JP4690962B2 - Method for evaluating local corrosion of metal materials for petroleum containers - Google Patents

Method for evaluating local corrosion of metal materials for petroleum containers Download PDF

Info

Publication number
JP4690962B2
JP4690962B2 JP2006214610A JP2006214610A JP4690962B2 JP 4690962 B2 JP4690962 B2 JP 4690962B2 JP 2006214610 A JP2006214610 A JP 2006214610A JP 2006214610 A JP2006214610 A JP 2006214610A JP 4690962 B2 JP4690962 B2 JP 4690962B2
Authority
JP
Japan
Prior art keywords
corrosion
test
metal material
local
petroleum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006214610A
Other languages
Japanese (ja)
Other versions
JP2008039598A (en
Inventor
真司 阪下
弘樹 今村
明彦 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006214610A priority Critical patent/JP4690962B2/en
Publication of JP2008039598A publication Critical patent/JP2008039598A/en
Application granted granted Critical
Publication of JP4690962B2 publication Critical patent/JP4690962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、原油および石油由来の油類の貯蔵、輸送、機器搭載等のための石油類容器に用いる石油類容器用金属材料の局部腐食性評価方法に関する。   The present invention relates to a method for evaluating local corrosivity of metal materials for petroleum containers used in petroleum containers for storage, transportation, equipment mounting, and the like of crude oil and petroleum-derived oils.

原油、重油、軽油、灯油、ガソリン、石油アスファルト、潤滑油、切削油、マシン油、グリース、石油ワックス、さび止め油、石油エーテル等の原油および石油由来の油類の貯蔵や運搬等に用いられる容器(以下、適宜「石油類容器」という)は、鋼材等の金属材料で作製されるのが一般的である。しかしながら、近年、原油等に含まれる硫黄分やタンク底に滞留する塩化物を含む水分等に起因して、容器に用いる金属材料が激しい局部腐食を受け、早期に穴あきに至ってしまうという問題が顕在化している。こうした石油類容器の材料の腐食は、例えば原油タンカーでは沈没事故といった重大事故を招くため、材質選定や肉厚設定等の容器設計や寿命予測のための局部腐食性評価を行う必要がある。   Used for storage and transportation of crude oil such as crude oil, heavy oil, light oil, kerosene, gasoline, petroleum asphalt, lubricating oil, cutting oil, machine oil, grease, petroleum wax, rust preventive oil, petroleum ether, etc. A container (hereinafter referred to as “petroleum container” as appropriate) is generally made of a metal material such as steel. However, in recent years, there has been a problem that the metal material used for the container has been subjected to severe local corrosion due to sulfur contained in crude oil or the like and water containing chlorides remaining at the bottom of the tank, leading to early perforation. It has become apparent. Such corrosion of the material of petroleum containers causes a serious accident such as a sinking accident in a crude oil tanker, for example. Therefore, it is necessary to perform local corrosion evaluation for container design and life prediction such as material selection and wall thickness setting.

このような局部腐食性評価としては、評価対象である金属材料を、使用する石油類に浸漬させたり、既設の石油類容器内に暴露したりして、当該金属材料の腐食損傷状況を調べることが一般的によく行われている。このような金属材料の腐食損傷状況に関しては、特に実環境での暴露試験を行うことによって正確な評価が可能である。
また、石油類容器の金属材料で生じる局部腐食は孔食となる場合が多いが、このような孔食を簡便に評価する方法として、塩化第二鉄溶液を用いてステンレス鋼(鋼材)の耐孔食性を調べる方法がJIS G0578に定められている。この方法は、35℃または50℃における6質量%塩化第二鉄溶液に試験片を24時間浸漬して、質量変化より腐食度を評価するものである。
For such local corrosion evaluation, the metal material to be evaluated is immersed in the petroleum to be used or exposed to the existing petroleum container to examine the corrosion damage status of the metal material. Is generally done well. With respect to the corrosion damage situation of such a metal material, an accurate evaluation can be performed by conducting an exposure test in an actual environment.
In addition, local corrosion that occurs in metal materials of petroleum containers often results in pitting corrosion. However, as a method for simply evaluating such pitting corrosion, ferric chloride solution is used to resist the resistance of stainless steel (steel). A method for examining pitting resistance is defined in JIS G0578. In this method, a test piece is immersed in a 6% by mass ferric chloride solution at 35 ° C. or 50 ° C. for 24 hours, and the degree of corrosion is evaluated from the mass change.

さらに、孔食の発生条件として一定温度を保持したサワー原油の満載状態を想定し、硫黄を付着させた研磨鋼板および黒皮付鋼板について孔食の発生状況を調べ、さらに、発生した孔食の形状、深さ、成長速度について検討した模擬原油タンクにおける孔食再現試験方法が開示されている(非特許文献1参照)。
海上安全研究領域 材料信頼性研究グループ「模擬原油タンクにおける孔食再現試験」独立行政法人海上技術安全研究所 研究発表会講演集 2003年6月 p.1‐4
In addition, assuming the full condition of sour crude oil that maintains a constant temperature as a pitting corrosion occurrence condition, we investigated the occurrence of pitting corrosion on polished steel sheets and black skinned steel sheets to which sulfur was attached. A pitting corrosion reproduction test method in a simulated crude oil tank that has been examined for shape, depth, and growth rate is disclosed (see Non-Patent Document 1).
Maritime Safety Research Area Material Reliability Research Group “Reproduction Test of Pitting Corrosion in Simulated Crude Oil Tanks” Independent Administrative Institution Maritime Technical Safety Research Institute Lecture Meeting June 2003 p. 1-4

