JP4689417B2 - Carbon dioxide absorbent - Google Patents

Carbon dioxide absorbent Download PDF

Info

Publication number
JP4689417B2
JP4689417B2 JP2005267943A JP2005267943A JP4689417B2 JP 4689417 B2 JP4689417 B2 JP 4689417B2 JP 2005267943 A JP2005267943 A JP 2005267943A JP 2005267943 A JP2005267943 A JP 2005267943A JP 4689417 B2 JP4689417 B2 JP 4689417B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorbent
dioxide absorbent
gas
anesthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005267943A
Other languages
Japanese (ja)
Other versions
JP2006142280A (en
Inventor
暢 佐藤
憲二 岩田
Original Assignee
矢橋工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢橋工業株式会社 filed Critical 矢橋工業株式会社
Priority to JP2005267943A priority Critical patent/JP4689417B2/en
Publication of JP2006142280A publication Critical patent/JP2006142280A/en
Application granted granted Critical
Publication of JP4689417B2 publication Critical patent/JP4689417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、呼吸ガスや麻酔ガスの清浄化に用いられる、気体状の二酸化炭素(炭酸ガス)の吸収剤(以下、炭酸ガス吸収剤と記載する。)に関する。   The present invention relates to a gaseous carbon dioxide (carbon dioxide) absorbent (hereinafter referred to as a carbon dioxide absorbent) used for purification of respiratory gas and anesthetic gas.

呼吸ガスや麻酔ガス中の炭酸ガスの吸収剤として、水酸化カルシウム、アルカリ金属の水酸化物又は/及びカルシウム以外のアルカリ土類金属の水酸化物及び水を主成分とするものが広く使用されている。   As an absorbent for carbon dioxide in respiratory gas and anesthetic gas, those mainly composed of calcium hydroxide, alkali metal hydroxide or / and alkaline earth metal hydroxide other than calcium and water are widely used. ing.

しかしながら、このような組成の吸収剤を、例えばフルオロ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピルエーテル(セボフルラン)等の麻酔薬を含む呼吸ガス、すなわち麻酔ガス中の炭酸ガスを吸収するために使用した場合には、麻酔薬の一部が分解し、その分解産物が麻酔ガス中に混入するという問題点があった。また、この水酸化カルシウム、アルカリ金属の水酸化物又は/及びカルシウム以外のアルカリ土類金属の水酸化物及び水を主成分とするものは、炭酸ガスの吸収に従って、該吸収剤中に含有する酸アルカリ指示が発色又は変色する。しかし、放置しておくとやがて元の色に帰ってしまい、充分な炭酸ガス吸収能が残っているのか否かが判らなくなってしまう。そのため、炭酸ガス吸収能が低下した、又は使用によって乾燥した吸収剤を誤って使用したことによって、炭酸ガス除去が不十分であったり、麻酔ガスの分解や異常発熱等に由来する危険な問題も発生していた。   However, an absorbent of such composition may be used in a respiratory gas containing an anesthetic such as fluoro-1,1,1,3,3,3-hexafluoro-2-propyl ether (sevoflurane), i.e. in anesthetic gas. When used to absorb carbon dioxide, there is a problem that a part of the anesthetic decomposes and the decomposition product is mixed in the anesthetic gas. The calcium hydroxide, alkali metal hydroxide or / and alkaline earth metal hydroxide other than calcium and water as a main component are contained in the absorbent according to absorption of carbon dioxide gas. The acid-alkali indicator develops or changes color. However, if left unattended, it will eventually return to its original color and it will not be possible to determine whether sufficient carbon dioxide absorption capacity remains. For this reason, carbon dioxide absorption ability has been reduced, or the use of an absorbent that has been dried by use has resulted in inadequate removal of carbon dioxide, or dangerous problems caused by anesthetic gas decomposition or abnormal heat generation. It has occurred.

このような状況下、特に麻酔薬の一部が分解し、その分解産物が麻酔ガス中に混入するという問題点を解決するために、マグネシウム化合物を用いることを特徴とする炭酸ガス吸収剤(特許文献1)が開発されている。即ち、このような問題が生じる原因は、上記した如き炭酸ガス吸収剤の主成分である水酸化カルシウム、或はこれとアルカリ金属の水酸化物等にあると考え、水酸化カルシウムの代りにマグネシウム化合物を用いた炭酸ガス吸収剤がそれである。しかしながら、マグネシウム化合物を用いることを特徴とする上記の炭酸ガス吸収剤は、水酸化カルシウムを主成分とする炭酸ガス吸収剤に比べて、生産コストが高いという問題があった。   Under such circumstances, a carbon dioxide gas absorbent characterized by using a magnesium compound in order to solve the problem that a part of the anesthetic is decomposed and the decomposition product is mixed in the anesthetic gas (patented) Reference 1) has been developed. That is, the cause of such a problem is considered to be calcium hydroxide, which is the main component of the carbon dioxide absorbent as described above, or an alkali metal hydroxide, etc., and magnesium instead of calcium hydroxide. This is a carbon dioxide absorbent using a compound. However, the carbon dioxide absorbent characterized by using a magnesium compound has a problem that the production cost is higher than that of a carbon dioxide absorbent containing calcium hydroxide as a main component.

また、本発明者らは、従来の炭酸ガス吸収剤による麻酔薬の分解反応について検討した結果、従来炭酸ガス吸収剤として用いられていたソーダ石灰(ソーダライム)中に含まれる、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が麻酔薬を分解する原因であり、これらを実質的に含まない水酸化カルシウム及び水を主成分とした炭酸ガス吸収剤を調製した場合には、炭酸ガスの吸収能力は高く維持され、且つ麻酔薬であるセボフルランの分解が少なく、しかもコストの低下や製造工程の簡易化が可能な炭酸ガス吸収剤が得られることを見出し、先に特許出願して登録されている(特許文献2)。   In addition, as a result of examining the decomposition reaction of an anesthetic by a conventional carbon dioxide absorbent, the present inventors have found that soda lime (soda lime) conventionally used as a carbon dioxide absorbent, for example, sodium hydroxide In addition, when an alkali metal hydroxide such as potassium hydroxide is a cause of decomposing anesthetics, and when a carbon dioxide absorbent containing calcium hydroxide and water as a main component substantially free of these is prepared, It was found that a carbon dioxide gas absorbent capable of maintaining a high carbon dioxide absorption capacity and having little decomposition of sevoflurane, an anesthetic agent, and capable of reducing costs and simplifying the manufacturing process, was applied for a patent earlier. (Patent Document 2).

特開平5−57182号公報JP-A-5-57182 特許第3433493号公報Japanese Patent No. 3433493

本発明は、上記した如き状況に鑑みなされたもので、炭酸ガスの吸収能力が高く維持され、例えばセボフルラン等の麻酔薬の分解が少なく且つコストの低下や製造工程の簡易化が可能な炭酸ガス吸収剤を提供することをその目的とする。   The present invention has been made in view of the situation as described above, and has a high carbon dioxide absorption capacity, and is capable of reducing the cost and simplifying the manufacturing process with little decomposition of anesthetics such as sevoflurane. The object is to provide an absorbent.

本発明は、水酸化カルシウムと水と0.3〜1.4w/w%の塩化カルシウムと0.3〜1.4w/w%の塩化ナトリウムとを含有し、且つアルカリ金属の水酸化物を、それらの作用によるセボフルランの分解が生じない程度以下しか含まないことを特徴とする、炭酸ガス吸収剤の発明である。
また、本発明は上記炭酸ガス吸収剤を用いて呼吸ガスや麻酔ガスを処理することを特徴とする、麻酔ガス中の炭酸ガス除去方法の発明である。
The present invention comprises calcium hydroxide, water, 0.3 to 1.4 w / w% calcium chloride and 0.3 to 1.4 w / w% sodium chloride, and an alkali metal hydroxide. Further, the present invention is an invention of a carbon dioxide absorbent characterized in that it contains less than the extent that sevoflurane is not decomposed by these actions.
Moreover, this invention is invention of the carbon dioxide gas removal method in anesthetic gas characterized by processing respiration gas and anesthetic gas using the said carbon dioxide absorbent.

即ち、本発明者らは、上記した如き問題点に鑑み、従来の炭酸ガス吸収剤による麻酔薬の分解反応について検討した結果、従来炭酸ガス吸収剤として用いられていたソーダ石灰中に含まれる、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が麻酔薬を分解する原因であり、これらを実質的に含まない水酸化カルシウム及び水を主成分として炭酸ガス吸収剤を調製した場合には、炭酸ガスの吸収能力は高く維持され、且つ例えばセボフルラン等の麻酔薬の分解が少なく、しかもコストの低下や製造工程の簡易化が可能な炭酸ガス吸収剤が得られることを見出した。そして更に鋭意研究の結果、水酸化カルシウム及び水を主成分とする炭酸ガス吸収剤に、0.3〜1.4w/w%の塩化カルシウムを含有させた場合には、更にセボフルラン等の分解が少なく、また、炭酸ガスの吸収力も更に優れた炭酸ガス吸収剤が得られることを見出し、本発明を完成するに至った。   That is, in view of the problems as described above, the present inventors have examined the decomposition reaction of an anesthetic with a conventional carbon dioxide absorbent, and are contained in soda lime that has been conventionally used as a carbon dioxide absorbent. For example, when alkali metal hydroxides such as sodium hydroxide and potassium hydroxide cause anesthetics to decompose, and when a carbon dioxide gas absorbent is prepared with calcium hydroxide and water as the main components that do not substantially contain these In addition, the present inventors have found that a carbon dioxide gas absorbent capable of maintaining a high carbon dioxide absorption capacity, having little decomposition of anesthetics such as sevoflurane, and capable of reducing the cost and simplifying the production process can be obtained. As a result of further earnest research, when carbon dioxide absorbent containing calcium hydroxide and water as a main component contains 0.3 to 1.4 w / w% of calcium chloride, the decomposition of sevoflurane and the like is further reduced. The present inventors have found that a carbon dioxide absorbent having a small amount and a further excellent carbon dioxide absorption capacity can be obtained, and completed the present invention.

本発明によれば、従来の水酸化カルシウムとアルカリ金属類の水酸化物とを含む炭酸ガス吸収剤や、水酸化カルシウムと水のみを有効成分とする炭酸ガス吸収剤と比較して、炭酸ガスの吸収能力は高く維持され、且つ例えばセボフルラン等の麻酔薬の分解が少ない炭酸ガス吸収剤が得られる。また、炭酸ガスを吸収して消耗するに従って該吸収剤に含有される酸アルカリ指示薬が発色又は変色し、且つその色が持続するため、吸収剤が消耗したものか吸収能のあるものかが容易にわかる。また、使用後の消耗した、又は乾燥した吸収剤を使用することによる異常発熱や有害成分が発生するような危険を起こすこともない。   According to the present invention, compared with a carbon dioxide absorbent containing a conventional calcium hydroxide and an alkali metal hydroxide, or a carbon dioxide absorbent containing only calcium hydroxide and water as active ingredients, carbon dioxide Thus, a carbon dioxide gas absorbent is obtained that maintains a high absorption capacity and has little decomposition of an anesthetic such as sevoflurane. Also, as the acid / alkaline indicator contained in the absorbent develops or changes color as carbon dioxide is absorbed and consumed, it is easy to determine whether the absorbent is exhausted or absorbable because the color persists. I understand. Further, there is no danger of abnormal heat generation or harmful components due to the use of an exhausted or dried absorbent after use.

