JP4687849B2 - High purity diisopropyl ether and process for producing the same - Google Patents

High purity diisopropyl ether and process for producing the same Download PDF

Info

Publication number
JP4687849B2
JP4687849B2 JP2001107458A JP2001107458A JP4687849B2 JP 4687849 B2 JP4687849 B2 JP 4687849B2 JP 2001107458 A JP2001107458 A JP 2001107458A JP 2001107458 A JP2001107458 A JP 2001107458A JP 4687849 B2 JP4687849 B2 JP 4687849B2
Authority
JP
Japan
Prior art keywords
diisopropyl ether
distillation
purity
present
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001107458A
Other languages
Japanese (ja)
Other versions
JP2002308813A (en
Inventor
悟 池田
理記 川股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2001107458A priority Critical patent/JP4687849B2/en
Publication of JP2002308813A publication Critical patent/JP2002308813A/en
Application granted granted Critical
Publication of JP4687849B2 publication Critical patent/JP4687849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高純度ジイソプロピルエーテルおよびその製法に関するものであり、さらに詳しくは医薬品や食品等の合成・抽出溶剤として用いられる高純度ジイソプロピルエーテルおよび高純度ジイソプロピルエーテルを低純度のジイソプロピルエーテルから蒸留精製によって製造する方法に関する。
【0002】
【従来の技術】
医薬品や食品等の合成・抽出溶剤として、ジイソプロピルエーテルは99%もしくは99.5%以上の高い純度が要求されている。
ジイソプロピルエーテルは、工業的にはイソプロピルアルコ−ルとプロピレンの接触反応にて目的生産されるか、イソプロピルアルコール製造の際の副生油として回収される。
【0003】
ここで得られる粗ジイソプロピルエテーテルには製造工程で副生するヘキセン類(本発明では炭素数6の脂肪族不飽和炭化水素化合物を指す)が含有されるが、その沸点(53〜73℃)が目的とするジイソプロピルエーテルの沸点(69℃)と近接するため、通常の蒸留方法・蒸留装置では純度99%以上の高純度ジイソプロピルエテーテルを製造することは困難なことが多い。
【0004】
これを解決する従来公知の方法(特開平3−63239号公報)には、溶媒(イソプロピルアルコールもしくはアセトニトリル)を添加し、ヘキセン類を共沸組成物として分離・留出せしめるものがある。
【0005】
【発明が解決しようとする課題】
公知の方法(特開平3−63239号公報)は、ヘキセン類の含有量が少ない粗ジイソプロピルエーテルを精製して高純度ジイソプロピルエテーテルを製造するには有効な手段であるが、ヘキセン類の含有量が多い、例えば20質量%以上の、粗ジイソプロピルエーテルに適用する場合には、添加する溶媒量及び共沸組成物として同伴されるジイソプロピルエーテル量が増大してしまうという問題があった。このことは経済的に不利であるのみならず、廃棄物が増大することで環境上も好ましくない。
【0006】
本発明の目的は、医薬品や食品等の合成・抽出溶剤として好適に用いられる高純度ジイソプロピルエーテルを低純度のジイソプロピルエーテルから蒸留精製によって経済的有利にかつ環境上の問題なく製造する方法を提供することである。
【0007】
【課題を解決するための手段】
前記課題を解決するために本発明者等は検討を重ねた結果、ヘキセン類を含有する粗ジイソプロピルエーテルを水素化処理し、対応するヘキサン類(本発明では炭素数6の脂肪族飽和炭化水素化合物を指す)に変換することで、全てのヘキセン類の沸点をジイソプロピルエーテルの沸点(69℃)と同等以下とし、かつこの水素化処理後の粗ジイソプロピルエーテルを蒸留することで、特に抽出蒸留または共沸蒸留することで、効率的に粗ジイソプロピルエーテルを精製して高純度ジイソプロピルエーテルを製造しうることを見出し本発明を完成させた。
【0009】
本発明の第1は、ヘキセン類を含有するジイソプロピルエーテルを水素化処理した後に蒸留することを特徴とする純度99質量%以上のジイソプロピルエーテルの製法である。
【0010】
本発明の第2は、本発明第1に記載の製法において、蒸留が共沸蒸留であることを特徴とする。
【0011】
本発明の第3は、本発明第1に記載の製法において、蒸留が抽出蒸留であることを特徴とする。
【0012】
本発明の第4は、本発明第2に記載の製法において、添加する共沸組成成分がイソプロピルアルコールであることを特徴とする。
【0013】
本発明においては、ヘキセン類を含有する粗ジイソプロピルエーテルを水素化処理し、対応するヘキサン類に変換することで、全てのヘキセン類の沸点をジイソプロピルエーテルの沸点(69℃)と同等以下とし、かつこの水素化処理後の粗ジイソプロピルエーテルを蒸留することで、特に抽出蒸留または共沸蒸留することで、効率的に粗ジイソプロピルエーテルを精製して微量のヘキサン類を含有する高純度ジイソプロピルエーテルを経済的有利にかつ環境上の問題なく製造できる。
【0014】
【発明の実施の形態】
以下、本発明の方法についてさらに詳しく説明する。
本発明における原料粗ジイソプロピルエーテルは、目的製造されたもの、もしくは他の化合物(例えばイソプロピルアルコール)を製造する際の副生成物として得られたもの、さらには合成溶媒や抽出溶媒として使用されたジイソプロピルエーテルを回収したものであってよい。
【0015】
また用いる原料粗ジイソプロピルエーテルの純度に特に制限はないが、工業的にはヘキセン類が1〜50質量%、好ましくは2〜30質量%の粗ジイソプロピルエーテルを原料に用いた場合に効果的である。1質量%未満の場合には本発明による収率改善はあるもののその効果が少なく、50質量%を超える場合には本発明の方法でも高収率を得るのが困難である。
【0016】
また本発明における粗ジイソプロピルエーテルは、加えて水・アルコール・重質炭化水素等のヘキセン類以外の不純物を含んでいてもよい。
【0017】
本発明における水素化は粗ジイソプロピルエーテルを触媒の存在下に水素と接触させることでおこなう。反応器は回分式、連続式いずれであってもよい。用いる触媒は、ヘキセン類の水素化が可能である限りどのようなものであってもよいが、無機物担体に第VIII族に属する金属元素(及びその酸化物や硫化物)を担持した触媒が工業的には有利である。例えばパラジウム炭素・ロジウム炭素・白金アルミナ・ニッケルシリカなどが挙げられる。
【0018】
水素化条件としては反応が円滑に進行する限り特に制限はないが、通常は水素圧0.01MPa〜20MPa、温度0℃〜200℃、触媒量1〜10質量%、LHSVは0.1〜30h-1の範囲から選択できる。好ましくは、水素圧0.01MPa〜5MPa、温度20℃〜80℃である。
【0019】
本発明における蒸留方法としては、含有されるヘキサン類の種類、量、組成によって、通常の蒸留(単蒸留)、抽出蒸留、共沸蒸留から適宜選択することができる。
【0020】
単蒸留は、ヘキサン類の沸点がジイソプロピルエーテルの沸点より充分低い場合あるいはヘキサン類の量が比較的少ない場合に用いることができる。
【0021】
抽出蒸留は、ジメチルスルフォキシド,スルホラン,1−メチルピロリジノン等の極性溶媒を添加し、これらの極性溶媒と相互作用を形成させることでヘキサン類とジイソプロピルエーテルの沸点差を増大せしめ精製を容易にすることを特徴とする。
【0022】
例えば、水素化処理した粗ジイソプロピルエーテルを抽出蒸留した場合、単蒸留ではジイソプロピルエーテルと沸点が最も近接するノルマルヘキサン(沸点69℃)との相対比揮発度を沸点差18℃相当とすることができるが、水素化処理しない場合単蒸留ではジイソプロピルエーテルとの沸点が最も近接するヘキセン類、例えば2−メチル−2−ペンテン(67.3℃)との相対比揮発度を沸点差8℃相当しか広げることができない。加えて水素化処理しない場合は、ジイソプロピルエーテルより高沸点のヘキセン類が共存し、これらとジイソプロピルエーテルとの相対比揮発度が単蒸留の場合よりむしろ小さくなってしまうため抽出蒸留は有効な精製手段とはならない。
【0023】
共沸蒸留は、ヘキサン類と共沸組成物を生成する溶媒を添加し、これらの共沸組成物をヘキサン類及びジイソプロピルエーテルのいずれの沸点より低い沸点で留出せしめることで精製を容易にすることを特徴とする。
【0024】
溶媒としては、ヘキサン類と共沸しかつその共沸温度がジイソプロピルエーテルの沸点より低いものが選ばれる。具体的には、メタノール,エタノール,イソプロピルアルコール,アセトン,メチルエチルケトン等が挙げられる。例えば、単蒸留すると実質的な留出開始温度がともに60℃程度の水素化処理した粗ジイソプロピルエーテルと水素化処理しない粗ジイソプロピルエーテルをメタノールを添加して共沸蒸留蒸留すると、前者では12℃程度留出開始温度を低減することができるが、後者では7℃程度である。
【0025】
共沸蒸留を用いるにあたっては原料の水素化処理は原理上必須ではないが、水素化処理することでヘキサン類を取り除くに必要な添加溶媒量と共沸組成物の1成分として失われるジイソプロピルエーテルの量を低減せしめることができる。上記メタノール添加系の例では、必要な添加メタノール量は水素化処理すると20%程度削減でき、かつ水素化処理しないと40%近くのジイソプロピルエーテルが共沸組成物として失われてしまうのを16%程度の損失にとどめることができる。
【0026】
本発明において用いる水素化装置および蒸留装置は回分式・連続式いずれであっても構わない。また水素化装置と蒸留装置をそれぞれ単独で用いても連続的に用いてもよい。蒸留装置は蒸留塔を一塔備えていればよいが、原料の粗ジイソプロピルエーテルが高沸点の不純物を含有する場合は二塔構成とし、一塔目の留出液もしくは缶出液を二塔目でさらに精製することができる。
【0027】
本発明の製法においては、粗イソプロピルエーテルの純度に対応して任意の純度に精製して高純度イソプロピルエーテルを得ることができる。特に99質量%以上、さらには99.5質量%以上の高純度にすることが可能であり、不純物のひとつであるヘキサン類を1質量%以下、さらには0.5質量%以下にすることが可能である。
【0028】
【実施例】
以下実施例および比較例により本発明を更に具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。
[実施例1]
ヘキセン類約20質量%含有する粗ジイソプロピルエーテル(純度約77質量%)1,500gを、オートクレーブ中、水素圧0.3MPa,温度40℃にて5%パラジウム炭素20gを触媒として30分間水素化した。反応後、触媒を分別し、ヘキセン類を実質的に含まない水素化粗ジイソプロピルエーテル1,440gを得た。
次いで上部に長さ20cmの蒸留塔および凝縮器を備えた300ml三つ口フラスコにこの水素化粗ジイソプロピルエーテル150gとメタノールを20g加えた原料を仕込み還流比20で蒸留した。留出液を分析し、加えたメタノールが全て留出したことを確認した後に蒸留を停止した。塔底から純度99.5%の精製ジイソプロピルエーテルが68g得られた。この精製ジイソプロピルエーテル中のヘキサン類の含有量は0.2質量%であった。
【0029】
[実施例2]
実施例1で用いたのと同じ水素化粗ジイソプロピルエーテル150gにイソプロピルアルコールを15g加えて同様に蒸留を行った。その結果、純度99.1%の精製ジイソプロピルエーテルが56g得られた。このジイソプロピルエーテル中のヘキサン類含有量は0.6質量%であった。
【0030】
[比較例1]
実施例1において粗ジイソプロピルエーテル(純度約77質量%)を水素化処理せずにそのまま用いた以外は実施例1と同じ条件でこの粗ジイソプロピルエーテルの蒸留を行った。その結果、純度93.7%の精製ジイソプロピルエーテルが44g得られた。このジイソプロピルエーテル中のヘキサン類含有量は5.7質量%であった。
【0031】
【発明の効果】
本発明の微量のヘキサン類を含有する高純度ジイソプロピルエーテルは、医薬品や食品等の合成・抽出溶剤として好適に用いられるという顕著な効果を奏する。
【0032】
ヘキセン類を含有するジイソプロピルエーテルを水素化処理した後に蒸留することを特徴とする本発明の高純度ジイソプロピルエーテルの製法により、低純度のジイソプロピルエーテルから経済的有利にかつ環境上の問題なく高純度ジイソプロピルエーテルを製造できるという顕著な効果を奏する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-purity diisopropyl ether and a process for producing the same. More specifically, high-purity diisopropyl ether and high-purity diisopropyl ether used as synthesis and extraction solvents for pharmaceuticals and foods are produced by distillation purification from low-purity diisopropyl ether. On how to do.
[0002]
[Prior art]
As a synthesis / extraction solvent for pharmaceuticals and foods, diisopropyl ether is required to have a high purity of 99% or 99.5% or more.
Diisopropyl ether is industrially produced by the catalytic reaction of isopropyl alcohol and propylene or recovered as a by-product oil in the production of isopropyl alcohol.
[0003]
The crude diisopropyl ether obtained here contains hexene by-produced in the production process (in the present invention, it indicates an aliphatic unsaturated hydrocarbon compound having 6 carbon atoms), but its boiling point (53-73 ° C.). Is close to the boiling point (69 ° C.) of the target diisopropyl ether, and it is often difficult to produce high-purity diisopropyl ether having a purity of 99% or more by a normal distillation method or distillation apparatus.
[0004]
A conventionally known method for solving this problem (JP-A-3-63239) includes adding a solvent (isopropyl alcohol or acetonitrile) to separate and distill hexene as an azeotropic composition.
[0005]
[Problems to be solved by the invention]
A known method (JP-A-3-63239) is an effective means for producing high-purity diisopropyl ether by purifying crude diisopropyl ether having a low hexene content. In the case of application to crude diisopropyl ether having a large amount of, for example, 20% by mass or more, there is a problem that the amount of solvent added and the amount of diisopropyl ether entrained as an azeotropic composition increase. This is not only economically disadvantageous but also environmentally unfavorable due to increased waste.
[0006]
The present invention Eyes Is a high-purity diisopropyl ether suitable for use as a synthesis and extraction solvent for pharmaceuticals and foods. Le It is an object of the present invention to provide a process for producing a low-purity diisopropyl ether by distillation purification, which is economically advantageous and without environmental problems.
[0007]
[Means for Solving the Problems]
As a result of repeated investigations by the present inventors to solve the above-mentioned problems, the crude diisopropyl ether containing hexenes was hydrotreated, and the corresponding hexanes (in the present invention, aliphatic saturated hydrocarbon compounds having 6 carbon atoms). By converting the boiling point of all hexenes to be equal to or lower than that of diisopropyl ether (69 ° C.) and distilling the crude diisopropyl ether after the hydrogenation treatment, The present invention was completed by finding that high-purity diisopropyl ether could be produced by efficiently purifying crude diisopropyl ether by boiling distillation.
[0009]
Of the present invention First Is characterized in that diisopropyl ether containing hexenes is hydrotreated and then distilled. Purity 99% by mass or more This is a process for producing diisopropyl ether.
[0010]
Of the present invention Second Is First of the present invention In the described production method, the distillation is azeotropic distillation.
[0011]
Of the present invention Third Is First of the present invention In the described production method, the distillation is an extractive distillation.
[0012]
Of the present invention 4th Is Second invention In the production method described above, the azeotropic composition component to be added is isopropyl alcohol.
[0013]
In the present invention, the crude diisopropyl ether containing hexenes is hydrotreated and converted into the corresponding hexanes so that the boiling points of all hexenes are equal to or less than the boiling point of diisopropyl ether (69 ° C.), and By distilling the crude diisopropyl ether after the hydrogenation treatment, particularly by extractive distillation or azeotropic distillation, the crude diisopropyl ether is efficiently purified to produce high-purity diisopropyl ether containing a small amount of hexane economically. It can be produced advantageously and without environmental problems.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in more detail.
The raw crude diisopropyl ether in the present invention is the one that was produced for the purpose, or obtained as a by-product in producing other compounds (for example, isopropyl alcohol), and further diisopropyl used as a synthesis solvent or extraction solvent. The ether may be recovered.
[0015]
The purity of the raw material crude diisopropyl ether used is not particularly limited, but is industrially effective when 1 to 50% by mass, preferably 2 to 30% by mass of crude diisopropyl ether is used as the raw material. . When the amount is less than 1% by mass, the effect of the present invention is improved, but the effect is small. When the amount exceeds 50% by mass, it is difficult to obtain a high yield even by the method of the present invention.
[0016]
In addition, the crude diisopropyl ether in the present invention may contain impurities other than hexenes such as water, alcohol, and heavy hydrocarbon.
[0017]
The hydrogenation in the present invention is carried out by bringing crude diisopropyl ether into contact with hydrogen in the presence of a catalyst. The reactor may be either a batch type or a continuous type. Any catalyst may be used as long as hexene can be hydrogenated. However, a catalyst in which a metal element belonging to Group VIII (and its oxide or sulfide) is supported on an inorganic support is industrial. This is advantageous. For example, palladium carbon, rhodium carbon, platinum alumina, nickel silica and the like can be mentioned.
[0018]
The hydrogenation conditions are not particularly limited as long as the reaction proceeds smoothly. Usually, the hydrogen pressure is 0.01 MPa to 20 MPa, the temperature is 0 ° C. to 200 ° C., the catalyst amount is 1 to 10% by mass, and the LHSV is 0.1 to 30 h. -1 You can choose from a range of Preferably, the hydrogen pressure is 0.01 MPa to 5 MPa, and the temperature is 20 ° C. to 80 ° C.
[0019]
The distillation method in the present invention can be appropriately selected from ordinary distillation (simple distillation), extractive distillation, and azeotropic distillation depending on the type, amount, and composition of hexanes contained.
[0020]
Simple distillation can be used when the boiling point of hexanes is sufficiently lower than the boiling point of diisopropyl ether or when the amount of hexanes is relatively small.
[0021]
Extractive distillation adds polar solvents such as dimethyl sulfoxide, sulfolane, 1-methylpyrrolidinone, and forms interactions with these polar solvents to increase the boiling point difference between hexanes and diisopropyl ether for easy purification. It is characterized by doing.
[0022]
For example, when hydrogenated crude diisopropyl ether is extracted and distilled, the relative relative volatility between diisopropyl ether and normal hexane having the closest boiling point (boiling point 69 ° C.) can be made equivalent to a boiling point difference of 18 ° C. in simple distillation. However, when no hydrogenation is performed, the relative relative volatility of hexene having the closest boiling point to diisopropyl ether, such as 2-methyl-2-pentene (67.3 ° C.), is increased by a boiling point difference equivalent to 8 ° C. by simple distillation. I can't. In addition, when hydrogenation is not performed, extractive distillation is an effective purification means because hexene having a boiling point higher than that of diisopropyl ether coexists, and the relative relative volatility between these and diisopropyl ether becomes rather smaller than in the case of simple distillation. It will not be.
[0023]
Azeotropic distillation facilitates purification by adding a solvent that forms an azeotrope with hexanes and distilling these azeotropes at a boiling point lower than that of either hexanes or diisopropyl ether. It is characterized by that.
[0024]
As the solvent, a solvent which is azeotropic with hexanes and whose azeotropic temperature is lower than the boiling point of diisopropyl ether is selected. Specific examples include methanol, ethanol, isopropyl alcohol, acetone, methyl ethyl ketone, and the like. For example, when distilling azeotropically by adding methanol to a crude diisopropyl ether that has been subjected to hydrogenation and a crude diisopropyl ether that has not been hydrotreated, both of which have a substantial distillation start temperature of about 60 ° C. when simple distillation is performed, the former is about 12 ° C. Although the distillation start temperature can be reduced, the latter is about 7 ° C.
[0025]
When using azeotropic distillation, hydrogenation of raw materials is not essential in principle, but the amount of added solvent necessary to remove hexanes by hydrogenation and diisopropyl ether lost as one component of the azeotropic composition. The amount can be reduced. In the example of the methanol addition system, the required amount of methanol to be added can be reduced by about 20% by hydrogenation treatment, and if the hydrogenation treatment is not carried out, nearly 40% of diisopropyl ether is lost as an azeotropic composition by 16%. It can be limited to a certain level of loss.
[0026]
The hydrogenation apparatus and distillation apparatus used in the present invention may be either batch type or continuous type. Further, the hydrogenation device and the distillation device may be used alone or continuously. The distillation apparatus only needs to have one distillation column. However, when the raw crude diisopropyl ether contains impurities with a high boiling point, the distillation column has a two-column configuration. Further purification is possible with
[0027]
In the production method of the present invention, high purity isopropyl ether can be obtained by purifying to an arbitrary purity corresponding to the purity of the crude isopropyl ether. In particular, it is possible to achieve a high purity of 99% by mass or more, further 99.5% by mass or more, and hexanes, which are one of the impurities, can be 1% by mass or less, and further 0.5% by mass or less. Is possible.
[0028]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the examples without departing from the gist of the present invention.
[Example 1]
1,500 g of crude diisopropyl ether (purity: about 77% by mass) containing about 20% by mass of hexene was hydrogenated in an autoclave at a hydrogen pressure of 0.3 MPa and a temperature of 40 ° C. using 20 g of 5% palladium on carbon for 30 minutes. . After the reaction, the catalyst was fractionated to obtain 1,440 g of hydrogenated crude diisopropyl ether substantially free of hexenes.
Next, a raw material obtained by adding 150 g of this hydrogenated crude diisopropyl ether and 20 g of methanol to a 300 ml three-necked flask equipped with a distillation column and a condenser having a length of 20 cm at the top was distilled at a reflux ratio of 20. The distillate was analyzed, and after confirming that all of the added methanol had distilled, the distillation was stopped. 68 g of purified diisopropyl ether having a purity of 99.5% was obtained from the bottom of the column. The content of hexanes in this purified diisopropyl ether was 0.2% by mass.
[0029]
[Example 2]
15 g of isopropyl alcohol was added to 150 g of the same hydrogenated crude diisopropyl ether used in Example 1, and distilled in the same manner. As a result, 56 g of purified diisopropyl ether having a purity of 99.1% was obtained. The hexane content in the diisopropyl ether was 0.6% by mass.
[0030]
[Comparative Example 1]
The crude diisopropyl ether was distilled under the same conditions as in Example 1 except that the crude diisopropyl ether (purity of about 77% by mass) was used as it was without being hydrogenated. As a result, 44 g of purified diisopropyl ether having a purity of 93.7% was obtained. The hexane content in the diisopropyl ether was 5.7% by mass.
[0031]
【The invention's effect】
The high-purity diisopropyl ether containing a small amount of hexane of the present invention has a remarkable effect that it is suitably used as a synthesis / extraction solvent for pharmaceuticals and foods.
[0032]
According to the process for producing high-purity diisopropyl ether of the present invention characterized in that diisopropyl ether containing hexene is subjected to hydrogenation and then distilled, high-purity diisopropyl is economically advantageous and without environmental problems There is a remarkable effect that ether can be produced.

Claims (4)

ヘキセン類を含有するジイソプロピルエーテルを水素化処理した後に蒸留することを特徴とする純度99質量%以上のジイソプロピルエーテルの製法。A method for producing diisopropyl ether having a purity of 99% by mass or more, characterized in that diisopropyl ether containing hexene is subjected to hydrogenation and then distilled. 蒸留が共沸蒸留であることを特徴とする請求項1記載の製法。The process according to claim 1, wherein the distillation is azeotropic distillation. 蒸留が抽出蒸留であることを特徴とする請求項1記載の製法。The process according to claim 1, wherein the distillation is an extractive distillation. 添加する共沸組成成分がイソプロピルアルコールであることを特徴とする請求項2記載の製法。The process according to claim 2, wherein the azeotropic composition component to be added is isopropyl alcohol.
JP2001107458A 2001-04-05 2001-04-05 High purity diisopropyl ether and process for producing the same Expired - Fee Related JP4687849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001107458A JP4687849B2 (en) 2001-04-05 2001-04-05 High purity diisopropyl ether and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001107458A JP4687849B2 (en) 2001-04-05 2001-04-05 High purity diisopropyl ether and process for producing the same

Publications (2)

Publication Number Publication Date
JP2002308813A JP2002308813A (en) 2002-10-23
JP4687849B2 true JP4687849B2 (en) 2011-05-25

Family

ID=18959782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107458A Expired - Fee Related JP4687849B2 (en) 2001-04-05 2001-04-05 High purity diisopropyl ether and process for producing the same

Country Status (1)

Country Link
JP (1) JP4687849B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259541A (en) * 1988-07-08 1990-02-28 L'oreal Sa Ultraviolet absorber
JPH0363239A (en) * 1989-08-02 1991-03-19 Mitsui Toatsu Chem Inc Method for purifying diisopropyl ether
JPH03287548A (en) * 1990-04-03 1991-12-18 Asahi Chem Ind Co Ltd Purification of cyclohexane
JPH04312538A (en) * 1991-02-18 1992-11-04 Hoechst Ag Method of manufacturing substituted indene
JPH06206890A (en) * 1991-11-30 1994-07-26 Hoechst Ag Production of substituted indene and use thereof as ligand system for metallocene catalyst
JP2000239214A (en) * 1998-12-25 2000-09-05 Dainippon Ink & Chem Inc Decahydronaphthalene derivative and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259541A (en) * 1988-07-08 1990-02-28 L'oreal Sa Ultraviolet absorber
JPH0363239A (en) * 1989-08-02 1991-03-19 Mitsui Toatsu Chem Inc Method for purifying diisopropyl ether
JPH03287548A (en) * 1990-04-03 1991-12-18 Asahi Chem Ind Co Ltd Purification of cyclohexane
JPH04312538A (en) * 1991-02-18 1992-11-04 Hoechst Ag Method of manufacturing substituted indene
JPH06206890A (en) * 1991-11-30 1994-07-26 Hoechst Ag Production of substituted indene and use thereof as ligand system for metallocene catalyst
JP2000239214A (en) * 1998-12-25 2000-09-05 Dainippon Ink & Chem Inc Decahydronaphthalene derivative and its production

Also Published As

Publication number Publication date
JP2002308813A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP5697220B2 (en) Process for the production of ditrimethylolpropane and trimethylolpropane-enriched product stream from the side stream of trimethylolpropane production
EP2010473A2 (en) Processes for converting glycerol to glycerol ethers
JP2006509024A (en) Continuous production method of ethyl lactate
JP2543694B2 (en) Propylene glycol mono-t-butyl ether manufacturing method
JP4687849B2 (en) High purity diisopropyl ether and process for producing the same
KR940002212A (en) Method for Purifying Acetic Acid and / or Acetic Acid Anhydride Using Ozone
KR101657198B1 (en) Improved hydrogenation process
JP5951034B2 (en) A method for obtaining ditrimethylolpropane and trimethylolpropane-enriched product stream from the side stream of trimethylolpropane production
JP5955975B2 (en) Distillation method for obtaining ditrimethylolpropane
JP3959993B2 (en) Method for producing 1,4-butanediol
JPS61200979A (en) Method of purifying crude tetrahydrofuran
EP0257727B1 (en) Process for preparing cyclohexanonecarboxylic acid compounds
JP3546519B2 (en) Purification method of glycolic acid ester
JPH0649660B2 (en) Cyclohexane purification method
JP2005281255A (en) Method for production of refined alcohol
TW201819017A (en) Method for removing or collecting 2-alkoxyethanol, and method for producing (2-alkoxyethyl) vinyl ether
KR20110083501A (en) Process for preparing tetrahydrofuran
WO2001010811A1 (en) Process for the preparation of methyl methacrylate
JP2024002646A (en) Method for producing 1,3-butanediol
JP2001163865A (en) Method for purifying crude pyrrolidine
JP2021063019A (en) Method for producing 1,3-butanediol
JP2003503469A (en) Method for producing hexanediol
JP4154897B2 (en) Method for purifying gamma-butyrolactone
JP2023137968A (en) Method for producing 1,3-butanediol
JPS62286939A (en) Purification of beta-phenetyl alcohol

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4687849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees