtered and dried to obtain a granular product.
[0040]
The obtained granular product was octahedral fine particles, and its composition was Fe 2.84 Sn 0.16 O 4 . The average particle size of the granular product is 0.23 μm, the lattice constant is 8.412 mm, the Fe 2+ content is 21.4 wt%, the Sn element content is 7.8 wt%, and 79.6 kA / The magnetization value in a magnetic field of m was 48.5 Am 2 / kg, and the blackness a * value was +0.3. The dispersibility was evaluated by a pigment dispersion test using a grindometer according to the Hoover-type Muller method of the pigment dispersion test method of JIS K5101 (1991), and as a result, three continuous lines of 10 mm or more were formed at a groove depth of 20 μm or more. Existence was not recognized at all. The coefficient of change of the obtained granular product was 28%.
[0041]
Example 2
150 ml of water was added to 4.06 g of stannous chloride dihydrate and dissolved by stirring. Separately, 150 ml of water was added to 45.0 g of ferrous sulfate heptahydrate, and dissolved by stirring. Both solutions were mixed with stirring to obtain an Fe—Sn mixed aqueous solution (Sn: Fe (molar ratio) = 1: 9). 300 ml of water was added to 38.0 g of sodium chloride and 22.0 g of sodium hydroxide to dissolve, and the resulting aqueous solution was gradually added dropwise to the Fe-Sn mixed aqueous solution while stirring. After the addition, the mixture was further stirred for several hours. Thus, a Fe—Sn-containing precipitate (Sn: Fe (molar ratio) = 1: 9) was obtained. The obtained suspension containing the Fe—Sn-containing precipitate was hydrothermally treated at 220 ° C. for 1 hour in a hydrothermal reactor (autoclave). After completion of the hydrothermal treatment, the product was washed with water to remove excess sodium hydroxide, filtered and dried to obtain a granular product.
[0042]
The obtained granular product was octahedral fine particles, and its composition was Fe 2.84 Sn 0.16 O 4 . The average particle size of the granular product is 0.23 μm, the lattice constant is 8.412 mm, the Fe 2+ content is 21.4 wt%, the Sn element content is 7.8 wt%, and 79.6 kA / The magnetization value in a magnetic field of m was 48.5 Am 2 / kg, and the blackness a * value was +0.3. The dispersibility was evaluated by a pigment dispersion test using a grindometer according to the Hoover-type Muller method of the pigment dispersion test method of JIS K5101 (1991), and as a result, three continuous lines of 10 mm or more were formed at a groove depth of 20 μm or more. Existence was not recognized at all. The change coefficient of the obtained granular product was 22%.
[0043]
Example 3
150 ml of methanol was added to 6.83 g of anhydrous stannous chloride and dissolved by stirring. Separately, 150 ml of water was added to 40.0 g of ferrous sulfate heptahydrate, and dissolved by stirring. Both solutions were mixed with stirring to obtain a Fe—Sn mixed aqueous solution (Sn: Fe (molar ratio) = 2: 8). 300 ml of water was added to 38.0 g of sodium chloride and 22.0 g of sodium hydroxide to dissolve, and the resulting aqueous solution was gradually added dropwise to the Fe-Sn mixture while stirring. After the addition, the mixture was further stirred for several hours. Fe-Sn-containing precipitate Sn: Fe (molar ratio) = 2: 8) was obtained. The obtained suspension of the Fe—Sn-containing precipitate was hydrothermally treated at 220 ° C. for 1 hour in a hydrothermal reactor (autoclave). After completion of the hydrothermal treatment, the product was washed with water to remove excess sodium hydroxide and other alkali salts, filtered and dried to obtain a granular product.
[0044]
The obtained granular product was octahedral fine particles, and its composition was Fe 2.65 Sn 0.35 O 4 . The average particle size of the granular product is 0.18 μm, the lattice constant is 8.470 mm, the Fe 2+ content is 20.5 wt%, the Sn element content is 16.4 wt%, and 79.6 kA / The magnetization value in a magnetic field of m was 35.1 Am 2 / kg, and the blackness a * value was 0.5. The dispersibility was evaluated by the Hoover-Muller method of the pigment dispersion test method of JIS K5101-1991. As a result, no continuous line of 10 mm or more was observed at 30 μm or more. The change coefficient of the obtained granular product was 21%.
[0045]
Example 4
150 ml of methanol was added to 10.23 g of anhydrous stannous chloride and dissolved by stirring. Separately, 150 ml of water was added to 35.0 g of ferrous sulfate heptahydrate and dissolved by stirring. Both solutions were mixed with stirring to obtain a Fe—Sn mixture (Sn: Fe (molar ratio) = 3: 7). 300 ml of water was added to 38.0 g of sodium chloride and 22.0 g of sodium hydroxide to dissolve, and the resulting aqueous solution was gradually added dropwise to the Fe-Sn mixture while stirring. After the addition, the mixture was further stirred for several hours. Fe—Sn coprecipitate Sn: Fe (molar ratio) = 3: 7) was obtained. The obtained Fe—Sn coprecipitate was hydrothermally treated at 220 ° C. for 1 hour in a hydrothermal reactor (autoclave). After completion of the hydrothermal treatment, the product was washed with water to remove excess sodium hydroxide and other alkali salts, filtered and dried to obtain a granular product.
[0046]
The obtained granular product was octahedral fine particles, and its composition was Fe 2.52 Sn 0.48 O 4 . The average particle size of the granular product is 0.13 μm, the lattice constant is 8.487%, the Fe 2+ content is 18.1 wt%, the Sn element content is 21.8 wt%, and 79.6 kA / The magnetization value in a magnetic field of m was 21.5 Am 2 / kg, and the blackness a * value was +0.7. The dispersibility was evaluated by the Hoover-Muller method of the pigment dispersion test method of JIS K5101-1991. As a result, no continuous line of 10 mm or more was observed at 30 μm or more. The change coefficient of the obtained granular product was 23%.
[0047]
【The invention's effect】
Tin-containing granular magnetic oxide particles have a large Fe 2+ content, excellent particle size distribution, sufficient blackness, and a small magnetization value, so that no magnetic cohesion is produced, and vehicles and resins Dispersibility with respect to is also excellent. Therefore, it is useful as a color pigment for paints, printing inks, rubbers and plastics, magnetic toner materials, magnetic carrier materials, and the like. Further, since tin-containing granular magnetic oxide particles can be produced at a relatively low temperature, this is an industrially useful method.

Claims (4)

下記の化学式で表されるスピネル型結晶から成り、Fe2+の含有量が17〜22重量%、格子定数が8.41〜8.49Å、印加磁界79.6kA/mでの磁化値が20〜50Am2/kg、フーバー式マラー法(JISK5101(1991)9.1)によりグラインドメーターを使用した顔料分散試験において10mm以上の連続した線を3本以上発現した時の溝の深さの値が40μm以下である錫含有粒状磁性酸化物粒子の製造方法であって、第一鉄塩水溶液と第一鉄に対してSn換算で10〜30mol%の錫化合物水溶液とアルカリ性水溶液とを混合し、得られた鉄-錫含有沈殿物を含む懸濁液を、101〜300℃で0.5〜48時間水熱処理することを特徴とする錫含有粒状磁性酸化物粒子の製造方法。
【化1】
Fe3-xSnx4
(式中、xは0.14〜0.48である)
It consists of a spinel type crystal represented by the following chemical formula, the Fe 2+ content is 17-22 wt%, the lattice constant is 8.41-8.49%, and the magnetization value is 20 at an applied magnetic field of 79.6 kA / m. The depth value of the groove when 3 or more continuous lines of 10 mm or more are expressed in a pigment dispersion test using a grindometer by the Hoover-type Muller method (JISK5101 (1991) 9.1) by -50 Am 2 / kg A method for producing tin-containing granular magnetic oxide particles having a particle size of 40 μm or less, comprising mixing an aqueous ferrous salt solution and an aqueous tin compound solution of 10 to 30 mol% in terms of Sn with respect to ferrous iron, and an alkaline aqueous solution. A method for producing tin-containing granular magnetic oxide particles, comprising subjecting the suspension containing the iron-tin-containing precipitate to hydrothermal treatment at 101 to 300 ° C for 0.5 to 48 hours.
[Chemical 1]
Fe 3-x Sn x O 4
(Wherein x is 0.14 to 0.48)
得られる錫含有粒状磁性酸化物粒子の平均粒子径が0.1〜0.3μmである請求項1に記載の錫含有粒状磁性酸化物粒子の製造方法 The method for producing tin-containing granular magnetic oxide particles according to claim 1, wherein the average particle diameter of the obtained tin-containing granular magnetic oxide particles is 0.1 to 0.3 µm. 得られる錫含有粒状磁性酸化物粒子の黒色度(a*値)が、+1.5以下である請求項1に記載の錫含有粒状磁性酸化物粒子の製造方法 The method for producing tin-containing granular magnetic oxide particles according to claim 1, wherein the obtained tin-containing granular magnetic oxide particles have a blackness (a * value) of +1.5 or less. 水熱処理をアンモニウム塩または前記アルカリ性水溶液と同一のアルカリ金属の塩の存在下で行う請求項に記載の製造方法。The production method according to claim 1 , wherein the hydrothermal treatment is performed in the presence of an ammonium salt or the same alkali metal salt as the alkaline aqueous solution.
JP2001153867A 2000-05-25 2001-05-23 Method for producing tin-containing granular magnetic oxide particles Expired - Lifetime JP4691633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001153867A JP4691633B2 (en) 2000-05-25 2001-05-23 Method for producing tin-containing granular magnetic oxide particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000154247A JP2001351811A (en) 2000-05-25 2000-05-25 Tin-containing granular magnetic oxide particles and its manufacturing method
JP2000154247 2000-05-25
JP2000-154247 2000-05-25
JP2001153867A JP4691633B2 (en) 2000-05-25 2001-05-23 Method for producing tin-containing granular magnetic oxide particles

Publications (2)

Publication Number Publication Date
JP2002068749A JP2002068749A (en) 2002-03-08
JP4691633B2 true JP4691633B2 (en) 2011-06-01

Family

ID=26592547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001153867A Expired - Lifetime JP4691633B2 (en) 2000-05-25 2001-05-23 Method for producing tin-containing granular magnetic oxide particles

Country Status (1)

Country Link
JP (1) JP4691633B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534125B2 (en) * 2004-02-13 2010-09-01 戸田工業株式会社 Iron-based black particle powder and black toner containing the iron-based black particle powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122726A (en) * 1983-12-06 1985-07-01 Central Glass Co Ltd Manufacture of fine particle of magneto plumboferrite by wet process
JPH07101731A (en) * 1993-09-30 1995-04-18 Toda Kogyo Corp Granular magnetite particle powder and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122726A (en) * 1983-12-06 1985-07-01 Central Glass Co Ltd Manufacture of fine particle of magneto plumboferrite by wet process
JPH07101731A (en) * 1993-09-30 1995-04-18 Toda Kogyo Corp Granular magnetite particle powder and its production

Also Published As

Publication number Publication date
JP2002068749A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
US5843610A (en) Magnetic particles for magentic toner and process for producing the same
DE60218550T2 (en) Black magnetic iron oxide particles and magnetic toner
EP0187434A2 (en) Spherical magnetite particles
EP0622426B1 (en) Coated granular magnetite particles and process for producing the same
US6383637B1 (en) Black magnetic iron oxide particles for magnetic toner and process for producing the same
EP1849839B1 (en) Black magnetic iron oxide particles
JP3934858B2 (en) Black complex oxide particles and method for producing the same
JP5273519B2 (en) Black magnetic iron oxide particle powder
JP5136749B2 (en) Black magnetic iron oxide particle powder
JP4691633B2 (en) Method for producing tin-containing granular magnetic oxide particles
JP3828727B2 (en) Iron oxide particles
JP3440586B2 (en) Granular magnetite particle powder and method for producing the same
JP2756845B2 (en) Hexahedral magnetite particle powder and its manufacturing method
JP4728556B2 (en) Black complex oxide particles and method for producing the same
US6596255B2 (en) Tin-containing granular magnetic oxide particles and process for producing the same
JP4780856B2 (en) Granular magnetite particles and method for producing the same
JP4183497B2 (en) Black complex oxide particles and method for producing the same
JP3149886B2 (en) Method for producing spherical magnetite particle powder
JP3440585B2 (en) Granular magnetite particle powder and method for producing the same
JP4753029B2 (en) Iron-based black particle powder for toner
JP3314788B2 (en) Granular magnetite particle powder and method for producing the same
JP2743028B2 (en) Iron oxide superparamagnetic fine particle powder and method for producing the same
JP3006633B2 (en) Iron oxide superparamagnetic fine particle powder and method for producing the same
JP3595197B2 (en) Iron oxide particles and method for producing the same
JPH06310317A (en) Granular magnetite particle powder and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080602

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4691633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term