更に、本発明の炭酸ガス吸収剤は塩化ナトリウムを含有したことにより、より一層炭酸ガス吸収保持時間を長くすることができる。また粒子サイズを極端に細かくして総表面積を多くする必要がなく、例えば錠剤型のものを調製する場合には、そのサイズを大きくすることができるため、一定重量のものを調製するための打錠時間を短くすることができ、製造コストを抑えることができるという効果を奏する。   Furthermore, since the carbon dioxide absorbent of the present invention contains sodium chloride, the carbon dioxide absorption retention time can be further increased. Also, it is not necessary to make the particle size extremely fine to increase the total surface area. For example, when preparing a tablet type, the size can be increased. The lock time can be shortened and the production cost can be suppressed.

本発明の炭酸ガス吸収剤とは、水酸化カルシウムと水と0.3〜1.4w/w%の塩化カルシウム(無水物として)と0.3〜1.4w/w%の塩化ナトリウムとを含有することを特徴とするものである。
The carbon dioxide absorbent of the present invention includes calcium hydroxide, water, 0.3 to 1.4 w / w% calcium chloride (as an anhydride), and 0.3 to 1.4 w / w% sodium chloride. It is characterized by containing.

尚、該炭酸ガス吸収剤は、アルカリ金属の水酸化物を含有しないことが望ましいが、その濃度が、アルカリ金属の水酸化物の作用によるセボフルランの分解が生じない程度以下であれば、特に問題はない。   The carbon dioxide absorbent preferably does not contain an alkali metal hydroxide, but is particularly problematic if the concentration is below the level at which sevoflurane is not decomposed by the action of the alkali metal hydroxide. There is no.

そのような、アルカリ金属の水酸化物の、炭酸ガス吸収剤中の許容される具体的な濃度としては、該吸収剤中に0.01w/w%以下、望ましくは0.0075w/w%以下、更に望ましくは0.005w/w%以下である。   The specific concentration of alkali metal hydroxide allowed in the carbon dioxide absorbent is 0.01 w / w% or less, preferably 0.0075 w / w% or less in the absorbent. More preferably, it is 0.005 w / w% or less.

本発明において用いられる、水酸化カルシウム、塩化カルシウム、水、更に好ましくは添加される塩化ナトリウムは、呼吸ガス中の炭酸ガスの吸収剤として用いる際に有害且つ危険な問題を起こす様な不純物、或は麻酔薬を分解する性質を有するアルカリ金属の水酸化物を実質的に含まない(それらの作用によるセボフルラン等の分解が生じない程度以下しか含まない)ものであればよく、特に高純度のものを用いる必要はないが、例えば水酸化カルシウムの場合には通常純度95%以上、好ましくは純度97%以上のものが挙げられる。また、塩化カルシウムは、無水のものでも、適当な水和物(例えば一水和物、二水和物等)でも用いることが出来る。無水の水酸化カルシウムを用いる場合には、通常純度95%以上、水酸化カルシウムの二水和物を用いる場合には、通常純度70%のものが挙げられる。塩化ナトリウムは、通常純度94%以上、好ましくは純度99%以上のものが挙げられる。   Calcium hydroxide, calcium chloride, water, and more preferably sodium chloride added in the present invention are impurities that cause harmful and dangerous problems when used as an absorbent for carbon dioxide in respiratory gas, or May be any material that does not substantially contain an alkali metal hydroxide having the property of decomposing an anesthetic (contains no more than the extent that sevoflurane or the like is not decomposed by the action thereof), and particularly high purity. However, in the case of calcium hydroxide, for example, it is usually 95% or more in purity, preferably 97% or more in purity. In addition, calcium chloride can be used in an anhydrous form or in an appropriate hydrate (eg, monohydrate, dihydrate, etc.). When anhydrous calcium hydroxide is used, the purity is usually 95% or more, and when calcium hydroxide dihydrate is used, the purity is usually 70%. Sodium chloride usually has a purity of 94% or more, preferably 99% or more.

尚、アルカリ土類金属の水酸化物は麻酔薬を分解する性質を有していないので、本発明の炭酸ガス吸収剤中には例えば水酸化マグネシウムの如きアルカリ土類金属の水酸化物が存在していても特に問題はない。   Since alkaline earth metal hydroxides do not have the property of decomposing anesthetics, alkaline earth metal hydroxides such as magnesium hydroxide are present in the carbon dioxide absorbent of the present invention. There is no particular problem even if you do.

本発明の炭酸ガス吸収剤中に含有される各成分の含有量は、該吸収剤中に、塩化カルシウムが二水和物として0.5〜1.8w/w%、好ましくは0.7〜1.8w/w%、より好ましくは1.0〜1.8w/w%、即ち無水の塩化カルシウムとして0.3〜1.4w/w%、好ましくは0.5〜1.4w/w%、より好ましくは0.8〜1.4w/w%含有されていればよい。塩化ナトリウムは、0.3〜1.4w/w%、好ましくは0.5〜1.2w/w%、より好ましくは0.7〜1.0w/w%含有されていればよい。水酸化カルシウム及び水の量は、塩化カルシウム及び塩化ナトリウムの量に従って適宜選択されるが、例えば水酸化カルシウムの含有量は77.8〜89.7w/w%、好ましくは79.8〜89.5w/w%、より好ましくは81.1〜89.4w/w%の範囲が挙げられる。また、水分含量としては、通常8〜21w/w%、好ましくは9〜19w/w%、より好ましくは9〜16w/w%の範囲が挙げられる。   The content of each component contained in the carbon dioxide absorbent of the present invention is such that calcium chloride is dihydrated in the absorbent in an amount of 0.5 to 1.8 w / w%, preferably 0.7 to 1.8 w / w%, more preferably 1.0 to 1.8 w / w%, ie 0.3 to 1.4 w / w% as anhydrous calcium chloride, preferably 0.5 to 1.4 w / w% More preferably, it may be contained in an amount of 0.8 to 1.4 w / w%. Sodium chloride should be contained in an amount of 0.3 to 1.4 w / w%, preferably 0.5 to 1.2 w / w%, more preferably 0.7 to 1.0 w / w%. The amounts of calcium hydroxide and water are appropriately selected according to the amounts of calcium chloride and sodium chloride. For example, the content of calcium hydroxide is 77.8 to 89.7 w / w%, preferably 79.8 to 89. The range is 5 w / w%, more preferably 81.1 to 89.4 w / w%. Moreover, as a water | moisture content, it is 8-21 w / w% normally, Preferably it is 9-19 w / w%, More preferably, the range of 9-16 w / w% is mentioned.

また、上記した塩化ナトリウムを含有する本発明の炭酸ガス吸収剤には、炭酸ガス吸収能力の残存能力を検知するためのインジケーターとして酸アルカリ指示薬を含有することが望ましい。酸アルカリ指示薬の具体例等としては、例えばエチルバイオレット、クリスタルバイオレット、ブリリアントグリーン、アシッドグリーン、チタンイエロー、コンドーレット等の酸アルカリ指示薬が挙げられる。中でも、水に対する溶解性やその毒性、色の変化(発色態様)等を考慮すると、エチルバイオレットが最も好ましい。このような酸アルカリ指示薬を本発明の炭酸ガス吸収剤に含有させておけば、炭酸ガスを吸収して吸収剤自体のアルカリ性の度合いが低下してくると、言い換えれば炭酸ガスの吸収能力が低下してくると、炭酸ガス吸収剤の色が変化(発色又は変色)して、吸収剤の交換時期を適切に肉眼で判断することができる。   The carbon dioxide absorbent of the present invention containing sodium chloride described above preferably contains an acid-alkali indicator as an indicator for detecting the remaining ability of the carbon dioxide absorption ability. Specific examples of the acid-alkali indicator include acid-alkali indicators such as ethyl violet, crystal violet, brilliant green, acid green, titanium yellow, and chondlet. Of these, ethyl violet is most preferable in consideration of solubility in water, its toxicity, color change (color development mode), and the like. If such an acid-alkali indicator is contained in the carbon dioxide absorbent of the present invention, the carbon dioxide gas is absorbed and the degree of alkalinity of the absorbent itself decreases, in other words, the carbon dioxide absorption capacity decreases. As a result, the color of the carbon dioxide absorbent changes (color development or discoloration), and the replacement time of the absorbent can be determined appropriately with the naked eye.

塩化ナトリウムを含有する本発明の炭酸ガス吸収剤に酸アルカリ指示薬を含有させる場合の酸アルカリ指示薬の濃度としては、0.002〜0.025w/w%程度、好ましくは0.004〜0.015w/w%程度であればよいが、通常は0.004〜0.01w/w%程度の濃度範囲が挙げられる。   The concentration of the acid-alkali indicator in the case where the carbon dioxide absorbent of the present invention containing sodium chloride contains an acid-alkali indicator is about 0.002 to 0.025 w / w%, preferably 0.004 to 0.015 w. However, the concentration range is usually about 0.004 to 0.01 w / w%.

本発明の塩化ナトリウムを含有する炭酸ガス吸収剤の好ましい一実施態様としては、水酸化カルシウムを81.1〜89.4w/w%、水を9.0〜16.0w/w%、塩化カルシウムを0.8〜1.4w/w%、塩化ナトリウムを0.7〜1.0w/w%、酸アルカリ指示薬を0.004〜0.01w/w%含有する、炭酸ガス吸収剤が挙げられる。   As a preferable embodiment of the carbon dioxide absorbent containing sodium chloride of the present invention, calcium hydroxide is 81.1 to 89.4 w / w%, water is 9.0 to 16.0 w / w%, calcium chloride. Of carbon dioxide gas containing 0.8 to 1.4 w / w% of sodium chloride, 0.7 to 1.0 w / w% of sodium chloride, and 0.004 to 0.01 w / w% of an acid-alkali indicator. .

また、本発明の塩化ナトリウムを含有する炭酸ガス吸収剤の別の好ましい一実施態様としては、上記の態様に於いて、更に水酸化カルシウムを84.65〜84.75w/w%、塩化カルシウムを1.31w/w%、塩化ナトリウムを0.91w/w%含有する炭酸ガス吸収剤が挙げられる。   Further, as another preferred embodiment of the carbon dioxide absorbent containing sodium chloride of the present invention, in the above-described embodiment, 84.65 to 84.75 w / w% of calcium hydroxide and calcium chloride are further added. Examples thereof include a carbon dioxide absorbent containing 1.31 w / w% and 0.91 w / w% sodium chloride.

本発明の炭酸ガス吸収剤の形状としては、粒状(顆粒状、ペレット状を含む意味で用いられる。以下同じ。)又は錠剤型が挙げられる。   Examples of the shape of the carbon dioxide absorbent according to the present invention include granular (used to include granules and pellets; the same shall apply hereinafter) or tablet shape.

塩化ナトリウムを含有する、本発明の粒状炭酸ガス吸収剤の成分含量は、塩化カルシウム(二水和物)が0.5〜1.8w/w%、好ましくは0.7〜1.8w/w%、より好ましくは1.0〜1.8w/w%程度(無水塩化カルシウムとして0.3〜1.4w/w%、好ましくは0.5〜1.4w/w%、より好ましくは0.8〜1.4w/w%程度)含有されるのが好ましい。塩化ナトリウムは0.3〜1.4w/w%、好ましくは0.5〜1.2w/w%、より好ましくは0.7〜1.0w/w%含有されるのが好ましい。また、水酸化カルシウムの含有量は、塩化カルシウム及び塩化ナトリウムの濃度によるが、77.8〜89.7w/w%、好ましくは79.8〜89.5w/w%、より好ましくは81.1〜89.4w/w%の範囲が挙げられる。また、水分含量としては、通常8〜21w/w%、好ましくは9〜19w/w%、より好ましくは9〜16w/w%の範囲が挙げられる。更にまた、要すれば含有させる酸アルカリ指示薬の濃度としては、0.002〜0.025w/w%程度、好ましくは0.004〜0.015w/w%程度であればよいが、通常は0.004〜0.01w/w%程度の範囲で用いられる。   The component content of the granular carbon dioxide absorbent of the present invention containing sodium chloride is calcium chloride (dihydrate) of 0.5 to 1.8 w / w%, preferably 0.7 to 1.8 w / w. %, More preferably about 1.0 to 1.8 w / w% (0.3 to 1.4 w / w% as anhydrous calcium chloride, preferably 0.5 to 1.4 w / w%, more preferably 0.5%). 8 to 1.4 w / w%) is preferable. Sodium chloride is preferably contained in an amount of 0.3 to 1.4 w / w%, preferably 0.5 to 1.2 w / w%, more preferably 0.7 to 1.0 w / w%. The content of calcium hydroxide depends on the concentrations of calcium chloride and sodium chloride, but is 77.8-89.7 w / w%, preferably 79.8-89.5 w / w%, more preferably 81.1. The range of -89.4 w / w% is mentioned. Moreover, as a water | moisture content, it is 8-21 w / w% normally, Preferably it is 9-19 w / w%, More preferably, the range of 9-16 w / w% is mentioned. Furthermore, if necessary, the concentration of the acid-alkali indicator to be contained may be about 0.002 to 0.025 w / w%, preferably about 0.004 to 0.015 w / w%. It is used in the range of about 0.004 to 0.01 w / w%.

本発明の炭酸ガス吸収剤を調製するには、従来から用いられている方法、即ち水酸化カルシウムと塩化カルシウムと水と塩化ナトリウムとを混合後、適宜顆粒状等に成型する方法によっても良いが、このような方法により調製した炭酸ガス吸収剤における問題点である、輸送中に容器中の顆粒がお互いに擦り合い凹凸部が摩耗し、その結果、微粉末状或は塵状の水酸化カルシウム、塩化カルシウム等が生じ、これを吸収剤として充填したカラムを装着した装置を使用した場合には、水酸化カルシウム、塩化カルシウム等の微粉末或は塵が呼吸ガスや麻酔ガスと共に運び出され、呼吸している患者が吸入して重大な影響を受ける危険性があったり、炭酸ガス吸収剤を詰め替える際に水酸化カルシウム、塩化カルシウム等の塵が室内に飛散し、室内の空気を汚染する可能性があるので、本発明者らの一部らによって開発された炭酸ガス吸収剤の製造法(特開平3−047533号公報)を利用することが望ましい。   The carbon dioxide gas absorbent of the present invention can be prepared by a conventionally used method, that is, a method in which calcium hydroxide, calcium chloride, water and sodium chloride are mixed and then appropriately molded into a granular shape or the like. In the carbon dioxide absorbent prepared by such a method, the granules in the container rub against each other during transportation, and the uneven parts wear, resulting in fine powder or dusty calcium hydroxide. When calcium chloride, etc. is generated and a device equipped with a column packed with this as an absorbent is used, fine powder or dust such as calcium hydroxide and calcium chloride is carried out together with breathing gas and anesthetic gas, Patients who are inhaling may be seriously affected by inhalation, or when refilling the carbon dioxide absorbent, dust such as calcium hydroxide or calcium chloride is scattered inside the room. There is a possibility of contaminating the air, it is desirable to utilize the present inventors of certain et preparation of the carbon dioxide-absorbing agent developed by (JP-A-3-047533).

本発明の、粒状の炭酸ガス吸収剤を調製するには、例えば原料として市販されている水酸化カルシウムの粒状(ペレット状)のものをそのまま使用し、整粒すればよい。また、一粒が同程度の量になるように自体公知の方法で整粒したものを用いても良い。整粒する場合には、一粒の量が1〜550mg、好ましくは20〜200mg、更に好ましくは30〜100mgになるように整粒すればよい。得られた水酸化カルシウムの粒に塩化カルシウム、水、塩化ナトリウムや、要すれば適当な酸アルカリ指示薬を含有させる方法としては、糖衣機やコーティングパン等を用いて塩化カルシウム、水、更に塩化ナトリウムや、要すれば適当な酸アルカリ指示薬の所定の水溶液を噴霧含有させる方法が挙げられる。   In order to prepare the granular carbon dioxide absorbent of the present invention, for example, a commercially available calcium hydroxide granular (pellet-shaped) material may be used as it is, and the particle size may be adjusted. Moreover, you may use what was sized by a publicly known method so that one grain may become the same amount. When sizing, the sizing may be performed so that the amount of one grain is 1 to 550 mg, preferably 20 to 200 mg, and more preferably 30 to 100 mg. As a method of adding calcium chloride, water, sodium chloride and, if necessary, an appropriate acid-alkali indicator to the obtained calcium hydroxide granules, use a sugar coating machine, a coating pan, etc. Or, if necessary, a method of spraying a predetermined aqueous solution of an appropriate acid-alkali indicator may be mentioned.

また、本発明の、粒状の炭酸ガス吸収剤は、錠剤型の炭酸ガス吸収剤の場合と同様、一粒の重さや形が一定である必要はない。   In addition, the granular carbon dioxide absorbent of the present invention does not need to have a constant weight or shape as in the case of the tablet-type carbon dioxide absorbent.

本発明の炭酸ガス吸収剤を適用できる吸入麻酔薬としては、セボフルラン、2−クロロ−1,1,2−トリフルオロエチル ジフルオロメチル エーテル(エンフルラン)、1−クロロ−2,2,2−トリフルオロエチルジフルオロメチルエーテル(イソフルラン)等を含有する、一般に麻酔ガスとして用いられているものであれば特に制限はないが、中でもセボフルランを含有するものが代表的である。   Inhalation anesthetics to which the carbon dioxide absorbent of the present invention can be applied include sevoflurane, 2-chloro-1,1,2-trifluoroethyl difluoromethyl ether (enflurane), 1-chloro-2,2,2-trifluoro. There is no particular limitation as long as it contains ethyldifluoromethyl ether (isoflurane) or the like and is generally used as an anesthetic gas, but among them, a substance containing sevoflurane is typical.

本発明の炭酸ガス吸収剤は、水酸化カルシウムと塩化カルシウムと水と塩化ナトリウムとのみで調製可能であるので、従来のものの如く水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化バリウム等の、アルカリ金属の水酸化物や、アルカリ土類金属の水酸化物等を添加混合する必要がないので製造工程が簡便となるという利点も有している。また、本発明の炭酸ガス吸収剤に使用される水酸化カルシウムは、水酸化マグネシウムの如きマグネシウム化合物に比較して高純度のものを安価に購入できるため、水酸化マグネシウム等を使用する炭酸ガス吸収剤に比較して製造コストが低減できるという利点も有している。   Since the carbon dioxide absorbent of the present invention can be prepared only with calcium hydroxide, calcium chloride, water and sodium chloride, like conventional ones such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, barium hydroxide, etc. In addition, since there is no need to add and mix an alkali metal hydroxide, an alkaline earth metal hydroxide or the like, there is also an advantage that the production process is simplified. In addition, the calcium hydroxide used in the carbon dioxide absorbent of the present invention can be purchased at a lower cost than a magnesium compound such as magnesium hydroxide, so carbon dioxide absorption using magnesium hydroxide or the like can be purchased. There is also an advantage that the manufacturing cost can be reduced compared to the agent.

尚、炭酸ガス吸収剤を製造(成型)する場合は、錠剤又は粒状の大きさを小さくすることにより、炭酸ガス吸収効率を上げる試みが行われているが、本発明の炭酸ガス吸収剤は、その径を大きくしても炭酸ガス吸収能保持時間の長いものが製造できる。例えば、塩化ナトリウムを含有しない場合には、直径4mmの炭酸ガス吸収剤の方が、直径5mmの炭酸ガス吸収剤よりも炭酸ガス吸収能保持時間の長いものが得られる。これに対し塩化ナトリウムを含有させることにより、直径5mmの炭酸ガス吸収剤でも、塩化ナトリウムを含有しない直径4mm及び直径5mmの炭酸ガス吸収剤より更に炭酸ガス吸収能保持時間の長いものが得られる。実際の使用に当たっては、直径4mmのものよりも直径5mmのものの方が扱いにくいといった、使い勝手に差はないが、通常後者の方が呼吸に対する流通抵抗が少ないという利点がある。更に、径が大きいものにすることにより、同じ量の材料から炭酸ガス吸収剤を成型する場合には、当然4mm径のものを成型するよりも、5mm径のものを成型する方が、成型時間(打錠時間)を短くすることが出来、ひいては製造コストが上がらないという、優れた効果がある。   In addition, when producing (molding) a carbon dioxide absorbent, attempts have been made to increase the carbon dioxide absorption efficiency by reducing the size of tablets or granules, but the carbon dioxide absorbent of the present invention is Even if the diameter is increased, a product having a long carbon dioxide absorption capacity retention time can be produced. For example, when sodium chloride is not contained, a carbon dioxide absorbent having a diameter of 4 mm has a longer carbon dioxide absorption capacity retention time than a carbon dioxide absorbent having a diameter of 5 mm. On the other hand, by containing sodium chloride, a carbon dioxide absorbent having a diameter of 5 mm can have a longer carbon dioxide absorption capacity retention time than a carbon dioxide absorbent having a diameter of 4 mm and a diameter of 5 mm that does not contain sodium chloride. In actual use, there is no difference in usability such that a diameter of 5 mm is more difficult to handle than a diameter of 4 mm, but the latter generally has an advantage of less circulation resistance to breathing. Furthermore, when a carbon dioxide absorbent is molded from the same amount of material by making the diameter larger, it is natural that molding a 5 mm diameter is easier than molding a 4 mm diameter. (Tabletting time) can be shortened, and as a result, there is an excellent effect that the manufacturing cost does not increase.

また、本発明の炭酸ガス除去方法は、上記した如き本発明の炭酸ガス吸収剤を用いて、通常この分野で用いられる方法により呼吸ガスや麻酔ガスを処理〔例えば、麻酔器のキャニスター(炭酸ガス吸収用カラム)中に本発明の炭酸ガス吸収剤を充填したものに麻酔ガスを通気する等。〕すれば良く、麻酔ガスとしては、上記したものが好ましいものとして挙げられる。   In addition, the carbon dioxide gas removal method of the present invention uses the carbon dioxide gas absorbent of the present invention as described above to treat respiratory gas and anesthetic gas by a method usually used in this field [for example, an anesthesia canister (carbon dioxide gas Anesthetic gas is passed through a column filled with the carbon dioxide absorbent of the present invention. As the anesthetic gas, those mentioned above are preferable.

以下に、参照例、実施例、及び比較例を挙げて、本発明を更に詳細に説明するが、本発明はこれらにより何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to reference examples, examples, and comparative examples, but the present invention is not limited thereto.

参照例1
(1)炭酸ガス吸収剤の調製
粉末状の水酸化カルシウム(Ca(OH)、和光純薬工業(株)製、純度97.5%)を市販の打錠機を用い、打錠硬度250gで直径4mm、高さ2.3mmの錠剤に成型した。得られた錠剤を市販の糖衣機にかけて、錠剤84w/w%に対して、塩化カルシウム・二水和物(CaCl・2HO、和光純薬工業(株)製)とエチルバイオレットを所定濃度溶解した水溶液を16w/w%の割合で噴霧含有させた。次いで、これをポリ袋中に密閉したものを80℃の恒温器中に15時間放置し、密閉加熱熟成により、硬度を900gにして、表1に示すような、4種の組成の、錠剤型炭酸ガス吸収剤を得た。尚、得られた炭酸ガス吸収剤中の水分含量(w/w%)を測定したところ、15w/w%であった。また、エチルバイオレットの含量は0.016w/w%であった。
Reference example 1
(1) Preparation of Carbon Dioxide Absorber Powdered calcium hydroxide (Ca (OH) 2 , Wako Pure Chemical Industries, Ltd., purity 97.5%) was used with a commercially available tableting machine, and tableting hardness 250 g Was formed into a tablet having a diameter of 4 mm and a height of 2.3 mm. The obtained tablets are put on a commercially available sugar coating machine, and calcium chloride dihydrate (CaCl 2 · 2H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) and ethyl violet are prescribed concentrations with respect to 84 w / w% of tablets. The dissolved aqueous solution was sprayed at a rate of 16 w / w%. Next, the product sealed in a plastic bag is left in an incubator at 80 ° C. for 15 hours, and the hardness is set to 900 g by sealed heat aging, and the tablet type having four compositions as shown in Table 1 is used. A carbon dioxide absorbent was obtained. The water content (w / w%) in the obtained carbon dioxide absorbent was measured and found to be 15 w / w%. The ethyl violet content was 0.016 w / w%.

表1に於いて、No.1の錠剤が、従来の水酸化カルシウムと水を含有する炭酸ガス吸収剤である。No.2〜No.4が水酸化カルシウムと水と塩化カルシウムとを含有する、参照例1の炭酸ガス吸収剤である。また、塩化カルシウムの含量は、無水の塩化カルシウムとしてNo.2は0.378w/w%、No.3は0.604w/w%、No.4は0.906w/w%である。   In Table 1, No. 1 tablet is a conventional carbon dioxide absorbent containing calcium hydroxide and water. No. 2 to No. 4 are carbon dioxide gas absorbents of Reference Example 1 containing calcium hydroxide, water and calcium chloride. Moreover, the content of calcium chloride as anhydrous calcium chloride is 0.378 w / w% for No.2, 0.604 w / w% for No.3, and 0.906 w / w% for No.4.

(2)炭酸ガス吸収能力テスト
上記(1)で得た各炭酸ガス吸収剤の炭酸ガス吸収能力テストを以下の操作に従って行った。
炭酸ガス吸収剤810gをキャニスター(直径9cm、高さ15cm)に充填し、該キャニスターに酸素と炭酸ガスの混合ガス(CO濃度 4.6%)を間歇流通(一回換気量:400mL、換気回数:15回/分)し、通過したガス中の炭酸ガス濃度を赤外線炭酸ガス分析装置(機械名BIR−200、(株)ベスト測器製)で測定し、通過ガス中の炭酸ガス濃度が0.10%に達するまでの時間(炭酸ガス吸収能保持時間)を測定した。炭酸ガス吸収能保持時間が長い方が、長時間炭酸ガスを吸収する能力を保持していること、即ち炭酸ガス吸収能力が高いことを示す。
結果を図1に折れ線グラフ(−◆−)で示す。
(2) Carbon dioxide absorption ability test The carbon dioxide absorption ability test of each carbon dioxide absorbent obtained in the above (1) was performed according to the following operation.
A canister (diameter 9 cm, height 15 cm) is filled with a carbon dioxide absorbent 810 g, and a mixed gas of oxygen and carbon dioxide (CO 2 concentration 4.6%) is intermittently distributed to the canister (tidal volume: 400 mL, ventilation) Frequency: 15 times / minute), and the carbon dioxide concentration in the passed gas is measured with an infrared carbon dioxide analyzer (machine name BIR-200, manufactured by Best Sokki Co., Ltd.). The time to reach 0.10% (carbon dioxide absorption capacity retention time) was measured. A longer carbon dioxide absorption capacity retention time indicates that the carbon dioxide absorption capacity is maintained for a long time, that is, the carbon dioxide absorption capacity is high.
The results are shown by a line graph (-♦-) in FIG.

(3)麻酔薬の分解物生成率の測定
上記(1)で得た炭酸ガス吸収剤を用い、麻酔薬の分解物生成率の測定を以下の操作に従って行った。
炭酸ガス吸収剤1gを30mLのバイアル瓶に取り麻酔薬セボフルラン(丸石製薬(株)製、商品名:セボフレンTM)1.5mLを添加したのち、密栓し、40℃恒温槽で17時間接触反応させた後、気相部分1mLを採取し、ガスクロマトグラフィーにより、麻酔薬セボフルランの分解物生成率を測定した。分析は、島津GC−14B型ガスクロマトグラフィーを使用し、検出器FID、キャリャーガスはHe、流量50mL/min、試料注入口温度120℃、カラム恒温槽温度100℃、検出器温度180℃、H流量圧60KPa、空気流量圧50KPaの条件で測定した。カラムは、Dioctyl
Phthalate 20% chromosorb W(AW−DMCS)60/80 meshを充填した3.2mmφ×2mのガラスカラムを使用した。
結果を図1に棒グラフで併せて示す。
(3) Measurement of decomposition product generation rate of anesthetic agent Using the carbon dioxide absorbent obtained in (1) above, measurement of the decomposition product generation rate of anesthetic agent was performed according to the following operation.
Take 1 g of carbon dioxide absorbent in a 30 mL vial, add 1.5 mL of the anesthetic sevoflurane (trade name: Sevofurene TM , manufactured by Maruishi Pharmaceutical Co., Ltd.), seal it tightly, and let it react in a constant temperature bath at 40 ° C for 17 hours. Thereafter, 1 mL of the gas phase portion was collected, and the rate of decomposition product formation of the anesthetic sevoflurane was measured by gas chromatography. The analysis uses Shimadzu GC-14B gas chromatography, detector FID, carrier gas is He, flow rate is 50 mL / min, sample inlet temperature is 120 ° C., column thermostat temperature is 100 ° C., detector temperature is 180 ° C., H 2. The measurement was performed under the conditions of a flow rate pressure of 60 KPa and an air flow rate pressure of 50 KPa. Column is Dioctyl
A 3.2 mmφ × 2 m glass column packed with Phthalate 20% chromosorb W (AW-DMCS) 60/80 mesh was used.
The results are also shown in a bar graph in FIG.

図1から明らかな如く、塩化カルシウムを含有する参照例1の炭酸ガス吸収剤は、従来の水酸化カルシウムと水のみを含有する炭酸ガス吸収剤(図1で、塩化カルシウム・二水和物添加量が0.0%の場合)よりも長時間炭酸ガスを吸収する能力を保持しており(折れ線グラフ:−◆−)、炭酸ガスの吸収能力が高く、更に麻酔薬の分解物生成率(%)(棒グラフ)は明らかに低いことが判る。   As apparent from FIG. 1, the carbon dioxide absorbent of Reference Example 1 containing calcium chloride is a conventional carbon dioxide absorbent containing only calcium hydroxide and water (in FIG. 1, calcium chloride dihydrate added). It retains the ability to absorb carbon dioxide for a longer period of time (when the amount is 0.0%) (line graph:-◆-), has a high ability to absorb carbon dioxide, and has a decomposition product rate of anesthetics ( %) (Bar graph) is clearly low.

また、炭酸ガス吸収剤中の塩化カルシウム・二水和物の含有量は、0.5w/w%以上(無水物として0.378w/w%)が好ましいこと、並びに1.2%(無水物として0.906w/w%)程度の添加で、炭酸ガス吸収能はピークに達して飽和し、麻酔薬の分解も低値で平衡化することが判る。   The content of calcium chloride dihydrate in the carbon dioxide absorbent is preferably 0.5 w / w% or more (0.378 w / w% as an anhydride), and 1.2% (anhydride). As a result, the carbon dioxide absorption capacity reaches a peak and is saturated, and the decomposition of the anesthetic is also equilibrated at a low value.

実施例1
(1)炭酸ガス吸収剤の調製
粉末状の水酸化カルシウム(Ca(OH)、和光純薬工業(株)製、純度97.5%)30kgと塩化カルシウム・二水和物(CaCl・2HO、和光純薬工業(株)製)158gとを良く混合した後、市販の打錠機を用い、打錠硬度250gで直径5mm、高さ2.3mmの錠剤に成型した。得られた錠剤を市販の糖衣機にかけて、錠剤87w/w%に対して、塩化カルシウム・二水和物(CaCl・2HO、和光純薬工業(株)製)と塩化ナトリウム(NaCl、和光純薬工業(株)製、純度99%)とエチルバイオレットを所定濃度溶解した水溶液を13w/w%の割合で噴霧含有させた。次いで、これをポリ袋中に密閉したものを50℃の恒温器中に2時間放置し、密閉加熱熟成により、硬度を1100gにして、表2に示すような、5種の組成の錠剤型炭酸ガス吸収剤を得た。
尚、得られた炭酸ガス吸収剤中の水分含量(w/w%)を測定したところ、13w/w%であった。また、エチルバイオレットの含量は0.00455w/w%であった。
Example 1
(1) Preparation of carbon dioxide gas absorbent 30 kg of powdered calcium hydroxide (Ca (OH) 2 , Wako Pure Chemical Industries, Ltd., purity 97.5%) and calcium chloride dihydrate (CaCl 2. 2H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) 158 g was mixed well, and then a tablet having a tableting hardness of 250 g and a diameter of 5 mm and a height of 2.3 mm was molded using a commercially available tableting machine. The obtained tablets were put on a commercially available sugar coating machine, and calcium chloride dihydrate (CaCl 2 · 2H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) and sodium chloride (NaCl, Wako Pure Chemical Industries, Ltd., purity 99%) and an aqueous solution in which ethyl violet was dissolved at a predetermined concentration were sprayed at a rate of 13 w / w%. Next, the product sealed in a plastic bag is allowed to stand in a thermostat at 50 ° C. for 2 hours, and the hardness is set to 1100 g by sealed heating aging, and the tablet-type carbonic acid having five compositions as shown in Table 2 is used. A gas absorbent was obtained.
The water content (w / w%) in the obtained carbon dioxide absorbent was measured and found to be 13 w / w%. The ethyl violet content was 0.000045 w / w%.

表2に於いて、No.1の錠剤が、水酸化カルシウムと水と塩化カルシウムを含有する参照例1の炭酸ガス吸収剤である。No.2〜No.5が水酸化カルシウムと水と塩化カルシウム及び塩化ナトリウムを含有する、本発明の炭酸ガス吸収剤である。また、各炭酸ガス吸収剤中の塩化カルシウム量は、無水の塩化カルシウムとして1.31w/w%で、塩化ナトリウム含量は、No.2で0.39w/w%、No.3で0.65w/w%、No.4で0.91w/w%、No.5で1.3w/w%である。   In Table 2, the No. 1 tablet is the carbon dioxide gas absorbent of Reference Example 1 containing calcium hydroxide, water and calcium chloride. No. 2 to No. 5 are carbon dioxide gas absorbents of the present invention containing calcium hydroxide, water, calcium chloride and sodium chloride. The amount of calcium chloride in each carbon dioxide absorbent is 1.31 w / w% as anhydrous calcium chloride, and the sodium chloride content is 0.39 w / w% for No.2 and 0.65 w for No.3. No. 4 is 0.91 w / w%, and No. 5 is 1.3 w / w%.

(2)炭酸ガス吸収能力テスト
参照例1と同様の方法で、上記(1)で得た炭酸ガス吸収剤の炭酸ガス吸収能力テストを行った。
結果(炭酸ガス吸収能保持時間)を図2に折れ線グラフ(−◆−)で示す。
(2) Carbon dioxide absorption capacity test In the same manner as in Reference Example 1, the carbon dioxide absorption capacity test of the carbon dioxide absorbent obtained in (1) above was performed.
The results (carbon dioxide absorption capacity retention time) are shown by a line graph (-♦-) in FIG.

(3)麻酔薬の分解物生成率の測定
上記(1)で得た炭酸ガス吸収剤を用い、参照例1と同様の方法で麻酔薬の分解物生成率の測定を行った。
結果を図2に棒グラフで併せて示す。
(3) Measurement of decomposition product generation rate of anesthetic agent The decomposition product generation rate of an anesthetic agent was measured in the same manner as in Reference Example 1 using the carbon dioxide absorbent obtained in (1) above.
The results are also shown in a bar graph in FIG.

図2から明らかな如く、本発明の水酸化カルシウムと水と塩化カルシウムと塩化ナトリウムを含有させた炭酸ガス吸収剤は、更に長時間炭酸ガスを吸収する能力を保持しており(折れ線グラフ:−◆−)、炭酸ガスの吸収能力が高く、更に麻酔薬分解物生成率(%)(棒グラフ)は低下することが判る。   As is apparent from FIG. 2, the carbon dioxide absorbent containing calcium hydroxide, water, calcium chloride and sodium chloride of the present invention retains the ability to absorb carbon dioxide for a longer time (line graph: − ◆-), the ability to absorb carbon dioxide gas is high, and it can be seen that the rate of formation of anesthetic decomposition products (%) (bar graph) decreases.

また、炭酸ガス吸収剤中の塩化ナトリウムの含有量は、0.3w/w%以上、好ましくは0.65w/w%であること、並びに0.91w/w%程度の添加で、炭酸ガス吸収能はほぼピークに達し、麻酔薬分解能も低値で平衡化することが判る。   Further, the content of sodium chloride in the carbon dioxide absorbent is 0.3 w / w% or more, preferably 0.65 w / w%, and the addition of about 0.91 w / w% absorbs carbon dioxide. It can be seen that the performance reaches a peak and the anesthetic resolution is equilibrated at a low value.

参照例2
[炭酸ガス吸収剤の調製]
粉末状の水酸化カルシウム(Ca(OH)、和光純薬工業(株)製、純度97.5%)を市販の打錠機を用い、打錠硬度250gで直径4mm、高さ2.3mmの錠剤に成型した。得られた錠剤を市販の糖衣機にかけて、錠剤84w/w%に対して、5w/w%塩化カルシウム・二水和物(CaCl・2HO、和光純薬工業(株)製)と0.1w/w%エチルバイオレットを含有する水溶液を16w/w%の割合で噴霧含有させた。次いで、これをポリ袋中に密閉したものを80℃の恒温器中に15時間放置し、密閉加熱熟成により、硬度を900gにして、塩化ナトリウムを含有しない錠剤型の炭酸ガス吸収剤を得た(wet品とする)。得られた錠剤の組成及び形状を表3に示す。
尚、得られた炭酸ガス吸収剤中の水分含量(w/w%)を測定したところ、15w/w%であった。また、エチルバイオレットの含量は0.016w/w%であり、塩化カルシウム含量は、二水和物として0.8w/w%、無水塩化カルシウムとして0.604w/w%である。
更に、得られた炭酸ガス吸収剤を、恒温器中で水分含量が1.0w/w%以下になるまで乾燥させたものを調製し、これをdry品とした。
Reference example 2
[Preparation of carbon dioxide absorbent]
Powdered calcium hydroxide (Ca (OH) 2 , manufactured by Wako Pure Chemical Industries, Ltd., purity: 97.5%) was used with a commercially available tableting machine, with a tableting hardness of 250 g, a diameter of 4 mm, and a height of 2.3 mm. Into tablets. The obtained tablets were put on a commercially available sugar coating machine, and 5 w / w% calcium chloride dihydrate (CaCl 2 · 2H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) and 0 with respect to 84 w / w% of tablets. An aqueous solution containing 0.1 w / w% ethyl violet was sprayed at a rate of 16 w / w%. Next, this was sealed in a plastic bag, left in an incubator at 80 ° C. for 15 hours, and then sealed and aged to a hardness of 900 g to obtain a tablet-type carbon dioxide absorbent containing no sodium chloride. (Wet product). Table 3 shows the composition and shape of the obtained tablets.
The water content (w / w%) in the obtained carbon dioxide absorbent was measured and found to be 15 w / w%. The content of ethyl violet is 0.016 w / w%, and the calcium chloride content is 0.8 w / w% as dihydrate and 0.604 w / w% as anhydrous calcium chloride.
Further, the carbon dioxide absorbent obtained was dried in a thermostat until the water content became 1.0 w / w% or less, and this was designated as a dry product.

[炭酸ガス吸収剤の性能試験]
上記で得た炭酸ガス吸収剤の性能試験を下記の通り行った。結果を表3に併せて示す。
(1)麻酔薬の分解物生成率の測定
炭酸ガス吸収剤のwet品とdry品について、参照例1と同様の方法で、麻酔薬の分解物生成率(%)を測定した。結果を表3に併せて示す。
[Performance test of carbon dioxide absorbent]
The performance test of the carbon dioxide absorbent obtained above was performed as follows. The results are also shown in Table 3.
(1) Measurement of decomposition product formation rate of anesthetic agent The decomposition product generation rate (%) of anesthetic agent was measured in the same manner as in Reference Example 1 for wet products and dry products of carbon dioxide gas absorbent. The results are also shown in Table 3.

(2)炭酸ガス吸収能力テスト
炭酸ガス吸収剤のwet品について、参照例1と同様の方法で、炭酸ガス吸収能力テストを行った。結果を表3に「炭酸ガス吸収能保持時間」として示す。
(2) Carbon dioxide gas absorption capacity test A carbon dioxide gas absorption capacity test was performed on the wet carbon dioxide gas absorbent by the same method as in Reference Example 1. The results are shown in Table 3 as “carbon dioxide absorption capacity retention time”.

(3)一酸化炭素の発生量の測定
炭酸ガス吸収剤のdry品1gを30mLのバイアル瓶に取り、麻酔薬セボフルラン、エンフルラン(大日本製薬(株)製、商品名:エトレンTM)又はイソフルラン(大日本製薬(株)製、商品名:フォーレンTM)0.5mLを添加したのち、密栓し、37℃恒温槽で18時間接触反応させた後、バイアル瓶の口に一酸化炭素測定器(機器名TPA−5000、光明理化学製)をあてて、生成した一酸化炭素量を測定した。
結果を表3に、「CO発生量(dry品)」として示す。
(3) Measurement of the amount of carbon monoxide generated 1 g of dry carbon dioxide absorbent was placed in a 30 mL vial, and the anesthetics sevoflurane, enflurane (trade name: Etrene TM , manufactured by Dainippon Pharmaceutical Co., Ltd.) or isoflurane ( After adding 0.5 mL of Dainippon Pharmaceutical Co., Ltd. (trade name: Foren TM ), the bottle was sealed and allowed to react for 18 hours in a 37 ° C. constant temperature bath, and then a carbon monoxide meter (instrument) was placed in the mouth of the vial. Name TPA-5000 (manufactured by Mitsumeri Kagaku) was applied, and the amount of produced carbon monoxide was measured.
The results are shown in Table 3 as “CO generation amount (dry product)”.

(4)発熱試験
炭酸ガス吸収剤のwet品とdry品について、42mmφ×150mmステンレスカラムに炭酸ガス吸収剤150gを充填し、カラムの中央部に温度計を設置し、酸素流量1L/分で麻酔薬セボフルランは6.6%、エンフルランは7.2%、イソフルランは7.1%濃度でカラムに流通させ、発熱温度を調べた。
結果を表3に、「発熱」として示す。
(4) Exothermic test For carbon dioxide absorbent wet and dry products, a stainless steel column of 42 mmφ x 150 mm was filled with 150 g of carbon dioxide absorbent, a thermometer was installed in the center of the column, and anesthesia was performed at an oxygen flow rate of 1 L / min The drug sevoflurane was passed through the column at a concentration of 6.6%, enflurane at 7.2%, and isoflurane at a concentration of 7.1%, and the exothermic temperature was examined.
The results are shown as “Exotherm” in Table 3.

(5)粉末発生率の測定
精秤した炭酸ガス吸収剤10gを直径30mm×長さ10cmのポリプロピレン容器に入れ密栓し横に倒して、往復式振盪機(ヤマト科学(株))に固定し振盪幅30mm、振盪数120回/minの条件で7時間振盪した。これをふるい(12メッシュ篩、篩目寸法1.4mm)にかけ、12メッシュ以下の粉末発生率(w/w%)を測定した。
(5) Measurement of powder generation rate 10 g of precisely weighed carbon dioxide absorbent is put into a polypropylene container with a diameter of 30 mm and a length of 10 cm, tightly closed, tilted sideways, fixed on a reciprocating shaker (Yamato Scientific Co., Ltd.) and shaken. The mixture was shaken for 7 hours under the conditions of a width of 30 mm and a shaking speed of 120 times / min. This was sieved (12 mesh sieve, mesh size 1.4 mm), and the powder generation rate (w / w%) of 12 mesh or less was measured.

(6)使用後の退色(変色)の検査
炭酸ガス吸収剤810gをキャニスター(直径9cm、高さ15cm)に充填し、該キャニスターに酸素と炭酸ガスの混合ガス(CO濃度 4.6%)を4時間かけて間歇流通(一回換気量:400mL、換気回数:15回/分)した。炭酸ガス吸収剤を回収し、着色した部分について、ミノルタ色彩色計CR−321を用い、プロトコルに従って、発色の表色モード(Lab)のL値(明度%)を測定した。
尚、測定は検査前、検査直後、及び検査1日後の炭酸ガス吸収剤について行った。
結果を表4に示す
(6) Discoloration (discoloration) inspection after use 810 g of carbon dioxide absorbent is filled in a canister (diameter 9 cm, height 15 cm), and the canister is a mixed gas of oxygen and carbon dioxide (CO 2 concentration 4.6%). Was intermittently distributed (tidal volume: 400 mL, ventilation rate: 15 times / min) over 4 hours. The carbon dioxide absorbent was collected, and the colored portion was measured for L * value (lightness%) of the color display mode (L * a * b * ) according to the protocol using a Minolta colorimeter CR-321. .
The measurement was performed on the carbon dioxide absorbent before the inspection, immediately after the inspection, and one day after the inspection.
The results are shown in Table 4.

実施例2
[錠剤型炭酸ガス吸収剤の調製]
粉末状の水酸化カルシウム(Ca(OH)、和光純薬工業(株)製、純度97.5%)30kgと塩化カルシウム・二水和物(CaCl・2HO、和光純薬工業(株)製)158gとを良く混合した後、市販の打錠機を用い、打錠硬度250gで直径5mm、高さ2.3mmの錠剤に成型した。得られた錠剤を市販の糖衣機にかけて、錠剤87w/w%に対して、10w/w%塩化カルシウム・二水和物(CaCl・2HO、和光純薬工業(株)製)と7w/w%塩化ナトリウム(NaCl、和光純薬工業(株)製、純度99%)と0.035w/w%エチルバイオレットを所定濃度溶解した水溶液を13w/w%の割合で噴霧含有させた。次いで、これをポリ袋中に密閉したものを50℃の恒温器中に2時間放置し、密閉加熱熟成により、硬度を1120gにして、本発明の、塩化ナトリウムを含有する錠剤型の炭酸ガス吸収剤を得た(wet品)。得られた錠剤の組成及び形状を表3に示す。尚、得られた炭酸ガス吸収剤中の水分含量(w/w%)を測定したところ、13w/w%であった。また、塩化カルシウム含量は、二水和物として初めの粉末混合で0.435w/w%と噴霧添加で1.3w/w%(合計1.735w/w%、即ち無水塩化カルシウムとして1.31w/w%)である。塩化ナトリウムの含量は0.91w/w%である。また、エチルバイオレットの含量は0.00455w/w%である。
更に、得られた炭酸ガス吸収剤を、恒温器中で水分含量が1.0w/w%以下になるまで乾燥させたものを調製し、これをdry品とした。
Example 2
[Preparation of tablet-type carbon dioxide absorbent]
30 kg of powdered calcium hydroxide (Ca (OH) 2 , manufactured by Wako Pure Chemical Industries, Ltd., purity 97.5%) and calcium chloride dihydrate (CaCl 2 · 2H 2 O, Wako Pure Chemical Industries ( 158 g) was mixed well, and then a tablet having a tableting hardness of 250 g and a diameter of 5 mm and a height of 2.3 mm was molded using a commercially available tableting machine. The obtained tablets were put on a commercially available sugar coating machine, and 10 w / w% calcium chloride dihydrate (CaCl 2 · 2H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) and 7 w with respect to 87 w / w tablets. / W% sodium chloride (NaCl, manufactured by Wako Pure Chemical Industries, Ltd., purity 99%) and 0.035 w / w% aqueous solution of ethyl violet dissolved in a predetermined concentration were sprayed at a ratio of 13 w / w%. Next, the product sealed in a plastic bag is allowed to stand in a thermostat at 50 ° C. for 2 hours, and the hardness is set to 1120 g by sealed heating aging to absorb the carbon dioxide gas of the tablet type containing sodium chloride of the present invention. An agent was obtained (wet product). Table 3 shows the composition and shape of the obtained tablets. The water content (w / w%) in the obtained carbon dioxide absorbent was measured and found to be 13 w / w%. The calcium chloride content was 0.435 w / w% in the initial powder mixture as a dihydrate and 1.3 w / w% by spray addition (total 1.735 w / w%, ie 1.31 w as anhydrous calcium chloride). / W%). The content of sodium chloride is 0.91 w / w%. The content of ethyl violet is 0.000045 w / w%.
Further, the carbon dioxide absorbent obtained was dried in a thermostat until the water content became 1.0 w / w% or less, and this was designated as a dry product.

[炭酸ガス吸収剤の性能試験]
得られた炭酸ガス吸収剤について、参照例2と同様の方法により、麻酔薬の分解物生成率の測定、炭酸ガス吸収能力テスト、一酸化炭素の発生量の測定、発熱試験、粉末発生率の測定を行った。結果を表3に併せて示す。
また、参照例2と同様の方法により、使用後の退色(変色)の検査を行った。結果を表4に併せて示す。
[Performance test of carbon dioxide absorbent]
With respect to the obtained carbon dioxide absorbent, in the same manner as in Reference Example 2, measurement of the rate of decomposition of anesthetics, carbon dioxide absorption capacity test, measurement of carbon monoxide generation, exothermic test, powder generation rate Measurements were made. The results are also shown in Table 3.
Further, the fading (discoloration) after use was inspected by the same method as in Reference Example 2. The results are also shown in Table 4.

比較例1
粉末状の水酸化カルシウム3kgと粒状の水酸化ナトリウム140gを良く混合した後、市販の打錠機を用い、打錠硬度250gで直径5mm、高さ2.3mmの錠剤に成型した。得られた錠剤を市販の糖衣機にかけて、錠剤84w/w%に対して0.075w/w%エチルバイオレット水溶液を16w/w%の割合で噴霧含有させた。次いで、これをポリ袋中に密閉したものを80℃の恒温器中に15時間放置し、密閉加熱熟成により、硬度を1020gにして、炭酸ガス吸収剤を得た。得られた錠剤の組成及び形状を表3に併せて示す。
尚、得られた炭酸ガス吸収剤中の水分含量(w/w%)を測定したところ、15w/w%であった。
得られた炭酸ガス吸収剤について、参照例2と同様の方法により、麻酔薬の分解物生成率の測定、炭酸ガス吸収能力テスト、一酸化炭素の発生量の測定、発熱試験、粉末発生率の測定を行った。結果を表3に併せて示す。
また、参照例2と同様の方法により、使用後の退色(変色)の検査を行った。結果を表4に併せて示す。
Comparative Example 1
After thoroughly mixing 3 kg of powdered calcium hydroxide and 140 g of granular sodium hydroxide, it was molded into a tablet having a tableting hardness of 250 g and a diameter of 5 mm and a height of 2.3 mm using a commercially available tableting machine. The obtained tablet was put on a commercially available sugar coating machine, and 0.075 w / w% ethyl violet aqueous solution was sprayed into the tablet 84 w / w% at a ratio of 16 w / w%. Next, the product sealed in a plastic bag was left in an incubator at 80 ° C. for 15 hours, and hermetically heated and aged to 1020 g to obtain a carbon dioxide absorbent. Table 3 shows the composition and shape of the obtained tablets.
The water content (w / w%) in the obtained carbon dioxide absorbent was measured and found to be 15 w / w%.
With respect to the obtained carbon dioxide absorbent, in the same manner as in Reference Example 2, measurement of the rate of decomposition of anesthetics, carbon dioxide absorption capacity test, measurement of carbon monoxide generation, exothermic test, powder generation rate Measurements were made. The results are also shown in Table 3.
Further, the fading (discoloration) after use was inspected by the same method as in Reference Example 2. The results are also shown in Table 4.

表3の結果から明らかな如く、本発明の炭酸ガス吸収剤は、比較例1の炭酸ガス吸収剤と比較して、wet品でもdry品でも麻酔薬の分解物生成率は明らかに低いことが判る(参照例2、実施例2)。更に、塩化ナトリウムを含有させることにより、更に麻酔薬分解物生成率が低くなることが判る(実施例2)。   As is clear from the results in Table 3, the carbon dioxide absorbent of the present invention is clearly lower in the rate of formation of an anesthetic decomposition product in both wet and dry products than the carbon dioxide absorbent of Comparative Example 1. It can be seen (Reference Example 2, Example 2). Furthermore, it turns out that an anesthetic decomposition product production rate becomes still lower by containing sodium chloride (Example 2).

比較例1の炭酸ガス吸収剤(dry品)は、麻酔薬と接触することにより一酸化炭素(CO)が大量に発生したが、参照例2及び実施例2で得られたdry品では全く発生しなかった。尚、参照例2及び実施例2で得られたwet品を用いて同様に一酸化炭素の発生量の測定を行った結果、やはりdry品と同様に、全く一酸化炭素の発生が無かったことを確認している。
以上のことより、本発明の炭酸ガス吸収剤は、特に麻酔ガス中の炭酸ガスを吸収するためのものとして優れていることが判る。
The carbon dioxide absorbent (dry product) of Comparative Example 1 generated a large amount of carbon monoxide (CO) by contact with the anesthetic, but it was completely generated in the dry product obtained in Reference Example 2 and Example 2. I did not. In addition, as a result of measuring the amount of carbon monoxide generated using the wet products obtained in Reference Example 2 and Example 2, no carbon monoxide was generated as in the dry product. Have confirmed.
From the above, it can be seen that the carbon dioxide absorbent of the present invention is excellent particularly for absorbing carbon dioxide in anesthetic gas.

更に、比較例1の炭酸ガス吸収剤(dry品)は、麻酔薬と接触させることにより30℃以上の発熱が起こったが、本発明の炭酸ガス吸収剤は、wet品もdry品も、麻酔薬と接触させた場合に発熱する現象は起こらなかった。
また、本発明の炭酸ガス吸収剤(wet品)の粉末の発生率は、比較例1の炭酸ガス吸収剤のそれより低かった。
Furthermore, the carbon dioxide absorbent (dry product) of Comparative Example 1 generated heat of 30 ° C. or more when brought into contact with an anesthetic. However, the carbon dioxide absorbent of the present invention was anesthetic for both wet and dry products. No fever occurred when contacted with the drug.
Further, the generation rate of the carbon dioxide absorbent (wet product) of the present invention was lower than that of the carbon dioxide absorbent of Comparative Example 1.

また、炭酸ガス吸収剤の使用に当たっては、その炭酸ガス吸収剤が乾燥したものか否かを色で判別できると便利である。
表3から明らかなとおり、本発明の炭酸ガス吸収剤は乾燥することによって発色した(実施例2)が、比較例1の炭酸ガス吸収剤は発色しなかった。
Further, when using the carbon dioxide absorbent, it is convenient that it can be determined by color whether or not the carbon dioxide absorbent is dried.
As apparent from Table 3, the carbon dioxide absorbent of the present invention developed color by drying (Example 2), but the carbon dioxide absorbent of Comparative Example 1 did not develop color.

更に表4から明らかな如く、本発明の炭酸ガス吸収剤(実施例2)は、検査前は白色であったものが、炭酸ガスを吸収した検査直後では紫色に発色し、その発色は、検査後1日たっても保たれていた。しかし、比較例1の炭酸ガス吸収剤は、使用前は白色で、炭酸ガスを吸収した直後は紫色に発色したが、その後1日おくと退色して白色になってしまい、その炭酸ガス吸収剤が消耗したものか、吸収能のあるものかが判別できなくなってしまった。
これらのことより、本発明の炭酸ガス吸収剤は、従来品に比較して、高能力で安全且つ取扱いやすいことが判る。
Further, as is apparent from Table 4, the carbon dioxide absorbent (Example 2) of the present invention was white before the inspection, but it developed a purple color immediately after the inspection that absorbed the carbon dioxide gas. It was kept even one day later. However, the carbon dioxide absorbent of Comparative Example 1 was white before use and colored purple immediately after absorbing the carbon dioxide, but after that, it faded and turned white after 1 day, and the carbon dioxide absorbent. It is not possible to determine whether the battery is exhausted or absorbable.
From these facts, it can be seen that the carbon dioxide absorbent of the present invention has a high capacity, is safe and easy to handle as compared with the conventional product.

尚、炭酸ガス吸収剤は使用を繰り返す間に乾燥してくるが、この乾燥品を使用したことによって、炭酸ガス吸収能の低下及び麻酔ガスの分解や異常発熱等の問題が起こったことが知られている。本発明の炭酸ガス吸収剤(実施例2)は、wet品は勿論、dry品においても、麻酔薬の分解物生成率及び一酸化炭素発生率が低く、更に使用によっても異常発熱が起こらないという優れた特長を有する。   It should be noted that the carbon dioxide absorbent is dried during repeated use, but it was known that the use of this dried product caused problems such as a decrease in carbon dioxide absorption capacity, decomposition of anesthetic gas, and abnormal heat generation. It has been. The carbon dioxide absorbent (Example 2) of the present invention has low anesthetic decomposition product generation rate and carbon monoxide generation rate not only in wet products but also in dry products, and does not cause abnormal heat generation even when used. Has excellent features.

参照例3
塩化ナトリウムを含有しない錠剤型炭酸ガス吸収剤の調製
粉末状の水酸化カルシウム(Ca(OH)、和光純薬工業(株)製、純度97.5%)を市販の打錠機を用い、打錠硬度250gで直径4mm、高さ2.3mmの錠剤に成型したものと、直径5mm、高さ2.3mmの錠剤に成形したものを得た。得られた錠剤を市販の糖衣機にかけて、錠剤84w/w%に対して、塩化カルシウム・二水和物(CaCl・2HO、和光純薬工業(株)製)5w/w%とエチルバイオレット0.1w/w%を含有する水溶液を16w/w%の割合で噴霧含有させた。これをポリ袋中に密閉したものを80℃の恒温器中に15時間放置して、錠剤型炭酸ガス吸収剤を得た。得られた吸収剤の組成は、直径4mmのものも、直径5mmのものも、水酸化カルシウム84w/w%、水15w/w%、及び塩化カルシウム・二水和物0.8w/w%(無水塩化カルシウムとして0.604w/w%)である。また、エチルバイオレットの含量は0.016w/w%である。
Reference example 3
Preparation of Tablet Type Carbon Dioxide Absorber Containing No Sodium Chloride Powdered calcium hydroxide (Ca (OH) 2 , manufactured by Wako Pure Chemical Industries, Ltd., purity 97.5%) was used using a commercially available tableting machine. A tablet with a tableting hardness of 250 g and a tablet with a diameter of 4 mm and a height of 2.3 mm and a tablet with a diameter of 5 mm and a height of 2.3 mm were obtained. The obtained tablets are put on a commercially available sugar coating machine, and calcium chloride dihydrate (CaCl 2 · 2H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) 5 w / w% and ethyl are used for 84 w / w% of tablets. An aqueous solution containing violet 0.1 w / w% was sprayed at a rate of 16 w / w%. This was sealed in a plastic bag and allowed to stand in an incubator at 80 ° C. for 15 hours to obtain a tablet-type carbon dioxide absorbent. The composition of the obtained absorbent was 4 mm in diameter and 5 mm in diameter, calcium hydroxide 84 w / w%, water 15 w / w%, and calcium chloride dihydrate 0.8 w / w% ( Anhydrous calcium chloride is 0.604 w / w%). The content of ethyl violet is 0.016 w / w%.

実施例3
塩化ナトリウムを含有する、本発明の錠剤型炭酸ガス吸収剤の調製
粉末状の水酸化カルシウム(Ca(OH)、和光純薬工業(株)製、純度97.5%)を市販の打錠機を用い、打錠硬度250gで直径5mm、高さ2.3mmの錠剤に成形したものを得た。得られた直径5mm錠剤を市販の糖衣機にかけて、錠剤89w/w%に対して、10w/w%塩化カルシウム・二水和物(CaCl・2HO、和光純薬工業(株)製)と5w/w%塩化ナトリウム(NaCl、和光純薬工業(株)製、純度99%)と0.035w/w%エチルバイオレットを含有する水溶液を11w/w%の割合で噴霧含有させた。これをポリ袋中に密閉したものを50℃の恒温器中に2時間放置して、錠剤型の炭酸ガス吸収剤を得た。
尚、得られた炭酸ガス吸収剤中の水分含量(w/w%)を測定したところ、糖衣機により含浸させた水分含量と殆ど同じ10w/w%であった。水酸化カルシウムの含量は88w/w%、塩化カルシウム含量は、二水和物として1.0w/w%、無水塩化カルシウムとして0.755w/w%である。塩化ナトリウムの含量は0.5w/w%である。また、エチルバイオレットの含量は0.00385w/w%である。
Example 3
Preparation of Tablet-type Carbon Dioxide Absorber of the Present Invention Containing Sodium Chloride Powdered calcium hydroxide (Ca (OH) 2 , Wako Pure Chemical Industries, Ltd., purity 97.5%) is commercially available. Using a machine, a tablet having a tableting hardness of 250 g and a diameter of 5 mm and a height of 2.3 mm was obtained. The obtained tablets with a diameter of 5 mm were put on a commercially available sugar coating machine, and 10 w / w% calcium chloride dihydrate (CaCl 2 .2H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) with respect to 89 w / w% of tablets. And 5 w / w% sodium chloride (NaCl, manufactured by Wako Pure Chemical Industries, Ltd., purity 99%) and an aqueous solution containing 0.035 w / w% ethyl violet were sprayed at a ratio of 11 w / w%. This was sealed in a plastic bag and left in a thermostat at 50 ° C. for 2 hours to obtain a tablet-type carbon dioxide absorbent.
In addition, when the water content (w / w%) in the obtained carbon dioxide absorbent was measured, it was 10 w / w% which was almost the same as the water content impregnated by the sugar coating machine. The calcium hydroxide content is 88 w / w%, the calcium chloride content is 1.0 w / w% as dihydrate and 0.755 w / w% as anhydrous calcium chloride. The content of sodium chloride is 0.5 w / w%. The content of ethyl violet is 0.000038 w / w%.

上記参照例3及び実施例3で得られた炭酸ガス吸収剤の炭酸ガス吸収能力テストを以下の操作に従って行った。
炭酸ガス吸収剤810gをキャニスター(直径9cm、高さ15cm)に充填し、該キャニスターに酸素と炭酸ガスの混合ガス(CO濃度 4.6%)を間歇流通(一回換気量:400mL、換気回数:15回/分)し、通過したガス中の炭酸ガス濃度を赤外線炭酸ガス分析装置(機械名BIR−200、(株)ベスト測器製)で測定した。
The carbon dioxide absorption ability test of the carbon dioxide absorbent obtained in Reference Example 3 and Example 3 was performed according to the following operation.
A canister (diameter 9 cm, height 15 cm) is filled with a carbon dioxide absorbent 810 g, and a mixed gas of oxygen and carbon dioxide (CO 2 concentration 4.6%) is intermittently distributed to the canister (tidal volume: 400 mL, ventilation) Frequency: 15 times / minute), and the carbon dioxide concentration in the gas passed through was measured with an infrared carbon dioxide analyzer (machine name BIR-200, manufactured by Best Instrument Co., Ltd.).

結果を図3に示す。図3に於いて、横軸は混合ガスの流通時間を、縦軸は各流通時間における、通過した混合ガス中の炭酸ガス濃度(CO通過濃度(%))を夫々示し、−●−は参照例3の直径5mmの錠剤型炭酸ガス吸収剤(NaCl無添加)、−○−は参照例3の直径4mmの炭酸ガス吸収剤(NaCl無添加)、−△−は実施例3の直径5mmの錠剤型炭酸ガス吸収剤(NaCl、0.5w/w%含有)について得られた結果を夫々示す。 The results are shown in FIG. In FIG. 3, the horizontal axis indicates the distribution time of the mixed gas, the vertical axis indicates the carbon dioxide concentration (CO 2 passage concentration (%)) in the mixed gas that has passed through each distribution time, and − ● − Tablet type carbon dioxide absorbent with a diameter of 5 mm of Reference Example 3 (without addition of NaCl),-◯-is a carbon dioxide absorbent with a diameter of 4 mm of Reference Example 3 (with no addition of NaCl), and -Δ- is a diameter of 5 mm of Example 3. The results obtained for each tablet type carbon dioxide absorbent (containing NaCl, 0.5 w / w%) are shown.

図3から明らかな如く、参照例3の直径4mmの炭酸ガス吸収剤(NaCl無添加)の方が、参照例3の5mmの炭酸ガス吸収剤(NaCl無添加)よりも通過炭酸ガス0%の炭酸ガス吸収能保持時間が長く、炭酸ガス吸収剤として優れていることが判る。
また、図3から明らかな如く、更に塩化ナトリウムを含有する本発明の炭酸ガス吸収剤は、直径5mmのものであっても、参照例3の炭酸ガス吸収剤(NaCl無含有)の直径4〜5mmの炭酸ガス吸収剤よりも、更に通過炭酸ガス0%の吸収能保持時間が長く、炭酸ガス吸収剤として更に優れていることが判る。
As apparent from FIG. 3, the carbon dioxide gas absorbent having a diameter of 4 mm (without addition of NaCl) of Reference Example 3 has 0% of the passing carbon dioxide gas than the carbon dioxide gas absorbent of 5 mm of Reference Example 3 (without addition of NaCl). It can be seen that the carbon dioxide absorption capacity retention time is long and it is excellent as a carbon dioxide absorbent.
Further, as is apparent from FIG. 3, the carbon dioxide absorbent of the present invention further containing sodium chloride has a diameter of 4 to 4 of the carbon dioxide absorbent (non-NaCl) of Reference Example 3 even if it has a diameter of 5 mm. It can be seen that the absorption capacity retention time of 0% of the passing carbon dioxide gas is longer than that of the 5 mm carbon dioxide absorbent, and it is further excellent as a carbon dioxide absorbent.

以上述べた如く、本発明は、従来の水酸化カルシウムとアルカリ金属の水酸化物とを含む炭酸ガス吸収剤に比較して、呼吸ガスや麻酔ガス中の炭酸ガスの吸収能力は高く維持され、且つ例えばセボフルラン等の麻酔薬の分解が少なく、しかも材料の混合操作等を省略できるためコストの低下や製造工程の簡易化が可能な炭酸ガス吸収剤を提供するものであり、斯業に貢献するところ大なる発明である。   As described above, the present invention maintains a high ability to absorb carbon dioxide in respiratory gas and anesthetic gas as compared with a carbon dioxide absorbent containing conventional calcium hydroxide and alkali metal hydroxide. In addition, the present invention provides a carbon dioxide absorbent that reduces the cost and simplifies the manufacturing process because there is little decomposition of an anesthetic such as sevoflurane and the mixing operation of the material can be omitted. However, it is a great invention.

参照例1で得られた、錠剤型の炭酸ガス吸収剤中の塩化カルシウム濃度(塩化カルシウム添加量(%))と、麻酔薬の分解物生成率(%)との関係、及び炭酸ガス吸収能保持時間(分)との関係を示すグラフである。Relationship between calcium chloride concentration (calcium chloride addition amount (%)) in the tablet-type carbon dioxide absorbent obtained in Reference Example 1 and the rate of formation of an anesthetic decomposition product (%), and carbon dioxide absorption capacity It is a graph which shows the relationship with retention time (minutes). 実施例1で得られた、錠剤型の炭酸ガス吸収剤中の塩化ナトリウム濃度(塩化ナトリウム添加量(%))と、麻酔薬の分解物生成率(%)との関係、及び炭酸ガス吸収能保持時間(分)との関係を示すグラフである。Relationship between sodium chloride concentration (addition amount of sodium chloride (%)) in the tablet-type carbon dioxide absorbent obtained in Example 1 and the rate of formation of anesthetic decomposition products (%), and carbon dioxide absorption capacity It is a graph which shows the relationship with retention time (minutes). 参照例3で得られた直径4mm及び直径5mmの錠剤型炭酸ガス吸収剤(NaCl無添加)、及び実施例3で得られた直径5mmの本発明の錠剤型炭酸ガス吸収剤(NaCl含有)を用いて、炭酸ガスの吸収能力を調べて得られた、混合ガス中の炭酸ガス吸収能保持時間(分)と混合ガス中の炭酸ガス濃度(CO通過濃度(%))との関係を示すグラフである。The tablet-type carbon dioxide absorbent (with no NaCl added) having a diameter of 4 mm and 5 mm obtained in Reference Example 3 and the tablet-type carbon dioxide absorbent (containing NaCl) of the present invention having a diameter of 5 mm obtained in Example 3 were used. The relationship between the carbon dioxide absorption capacity retention time (minutes) in the mixed gas and the carbon dioxide concentration (CO 2 passage concentration (%)) in the mixed gas, obtained by examining the carbon dioxide absorption capacity, is shown. It is a graph.

符号の説明Explanation of symbols

図4に於いて、−●−は直径5mmの錠剤型炭酸ガス吸収剤(NaCl無添加)、−○−は直径4mmの本発明の炭酸ガス吸収剤(NaCl無添加)、−△−は直径5mmの錠剤型炭酸ガス吸収剤(NaCl 0.5w/w%含有)について得られた結果を夫々示す。

In FIG. 4, − ● − is a tablet-type carbon dioxide absorbent (diameter not added) having a diameter of 5 mm, − ◯ − is a carbon dioxide absorbent (no NaCl) of the present invention having a diameter of 4 mm, and −Δ− is a diameter. The results obtained for a 5 mm tablet-type carbon dioxide absorbent (containing 0.5 w / w% NaCl) are shown respectively.

Claims (5)

水酸化カルシウムと水と0.3〜1.4w/w%の塩化カルシウムと0.3〜1.4w/w%の塩化ナトリウムとを含有し、且つアルカリ金属の水酸化物を0.01w/w%以下しか含まないことを特徴とする炭酸ガス吸収剤。 Contain calcium hydroxide and water and 0.3~1.4w / w% of calcium chloride and 0.3~1.4w / w% sodium chloride, and 0.01w a hydroxide of an alkali metal / Carbon dioxide absorbent characterized by containing only w% or less. 更に酸アルカリ指示薬を含有する請求項1に記載の炭酸ガス吸収剤。 The carbon dioxide gas absorbent according to claim 1, further comprising an acid-alkali indicator. 水酸化カルシウムを77.8〜89.7w/w%含有する請求項1又は2に記載の炭酸ガス吸収剤。 The carbon dioxide gas absorbent according to claim 1 or 2, which contains 77.8 to 89.7 w / w% of calcium hydroxide. 固体状の吸収剤が、粒状又は錠剤型である請求項1〜3の何れかに記載の炭酸ガス吸収剤。 The carbon dioxide absorbent according to any one of claims 1 to 3, wherein the solid absorbent is granular or tablet-shaped. 請求項1〜4の何れかに記載の炭酸ガス吸収剤を用いて呼吸ガスや麻酔ガスを処理することを特徴とする麻酔ガス中の炭酸ガス除去方法。
A method for removing carbon dioxide from an anesthetic gas, wherein the breathing gas or anesthetic gas is treated using the carbon dioxide absorbent according to any one of claims 1 to 4.
JP2005267943A 2004-09-17 2005-09-15 Carbon dioxide absorbent Active JP4689417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267943A JP4689417B2 (en) 2004-09-17 2005-09-15 Carbon dioxide absorbent

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004271196 2004-09-17
JP2004271196 2004-09-17
JP2004307279 2004-10-21
JP2004307279 2004-10-21
JP2005267943A JP4689417B2 (en) 2004-09-17 2005-09-15 Carbon dioxide absorbent

Publications (2)

Publication Number Publication Date
JP2006142280A JP2006142280A (en) 2006-06-08
JP4689417B2 true JP4689417B2 (en) 2011-05-25

Family

ID=36622560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267943A Active JP4689417B2 (en) 2004-09-17 2005-09-15 Carbon dioxide absorbent

Country Status (1)

Country Link
JP (1) JP4689417B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074372B2 (en) * 2008-12-26 2012-11-14 矢橋工業株式会社 Carbon dioxide absorbent
KR20130101936A (en) * 2012-03-06 2013-09-16 삼성전자주식회사 Adsorbent for carbon dioxide, method preparing the same and capture module for carbon dioxide
CN110614020A (en) * 2019-07-05 2019-12-27 湖南佰裕科技股份有限公司 Novel high-strength calcium hydroxide type carbon dioxide absorbent and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210844A (en) * 1983-05-13 1984-11-29 Mitsubishi Gas Chem Co Inc Preservation of coffee
JP2001509042A (en) * 1996-11-25 2001-07-10 アームストロング メディカル リミテッド Carbon dioxide absorber in anesthesia
JP2004506508A (en) * 2000-08-23 2004-03-04 モレキュラー・プロダクツ・リミテッド Or related improvements in carbon dioxide absorbent formulations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210844A (en) * 1983-05-13 1984-11-29 Mitsubishi Gas Chem Co Inc Preservation of coffee
JP2001509042A (en) * 1996-11-25 2001-07-10 アームストロング メディカル リミテッド Carbon dioxide absorber in anesthesia
JP2004506508A (en) * 2000-08-23 2004-03-04 モレキュラー・プロダクツ・リミテッド Or related improvements in carbon dioxide absorbent formulations

Also Published As

Publication number Publication date
JP2006142280A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
AU655727B2 (en) Method and compositions for chlorine dioxide manufacture
CN102835421B (en) Stable product containing chlorine dioxide and preparation method of stable product
ES2248859T5 (en) Carbon dioxide absorber in anesthesiology
CA1151633A (en) Absorption of carbon dioxide
JPH0557182A (en) Carbon dioxide absorbent
EP3212267B1 (en) Chemical absorbent
JPH07308538A (en) Cleaner for harmful gas
JP4689417B2 (en) Carbon dioxide absorbent
EP1313555B1 (en) Improvements in or relating to carbon dioxide absorbent formulations
KR101492026B1 (en) Carbon dioxide absorbent
CA2498170C (en) Calcium hydroxide absorbent with rheology modifier and process involving same
JP2003088574A (en) Novel acidic gas absorbent
TW524720B (en) Cleaning agent for hazardous gas
CN101143225A (en) Air purifying agent and its preparing process
ES2218459T3 (en) CHEMICAL ABSORBENT THAT ESSENTIALLY CONSISTS OF GROUP II METAL HYDROXIDES.
JPS58177137A (en) Carbon dioxide gas absorbent
JP7188803B2 (en) A release kit containing a carrier capable of adsorbing high-capacity chlorine dioxide gas, and a manufacturing apparatus capable of producing the carrier
JP2959801B2 (en) Manufacturing method of acid gas absorbent
KR100510075B1 (en) How to make soda lime
RU2323758C1 (en) Product for air regeneration
JP3701741B2 (en) Hazardous gas purification agent
AU2002210691A1 (en) Chemical absorbent
CN113767066B (en) Nitrogen-based gas sustained release agent, nitrogen-based gas sustained release body comprising same, and method for sustained release of nitrogen-based gas, breathing apparatus, package, and sustained release device using same
JP2822440B2 (en) Oxygen scavenger
KR20040028821A (en) Method for producing soda lime

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080723

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250