JP4690435B2 - Broadcast relay method and broadcast relay apparatus - Google Patents

Broadcast relay method and broadcast relay apparatus Download PDF

Info

Publication number
JP4690435B2
JP4690435B2 JP2008117007A JP2008117007A JP4690435B2 JP 4690435 B2 JP4690435 B2 JP 4690435B2 JP 2008117007 A JP2008117007 A JP 2008117007A JP 2008117007 A JP2008117007 A JP 2008117007A JP 4690435 B2 JP4690435 B2 JP 4690435B2
Authority
JP
Japan
Prior art keywords
signal
broadcast
circuit
detection
squelch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008117007A
Other languages
Japanese (ja)
Other versions
JP2009267915A (en
Inventor
哲 大和
勝 住田
隆則 松浦
茂介 七澤
Original Assignee
ミハル通信株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミハル通信株式会社 filed Critical ミハル通信株式会社
Priority to JP2008117007A priority Critical patent/JP4690435B2/en
Publication of JP2009267915A publication Critical patent/JP2009267915A/en
Application granted granted Critical
Publication of JP4690435B2 publication Critical patent/JP4690435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Relay Systems (AREA)

Description

本発明はテレビ放送、例えば地上デジタル放送などにおける各種放送用の中継方法と、それに使用される中継装置に関するものである。   The present invention relates to a relay method for various broadcasts in television broadcast, for example, terrestrial digital broadcast, and a relay device used therefor.

テレビ放送における中継装置は、図3に示すように、受信アンテナAで受信した親局からの電波(多チャンネルの放送波)をレベル調整して送信アンテナBから送出するものである。中継装置の入力レベルは大気中(空間)の電波環境により変動するので、出力レベルを安定させるために中継装置内にAGC回路Cを設け、このAGC回路でチャンネル毎に出力レベルを調整している。また、親局の停波時にはノイズを空間に送出しない様にチャンネル毎にスケルチ回路(SQ)を設けている。   As shown in FIG. 3, a relay device in television broadcasting is one that adjusts the level of radio waves (multi-channel broadcast waves) received from a receiving station A and transmitted from a transmitting antenna B. Since the input level of the relay device varies depending on the radio wave environment in the atmosphere (space), an AGC circuit C is provided in the relay device to stabilize the output level, and the output level is adjusted for each channel by this AGC circuit. . Further, a squelch circuit (SQ) is provided for each channel so that noise is not sent to the space when the master station is stopped.

図3の中継装置では、受信アンテナAで受信した入力信号(地上デジタル放送波)がRFアンプ1、2(図4)で増幅され、入力信号の一部が分岐器3(図4)で分岐され、分岐信号が検波器(DET1)で検波される。地上デジタル放送ではマルチキャリアデジタル変調(OFDM:Orthogonal Frequency Division Multiplexing)方式が採用されているため図4のA点の検波電圧は図5のように振幅を持っている。このため図4の中継装置ではA点の検波電圧をローパスフィルタ(LPF:図4)を通して平均化し、平均化後の電圧(図4のB点の電圧)をDCアンプ4で増幅し、その電圧を基準にして利得制御器(Gain Controler:GC、例えば可変ATT)を制御し、このGCで放送波信号の出力レベルを一定に制御する。図4のB点の電圧はマイコン、ゲート回路、比較器、中央演算処理回路等(これらをCPUと総称する)に取込まれ、B点の電圧がある閾値以下のときはスケルチ回路(SQ)がONになって(動作して)送信アンテナからの放送信号の出力が停止される。このときAGCが働いているため装置利得は最大(GCのロスが最少)となっている。スケルチ回路(SQ)の動作時(ON時)に放送信号が入力されると、最初は利得最大のため図4のB点の電圧は高くなるがAGCで収束されて次第に安定する。CPUにより図4のB点電圧が監視されてAGCの収束が判断され、且つ、B点電圧が閾値以上になるとスケルチ回路(SQ)がOFFになって(動作が停止して)放送信号が送信アンテナから出力されるようにしてある。   3, the input signal (terrestrial digital broadcast wave) received by the receiving antenna A is amplified by the RF amplifiers 1 and 2 (FIG. 4), and a part of the input signal is branched by the branching device 3 (FIG. 4). The branch signal is detected by the detector (DET1). Since digital terrestrial broadcasting employs an OFDM (Orthogonal Frequency Division Multiplexing) system, the detection voltage at point A in FIG. 4 has an amplitude as shown in FIG. Therefore, in the relay device of FIG. 4, the detection voltage at point A is averaged through a low-pass filter (LPF: FIG. 4), and the averaged voltage (voltage at point B in FIG. 4) is amplified by the DC amplifier 4, and the voltage A gain controller (GC, for example, variable ATT) is controlled with reference to, and the output level of the broadcast wave signal is controlled to be constant with this GC. The voltage at point B in FIG. 4 is taken into a microcomputer, gate circuit, comparator, central processing circuit, etc. (these are collectively referred to as CPU), and when the voltage at point B is below a certain threshold, a squelch circuit (SQ) Is turned on (operates) and the output of the broadcast signal from the transmitting antenna is stopped. At this time, since the AGC is working, the apparatus gain is maximized (GC loss is minimized). When a broadcast signal is input during the operation of the squelch circuit (SQ) (when ON), the gain at the beginning is maximized, so that the voltage at point B in FIG. 4 becomes high but is converged by AGC and gradually becomes stable. The CPU monitors the point B voltage in FIG. 4 to determine the convergence of AGC, and when the point B voltage exceeds the threshold value, the squelch circuit (SQ) is turned off (operation stops) and a broadcast signal is transmitted. The signal is output from the antenna.

従来の前記中継装置では次のような課題があった。
1.地上デジタル放送では、SFN(Single frequency Network)方式が周波数有効利用の観点から一般的である。SFNでは親局から送信されて中継装置に入力されるチャンネル(周波数)と中継装置から出力されるチャンネル(周波数)が同一であるため、送信アンテナから出力される電波が受信アンテナに回り込んで発振する場合がある。その対策の一例として受信アンテナと送信アンテナ間の距離を離したり、高価なキャンセラをチャンネル毎に使用したりしている。前者の対策では広い敷地が必要であり、後者の対策ではコスト高になる。
2.AGC機能は、出力レベルを一定にするため、親局からの入力レベルが低い方が中継装置の利得が高くなり、アンテナ間の回り込みの影響を受け易くなる。
3.親局が停波した場合、AGC機能により装置利得が最大となり、装置利得が回り込み量を越えた時に発振を起こす(図7)。スケルチ機能が実行される前に発振が起きた場合は発振が継続してしまい、図4のA点の検波信号のスペクトラムは図8のようになる。
4.前記停波時には中継装置からOFDM変調波以外の電波(図7)が放射されるが、この放射は電波法上好ましくない。
5.ローパスフィルタ(LPF:図4)を通して、OFDMの電圧を平均化した後の電圧をCPUで監視しているため、CPUによるスケルチ回路の制御が遅く、スケルチ回路の応答も遅い。
The conventional relay device has the following problems.
1. In digital terrestrial broadcasting, the SFN (Single Frequency Network) method is generally used from the viewpoint of effective frequency utilization. In SFN, since the channel (frequency) transmitted from the master station and input to the relay device is the same as the channel (frequency) output from the relay device, the radio wave output from the transmission antenna oscillates around the reception antenna and oscillates. There is a case. As an example of the countermeasure, the distance between the receiving antenna and the transmitting antenna is increased, or an expensive canceller is used for each channel. The former measure requires a large site, and the latter measure increases costs.
2. Since the AGC function makes the output level constant, the lower the input level from the master station, the higher the gain of the relay device, and the more easily affected by the wraparound between the antennas.
3. When the master station stops, the device gain is maximized by the AGC function, and oscillation occurs when the device gain exceeds the wraparound amount (FIG. 7). If oscillation occurs before the squelch function is executed, the oscillation continues, and the spectrum of the detection signal at point A in FIG. 4 is as shown in FIG.
4). At the time of the stoppage, radio waves (FIG. 7) other than the OFDM modulation wave are radiated from the relay device, but this radiation is not preferable in the radio wave law.
5. Since the CPU monitors the voltage after averaging the OFDM voltage through a low-pass filter (LPF: FIG. 4), the control of the squelch circuit by the CPU is slow, and the response of the squelch circuit is also slow.

本件発明者らは従来の放送用中継装置の前記課題を解決すべく、本件発明の開発に先立って放送用中継装置について実験をして次のことを確認した。
1.AGC機能があるため、入力レベルの変動が可変減衰器(可変ATT)の制御範囲内の変動であれば、アンテナ間の回り込み量が変動しても発振することはない。
2.受信アンテナと送信アンテナ間の回り込み量が、装置利得と同一になった場合でも映像劣化は見られない。
3.通常の地上デジタル放送信号が出力されている場合の検波電圧(図5)と発振時の検波電圧(図6)では検波波形が異なる。地上デジタル放送波の変調信号は時間的に見て電圧が変動している(図5)が、発振時にはCW(continue wave:無変調波)のように時間変動がなく一定である(図6)。
Prior to the development of the present invention, the present inventors conducted experiments on the broadcast relay apparatus to confirm the following in order to solve the above-described problems of the conventional broadcast relay apparatus.
1. Since there is an AGC function, if the fluctuation of the input level is within the control range of the variable attenuator (variable ATT), oscillation does not occur even if the amount of sneak between the antennas fluctuates.
2. Even when the amount of sneak between the receiving antenna and the transmitting antenna is the same as the apparatus gain, no video deterioration is observed.
3. The detection waveform is different between the detection voltage when the normal terrestrial digital broadcast signal is output (FIG. 5) and the detection voltage during oscillation (FIG. 6). The modulated signal of the terrestrial digital broadcast wave has a voltage fluctuating with time (FIG. 5), but at the time of oscillation, there is no time fluctuation like CW (continue wave: unmodulated wave) and is constant (FIG. 6). .

本発明の放送用中継方法及び放送用中継装置は、前記波形差を利用して、検波電圧が一定(変動無)となった場合に、スケルチ回路(SQ)をONにして出力信号が送信アンテナから送信されないようにするか、又は、発振する前にスケルチ機能が実施されるようにしたものである。   The broadcast relay method and the broadcast relay apparatus of the present invention use the waveform difference to turn on the squelch circuit (SQ) when the detection voltage becomes constant (no fluctuation), and the output signal is transmitted to the transmission antenna. From being transmitted or the squelch function is implemented before oscillation.

本発明の放送用中継方法の一つは、受信アンテナで受信された放送波信号の一部を分岐し、分岐信号を検波した検波信号に基づいて利得制御器の利得を制御することにより、受信された放送波信号をチャンネルごとに制御して出力信号レベルを制御するAGC機能を備え、放送波信号が断になるとスケルチ機能により信号送信を停止させるようにした放送波中継方法において、前記検波信号の振幅の有無を判断して無になるとスケルチ回路をONにして放送波信号の出力を停止させ、有になるとスケルチ回路をOFFにして放送波信号を出力させる方法である。 One broadcast relay method of the present invention, by branching a portion of the broadcast wave signal received by receiving antenna, controls the gain of the gain controller on the basis of a detection signal obtained by detecting the branch signals, In the broadcast wave relay method, the AGC function for controlling the received broadcast wave signal for each channel to control the output signal level is provided, and the signal transmission is stopped by the squelch function when the broadcast wave signal is cut off. In this method, the presence / absence of the signal amplitude is judged and the squelch circuit is turned on to stop the output of the broadcast wave signal when the signal becomes none, and the squelch circuit is turned off and the broadcast wave signal is outputted when the signal becomes yes.

本発明の放送用中継方法の他の方法は、請求項記載のように、受信アンテナで受信された放送波信号の一部を分岐し、分岐信号を検波した検波信号に基づいて利得制御器の利得を制御することにより、受信された放送波信号をチャンネルごとに制御して出力信号レベルを制御するAGC機能を備え、放送波信号が断になるとスケルチ機能により信号送信を停止させるようにした放送波中継方法において、前記検波信号中のAC成分を取出して検波し、検波された前記AC成分と閾値とを比較して閾値以下になるとスケルチ回路をONにして放送信号の出力を停止させ、閾値以上になるとスケルチ回路をOFFにして放送信号を出力させる方法である。 Other methods of broadcast relay method of the present invention, as claimed in claim 1, branches a part of the received broadcast wave signal by the receiving antenna, on the basis of a detection signal obtained by detecting the branch signal gain controller By controlling the gain of the AGC, it has an AGC function to control the output signal level by controlling the received broadcast wave signal for each channel, and when the broadcast wave signal is cut off, the squelch function stops signal transmission In the broadcast wave relay method, the AC component in the detection signal is extracted and detected, and when the detected AC component is compared with the threshold value and becomes equal to or lower than the threshold value, the squelch circuit is turned on to stop the output of the broadcast signal, This is a method of turning off the squelch circuit and outputting a broadcast signal when the threshold value is exceeded.

本発明の放送用中継装置の一つは、受信アンテナで受信された放送波信号の一部を分岐する分岐器と、分岐信号を検波する検波器と、検波信号に基づいて入力信号をチャンネルごとに制御する利得制御器と、放送波信号が断になると作動して送信アンテナからの信号送信を停止させるスケルチ回路と、スケルチ回路をON、OFF制御する制御器を備えた放送用中継装置において、前記検波信号を前記制御器に取込むための取込経路(図1の10)を備え、制御器は検波信号の振幅の有無を判別して無になるとスケルチ回路をONにして放送波信号の出力を停止させ、有になるとスケルチ回路をOFFにして放送波信号を出力させる装置である。 One broadcast relay device of the present invention, channels and branching unit branches a part of the broadcast wave signal received by receiving antenna, a detector for detecting a branch signal, an input signal based on the detection signal In a broadcast relay apparatus comprising a gain controller that controls each time, a squelch circuit that operates when a broadcast wave signal is interrupted to stop signal transmission from a transmission antenna, and a controller that controls ON / OFF of the squelch circuit And a capture path (10 in FIG. 1) for capturing the detection signal into the controller, and the controller determines the presence or absence of the amplitude of the detection signal and turns the squelch circuit ON when the detection signal becomes zero. Is stopped, and when it is present, the squelch circuit is turned off to output a broadcast wave signal.

本発明の放送用中継装置の他の装置は、請求項記載のように、受信アンテナで受信された放送波信号の一部を分岐する分岐器と、分岐信号を検波する検波器と、検波信号に基づいて入力信号をチャンネルごとに制御する利得制御器と、放送波信号が断になると作動して送信アンテナからの信号送信を停止させるスケルチ回路と、スケルチ回路をON、OFF制御する制御器を備えた放送用中継装置において、前記検波信号中のAC成分を取出すAC取出回路(図2の20)と、AC取出回路20で取出したAC成分を検波するAC検波回路(図2の21)と、制御器を備え、制御器は前記AC検波回路21で検波された検波信号を閾値と比較して閾値以下になるとスケルチ回路をONにして放送信号の出力を停止させ、閾値以上になるとスケルチ回路をOFFにして放送信号を出力させる装置である。 Other devices broadcast relay device of the present invention, as claimed in claim 2, wherein a branching device for branching a part of the received broadcast wave signal by the receiving antenna, a detector for detecting a branch signal, detection A gain controller that controls the input signal for each channel based on the signal, a squelch circuit that operates when the broadcast wave signal is interrupted to stop signal transmission from the transmission antenna, and a controller that controls ON / OFF of the squelch circuit In the broadcast relay apparatus comprising: an AC extraction circuit (20 in FIG. 2) for extracting an AC component in the detection signal; and an AC detection circuit (21 in FIG. 2) for detecting the AC component extracted by the AC extraction circuit 20 The controller compares the detection signal detected by the AC detection circuit 21 with a threshold value, and when the threshold signal is below the threshold value, turns on the squelch circuit to stop the output of the broadcast signal. The Ruchi circuit is a device for outputting the broadcast signal to OFF.

本発明は次のような効果がある。
1.既存の中継装置に入力経路10、AC取出回路20と検波回路21の簡潔な構成で安価に、発振対策機能を実現することができる。
2.検波直後の波形を検知するので、入力信号の断を瞬時に検知でき、変動する検波電圧が無くなった時(放送波信号が断の時)にスケルチ回路(SQ)がONになって発振前にスケルチ機能が実行されるので、発振を確実に防止することができる。
3.受信アンテナと、送信アンテナとの間の回り込み量が大きい場合、出力一定のAGC方式では親局の停波時に発振を起こすが、本発明では検波直後の波形を検知することにより発振または発振しかかりを検出して送信出力をOFFにすることができるので、回り込みのループが切れて発振が停止し、スケルチ機能が働き、親局復帰時には通常動作により発振を起こすことなく起動する。
The present invention has the following effects.
1. An oscillation countermeasure function can be realized at low cost with a simple configuration of the input path 10, the AC extraction circuit 20, and the detection circuit 21 in an existing relay device.
2. Since the waveform immediately after detection is detected, it is possible to detect the disconnection of the input signal instantaneously, and when the fluctuating detection voltage disappears (when the broadcast wave signal is disconnected), the squelch circuit (SQ) turns on and before oscillation Since the squelch function is executed, oscillation can be reliably prevented.
3. When the amount of sneak between the receiving antenna and the transmitting antenna is large, in the AGC method with a constant output, oscillation occurs when the master station stops. However, in the present invention, oscillation or oscillation starts by detecting the waveform immediately after detection. Since the transmission output can be turned off by detecting this, the wraparound loop is cut and oscillation stops, the squelch function works, and when the master station returns, it starts without causing oscillation by normal operation.

(放送用中継装置の実施形態1)
本発明の放送用中継装置の一実施形態を図1に基づいて以下に説明する。図1の中継装置はRFアンプ1、利得制御器(GC)、RFアンプ2、検波器(DET1)、ローパスフィルタ(LPF)、DCアンプ3、スケルチ回路(SQ)、マイコン又はゲート回路(CPU)を備え、検波器(DET1)の出力をCPUに取込むための取込経路10を設けてある。
(Embodiment 1 of broadcast relay apparatus)
An embodiment of the broadcast relay device of the present invention will be described below with reference to FIG. 1 includes an RF amplifier 1, a gain controller (GC), an RF amplifier 2, a detector (DET1), a low-pass filter (LPF), a DC amplifier 3, a squelch circuit (SQ), a microcomputer or a gate circuit (CPU). And a capture path 10 is provided for capturing the output of the detector (DET1) into the CPU.

(放送用中継方法の実施形態1)
図1の放送用中継装置では、受信アンテナで受信された入力信号(放送波)がRFアンプ1で増幅され、利得制御器(GC)で利得制御され、RFアンプ2で増幅され、スケルチ回路(SQ)を経て送信アンテナから送信される。この間に、入力信号の一部が分岐器3で分岐され、DET1で検波される。図1のA点の検波電圧は正常時は図5のように振幅を持っているが、この検波電圧がある閾値以下になる(異常が発生する)とスケルチ回路(SQ)がONになって(動作して)、送信アンテナからの放送信号の出力が停止される。このときAGCが働いているため装置利得は最大(GCのロスが最少)となっているため、スケルチ回路(SQ)がONの状態で放送波信号が入力されると最初は利得最大のため検波電圧は高くなるが、AGCが次第に収束して図5のように安定する。図1では前記検波電圧(図1のA点電圧)をCPUにより監視してAGCの収束が判断され、且つ、その検波電圧が閾値以上になるとスケルチ回路(SQ)がOFFになって送信アンテナから放送信号が出力される。
(Embodiment 1 of broadcast relay method)
In the broadcast relay apparatus of FIG. 1, an input signal (broadcast wave) received by a receiving antenna is amplified by an RF amplifier 1, gain controlled by a gain controller (GC), amplified by an RF amplifier 2, and a squelch circuit ( SQ) is transmitted from the transmitting antenna. During this time, a part of the input signal is branched by the branching device 3 and detected by the DET1. The detection voltage at point A in FIG. 1 has an amplitude as shown in FIG. 5 when normal, but when this detection voltage falls below a certain threshold value (abnormality occurs), the squelch circuit (SQ) is turned on. (In operation), the output of the broadcast signal from the transmitting antenna is stopped. At this time, since the AGC is working, the apparatus gain is maximum (the GC loss is minimum). Therefore, when a broadcast wave signal is input while the squelch circuit (SQ) is ON, the detection is initially performed because the gain is maximum. Although the voltage increases, the AGC gradually converges and stabilizes as shown in FIG. In FIG. 1, the detection voltage (point A voltage in FIG. 1) is monitored by the CPU to determine the convergence of AGC, and when the detection voltage exceeds a threshold value, the squelch circuit (SQ) is turned off and the transmission antenna Broadcast signal is output.

(放送用中継装置の実施形態2)
本発明の放送用中継装置の第二の実施形態を図2に基づいて以下に説明する。図2の放送用中継装置はRFアンプ1、利得制御器(GC)、RFアンプ2、第1の検波器(DET1)、ローパスフィルタ(LPF)、DCアンプ3、スケルチ回路(SQ)、マイコン又はゲート回路(CPU)を備え、更に、コンデンサC1、C2とACアンプによるAC取出回路20、AC取出回路20で取出したAC成分を検波する第2のAC検波回路(DET2:図2の21)を備えている。
(Embodiment 2 of broadcast relay device)
A second embodiment of the broadcast relay device of the present invention will be described below with reference to FIG. 2 includes an RF amplifier 1, a gain controller (GC), an RF amplifier 2, a first detector (DET1), a low-pass filter (LPF), a DC amplifier 3, a squelch circuit (SQ), a microcomputer or A gate circuit (CPU), an AC extraction circuit 20 using capacitors C1 and C2 and an AC amplifier, and a second AC detection circuit (DET2: 21 in FIG. 2) for detecting an AC component extracted by the AC extraction circuit 20. I have.

(放送用中継方法の実施形態2)
図2の放送用中継装置では、受信アンテナで受信された入力信号(放送波)がRFアンプ1で増幅され、利得制御器(GC)で利得制御され、RFアンプ2で増幅され、スケルチ回路(SQ)を経て送信アンテナから送信される。この間に、入力信号の一部が分岐器5で分岐され、DET1で検波される。図1のA点の検波電圧は正常時は図5のように振幅を持っている。図2ではA点の検波電圧をローパスフィルタ(LPF)で平均化し、図2のB点の電圧を基準にして利得制御器(GC)の利得が制御されて放送波出力レベルが一定に制御される。
(Embodiment 2 of broadcast relay method)
2, the input signal (broadcast wave) received by the receiving antenna is amplified by the RF amplifier 1, gain controlled by the gain controller (GC), amplified by the RF amplifier 2, and squelch circuit ( SQ) is transmitted from the transmitting antenna. During this time, a part of the input signal is branched by the branching device 5 and detected by the DET1. The detection voltage at point A in FIG. 1 has an amplitude as shown in FIG. In FIG. 2, the detection voltage at point A is averaged by a low-pass filter (LPF), and the gain of the gain controller (GC) is controlled based on the voltage at point B in FIG. The

図2では検波器(DET1)で検波された信号中のAC成分がコンデンサC1で取出され、ACアンプで増幅され、ACアンプの出力信号中のAC成分がコンデンサC2で取出され、検波器(DET2)で検波される。DET2の出力電圧(図1のC点電圧)はOFDM信号(放送波)入力時に電圧が発生し(有り:例えば1V)、発振時または停波時に電圧が無(はほぼ0V)となる。CPUにてC点の電圧を取込み、0Vになった場合にスケルチ回路(SQ)がONとなって送信アンテナ2からの放送信号の出力が停止される。このときAGCが働いているため装置利得は最大(GCのロスが最少)となっているため、スケルチ回路(SQ)動作時に放送信号が入力されると最初は利得最大のため図2のB点の電圧は高くなるが、AGCにより次第に収束されて図5のようにほぼ一定の振幅に安定する。このとき図2のB点電圧がCPUで監視されてAGCの収束が判断される。また、図1のC点電圧が有り(例えば1V)となり、CPUからスケルチ回路(SQ)への制御信号で、スケルチ回路(SQ)がOFFになって送信アンテナ2から放送信号が出力される。   In FIG. 2, the AC component in the signal detected by the detector (DET1) is extracted by the capacitor C1, amplified by the AC amplifier, the AC component in the output signal of the AC amplifier is extracted by the capacitor C2, and the detector (DET2) is extracted. ) Is detected. The output voltage of DET2 (the voltage at point C in FIG. 1) is generated when an OFDM signal (broadcast wave) is input (present: 1 V, for example), and is zero (or almost 0 V) when oscillating or stopped. The CPU captures the voltage at point C, and when it becomes 0 V, the squelch circuit (SQ) is turned on and the output of the broadcast signal from the transmission antenna 2 is stopped. At this time, since the AGC is working, the apparatus gain is maximum (the GC loss is minimum). Therefore, when a broadcast signal is input during the operation of the squelch circuit (SQ), the gain is initially maximum, and the point B in FIG. However, the voltage is gradually converged by AGC and stabilized to a substantially constant amplitude as shown in FIG. At this time, the voltage at point B in FIG. 2 is monitored by the CPU to determine the convergence of AGC. Further, the voltage at point C in FIG. 1 is present (for example, 1 V), and the control signal from the CPU to the squelch circuit (SQ) turns off the squelch circuit (SQ) and the broadcast signal is output from the transmission antenna 2.

本発明の放送用中継装置におけるAGC回路及びスケルチ回路制御回路の実施形態の一例を示す回路図。The circuit diagram which shows an example of embodiment of the AGC circuit and squelch circuit control circuit in the broadcast relay apparatus of this invention. 本発明の放送用中継装置におけるAGC回路及びスケルチ回路制御回路の実施形態の他の例を示す回路図。The circuit diagram which shows the other example of embodiment of the AGC circuit and squelch circuit control circuit in the broadcast relay apparatus of this invention. 従来の放送用中継装置の概要図。Schematic diagram of a conventional broadcast relay device. 図3の放送用中継装置におけるAGC回路及びスケルチ回路制御回路の説明図。FIG. 4 is an explanatory diagram of an AGC circuit and a squelch circuit control circuit in the broadcast relay device of FIG. 3. 図1の放送用中継装置のA点における地上デジタル放送波の検波電圧の波形説明図。Waveform explanatory drawing of the detection voltage of the terrestrial digital broadcast wave in the A point of the broadcast relay apparatus of FIG. 図1の放送用中継装置のA点における発振時の検波電圧の波形説明図。Waveform explanatory drawing of the detection voltage at the time of the oscillation in the point A of the broadcast relay apparatus of FIG. 図1の放送用中継装置のA点における発振発生前後の検波電圧の波形説明図。Waveform explanatory drawing of the detection voltage before and behind the oscillation generation | occurrence | production in the A point of the broadcast relay apparatus of FIG. 図1の放送用中継装置のA点における発振時スペクトルの一例の説明図。FIG. 3 is an explanatory diagram of an example of an oscillation spectrum at point A of the broadcast relay device of FIG. 1.

1、2 RFアンプ
3 分岐器
10 取込経路
20 AC取出回路
21 AC検波回路
1, 2 RF amplifier 3 Branching device 10 Take-in route 20 AC take-out circuit 21 AC detection circuit

Claims (2)

受信アンテナで受信された放送波信号の一部を分岐し、分岐信号を検波した検波信号に基づいて利得制御器の利得を制御することにより、受信された放送波信号をチャンネルごとに制御して出力信号レベルを制御するAGC機能を備え、放送波信号が断になるとスケルチ機能により信号送信を停止させるようにした放送波中継方法において、前記検波信号中のAC成分を取出して検波し、検波されたAC成分と閾値とを比較して閾値以下になるとスケルチ回路をONにして放送信号の出力を停止させ、閾値以上になるとスケルチ回路をOFFにして放送信号を出力させることを特徴とする放送用中継方法。   A part of the broadcast wave signal received by the receiving antenna is branched, and the gain of the gain controller is controlled based on the detection signal obtained by detecting the branch signal, thereby controlling the received broadcast wave signal for each channel. In the broadcast wave relay method having an AGC function for controlling the output signal level and stopping the signal transmission by the squelch function when the broadcast wave signal is interrupted, the AC component in the detection signal is extracted and detected and detected. The AC component and the threshold value are compared, and when the value falls below the threshold value, the squelch circuit is turned on to stop the output of the broadcast signal. Relay method. 受信アンテナで受信された放送波信号の一部を分岐する分岐器と、分岐信号を検波する検波器と、検波信号に基づいて入力信号をチャンネルごとに制御する利得制御器と、放送波信号が断になると作動して送信アンテナからの信号送信を停止させるスケルチ回路と、スケルチ回路をON、OFF制御する制御器を備えた放送用中継装置において、前記検波信号中のAC成分を取出すAC取出回路と、AC取出回路で取出したAC成分を検波するAC検波回路と、制御器を備え、制御器は前記AC検波回路で検波され検波信号を閾値と比較して閾値以下になるとスケルチ回路をONにして放送信号の出力を停止させ、閾値以上になるとスケルチ回路をOFFにして放送信号を出力させることを特徴とする放送用中継装置。   A branching device that branches a part of the broadcast wave signal received by the receiving antenna, a detector that detects the branch signal, a gain controller that controls the input signal for each channel based on the detection signal, and a broadcast wave signal AC extraction circuit that extracts an AC component in the detection signal in a broadcast relay device that includes a squelch circuit that operates when it is disconnected and stops signal transmission from the transmission antenna, and a controller that controls ON / OFF of the squelch circuit And an AC detection circuit for detecting the AC component extracted by the AC extraction circuit, and a controller. The controller compares the detection signal detected by the AC detection circuit with the threshold value and turns on the squelch circuit when the threshold value is below the threshold value. The broadcast relay apparatus is characterized in that the output of the broadcast signal is stopped and the squelch circuit is turned off to output the broadcast signal when the threshold value is exceeded.
JP2008117007A 2008-04-28 2008-04-28 Broadcast relay method and broadcast relay apparatus Active JP4690435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117007A JP4690435B2 (en) 2008-04-28 2008-04-28 Broadcast relay method and broadcast relay apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117007A JP4690435B2 (en) 2008-04-28 2008-04-28 Broadcast relay method and broadcast relay apparatus

Publications (2)

Publication Number Publication Date
JP2009267915A JP2009267915A (en) 2009-11-12
JP4690435B2 true JP4690435B2 (en) 2011-06-01

Family

ID=41393173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117007A Active JP4690435B2 (en) 2008-04-28 2008-04-28 Broadcast relay method and broadcast relay apparatus

Country Status (1)

Country Link
JP (1) JP4690435B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08265238A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Squelch circuit
JP2006013602A (en) * 2004-06-22 2006-01-12 Nippon Antenna Co Ltd Digital terrestrial broadcast retransmission equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08265238A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Squelch circuit
JP2006013602A (en) * 2004-06-22 2006-01-12 Nippon Antenna Co Ltd Digital terrestrial broadcast retransmission equipment

Also Published As

Publication number Publication date
JP2009267915A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
US6678893B1 (en) Bidirectional trunk amplifier and cable modem for cable hybrid fiber and coax network which utilizes an upstream pilot signal
US7983641B2 (en) Cable communication apparatus and cable communication method
CN112118055B (en) Standing wave detection device and communication equipment
JP3875599B2 (en) Joint reception system
US20090318133A1 (en) Error detector, error detecting method and control program thereof
JP4690435B2 (en) Broadcast relay method and broadcast relay apparatus
JP3567433B2 (en) OFDM signal monitoring device and OFDM relay transmitter
JP4838163B2 (en) Television broadcast retransmission system and transmission apparatus
JPH10313271A (en) Abnormal oscillation detection circuit for frequency selection type radio repeater
JP2009246783A (en) Television broadcast retransmission system and monitoring apparatus
US20090029661A1 (en) Amplifier with a Quadrature Amplitude Modulation (QAM) Modulated and a Continuous Wave Automatic Gain Control (AGC) Circuit
JPH0998130A (en) Abnormal oscillation detection circuit for radio repeater system
JP2007281735A (en) Receiving system
JP2006340255A (en) Digital broadcast receiver
JP2007074427A (en) Optical receiver, and squelch operation method of optical receiver
KR100951253B1 (en) Automatic gain control circuit, and television phone terminal
KR102290513B1 (en) Disaster broadcasting device using fm signal and dmb
KR20100049193A (en) Antenna signal distribution apparatus for vehicle
US11444716B2 (en) Optical transmission system and carrier monitoring apparatus
JP2014165871A (en) Television broadcast retransmission system
JP2008244551A (en) Fm detection circuit
JP2006067369A (en) Amplifier for television reception
JP2010098685A (en) Terrestrial digital broadcast repeater
JP4674077B2 (en) booster
JP2023122192A (en) Amplification device, wireless device, and monitoring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

R150 Certificate of patent or registration of utility model

Ref document number: 4690435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250