しかしながら、前記した従来の腐食性を評価する方法には、以下に示す問題があった。
実環境での暴露試験では、試験期間に数年程度の長期間を要することに加えて、局部腐食は確率論的に発生するために、大面積の試験片が必要になるという問題があった。
また、JIS G0578に定められている方法は、ステンレス鋼材に対しては短時間で耐食性を評価できる方法として有効であるが、炭素鋼材や低合金鋼材には、環境条件が厳しすぎて適用できないという問題があった。
さらに、非特許文献1に記載の方法は、タンカーの原油タンクにおける局部腐食を高精度で評価することが可能であるが、専用の評価試験設備が必要であることに加え、評価期間も6ヶ月程度と、暴露試験ほどではないが、比較的長期間を要するという問題があった。
However, the conventional methods for evaluating corrosivity have the following problems.
In the exposure test in the actual environment, in addition to the long period of about several years in the test period, there is a problem that a large area test piece is required because local corrosion occurs stochastically. .
The method defined in JIS G0578 is effective as a method for evaluating corrosion resistance in a short time for stainless steel materials, but is not applicable to carbon steel materials and low alloy steel materials due to too severe environmental conditions. There was a problem.
Furthermore, the method described in Non-Patent Document 1 can accurately evaluate local corrosion in a crude oil tank of a tanker. However, in addition to the need for a dedicated evaluation test facility, the evaluation period is also 6 months. There was a problem that it took a relatively long time, although not as much as the exposure test.

本発明は、前記課題に鑑みてなされたものであり、その目的は、石油類容器に用いる石油類容器用金属材料における実機での局部腐食性(耐食性)評価を、迅速かつ簡便に、また、高精度で行う石油類容器用金属材料の局部腐食性評価方法を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to quickly and easily evaluate local corrosion (corrosion resistance) in an actual machine in a metal material for petroleum containers used in petroleum containers, The object is to provide a method for evaluating the local corrosion of a metal material for petroleum containers with high accuracy.

本発明に係る石油類容器用金属材料の局部腐食性評価方法は、石油類容器の局部腐食がSに起因して生じる浸食現象であることをふまえ、評価対象である金属材料の局部腐食発生部を模擬した試験を行うことによって、実機での局部腐食性を迅速かつ簡便に、また、高精度で評価するものである。
すなわち、請求項1に係る石油類容器用金属材料の局部腐食性評価方法は、石油類を収容する容器に用いられる金属材料の局部腐食性評価方法において、前記金属材料を用いて作製された金属片を、NaCl水溶液とS粉末とを混合した溶液に接触させて腐食させる腐食試験を行い、当該腐食試験前後の金属片の質量変化から平均腐食深さを求め、さらに腐食試験後の表面の粗さを測定して測定値を求め、この平均腐食深さと表面の粗さの測定値を合計することすることで、前記腐食させた金属片の最大腐食深さを求めることにより、前記金属材料の局部腐食性を評価することを特徴とする。
The method for evaluating the local corrosion property of a metal material for petroleum containers according to the present invention is based on the fact that the local corrosion of a petroleum container is an erosion phenomenon caused by S, and the local corrosion occurrence part of the metal material to be evaluated. By conducting a test that simulates the above, local corrosivity in an actual machine is evaluated quickly and easily with high accuracy.
That is, the local corrosivity evaluation method for a metal material for petroleum containers according to claim 1 is a metal produced by using the metal material in the local corrosivity evaluation method for a metal material used for a container for containing petroleum. pieces, carried out corrosion tests Ru corrode in contact with the solution of a mixture of N NaCl solution and S powder, an average corrosion depth from the mass change of the corrosion test before and after the metal piece, further surface after the corrosion test the roughness was measured sought measurements of, by that summing the measurements of the roughness of the average corrosion depth and the surface, by determining the maximum corrosion depth of the metal piece made by the corrosion, the metal It is characterized by evaluating the local corrosivity of the material.

このような構成によれば、金属材料を用いて作製された金属片を、NaCl水溶液とS粉末とを混合した溶液に接触させることで、金属片が腐食する。そして、平均腐食深さと表面の粗さの測定値を合計することで、この腐食した金属片の最大腐食深さを求めることにより金属材料の局部腐食性を評価することで、石油類容器用金属材料における実機での局部腐食性の評価を迅速かつ簡便に、また、高精度で行うことができる。 According to this structure, the metal pieces made of a metal material, is brought into contact with the solution of a mixture of N NaCl solution and S powder, metal pieces may corrode. Then, by adding the measured values of the average corrosion depth and the surface roughness to obtain the maximum corrosion depth of the corroded metal piece, the local corrosivity of the metal material is evaluated. Evaluation of local corrosiveness of the material in the actual machine can be performed quickly and easily with high accuracy.

請求項2に係る石油類容器用金属材料の局部腐食性評価方法は、前記金属材料が鋼材であることを特徴とする。
このような構成によれば、金属材料として鋼材を使用することで、鋼材を使用した石油類容器における実機での局部腐食性評価を迅速かつ簡便に、また、高精度で行うことができる。
The local corrosiveness evaluation method for a metal material for petroleum containers according to claim 2 is characterized in that the metal material is a steel material.
According to such a configuration, by using a steel material as the metal material, it is possible to perform a local corrosion evaluation in an actual machine in a petroleum container using the steel material quickly, easily, and with high accuracy.

本発明に係る石油類容器用金属材料の局部腐食性評価方法によれば、評価対象である金属片(金属材料)において局部腐食発生部を模擬した試験を行い、平均腐食深さと表面の粗さの測定値を合計することで、得られた金属片の最大腐食深さを求めることにより金属材料の局部腐食性を評価することで、石油類容器用金属材料における実機での局部腐食性を迅速かつ簡便に、また、高精度で評価することができる。 According to the method for evaluating local corrosion of a metal material for petroleum containers according to the present invention, a test simulating a local corrosion occurrence portion is performed on a metal piece (metal material) to be evaluated, and the average corrosion depth and surface roughness are measured. by summing the measurements to assess the local corrosion of metallic material by determining the maximum corrosion depth of the resultant metal pieces, quickly localized corrosion of the actual machine in petroleum container metallic material In addition, the evaluation can be performed easily and with high accuracy.

以下、本発明を実施するための最良の形態について詳細に説明する。
本発明の評価方法では、まず、金属材料を用いて作製された金属片を、水またはNaCl水溶液(以下、適宜「溶媒」という)とS粉末とを混合した溶液に接触させて腐食させる(腐食試験)。次に、この腐食試験で腐食させた金属片の最大腐食深さを測定することにより局部腐食性を評価する。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
In the evaluation method of the present invention, first, a metal piece produced using a metal material is corroded by being brought into contact with a mixed solution of water or an aqueous NaCl solution (hereinafter referred to as “solvent”) and S powder (corrosion). test). Next, the local corrosion property is evaluated by measuring the maximum corrosion depth of the metal piece corroded in this corrosion test.

[腐食試験]
試験片として用いる金属片は、実機における局部腐食部を模擬するものである。この金属片は、転炉溶製により金属材料の原料を溶製して、所定の化学成分を有する金属材料を作製し、この金属材料から所定の大きさに切り出して作製する。そして、この金属片の全面を研磨仕上げし、水洗およびアセトン洗浄を行って腐食試験用の試験片とする。
[Corrosion test]
The metal piece used as the test piece simulates a local corrosion portion in an actual machine. This metal piece is produced by melting a raw material of a metal material by converter melting, producing a metal material having a predetermined chemical component, and cutting the metal material into a predetermined size. Then, the entire surface of the metal piece is polished and washed with water and acetone to obtain a test piece for a corrosion test.

金属片の大きさは、小さすぎると腐食試験前後の質量変化の測定において測定精度が悪くなるため好ましくない。また、金属片の大きさが大きすぎると、腐食試験後の粗さ測定に時間がかかるため好ましくない。さらに、厚さが薄い場合には、貫通によって正確な腐食深さが測定できないので好ましくない。このような観点から、試験片として用いる金属片の大きさは、概ね10×10×3mmから50×50×50mm程度の範囲が好ましく、20×20×5mmから30×30×10mm程度の範囲がより好ましい。   If the size of the metal piece is too small, it is not preferable because the measurement accuracy deteriorates in the measurement of mass change before and after the corrosion test. Also, if the size of the metal piece is too large, it takes a long time to measure the roughness after the corrosion test, which is not preferable. Furthermore, when the thickness is small, it is not preferable because an accurate corrosion depth cannot be measured by penetration. From such a viewpoint, the size of the metal piece used as the test piece is preferably in a range of approximately 10 × 10 × 3 mm to 50 × 50 × 50 mm, and preferably in a range of 20 × 20 × 5 mm to 30 × 30 × 10 mm. More preferred.

ここで、金属片を作製する金属材料としては、鋼材を用いることが好ましく、鋼材としては、ステンレス鋼材、炭素鋼材、低合金鋼材、鉄鋼材等が挙げられるが、アルミニウム合金材やチタン合金材等の鋼材以外の金属材料を用いてもよい。
油類容器用に用いられる金属材料としては、機械特性や経済性の観点から鋼材を用いることが多いが、試験片の金属材料として鋼材を用いることにより、鋼材を使用した石油類容器における実機での局部腐食性評価を、迅速かつ簡便に、また、高精度で行うことができる。
Here, as the metal material for producing the metal piece, it is preferable to use a steel material. Examples of the steel material include stainless steel material, carbon steel material, low alloy steel material, steel material, etc., but aluminum alloy material, titanium alloy material, etc. You may use metal materials other than these steel materials.
As a metal material used for oil containers, steel is often used from the viewpoint of mechanical properties and economy, but by using steel as the metal material of the test piece, it is an actual machine in petroleum containers using steel. The local corrosive evaluation can be performed quickly and easily with high accuracy.

試験溶液として用いる水またはNaCl水溶液(溶媒)とS粉末との混合物は、局部腐食を起こす石油類容器の先端環境を模擬するものである。S粉末としては、一般的に市販されている粉末状S試薬を用いることができ、特に、特級試薬を用いることが好ましく、例えば、和光純薬工業(株)製の硫黄粉末(コードNo.195−04651)等が挙げられる。   The mixture of water or NaCl aqueous solution (solvent) and S powder used as the test solution simulates the advanced environment of petroleum containers that cause local corrosion. As the S powder, a commercially available powdered S reagent can be used, and a special grade reagent is particularly preferably used. For example, sulfur powder (Code No. 195) manufactured by Wako Pure Chemical Industries, Ltd. -04651) and the like.

水としては、イオン交換水あるいは蒸留水を用いることが試験の再現性確保の点から好ましい。
また、腐食反応が進行するための導電性を確保するため、水の代わりに、NaCl水溶液を用いることがさらに好ましい。
NaCl水溶液としては、前記した水に、NaCl濃度が0.5〜30質量%となるようにNaClを添加することが好ましい。NaCl濃度が0.5質量%未満であると、導電性が低いため腐食を再現しにくい。また、NaCl濃度が30質量%を超えると、塩が析出して油類容器の腐食を正確に再現できない場合があるため好ましくない。したがって、NaCl濃度は、0.5〜30質量%が好ましく、1〜10質量%がより好ましい。
As water, it is preferable to use ion-exchanged water or distilled water from the viewpoint of ensuring the reproducibility of the test.
Further, it is more preferable to use an aqueous NaCl solution instead of water in order to ensure conductivity for the progress of the corrosion reaction.
As the NaCl aqueous solution, it is preferable to add NaCl to the above water so that the NaCl concentration is 0.5 to 30% by mass. When the NaCl concentration is less than 0.5% by mass, it is difficult to reproduce corrosion because of low conductivity. On the other hand, if the NaCl concentration exceeds 30% by mass, salt may precipitate and corrosion of the oil container may not be accurately reproduced. Therefore, the NaCl concentration is preferably 0.5 to 30% by mass, and more preferably 1 to 10% by mass.

また、溶媒とS粉末との混合物に金属片を接触させる際の処理温度は、20〜80℃が好ましく、処理時間は、24〜240時間が好ましい。さらに、溶媒1に対してSを0.1〜1の質量比で混合するのが好ましい。
処理温度が低すぎると、局部腐食反応の進行が遅いため、正確な測定が可能な局部腐食深さを得るのに長時間を要する。一方、処理温度が高すぎると、局部腐食が激しすぎて金属材料の局部腐食特性の違いが現れにくい。したがって、処理温度は20〜80℃が好ましく、25〜60℃がより好ましい。
Moreover, 20-80 degreeC is preferable and the processing temperature at the time of making a metal piece contact a mixture of a solvent and S powder and 24 to 240 hours are preferable. Furthermore, it is preferable to mix S with the mass ratio of 0.1-1 with respect to the solvent 1. FIG.
If the treatment temperature is too low, the progress of the local corrosion reaction is slow, and it takes a long time to obtain a local corrosion depth that allows accurate measurement. On the other hand, if the treatment temperature is too high, the local corrosion is too intense, and the difference in the local corrosion characteristics of the metal material hardly appears. Therefore, the treatment temperature is preferably 20 to 80 ° C, more preferably 25 to 60 ° C.

処理時間は、用いる溶液のS混合比や処理温度等の処理条件によって異なるが、処理時間が短すぎると、局部腐食深さの測定の精度が低くなりやすい。一方、処理時間が長すぎると、局部腐食が試験片を貫通するため、正確な局部腐食深さの測定ができない。したがって、処理時間は、おおむね24〜240時間が好ましいが、この処理時間は、他の処理条件との兼ね合いで決定する。   The treatment time varies depending on the treatment conditions such as the S mixing ratio of the solution used and the treatment temperature, but if the treatment time is too short, the accuracy of measurement of the local corrosion depth tends to be low. On the other hand, if the treatment time is too long, the local corrosion penetrates the test piece, so that the accurate local corrosion depth cannot be measured. Therefore, the processing time is preferably about 24 to 240 hours, but this processing time is determined in consideration of other processing conditions.

溶媒1に対するSの質量比が0.1未満であると、Sが少なすぎて局部腐食が生じ難く、一方、1を越えると、局部腐食が激しすぎて材料の局部腐食特性の違いが現れなくなる。したがって、溶媒とSとの混合比は、質量比で、溶媒1に対して、Sを0.1〜1の範囲とすることが好ましい。   If the mass ratio of S to solvent 1 is less than 0.1, S is too small to cause local corrosion, whereas if it exceeds 1, local corrosion is too severe and a difference in the local corrosion characteristics of the materials appears. Disappear. Therefore, it is preferable that the mixing ratio of the solvent and S is a mass ratio and that S is in the range of 0.1 to 1 with respect to the solvent 1.

[最大腐食深さの測定]
最大腐食深さを測定する方法としては、腐食試験前後の試験片(金属片)の質量変化から平均腐食深さを求め、さらに腐食試験後の表面の粗さを測定して測定値を求め、この平均腐食深さと表面の粗さの測定値を合計することにより、最大腐食深さを測定することが好ましい。また、精度の良い測定を行うために、腐食試験後の質量および表面の粗さの測定の前には、腐食生成物を除去することが好ましい。腐食生成物の除去方法としては、インヒビターを添加した酸等、適切な除去液に浸漬させる方法、クエン酸水素二アンモニウム水溶液等を用いた陰極電解法、あるいはウォータージェット法等を用いることが可能である。
[Measurement of maximum corrosion depth]
As a method of measuring the maximum corrosion depth, the average corrosion depth is obtained from the mass change of the test piece (metal piece) before and after the corrosion test, the surface roughness after the corrosion test is measured, and the measured value is obtained. It is preferable to measure the maximum corrosion depth by adding up the measured values of the average corrosion depth and the surface roughness. Further, in order to perform measurement with high accuracy, it is preferable to remove the corrosion products before measuring the mass and the roughness of the surface after the corrosion test. As a method for removing the corrosion product, it is possible to use a method of immersing in an appropriate removal solution such as an acid to which an inhibitor is added, a cathode electrolysis method using an aqueous solution of diammonium hydrogen citrate, a water jet method, or the like. is there.

局部腐食性評価方法は、腐食試験で腐食させた金属片の最大腐食深さを極値解析法によってデータ解析を行うことで、実機の最大腐食深さを推定することが可能であるため、この最大腐食深さを測定することにより評価する。すなわち、前記腐食試験に複数個の試験片を用いて、各々の試験片の最大腐食深さを求め、極値プロットを行って実機の最大腐食深さを求める。これは、局部腐食における最大腐食深さがガンベル分布に従うということに基づくものである。   In the local corrosion evaluation method, it is possible to estimate the maximum corrosion depth of the actual machine by analyzing the data of the maximum corrosion depth of the metal piece corroded in the corrosion test using the extreme value analysis method. Assess by measuring the maximum corrosion depth. That is, using a plurality of test pieces in the corrosion test, the maximum corrosion depth of each test piece is obtained, and extreme value plotting is performed to obtain the maximum corrosion depth of the actual machine. This is based on the fact that the maximum corrosion depth in local corrosion follows a Gumbel distribution.

本発明の評価方法においては、ある材料の腐食発生面積率が既知である場合には、再帰期間(T)を用いて、実機での使用面積に相当する最大腐食深さを求めることが可能である。ここで、実機での使用面積をA、腐食発生面積率をB、評価試験に用いる試験片面積をCとすると、「T=A×B/C」に相当する最大腐食深さが実機における最大腐食深さの推定値となる。この推定は、材種が異なった場合にも腐食発生面積率は変わらないという前提条件において成り立つものである。
なお、実機での使用面積とは、本発明で評価対象としている環境、すなわち、実機において、石油類と接触している材料の総面積を意味する。また、腐食発生面積とは、発生した局部腐食の総面積を意味する。
In the evaluation method of the present invention, when the corrosion occurrence area ratio of a certain material is known, it is possible to obtain the maximum corrosion depth corresponding to the area used in the actual machine using the recursion period (T). is there. Here, assuming that the use area in the actual machine is A, the corrosion occurrence area rate is B, and the test piece area used in the evaluation test is C, the maximum corrosion depth corresponding to “T = A × B / C” is the maximum in the actual machine. This is an estimate of the corrosion depth. This estimation is based on the precondition that the corrosion occurrence area ratio does not change even when the material type is different.
In addition, the usage area in the actual machine means the total area of the material in contact with petroleum in the environment that is the object of evaluation in the present invention, that is, in the actual machine. Further, the corrosion occurrence area means the total area of the local corrosion that has occurred.

次に、本発明に係る石油類容器用金属材料の局部腐食性評価方法の実施例について、図面を参照して説明する。
参照する図面において、図1は、腐食試験後の試験片断面における最大腐食深さを示す説明図であり、図2は、最大腐食深さの極値プロットを示す極値プロット図である。
なお、本発明の評価方法における評価結果と、従来の評価方法における評価結果との整合性を示すため、従来の評価方法(暴露試験)における評価結果を合わせて示す。
Next, examples of the method for evaluating local corrosion of a metal material for petroleum containers according to the present invention will be described with reference to the drawings.
In the drawings to be referred to, FIG. 1 is an explanatory diagram showing a maximum corrosion depth in a cross section of a specimen after a corrosion test, and FIG. 2 is an extreme value plot diagram showing an extreme value plot of the maximum corrosion depth.
In addition, in order to show the consistency between the evaluation result in the evaluation method of the present invention and the evaluation result in the conventional evaluation method, the evaluation result in the conventional evaluation method (exposure test) is also shown.

<本発明に係る評価方法>
[試験方法]
転炉溶製により鋼材の原料を溶製して、表1に示すAからDの化学成分を有する鋼材を作製し、この鋼材から30×30×5(mm)の大きさの金属片を切り出した。切り出した金属片の全面を湿式回転研磨機(研磨紙;#600)で研磨仕上げし、水洗およびアセトン洗浄を行って腐食試験用の試験片とした。この試験片を使用して、以下の腐食試験を行った。
<Evaluation method according to the present invention>
[Test method]
Steel materials are melted by converter melting to produce steel materials having chemical components A to D shown in Table 1, and metal pieces with a size of 30 × 30 × 5 (mm) are cut out from the steel materials. It was. The entire surface of the cut metal piece was polished with a wet rotary polishing machine (abrasive paper; # 600), washed with water and washed with acetone to obtain a test piece for a corrosion test. Using this test piece, the following corrosion test was conducted.

Figure 0004690962
Figure 0004690962

腐食試験の溶液は、NaCl特級試薬(和光純薬工業(株)製:コードNo.191−01665)およびイオン交換水を用いて8質量%NaCl水溶液を作製し、当該8質量%NaCl水溶液1に対して粉末状S特級試薬(和光純薬工業(株)製:コードNo.195−04651)を0.5の質量比で混合したものである。腐食試験では、当該粉末Sを混合した溶液に前記試験片を浸漬して腐食させた。このときの溶液温度は30℃、試験時間は168時間である。そして、図1に示すように、腐食試験前後の質量変化から平均腐食深さ(A)を求め、さらに試験後の試験片表面の3次元粗さ測定を行って、粗さ測定値(B)を求め、これらを合計して試験片の最大腐食深さ(A+B)を求めた。なお、試験終了後に試験片表面に生成している腐食生成物は、10質量%クエン酸水素二アンモニウム水溶液中での陰極電解法によって除去した。   The corrosion test solution was prepared by using an NaCl special grade reagent (manufactured by Wako Pure Chemical Industries, Ltd .: Code No. 191-01665) and ion-exchanged water to prepare an 8% by mass NaCl aqueous solution. On the other hand, a powdery S grade reagent (Wako Pure Chemical Industries, Ltd .: Code No. 195-04651) is mixed at a mass ratio of 0.5. In the corrosion test, the test piece was immersed in a solution mixed with the powder S to be corroded. The solution temperature at this time is 30 ° C., and the test time is 168 hours. And as shown in FIG. 1, average corrosion depth (A) is calculated | required from the mass change before and behind a corrosion test, Furthermore, the three-dimensional roughness measurement of the test piece surface after a test is performed, and roughness measured value (B) These were added together to determine the maximum corrosion depth (A + B) of the test piece. In addition, the corrosion product produced | generated on the test piece surface after completion | finish of a test was removed by the cathodic electrolysis method in 10 mass% diammonium hydrogen citrate aqueous solution.

[試験結果]
前記腐食試験を行って求めた鋼材A、B、CおよびDの最大腐食深さについて、極値プロットを行った。この極値プロット(ガンベル分布)を図2に示す。図2は、Aは30個、Bは6個、Cは10個、Dは8個の試験片について、最大腐食深さを求め、それぞれ小さい順に並べて平均ランク法によりプロットした結果である。なお、縦軸は、再帰期間および累積確率、横軸は、最大腐食深さである。最大腐食深さは確率論的にばらついており、ガンベル分布に従っている。すなわち、実機での使用面積が広ければ広いほど、最大腐食深さは深くなることを意味するものである。
[Test results]
An extreme value plot was performed for the maximum corrosion depth of the steel materials A, B, C, and D obtained by performing the corrosion test. This extreme value plot (Gumbel distribution) is shown in FIG. FIG. 2 shows the results of obtaining the maximum corrosion depth for 30 test pieces, B for 6 pieces, C for 10 pieces, and D for 8 pieces, and arranging them in ascending order by the average rank method. The vertical axis represents the recursion period and the cumulative probability, and the horizontal axis represents the maximum corrosion depth. The maximum corrosion depth varies stochastically and follows the Gumbel distribution. That is, it means that the larger the use area in the actual machine, the deeper the maximum corrosion depth.

次に、実機での使用面積に相当する最大腐食深さを求める。本実施例では、試験片の大きさは30×30×5mmであるから、用いた試験片面積Cは2.4×10mmである。そして、例えば、実機容器の面積(実機での使用面積)が2.4×10mm、腐食発生面積率が0.1%であれば、T=2.4×10×0.001÷2.4×10=100に相当する最大腐食深さが実機での最大腐食深さと見積もることができる。 Next, the maximum corrosion depth corresponding to the use area in the actual machine is obtained. In this example, since the size of the test piece is 30 × 30 × 5 mm, the test piece area C used is 2.4 × 10 3 mm 2 . For example, if the area of the actual container (area used in the actual apparatus) is 2.4 × 10 8 mm 2 and the corrosion occurrence area ratio is 0.1%, T = 2.4 × 10 8 × 0.001. ÷ The maximum corrosion depth corresponding to 2.4 × 10 3 = 100 can be estimated as the maximum corrosion depth in the actual machine.

前記の実験結果より、実機での使用面積に相当する最大腐食深さを推測した結果を表2に示す。   Table 2 shows the results of estimating the maximum corrosion depth corresponding to the area used in the actual machine from the above experimental results.

Figure 0004690962
Figure 0004690962

表2は、図2のプロットの最小自乗法で求めた外挿線を外挿して、再帰期間T=100における最大腐食深さを読んだものである。
なお、本結果によれば、鋼材B、鋼材Cおよび鋼材Dの最大腐食深さは、ぞれぞれ、鋼材Aの35.7%、30.0%および28.1%と評価される。
Table 2 is obtained by extrapolating the extrapolated line obtained by the least square method of the plot of FIG. 2 and reading the maximum corrosion depth in the recursion period T = 100.
In addition, according to this result, the maximum corrosion depth of the steel materials B, C, and D is evaluated to be 35.7%, 30.0%, and 28.1% of the steel material A, respectively.

<従来の評価方法(暴露試験)>
[試験方法]
原油の貯蔵容器内に、表3に示すA、B、CおよびDの鋼材を暴露して、本発明に係る評価方法との相関関係を調べた。用いた試験片は、大きさが1000×1000×19(mm)であり、貯蔵容器底に平行に設置して原油(クエート産)に暴露した。なお、使用した鋼材は、前記の本発明に係る評価方法と同様の方法で作製した。5年間の暴露後に試験片を取り出して、ウォータージェット法により錆等の腐食生成物を除去し、デプスゲージを用いて腐食部の腐食深さを測定した。
<Conventional evaluation method (exposure test)>
[Test method]
Steel materials A, B, C and D shown in Table 3 were exposed in a crude oil storage container, and the correlation with the evaluation method according to the present invention was examined. The test piece used had a size of 1000 × 1000 × 19 (mm) and was placed in parallel with the bottom of the storage container and exposed to crude oil (produced by Kuwait). In addition, the used steel materials were produced by the same method as the evaluation method according to the present invention. After the exposure for 5 years, the test piece was taken out, corrosion products such as rust were removed by the water jet method, and the corrosion depth of the corroded portion was measured using a depth gauge.

[試験結果]
前記試験を行って求めた鋼材A、B、CおよびDの最大腐食深さを表3に示す。
[Test results]
Table 3 shows the maximum corrosion depths of the steel materials A, B, C, and D obtained by performing the test.

Figure 0004690962
Figure 0004690962

表3に示すように、最大腐食深さの比率は、本発明による評価結果(表2)とほぼ一致する結果であり、本発明が迅速かつ簡便に、また、暴露試験と同様に高精度で腐食状況を評価できることがわかる。
以上説明したように、本発明に係る石油類容器用金属材料の局部腐食性評価方法によれば、各種鋼材の実機での使用面積における最大腐食深さを簡便に求めることができる。この最大腐食深さを元に、各鋼材での最大腐食深さの違い等から、石油類容器用金属材料における実機での耐食性評価を迅速かつ簡便に、また、高精度で行うことができる。
As shown in Table 3, the ratio of the maximum corrosion depth is a result that almost coincides with the evaluation result according to the present invention (Table 2), and the present invention is quick and simple, and with high accuracy as in the exposure test. It can be seen that the corrosion situation can be evaluated.
As described above, according to the local corrosion evaluation method for a metal material for petroleum containers according to the present invention, the maximum corrosion depth in the use area of various steel materials in an actual machine can be easily obtained. Based on this maximum corrosion depth, the corrosion resistance evaluation with an actual machine for a metal material for petroleum containers can be performed quickly, easily, and with high accuracy from the difference in the maximum corrosion depth of each steel material.

以上、本発明の好適な実施形態、実施例について説明してきたが、本発明は前記実施形態、実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲において広く変更、改変して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   The preferred embodiments and examples of the present invention have been described above. However, the present invention is not limited to the above-described embodiments and examples, and various changes and modifications can be made within the scope that can meet the spirit of the present invention. These are all included in the technical scope of the present invention.

腐食試験後の試験片断面における最大腐食深さを示す説明図である。It is explanatory drawing which shows the maximum corrosion depth in the test piece cross section after a corrosion test. 最大腐食深さの極値プロットを示す極値プロット図である。It is an extreme value plot figure which shows the extreme value plot of the maximum corrosion depth.

符号の説明Explanation of symbols

1 試験片(金属材料の金属片)
A 質量変化(平均腐食深さ)
B 粗さ測定値
1 Test piece (metal piece of metal material)
A Mass change (average corrosion depth)
B Roughness measurement

Claims (2)

石油類を収容する容器に用いられる金属材料の局部腐食性評価方法において、
前記金属材料を用いて作製された金属片を、NaCl水溶液とS粉末とを混合した溶液に接触させて腐食させる腐食試験を行い、当該腐食試験前後の金属片の質量変化から平均腐食深さを求め、さらに腐食試験後の表面の粗さを測定して測定値を求め、この平均腐食深さと表面の粗さの測定値を合計することで、前記腐食させた金属片の最大腐食深さを求めることにより、前記金属材料の局部腐食性を評価することを特徴とする石油類容器用金属材料の局部腐食性評価方法。
In the method for evaluating local corrosivity of metal materials used in containers containing petroleum,
The metal piece manufactured using the metal material performs N NaCl solution and S powder and mixed solution to the contacted with Ru corrosion test corrode, average corrosion depth from the mass change of the corrosion test before and after the metal piece Further, the surface roughness after the corrosion test is measured to obtain a measurement value, and the average corrosion depth and the surface roughness measurement value are summed to obtain the maximum corrosion depth of the corroded metal piece. The local corrosivity evaluation method of the metal material for petroleum containers is characterized by evaluating the local corrosivity of the metal material by determining the thickness.
前記金属材料が鋼材であることを特徴とする請求項1に記載の石油類容器用金属材料の局部腐食性評価方法。   The said metal material is steel materials, The local corrosivity evaluation method of the metal material for petroleum containers of Claim 1 characterized by the above-mentioned.
JP2006214610A 2006-08-07 2006-08-07 Method for evaluating local corrosion of metal materials for petroleum containers Expired - Fee Related JP4690962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214610A JP4690962B2 (en) 2006-08-07 2006-08-07 Method for evaluating local corrosion of metal materials for petroleum containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214610A JP4690962B2 (en) 2006-08-07 2006-08-07 Method for evaluating local corrosion of metal materials for petroleum containers

Publications (2)

Publication Number Publication Date
JP2008039598A JP2008039598A (en) 2008-02-21
JP4690962B2 true JP4690962B2 (en) 2011-06-01

Family

ID=39174775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214610A Expired - Fee Related JP4690962B2 (en) 2006-08-07 2006-08-07 Method for evaluating local corrosion of metal materials for petroleum containers

Country Status (1)

Country Link
JP (1) JP4690962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422648A (en) * 2013-08-30 2015-03-18 宝山钢铁股份有限公司 Oil well pipe material deposition sulfur corrosion test method and fixture for sulfur corrosion test

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051849B2 (en) * 2008-03-13 2012-10-17 旭化成エンジニアリング株式会社 Method for estimating maximum corrosion rate of tank bottom plate
CN102400205B (en) * 2010-09-19 2014-07-23 宝山钢铁股份有限公司 Electrolyte solution used for rapid evaluation of groove corrosion performance
JP6480305B2 (en) * 2015-11-10 2019-03-06 日本電信電話株式会社 Forecasting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228575A (en) * 2001-02-01 2002-08-14 Asahi Eng Co Ltd Corrosion diagnostic system for tank steel plate
JP2004250754A (en) * 2003-02-20 2004-09-09 Kobe Steel Ltd Steel material superior in local corrosion resistance, and corrosion test method
JP2005021981A (en) * 2003-02-26 2005-01-27 Nippon Steel Corp Welded joint excellent in corrosion resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228575A (en) * 2001-02-01 2002-08-14 Asahi Eng Co Ltd Corrosion diagnostic system for tank steel plate
JP2004250754A (en) * 2003-02-20 2004-09-09 Kobe Steel Ltd Steel material superior in local corrosion resistance, and corrosion test method
JP2005021981A (en) * 2003-02-26 2005-01-27 Nippon Steel Corp Welded joint excellent in corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422648A (en) * 2013-08-30 2015-03-18 宝山钢铁股份有限公司 Oil well pipe material deposition sulfur corrosion test method and fixture for sulfur corrosion test

Also Published As

Publication number Publication date
JP2008039598A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
Xu et al. Probing the initiation and propagation processes of flow accelerated corrosion and erosion corrosion under simulated turbulent flow conditions
Mohd et al. Investigation of the corrosion progress characteristics of offshore subsea oil well tubes
Mohebbi et al. Experimental investigation on corrosion of cast iron pipes
Bhandari et al. Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; Experimental investigation and concomitant challenges
JP4695560B2 (en) Evaluation method for local corrosion of low alloy steel for petroleum containers
JP4690962B2 (en) Method for evaluating local corrosion of metal materials for petroleum containers
Ikechukwu et al. Studies on corrosion characteristics of carbon steel exposed to Na2CO3, Na2SO4 and NaCl solutions of different concentrations
Puget et al. Electrochemical noise analysis of polyurethane-coated steel subjected to erosion–corrosion
Dobson et al. Corrosion mechanisms of plasma welded Nickel aluminium bronze immersed in seawater
Anaee et al. Tribocorrosion
Jasim Evaluation the effect of velocity and temperature on the corrosion rate of crude oil pipeline in the presence of CO2/H2S dissolved gases
JP2015021933A (en) Method of estimating corrosion rate of crude oil tank steel material
Rodríguez-Bravo et al. Corrosion Rate and Wear Mechanisms Comparison for Aisi 410 Stainles Steel Exposed to Pure Corrosion and Abrasion-corrosion in a Simulated Marine Environment.
JP6048445B2 (en) Metal corrosivity evaluation method
Moloney et al. In situ assessment of pitting corrosion and its inhibition using a localized corrosion monitoring technique
Timmins Failure control in process operations
Zhang et al. Assessing the Tribocorrosion Performance of Nickel–Aluminum Bronze in Different Aqueous Environments
Zimer et al. Temporal series of micrographs coupled with electrochemical techniques to analyze pitting corrosion of AISI 1040 steel in carbonate and chloride solutions
Lichti et al. Heavy metal galvanic corrosion of carbon steel in geothermal brines
Bergin Alternating current corrosion of steel in seawater
Barker et al. Determining the Behavior of Sulfur Compounds in Controlling Preferential Weld Corrosion in CO2-saturated Brine
RU2770844C1 (en) Method for evaluating the protective efficiency of compositions inhibiting stress corrosion cracking in pipe steels
Keserovic Geothermal systems in Indonesia: influence on the corrosion resistance of stainless steel materials
Ikeh A parametric investigation on the influence and inhibition performance on CO2 corrosion of carbon steel
Vera et al. Laboratory evaluation of galvanic CO2 corrosion and inhibition of carbon steel piping partially clad with alloy 625

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4690962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees