JP4685205B2 - Method for producing synthetic resin molded article and synthetic resin molded article produced by this method - Google Patents

Method for producing synthetic resin molded article and synthetic resin molded article produced by this method Download PDF

Info

Publication number
JP4685205B2
JP4685205B2 JP34173798A JP34173798A JP4685205B2 JP 4685205 B2 JP4685205 B2 JP 4685205B2 JP 34173798 A JP34173798 A JP 34173798A JP 34173798 A JP34173798 A JP 34173798A JP 4685205 B2 JP4685205 B2 JP 4685205B2
Authority
JP
Japan
Prior art keywords
scratch
coating material
synthetic resin
antistatic coating
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34173798A
Other languages
Japanese (ja)
Other versions
JP2000167995A (en
Inventor
榮三郎 樋口
尚生 櫓木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Jushi Kogyo Co Ltd
Original Assignee
Nitto Jushi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Jushi Kogyo Co Ltd filed Critical Nitto Jushi Kogyo Co Ltd
Priority to JP34173798A priority Critical patent/JP4685205B2/en
Publication of JP2000167995A publication Critical patent/JP2000167995A/en
Application granted granted Critical
Publication of JP4685205B2 publication Critical patent/JP4685205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、合成樹脂成型品およびその製造方法に係り、特に、各種の機器の画像表示装置に好適な合成樹脂成型品およびその製造方法に関する。
【0002】
【従来の技術】
近年、LCD、PDP、EL、CRT、LED、VFDなどの画像表示装置に使用されるフィルタ、電子表示板、OA、AV、大型ディスプレイパネルなどに使用される防眩保護フィルタ、計測機器類の表示部に使用されるカバー、あるいは、ペン入力コンピュータ用フィルタ、ナビゲーション用フィルタ、干渉縞防止など各種の用途に合成樹脂成型品が用いられている。そして、この種の合成樹脂成型品は、光透過性を備えるとともに、画像表示部の前面における外光の反射による不快感あるいは作業能率の低下という問題点に対処するために、ノングレア性と称される反射光による眩しさを抑制することのできるものが用いられている。
【0003】
このような従来の合成樹脂成型品について、CRT用フィルタを例示して説明すると、従来の合成樹脂成型品としてのCRT用フィルタとしては、樹脂材料を基材とし、この基材の表面に微細な凹凸を形成したものが知られている。そして、このようなCRT用フィルタは、基材を形成するための樹脂原料を、表面に微細な凹凸を形成した成形型に注入あるいは射出し、重合させて硬化することにより製造されている。
【0004】
【発明が解決しようとする課題】
しかしながら、前述した従来の合成樹脂成型品としてのCRT用フィルタにおいては、このままでは静電気の帯電を防止することができず、この結果、CRT用フィルタに静電気が帯電した場合には、操作者がCRT用フィルタに接触した際の静電気の放電による不快感の発生や、CRT用フィルタにゴミやちりが付着して画像情報が見づらくなり視認性が低下するなどの問題点があった。
【0005】
また、このような問題点に対処する有効な手段としては、CRT用フィルタの少なくとも微細な凹凸を形成した表面に、静電気の帯電を防止する帯電防止層を形成することが考えられるが、基材の表面に帯電防止層を形成するための帯電防止剤を基材に練り込んだものや、スプレーなどにより製品材料に帯電防止剤を塗布したものは、帯電防止層が剥離しやすく長期間にわたり安定した機能を保持することができないという問題点があった。
【0006】
一方、合成樹脂は金属と比較して硬度が低いため、合成樹脂成型品の表面を擦ると傷がつきやすく、このため、この種の合成樹脂成型品としては耐擦傷性を有するものが望まれていた。
【0007】
本発明は、このような点に鑑みてなされたものであり、帯電防止性および耐擦傷性を長期間にわたり保持することのできる合成樹脂成型品を容易に製造することのできる合成樹脂成型品の製造方法およびこの方法により製造される前記合成樹脂成型品を提供することを目的としている。
【0008】
また、本発明は、帯電防止性および耐擦傷性に加えノングレア性を長期間にわたり保持することのできる合成樹脂成型品およびこの合成樹脂成型品を容易に製造することのできる合成樹脂成型品の製造方法およびこの方法により製造される前記合成樹脂成型品を提供することを目的としている。
【0009】
【課題を解決するための手段】
前述した目的を達成するため請求項に係る本発明の合成樹脂成型品の製造方法の特徴は、メタクリル酸メチルを含有した帯電防止被膜原料を第1鋳型形成材の表面に塗布し、前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料の上部の反応度が60%〜90%未満となるように一部重合させて耐擦傷性被膜を形成し、前記耐擦傷性被膜が鋳型の内側に位置するように前記第1鋳型形成材と第2鋳型形成材とをガスケットにより間隔を有するように配設し、前記耐擦傷性被膜、第2鋳型形成材およびガスケットからなる鋳型の内側にメタクリル酸メチルを含有した基材樹脂原料を充填し、充填された基材樹脂原料および耐擦傷性被膜をラジカル重合により重合して一体化することにより合成樹脂成型品を形成する点にある。そして、このような構成を採用したことにより、空気の重合禁止効果を利用して耐擦傷性被膜原料を帯電防止被膜との接合面側から一部重合させることにより、その後、基材樹脂原料および前記耐擦傷性被膜を重合させて強固に一体化して、片面が帯電防止性および耐擦傷性を有する合成樹脂成型品を製造することができる。また、帯電防止被膜原料、耐擦傷性被膜原料および基材樹脂原料がいずれもメタクリル酸メチルを含有しているので、帯電防止被膜原料と耐擦傷性被膜原料ならびに基材樹脂原料と耐擦傷性被膜原料を重合させて一体化することができるし、耐擦傷性被膜原料の部分的な重合時にメタクリル酸メチルが残留してつぎの基材樹脂原料と耐擦傷性被膜原料の重合時に寄与することができる。
【0010】
請求項に係る本発明の合成樹脂成型品の製造方法の特徴は、第1鋳型形成材の帯電防止被膜原料が塗布される表面に微細な多数の凹凸からなる梨地模様をあらかじめ形成した点にある。そして、このような構成を採用したことにより、帯電防止性および耐擦傷性に加えノングレア性を有する合成樹脂成型品を製造することができる。
【0011】
請求項に係る本発明の合成樹脂成型品の製造方法の特徴は、メタクリル酸メチルを含有した帯電防止被膜原料を第1鋳型形成材の表面に塗布し、前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料を上部の反応度が60%〜90%未満となるように一部重合させて第1耐擦傷性被膜を形成し、メタクリル酸メチルを含有した帯電防止被膜原料を第2鋳型形成材の表面に塗布し、前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料の上部の反応度が60%〜90%未満となるように一部重合させて第2耐擦傷性被膜を形成し、前記両耐擦傷性被膜が鋳型の内側に位置するように前記第1鋳型形成材と第2鋳型形成材とをガスケットにより間隔を有するように配設し、前記両耐擦傷性被膜およびガスケットからなる鋳型の内側にメタクリル酸メチルを含有した基材樹脂原料を充填し、充填された基材樹脂原料および両耐擦傷性被膜をラジカル重合により重合して一体化することにより合成樹脂成型品を形成する点にある。そして、このような構成を採用したことにより、両面が帯電防止性および耐擦傷性を有する合成樹脂成型品を製造することができる。また、帯電防止被膜原料、耐擦傷性被膜原料および基材樹脂原料がいずれもメタクリル酸メチルを含有しているので、帯電防止被膜原料と耐擦傷性被膜原料ならびに基材樹脂原料と耐擦傷性被膜原料を重合させて一体化することができるし、耐擦傷性被膜原料の部分的な重合時にメタクリル酸メチルが残留してつぎの基材樹脂原料と耐擦傷性被膜原料の重合時に寄与することができる。
【0013】
請求項に係る本発明の合成樹脂成型品の特徴は、帯電防止被膜の膜厚は前記耐擦傷性被膜の膜厚より薄くされている点にある。そして、このような構成を採用したことにより、ある程度の厚さが必要な耐擦傷性被膜に対して薄くても機能を果たせる帯電防止被膜を薄く形成して、板厚を可級的に薄くすることができる。
【0014】
請求項に係る本発明の合成樹脂成型品の製造方法の特徴は、両鋳型形成材の帯電防止被膜原料が塗布される表面の少なくとも一方に多数の凹凸からなる梨地模様をあらかじめ形成した点にある。そして、このような構成を採用したことにより、少なくとも一方の表面が帯電防止性および耐擦傷性に加えノングレア性を有する合成樹脂成型品を製造することができる。
【0015】
請求項に係る本発明の合成樹脂成型品の特徴は、請求項1ないし請求項4のいずれか1項に記載の方法により製造される合成樹脂成型品であって、メタクリル酸メチルを含有した基材の少なくとも一方の表面に、メタクリル酸メチルを含有した耐擦傷性被膜が前記基材と一体にされており、この耐擦傷性被膜の表面に、メタクリル酸メチルを含有した帯電防止被膜が前記耐擦傷性被膜と一体にされている点にある。そして、このような構成を採用したことにより、帯電防止性および耐擦傷性を長期間にわたり保持することができる。また、帯電防止被膜原料、耐擦傷性被膜原料および基材樹脂原料がいずれもメタクリル酸メチルを含有しているので、帯電防止被膜原料と耐擦傷性被膜原料ならびに基材樹脂原料と耐擦傷性被膜原料を重合させて一体化することができるし、耐擦傷性被膜原料の部分的な重合時にメタクリル酸メチルが残留してつぎの基材樹脂原料と耐擦傷性被膜原料の重合時に寄与することができる。
【0016】
請求項に係る本発明の合成樹脂成型品の特徴は、帯電防止被膜の表面に微細な凹凸が形成されている点にある。そして、このような構成を採用したことにより、帯電防止性および耐擦傷性に加えノングレア性を長期間にわたり保持することができる。
【0017】
請求項に係る本発明の合成樹脂成型品の特徴は、帯電防止被膜の膜厚は前記耐擦傷性被膜の膜厚より薄く1μm未満とされている点にある。そして、このような構成を採用したことにより、ある程度の厚さが必要な耐擦傷性被膜に対して薄くても機能を果たせる帯電防止被膜を薄く形成して、板厚を可的に薄くすることができる。
【0020】
【発明の実施の形態】
図1ないし図7は本発明の実施形態を示すものであり、本実施形態の製造方法により製造される合成樹脂成型品は片面のみが帯電防止性および耐擦傷性を有するものである。
【0021】
図1において、第1鋳型形成材をなすガラス板1の上面1aには、微細な凹凸からなる模様2があらかじめ形成されている。そこで、このガラス板1の上面1aに、図2に示すように、一例として導電性金属材料、アクリル系樹脂などを含む帯電防止被膜原料3を塗布する。なお、前記模様2としては、合成樹脂成型品にノングレア性を得るためには、前述した微細な凹凸からなる模様が必要であるが、罫線、柄、その他の各種模様とすることも可能である。また、ガラス板1の上面1aを平面として、無模様で平滑面からなる帯電防止被膜を形成することも可能である。
【0022】
ついで、図3に示すように、上面1aに帯電防止被膜原料3を塗布したガラス板1の上方に紫外線(UV)を照射するための複数のメタハライドランプ4,4を配設し、各メタハライドランプ4からの紫外線を前記帯電防止被膜原料3に向けて照射する。このとき、帯電防止被膜原料3の上面を被覆する透明フィルムは配置せず、帯電防止被膜原料3の上面を空気に露出しておく。これは、空気による重合禁止効果を得るためである。
【0023】
前述したようにして各メタハライドランプ4からの紫外線を前記帯電防止被膜原料3に向けて短時間照射すると、被膜原料3の成分の蒸発が生じるとともに、未硬化膜が形成される。そして、形成された未硬化の帯電防止被膜3Aの膜厚は、ガラス板1上に塗布された帯電防止被膜原料3の膜厚より薄い膜厚とされている。これは、帯電防止被膜原料3の成分がメタハライドランプ4からの紫外線の照射により前述したように一部蒸発するからである。
【0024】
つぎに、図4に示すように、前記帯電防止被膜3Aの表面上に、一例としてポリエステル系樹脂、ウレタン系樹脂およびアクリル系樹脂の混合物を含む耐擦傷性被膜原料5を塗布する。
【0025】
ついで、図5に示すように、帯電防止被膜3Aの表面に耐擦傷性被覆原料5を塗布したガラス板1の上方に複数のメタハライドランプ4,4を配設し、各メタハライドランプ4からの紫外線を前記耐擦傷性被膜原料5に向けて照射する。このときも、耐擦傷性被膜原料5の上面を被覆する透明フィルムは配置せず、耐擦傷性被膜原料5の上面を空気に露出して、重合禁止効果を得るようにしておく。
【0026】
前述したようにして各メタハライドランプ4からの紫外線を前記耐擦傷性被膜原料5に向けて照射すると、前記耐擦傷性被膜原料5の上部は、空気による重合禁止効果により重合がそれほど進まず、被膜原料5の成分の蒸発が生じるのに対し、未硬化の帯電防止被膜3Aの近傍となる前記耐擦傷性被膜原料5の下部は空気の影響を受けないので、重合が十分進行して硬化する。
【0027】
なお、図3について説明したように、帯電防止被膜原料3に対しメタハライドランプ4からの紫外線を短時間照射したうえで、帯電防止被膜3Aの表面に耐擦傷性被膜原料5を塗布しているのは、帯電防止被膜原料3に対し紫外線を照射しないで、帯電防止被膜原料3の表面に耐擦傷性被膜原料5を塗布すると、帯電防止被膜原料3は凝集や流れを生じ、耐擦傷性被膜原料5に取り込まれてしまい、帯電防止効果を発揮できないからである。
【0028】
そして、前記各メタハライドランプ4からの紫外線の照射は、前記耐擦傷性被膜原料5の重合により形成される耐擦傷性被膜5Aの上面が爪で傷がつく程度の硬度に達するまで行われる。このとき、重合の進まない前記耐擦傷性被膜原料5の上部の反応度は、60%〜90%未満が好ましく、この範囲内でも、特に65%〜80%が好ましい。
【0029】
また、形成された耐擦傷性被膜5Aの膜厚は、帯電防止被膜3上に塗布された耐擦傷性被膜原料5の膜厚よりはるかに薄い膜厚とされている。これは、耐擦傷性被膜原料5の成分がメタハライドランプ4からの紫外線の照射により前述したように一部蒸発するからである。
【0030】
なお、メタハライドランプ4からの最初の紫外線照射により部分的に重合の生じた前記帯電防止被膜3は、図5におけるメタハライドランプ4からの紫外線の照射の際に上方を耐擦傷性被膜原料5に被覆されているので、空気による重合禁止効果が生じないため、その上部が耐擦傷性被膜5Aと一体化するようにして十分に重合することになる。
【0031】
つぎに、図6に示すように、第2鋳型形成材をなす上面6aが平滑面とされている他のガラス板6を用意し、このガラス板6の上面6aの外周縁に弾性変形しうる軟質塩化ビニール製のガスケット7を環状となるように周設し、このガスケット7上に、前記帯電防止被膜3Aおよび耐擦傷性被膜5Aを前記ガラス板1とともに耐擦傷性被膜5Aが下向きとなるように載置する。
【0032】
そして、鋳型を構成する前記耐擦傷性被膜5A、ガラス板6およびガスケット7により閉鎖された密閉空間8に基材樹脂原料としてのアクリル樹脂モノマ9を充填する。なお、アクリル樹脂モノマに代えてアクリル樹脂部分重合物を用いてもよい。そして、これらの全体を約65℃の温度の水中に約5時間浸漬するか、あるいは、約65℃の温度の空気中に約2〜5時間放置し、その後、約120℃の温度の熱風循環炉(図示せず)内で約2時間加熱し、充填されたアクリル樹脂モノマ9により未重合の耐擦傷性被膜原料5を膨潤してアクリル樹脂モノマ9および耐擦傷性被膜原料5をラジカル重合により十分に重合する。
【0033】
すると、前記アクリル樹脂モノマ9が十分な硬度を有する基材9Aとなり、この基材9A上には、十分な強度を有し表面を前記帯電防止被膜3Aに被覆されている耐擦傷性被膜5Aが一体的に積層されることになる。しかも、耐擦傷性被膜5Aの表面には微細な凹凸模様10が形成されて全体として梨地模様を構成しているので、完成した合成樹脂成型品11は、耐擦傷性のほかノングレア性をも有している。
【0034】
なお、十分硬化した帯電防止被膜3Aおよび基材9Aは、両ガラス板1,6から簡単に剥離される。
【0035】
このようにして製造された合成樹脂成型品11は、表面導電性を有する帯電防止被膜3Aにより被覆されているので、静電気の帯電を防止することができ、この合成樹脂成型品11を使用したCRT用フィルタなどに静電気が帯電しゴミやちりが付着して画像情報が見づらくなるおそれがない。また、前記帯電防止被膜3Aには、微細な凹凸模様10が形成されているので、ノングレア性を有することになるし、前記帯電防止被膜3Aの背部に位置する耐擦傷性被膜5Aが耐擦傷性を有しているので、本実施形態の合成樹脂成型品11はOA機器用のフィルタとして好適である。
【0036】
なお、帯電防止被膜3Aの膜厚は1μm未満と耐擦傷性被膜5Aの膜厚よりかなり薄く形成されているが、これは、ある程度の厚さが必要な耐擦傷性被膜5Aに対して薄くても機能を果たせる帯電防止被膜3Aを薄く形成して、合成樹脂成型品11の板厚を可的に薄くすることができる
また、本実施形態の合成樹脂成型品の製造方法は、空気による重合禁止効果を利用して耐擦傷性被膜5Aを完全に重合しない状態、すなわち膨潤しうる状態にとどめておき、その上で、隣接配置した基材樹脂原料であるアクリル樹脂モノマ9とともに完全に重合させて一体化するので、耐擦傷性被膜5Aと基材9Aとが剥離しない強固な一体化状態となる。さらに、帯電防止被膜3Aについても同様の方法により耐擦傷性被膜5Aと強固に一体化される。
【0037】
なお、前述した実施形態は、合成樹脂成型品11の片面のみに耐擦傷性をもたせる場合の実施形態であったが、つぎに、合成樹脂成型品11の両面に耐擦傷性をもたせる場合の実施形態について説明する。本実施形態の説明は、便宜上、前述した実施形態の説明に使用した図1ないし図7を再度使用して説明する。
【0038】
両面に耐擦傷性を有する合成樹脂成型品を製造するには、前述した図1ないし図5の工程を異なる2枚のガラス板1,1について2回繰り返して行う。
【0039】
ついで、図6および図7の工程を行うのであるが、このとき、第2鋳型形成材をなす上面5aが平滑面とされている他のガラス板5に代えて、図8に示すように、帯電防止被膜3Aおよび耐擦傷性被膜5Aの形成されたガラス板1を帯電防止被膜3Aが上向きとなるように用いる。
【0040】
すなわち、各ガラス板1,1の帯電防止被膜3Aと、これらの両帯電防止被膜3Aの外周縁に環状となるように周設された軟質塩化ビニール製のガスケット7により閉鎖された密閉空間8に基材樹脂原料としてのアクリル樹脂モノマ9を充填する。そして、これらの全体を約65℃の温度の水中に約5時間浸漬し、その後、約120℃の温度の熱風循環炉(図示せず)内で約2時間加熱し、アクリル樹脂モノマ8および未重合の耐擦傷性被膜原料5を十分に重合する。
【0041】
すると、前記アクリル樹脂モノマ9が十分な硬度を有する基材9Aとなり、この基材9Aの上下には、それぞれ十分な強度を有する耐擦傷性被膜5A,5Aが一体的に積層されることになる。しかも、各耐擦傷性被膜5Aの表面を被覆している帯電防止被膜3Aには微細な凹凸模様10が形成されて全体として梨地模様を構成しているので、図9に示す完成した合成樹脂成型品11は、帯電防止性、耐擦傷性およびノングレア性をそれぞれ両面において有している。
【0042】
【実施例】
つぎに、前述した図1ないし図7に工程を示した合成樹脂成型品11の製造方法の具体的な実施例について説明する。
【0043】
実施例1

Figure 0004685205
よりなる帯電防止被膜原料3、すなわち、耐擦傷性被膜原料に25%の導電性酸化錫を分散したものに、セロソルブとメタクリル酸メチルを混合し、これに紫外線照射での重合開始剤としての1−ヒドロキシシクロヘキシルフェニルケトンを加えたものを、表面に平均30μm程度の大きさで0.1μm程度に凹凸模様2を形成された面積460mm×610mm、厚さ5mmのガラス板1の表面1aに約5μmの厚さに塗布した。
【0044】
ついで、このガラス板1に対し大気中において40cm間隔で2本配列されたメタハライドランプ4により120W/cmで照射距離150mmとして紫外線を15秒間照射し、帯電防止被膜3Aの形成を行った。
【0045】
さらに、
Figure 0004685205
よりなる耐擦傷性被膜原料5Aを、ガラス板1の帯電防止被膜3A上に約100μmの厚さに塗布した。
【0046】
ついで、このガラス板1に対し大気中において40cm間隔で2本配列されたメタハライドランプ4により120W/cmで照射距離150mmとして紫外線を15秒間照射し、耐擦傷性被膜5Aの形成を行った。このとき形成された耐擦傷性被膜5Aは、約20μmの膜厚で爪で傷つく程度の硬度であった。
【0047】
このようにして処理したガラス板1を耐擦傷性被膜5Aが形成された面が内側に位置するようにして未処理の他のガラス板6と対向させ、2mmの厚みになるように調整された軟質塩化ビニ−ル製のガスケット7を周設して鋳型とした。
【0048】
この鋳型に、
Figure 0004685205
からなる基材樹脂原料9を注入した後、60℃の浴槽に8時間浸漬し、ついで120℃の熱風循環炉中で2時間加熱して基材樹脂原料9を重合させた。冷却して両ガラス板1,6を離型後、合成樹脂成型品の表面の硬度を確認したところ帯電防止被膜3Aの表面抵抗値は1.1×1010Ω/□ であり、鉛筆硬度は6Hの耐擦傷性を示した。
【0049】
実施例2
Figure 0004685205
よりなる帯電防止被膜原料3を、表面に平均30μm程度の大きさで0.1μm程度に凹凸模様2を形成された面積460mm×610mm、厚さ5mmのガラス板1の表面1aに約5μmの厚さに塗布した。
【0050】
ついで、このガラス板1に対し大気中において40cm間隔で2本配列されたメタハライドランプ4により120W/cmで照射距離150mmとして紫外線を15秒間照射し、帯電防止被膜3Aの形成を行った。
【0051】
さらに、
Figure 0004685205
よりなる耐擦傷性被膜原料5Aを、ガラス板1の帯電防止被膜3A上に約100μmの厚さに塗布した。
【0052】
ついで、このガラス板1に対し大気中において40cm間隔で2本配列されたメタハライドランプ4により120W/cmで照射距離150mmとして紫外線を25秒間照射し、耐擦傷性被膜5Aの形成を行った。このとき形成された耐擦傷性被膜5Aは、約20μmの膜厚で爪で傷つく程度の硬度であった。
【0053】
このようにして処理したガラス板1を耐擦傷性被膜5Aが形成された面が内側に位置するようにして未処理の他のガラス板6と対向させ、2mmの厚みになるように調整された軟質塩化ビニ−ル製のガスケット7を周設して鋳型とした。
【0054】
この鋳型に、
Figure 0004685205
からなる基材樹脂原料9を注入した後、60℃の浴槽に8時間浸漬し、ついで120℃の熱風循環炉中で2時間加熱して基材樹脂原料9を重合させた。冷却して両ガラス板1,6を離型後、合成樹脂成型品の表面の硬度を確認したところ帯電防止被膜3Aの表面抵抗値は2.1×107 Ω/□であり、鉛筆硬度は6Hの耐擦傷性を示した。
【0055】
実施例3
Figure 0004685205
よりなる帯電防止被膜原料3を、表面に平均30μm程度の大きさで0.1μm程度に凹凸模様2を形成された面積460mm×610mm、厚さ5mmのガラス板1の表面1aに約5μmの厚さに塗布した。
【0056】
ついで、このガラス板1に対し大気中において40cm間隔で2本配列されたメタハライドランプ4により120W/cmで照射距離150mmとして紫外線を15秒間照射し、帯電防止被膜3Aの形成を行った。
【0057】
さらに、
Figure 0004685205
よりなる耐擦傷性被膜原料5Aを、ガラス板1の帯電防止被膜3A上に約100μmの厚さに塗布した。
【0058】
ついで、このガラス板1に対し大気中において40cm間隔で2本配列されたメタハライドランプ4により120W/cmで照射距離150mmとして紫外線を25秒間照射し、耐擦傷性被膜5Aの形成を行った。このとき形成された耐擦傷性被膜5Aは、約30μmの膜厚でスチールウール#0000で傷つく程度の硬度であった。
【0059】
このようにして処理したガラス板1を耐擦傷性被膜5Aが形成された面が内側に位置するようにして未処理の他のガラス板6と対向させ、2mmの厚みになるように調整された軟質塩化ビニ−ル製のガスケット7を周設して鋳型とした。
【0060】
この鋳型に、
Figure 0004685205
からなる基材樹脂原料9を注入した後、60℃の浴槽に8時間浸漬し、ついで120℃の熱風循環炉中で2時間加熱して基材樹脂原料9を重合させた。冷却して両ガラス板1,6を離型後、合成樹脂成型品の表面の硬度を確認したところ帯電防止被膜3Aの表面抵抗値は2.1×109 Ω/□であり、鉛筆硬度は6Hの耐擦傷性を示した。
【0061】
下表は、帯電防止被膜原料の配合比を異にする7種類の合成樹脂成型品11の表面抵抗値、硬度、透過度、濁り値を示すものである。
【0062】
Figure 0004685205
表によれば、導電性酸化錫を1.1%含有したときの表面抵抗値が最大で、導電性酸化錫を2.0%含有したときの表面抵抗値が最小となっているが、導電性酸化錫の含有%が1.1以上においては導電性酸化錫を多く含むほど表面抵抗値が少なくなり、帯電防止効果が大きくなっていることが解る。
【0063】
また、各合成樹脂成型品は、いずれも爪で傷がつかない良好な硬度を有している。
【0064】
なお、本発明は、前述した実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。
【0065】
【発明の効果】
以上説明したように本発明の合成樹脂成型品によれば、帯電防止性および耐擦傷性を長期間にわたり保持することができるし、また、本発明の合成樹脂成型品の製造方法によれば、このような合成樹脂成型品を容易に製造することができる。
【0066】
すなわち、本発明の合成樹脂成型品の製造方法は、メタクリル酸メチルを含有した帯電防止被膜原料を第1鋳型形成材の表面に塗布し、前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料の上部の反応度が60%〜90%未満となるように一部重合させて耐擦傷性被膜を形成し、前記耐擦傷性被膜が鋳型の内側に位置するように前記第1鋳型形成材と第2鋳型形成材とをガスケットにより間隔を有するように配設し、前記耐擦傷性被膜、第2鋳型形成材およびガスケットからなる鋳型の内側にメタクリル酸メチルを含有した基材樹脂原料を充填し、充填された基材樹脂原料および耐擦傷性被膜をラジカル重合により重合して一体化することにより合成樹脂成型品を形成するので、空気の重合禁止効果を利用して耐擦傷性被膜原料を帯電防止被膜との接合面側から一部重合させることにより、その後、基材樹脂原料および前記耐擦傷性被膜を重合させて強固に一体化して、片面が帯電防止性および耐擦傷性を有する合成樹脂成型品を製造することができる。また、帯電防止被膜原料、耐擦傷性被膜原料および基材樹脂原料がいずれもメタクリル酸メチルを含有しているので、帯電防止被膜原料と耐擦傷性被膜原料ならびに基材樹脂原料と耐擦傷性被膜原料を重合させて一体化することができるし、耐擦傷性被膜原料の部分的な重合時にメタクリル酸メチルが残留してつぎの基材樹脂原料と耐擦傷性被膜原料の重合時に寄与することができる。
【0067】
また、第1鋳型形成材の帯電防止被膜原料が塗布される表面に微細な多数の凹凸からなる梨地模様をあらかじめ形成することにより、帯電防止性および耐擦傷性に加えノングレア性を有する合成樹脂成型品を製造することができる。
【0070】
さらに、メタクリル酸メチルを含有した帯電防止被膜原料を第1鋳型形成材の表面に塗布し、前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料を上部の反応度が60%〜90%未満となるように一部重合させて第1耐擦傷性被膜を形成し、メタクリル酸メチルを含有した帯電防止被膜原料を第2鋳型形成材の表面に塗布し、前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料の上部の反応度が60%〜90%未満となるように一部重合させて第2耐擦傷性被膜を形成し、前記両耐擦傷性被膜が鋳型の内側に位置するように前記第1鋳型形成材と第2鋳型形成材とをガスケットにより間隔を有するように配設し、前記両耐擦傷性被膜およびガスケットからなる鋳型の内側にメタクリル酸メチルを含有した基材樹脂原料を充填し、充填された基材樹脂原料および両耐擦傷性被膜をラジカル重合により重合して一体化することにより合成樹脂成型品を形成するので、両面が帯電防止性および耐擦傷性を有する合成樹脂成型品を製造することができる。また、帯電防止被膜原料、耐擦傷性被膜原料および基材樹脂原料がいずれもメタクリル酸メチルを含有しているので、帯電防止被膜原料と耐擦傷性被膜原料ならびに基材樹脂原料と耐擦傷性被膜原料を重合させて一体化することができるし、耐擦傷性被膜原料の部分的な重合時にメタクリル酸メチルが残留してつぎの基材樹脂原料と耐擦傷性被膜原料の重合時に寄与することができる。
【0071】
さらにまた、両鋳型形成材の帯電防止被膜原料が塗布される表面の少なくとも一方に多数の凹凸からなる梨地模様をあらかじめ形成することにより、少なくとも一方の表面が帯電防止性および耐擦傷性に加えノングレア性を有する合成樹脂成型品を製造することができる。
【0072】
一方、本発明の合成樹脂成型品は、本発明の方法により製造される合成樹脂成型品であって、メタクリル酸メチルを含有した基材の少なくとも一方の表面に、メタクリル酸メチルを含有した耐擦傷性被膜が前記基材と一体にされており、この耐擦傷性被膜の表面に、メタクリル酸メチルを含有した帯電防止被膜が前記耐擦傷性被膜と一体にされているので、帯電防止性および耐擦傷性を長期間にわたり保持することができるし、帯電防止被膜原料、耐擦傷性被膜原料および基材樹脂原料がいずれもメタクリル酸メチルを含有しているので、帯電防止被膜原料と耐擦傷性被膜原料ならびに基材樹脂原料と耐擦傷性被膜原料を重合させて一体化することができるし、耐擦傷性被膜原料の部分的な重合時にメタクリル酸メチルが残留してつぎの基材樹脂原料と耐擦傷性被膜原料の重合時に寄与することができる。
【0073】
また、帯電防止被膜の表面に微細な凹凸を形成することにより、帯電防止性および耐擦傷性に加えノングレア性を長期間にわたり保持することができる。
【0074】
さらに、帯電防止被膜の膜厚を耐擦傷性被膜の膜厚より薄く1μm未満とすることにより、ある程度の厚さが必要な耐擦傷性被膜に対して薄くても機能を果たせる帯電防止被膜を薄く形成して、板厚を可的に薄くすることができる。
【図面の簡単な説明】
【図1】 本発明に係る合成樹脂成型品の製造方法の第1実施形態の第1工程を示す縦断面図
【図2】 本発明に係る合成樹脂成型品の製造方法の第1実施形態の第2工程を示す縦断面図
【図3】 本発明に係る合成樹脂成型品の製造方法の第1実施形態の第3工程を示す縦断面図
【図4】 本発明に係る合成樹脂成型品の製造方法の第1実施形態の第4工程を示す縦断面図
【図5】 本発明に係る合成樹脂成型品の製造方法の第1実施形態の第5工程を示す縦断面図
【図6】 本発明に係る合成樹脂成型品の製造方法の第1実施形態の第6工程を示す縦断面図
【図7】 本発明に係る合成樹脂成型品の製造方法の第1実施形態における完成した合成樹脂成型品を示す縦断面図
【図8】 本発明に係る合成樹脂成型品の製造方法の第2実施形態の最終工程を示す縦断面図
【図9】 本発明に係る合成樹脂成型品の製造方法の第2実施形態における完成した合成樹脂成型品を示す縦断面図
【符号の説明】
1 ガラス板
2 凹凸模様
3 帯電防止被膜原料
3A 帯電防止被膜
4 メタハライドランプ
5 耐擦傷性被膜原料
5A 耐擦傷性被膜
6 ガラス板
7 ガスケット
8 密閉空間
9 アクリル樹脂モノマ
9A 基材
10 凹凸模様
11 合成樹脂成型品[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synthetic resin molded product and a method for manufacturing the same, and more particularly to a synthetic resin molded product suitable for an image display device of various devices and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, filters used for image display devices such as LCD, PDP, EL, CRT, LED, VFD, anti-glare protection filters used for electronic display boards, OA, AV, large display panels, and display of measuring instruments Synthetic resin molded products are used for various applications such as covers used for parts, filters for pen input computers, filters for navigation, and interference fringe prevention. This type of synthetic resin molded product has light transparency, and is called non-glare property in order to cope with problems such as discomfort caused by reflection of external light on the front surface of the image display unit or reduction in work efficiency. The thing which can suppress the glare by reflected light to be used is used.
[0003]
Such a conventional synthetic resin molded product will be described with a CRT filter as an example. As a conventional CRT filter as a synthetic resin molded product, a resin material is used as a base material, and the surface of the base material is fine. What formed the unevenness | corrugation is known. Such a filter for CRT is manufactured by injecting or injecting a resin raw material for forming a base material into a mold having fine irregularities formed on the surface, polymerizing and curing.
[0004]
[Problems to be solved by the invention]
However, in the CRT filter as the above-described conventional synthetic resin molded product, static charge cannot be prevented as it is, and as a result, when the CRT filter is charged with static electricity, the operator can There have been problems such as generation of discomfort due to electrostatic discharge when contacting the filter, and dust and dust adhering to the CRT filter, making it difficult to see the image information and lowering the visibility.
[0005]
Further, as an effective means for dealing with such problems, it is conceivable to form an antistatic layer for preventing electrostatic charge on the surface of the CRT filter on which at least fine irregularities are formed. If the antistatic agent for forming the antistatic layer on the surface of the material is kneaded into the base material or the antistatic agent is applied to the product material by spraying etc., the antistatic layer is easy to peel and stable for a long period of time There is a problem that the function cannot be maintained.
[0006]
On the other hand, since synthetic resin has a lower hardness than metal, it is easily scratched when the surface of a synthetic resin molded product is rubbed. For this reason, a synthetic resin molded product having scratch resistance is desired. It was.
[0007]
  The present invention has been made in view of these points, and is a synthetic resin molding capable of maintaining antistatic properties and scratch resistance over a long period of time.GoodsEasy to manufactureOf synthetic resin molded productsProduction methodAnd the synthetic resin molded product produced by this methodThe purpose is to provide.
[0008]
  The present invention also provides a synthetic resin molded product capable of maintaining non-glare properties over a long period of time in addition to antistatic properties and scratch resistance, and the synthetic resin molded product.GoodsEasy to manufactureOf synthetic resin molded productsProduction methodAnd the synthetic resin molded product produced by this methodThe purpose is to provide.
[0009]
[Means for Solving the Problems]
  Claims to achieve the aforementioned objectives1The method for producing a synthetic resin molded article of the present invention is characterized in that an antistatic coating material containing methyl methacrylate is applied to the surface of the first mold forming material, and the surface of the antistatic coating material is exposed to air. In this state, the antistatic coating material is partially polymerized to form an antistatic coating, and a scratch resistant coating material containing methyl methacrylate is applied to the surface of the antistatic coating. The antistatic coating is polymerized in a state exposed to air and partially polymerized so that the reactivity of the upper portion of the scratch-resistant coating material is 60% to less than 90% to form an scratch-resistant coating, The first mold-forming material and the second mold-forming material are arranged with a gasket so that the scratch-resistant film is located inside the mold, and the scratch-resistant film, the second mold-forming material, From gasket The base resin material containing methyl methacrylate is filled inside the mold, and the filled base resin material and the scratch-resistant film are polymerized by radical polymerization to form a synthetic resin molded product. In the point. And by adopting such a configuration, by partially polymerizing the scratch-resistant film material from the joint surface side with the antistatic film by utilizing the air polymerization inhibition effect, the base resin material and A synthetic resin molded product having one surface having antistatic properties and scratch resistance can be produced by polymerizing the scratch-resistant film and firmly integrating them. In addition, since the antistatic coating material, the scratch resistant coating material and the base resin material all contain methyl methacrylate, the antistatic coating material and the scratch resistant coating material and the base resin material and the scratch resistant coating are also included. The raw materials can be polymerized and integrated, and methyl methacrylate remains at the time of partial polymerization of the scratch-resistant coating material, which contributes to the polymerization of the next base resin material and the scratch-resistant coating material. it can.
[0010]
  Claim2The synthetic resin molded product manufacturing method according to the present invention is characterized in that a satin pattern having a large number of fine irregularities is formed in advance on the surface of the first mold forming material on which the antistatic coating material is applied. And by adopting such a configuration, it is possible to produce a synthetic resin molded product having non-glare properties in addition to antistatic properties and scratch resistance.
[0011]
  Claim3The method for producing a synthetic resin molded article of the present invention is characterized in that an antistatic coating material containing methyl methacrylate is applied to the surface of the first mold forming material, and the surface of the antistatic coating material is exposed to air. In this state, the antistatic coating material is partially polymerized to form an antistatic coating, and a scratch resistant coating material containing methyl methacrylate is applied to the surface of the antistatic coating. The antistatic coating is polymerized while being exposed to air, and the first scratch-resistant coating is formed by partially polymerizing the scratch-resistant coating raw material so that the reactivity of the upper portion is 60% to less than 90%. The antistatic coating material containing methyl methacrylate is applied to the surface of the second mold forming material, and the antistatic coating material is partially polymerized with the surface of the antistatic coating material exposed to the air to prevent the antistatic. Coating Forming and applying a scratch-resistant coating material containing methyl methacrylate to the surface of the antistatic coating, polymerizing the antistatic coating with the surface of the scratch-resistant coating material exposed to air, and the scratch resistance The second scratch-resistant coating is formed by partial polymerization so that the reactivity of the upper part of the raw material for the coating becomes 60% to less than 90%, and the two scratch-resistant coatings are positioned inside the mold. The first mold-forming material and the second mold-forming material are arranged so as to be spaced from each other by a gasket, and the base resin material containing methyl methacrylate is filled inside the mold composed of both the scratch-resistant coating and the gasket. In addition, a synthetic resin molded product is formed by polymerizing and integrating the filled base resin material and both scratch-resistant films by radical polymerization. And by adopting such a configuration, it is possible to produce a synthetic resin molded product having antistatic properties and scratch resistance on both sides. In addition, since the antistatic coating material, the scratch resistant coating material and the base resin material all contain methyl methacrylate, the antistatic coating material and the scratch resistant coating material and the base resin material and the scratch resistant coating are also included. The raw materials can be polymerized and integrated, and methyl methacrylate remains at the time of partial polymerization of the scratch-resistant coating material, which contributes to the polymerization of the next base resin material and the scratch-resistant coating material. it can.
[0013]
  Claim3The synthetic resin molded product according to the present invention is characterized in that the thickness of the antistatic coating is made thinner than that of the scratch-resistant coating. By adopting such a configuration, an antistatic coating that can function even if it is thin with respect to a scratch-resistant coating that requires a certain thickness is formed thin, and the plate thickness is reduced to a grade. be able to.
[0014]
  Claim4A feature of the method for producing a synthetic resin molded article according to the present invention is that a satin pattern having a large number of irregularities is formed in advance on at least one of the surfaces to which the antistatic coating material of both mold forming materials is applied. And by adopting such a configuration, it is possible to produce a synthetic resin molded product in which at least one surface has non-glare properties in addition to antistatic properties and scratch resistance.
[0015]
  Claim5The characteristics of the synthetic resin molded product of the present invention according toA synthetic resin molded product produced by the method according to any one of claims 1 to 4,A scratch-resistant film containing methyl methacrylate is integrated with the substrate on at least one surface of the substrate containing methyl methacrylate, and methyl methacrylate is contained on the surface of the scratch-resistant film. The antistatic coating is integrated with the scratch-resistant coating. And by adopting such a configuration, antistatic properties and scratch resistance can be maintained over a long period of time. In addition, since the antistatic coating material, the scratch resistant coating material and the base resin material all contain methyl methacrylate, the antistatic coating material and the scratch resistant coating material and the base resin material and the scratch resistant coating are also included. The raw materials can be polymerized and integrated, and methyl methacrylate remains at the time of partial polymerization of the scratch-resistant coating material, which contributes to the polymerization of the next base resin material and the scratch-resistant coating material. it can.
[0016]
  Claim6The synthetic resin molded product according to the present invention is characterized in that fine irregularities are formed on the surface of the antistatic coating. And by adopting such a configuration, in addition to antistatic properties and scratch resistance, non-glare properties can be maintained over a long period of time.
[0017]
  Claim7The synthetic resin molded product according to the present invention is characterized in that the antistatic coating film is thinner than the scratch-resistant coating film.Less than 1 μmIt is in the point. In addition, by adopting such a configuration, an antistatic coating that can function even if it is thin with respect to a scratch-resistant coating that requires a certain thickness is formed thin, and the plate thickness can be increased.AndCan be made thinner.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1 to 7 show an embodiment of the present invention. A synthetic resin molded product manufactured by the manufacturing method of the present embodiment has antistatic properties and scratch resistance only on one side.
[0021]
In FIG. 1, the pattern 2 which consists of fine unevenness | corrugation is previously formed in the upper surface 1a of the glass plate 1 which makes the 1st mold forming material. Therefore, as shown in FIG. 2, an antistatic coating material 3 containing a conductive metal material, an acrylic resin, or the like is applied to the upper surface 1a of the glass plate 1 as an example. In addition, as the said pattern 2, in order to obtain non-glare property in a synthetic resin molded product, the pattern which consists of the fine unevenness | corrugation mentioned above is required, However, It is also possible to set it as a ruled line, a pattern, and other various patterns . It is also possible to form an antistatic coating having a smooth surface with no pattern, with the upper surface 1a of the glass plate 1 being a flat surface.
[0022]
Next, as shown in FIG. 3, a plurality of metahalide lamps 4 and 4 for irradiating ultraviolet rays (UV) are disposed above the glass plate 1 having the antistatic coating material 3 applied to the upper surface 1a. The ultraviolet rays from the halide lamp 4 are irradiated toward the antistatic coating material 3. At this time, a transparent film covering the upper surface of the antistatic coating material 3 is not disposed, and the upper surface of the antistatic coating material 3 is exposed to the air. This is to obtain a polymerization inhibition effect by air.
[0023]
As described above, when ultraviolet rays from each metahalide lamp 4 are irradiated to the antistatic coating material 3 for a short time, the components of the coating material 3 are evaporated and an uncured film is formed. The film thickness of the formed uncured antistatic coating 3 </ b> A is smaller than the film thickness of the antistatic coating material 3 applied on the glass plate 1. This is because the components of the antistatic coating material 3 partially evaporate as described above when irradiated with ultraviolet rays from the metahalide lamp 4.
[0024]
Next, as shown in FIG. 4, a scratch-resistant coating material 5 containing a mixture of a polyester resin, a urethane resin and an acrylic resin, for example, is applied on the surface of the antistatic coating 3A.
[0025]
Next, as shown in FIG. 5, a plurality of metahalide lamps 4, 4 are disposed above the glass plate 1 in which the surface of the antistatic coating 3 </ b> A is coated with the scratch-resistant coating material 5. The ultraviolet ray is irradiated toward the scratch-resistant coating material 5. Also at this time, a transparent film covering the upper surface of the scratch-resistant coating material 5 is not disposed, and the upper surface of the scratch-resistant coating material 5 is exposed to air so as to obtain a polymerization inhibition effect.
[0026]
As described above, when the ultraviolet ray from each metahalide lamp 4 is irradiated toward the scratch-resistant coating material 5, the upper portion of the scratch-resistant coating material 5 does not progress so much due to the polymerization inhibition effect by air, While evaporation of the components of the coating material 5 occurs, the lower part of the scratch-resistant coating material 5 in the vicinity of the uncured antistatic coating 3A is not affected by air, so that the polymerization proceeds sufficiently and cures. .
[0027]
As described with reference to FIG. 3, the antistatic coating material 3 is irradiated with ultraviolet rays from the metahalide lamp 4 for a short time, and then the scratch resistant coating material 5 is applied to the surface of the antistatic coating 3A. Of the antistatic coating material 3IrradiationHowever, when the scratch-resistant coating material 5 is applied to the surface of the antistatic coating material 3, the antistatic coating material 3 is agglomerated and flown and is taken into the scratch-resistant coating material 5 and exhibits an antistatic effect. It is not possible.
[0028]
The irradiation of ultraviolet rays from each of the metahalide lamps 4 is performed until the upper surface of the scratch-resistant coating 5A formed by the polymerization of the scratch-resistant coating material 5 reaches a hardness such that the nail can be scratched. At this time, the reactivity of the upper part of the scratch-resistant coating material 5 where polymerization does not proceed is preferably 60% to less than 90%, and even within this range, 65% to 80% is particularly preferable.
[0029]
Further, the film thickness of the formed scratch-resistant coating 5A is much thinner than the film thickness of the scratch-resistant coating material 5 applied on the antistatic coating 3. This is because the components of the scratch-resistant coating material 5 partially evaporate as described above when irradiated with the ultraviolet rays from the metahalide lamp 4.
[0030]
Note that the antistatic coating 3 partially polymerized by the first ultraviolet irradiation from the metahalide lamp 4 is directed upwardly upon the irradiation of the ultraviolet rays from the metahalide lamp 4 in FIG. Therefore, since the polymerization inhibition effect by air does not occur, the upper portion thereof is sufficiently polymerized so as to be integrated with the scratch-resistant coating 5A.
[0031]
Next, as shown in FIG. 6, another glass plate 6 having a smooth upper surface 6 a forming the second mold forming material is prepared, and can be elastically deformed to the outer peripheral edge of the upper surface 6 a of the glass plate 6. A soft vinyl chloride gasket 7 is provided around the gasket 7, and the antistatic coating 3 </ b> A and the scratch resistant coating 5 </ b> A are placed on the gasket 7 together with the glass plate 1 so that the scratch resistant coating 5 </ b> A faces downward. Placed on.
[0032]
Then, an acrylic resin monomer 9 as a base resin material is filled in the sealed space 8 closed by the scratch-resistant coating 5A, the glass plate 6 and the gasket 7 constituting the mold. An acrylic resin partial polymer may be used instead of the acrylic resin monomer. These are all immersed in water at a temperature of about 65 ° C. for about 5 hours, or left in air at a temperature of about 65 ° C. for about 2 to 5 hours, and then circulated with hot air at a temperature of about 120 ° C. It is heated in a furnace (not shown) for about 2 hours, and the unpolymerized scratch-resistant coating material 5 is swollen by the filled acrylic resin monomer 9 to radically polymerize the acrylic resin monomer 9 and the scratch-resistant coating material 5. Polymerizes sufficiently.
[0033]
Then, the acrylic resin monomer 9 becomes a base material 9A having a sufficient hardness, and the scratch-resistant film 5A having a sufficient strength and having the surface coated with the antistatic film 3A is formed on the base material 9A. It is laminated integrally. In addition, since the fine uneven pattern 10 is formed on the surface of the scratch-resistant coating 5A to form a satin pattern as a whole, the finished synthetic resin molded article 11 has not only scratch resistance but also non-glare properties. is doing.
[0034]
The sufficiently cured antistatic coating 3 </ b> A and the base material 9 </ b> A are easily peeled off from both glass plates 1 and 6.
[0035]
The synthetic resin molded article 11 manufactured in this way has a surfaceButSince it is covered with the antistatic coating 3A having conductivity, it is possible to prevent static charge, and static electricity is charged on the CRT filter or the like using this synthetic resin molded article 11, and dust and dust adhere to it. There is no risk that the image information will be difficult to see. Further, since the anti-static coating 3A is formed with a fine uneven pattern 10, it has non-glare properties, and the scratch-resistant coating 5A located on the back of the anti-static coating 3A is scratch-resistant. Therefore, the synthetic resin molded product 11 of this embodiment is suitable as a filter for OA equipment.
[0036]
The antistatic coating 3A has a thickness of less than 1 μm, which is considerably thinner than the scratch-resistant coating 5A. This is thinner than the scratch-resistant coating 5A that requires a certain thickness. The antistatic coating 3A can be made thin so that the thickness of the synthetic resin molded product 11 can be increased.AndCan be thinned.
Further, the synthetic resin molded product manufacturing method of the present embodiment uses the air polymerization inhibition effect to keep the scratch-resistant coating 5A from being completely polymerized, that is, in a swellable state. Since it is completely polymerized and integrated with the acrylic resin monomer 9 which is the base material resin material disposed adjacently, the scratch-resistant coating 5A and the base material 9A are in a strong integrated state in which they do not peel off. Further, the antistatic coating 3A is firmly integrated with the scratch resistant coating 5A by the same method.
[0037]
In addition, although embodiment mentioned above was embodiment in the case of giving abrasion resistance only to the single side | surface of the synthetic resin molded product 11, it implements in the case of giving scratch resistance to both surfaces of the synthetic resin molded product 11 next. A form is demonstrated. For the sake of convenience, the description of the present embodiment will be made again using FIGS. 1 to 7 used in the description of the above-described embodiment.
[0038]
In order to manufacture a synthetic resin molded article having scratch resistance on both sides, the above-described steps of FIGS. 1 to 5 are repeated twice for two different glass plates 1 and 1.
[0039]
Next, the steps of FIGS. 6 and 7 are performed. At this time, instead of the other glass plate 5 in which the upper surface 5a forming the second mold forming material is a smooth surface, as shown in FIG. The glass plate 1 on which the antistatic coating 3A and the scratch-resistant coating 5A are formed is used so that the antistatic coating 3A faces upward.
[0040]
That is, in the sealed space 8 closed by the antistatic coating 3A of each glass plate 1 and 1, and the soft vinyl chloride gasket 7 provided in a ring shape around the outer peripheral edge of both the antistatic coatings 3A. An acrylic resin monomer 9 as a base resin material is filled. Then, the whole is immersed in water at a temperature of about 65 ° C. for about 5 hours, and then heated in a hot air circulating furnace (not shown) at a temperature of about 120 ° C. for about 2 hours. The scratch-resistant coating material 5 for polymerization is sufficiently polymerized.
[0041]
Then, the acrylic resin monomer 9 becomes a base material 9A having a sufficient hardness, and scratch resistant films 5A and 5A each having a sufficient strength are integrally laminated above and below the base material 9A. . In addition, the antistatic coating 3A covering the surface of each scratch-resistant coating 5A is formed with a fine concavo-convex pattern 10 to form a satin pattern as a whole, so the finished synthetic resin molding shown in FIG. The product 11 has antistatic properties, scratch resistance, and non-glare properties on both sides.
[0042]
【Example】
Next, specific examples of the method for manufacturing the synthetic resin molded article 11 whose steps are shown in FIGS. 1 to 7 will be described.
[0043]
Example 1
Figure 0004685205
Cellosolve and methyl methacrylate are mixed with the antistatic coating material 3 comprising 25% conductive tin oxide dispersed in the anti-scratch coating material 3 and 1 as a polymerization initiator under ultraviolet irradiation. -The addition of hydroxycyclohexyl phenyl ketone is about 5 μm on the surface 1a of the glass plate 1 having an area of 460 mm × 610 mm and a thickness of 5 mm, on which an uneven pattern 2 is formed on the surface with an average size of about 30 μm and about 0.1 μm. Was applied to a thickness of
[0044]
Subsequently, the glass plate 1 was irradiated with ultraviolet rays at 120 W / cm and an irradiation distance of 150 mm for 15 seconds by the metahalide lamps 4 arranged at intervals of 40 cm in the atmosphere to form an antistatic coating 3A.
[0045]
further,
Figure 0004685205
The scratch-resistant coating material 5A comprising the above was applied on the antistatic coating 3A of the glass plate 1 to a thickness of about 100 μm.
[0046]
Subsequently, the glass plate 1 was irradiated with ultraviolet rays for 15 seconds at an irradiation distance of 150 mm at 120 W / cm by the metahalide lamps 4 arranged at intervals of 40 cm in the atmosphere to form the scratch-resistant coating 5A. The scratch-resistant film 5A formed at this time had a hardness of about 20 μm so that it could be scratched by a nail.
[0047]
The glass plate 1 treated in this way was adjusted to have a thickness of 2 mm so that the surface on which the scratch-resistant coating 5A was formed faced another untreated glass plate 6 with the surface formed on the inside. A gasket 7 made of soft vinyl chloride was provided around to form a mold.
[0048]
In this mold,
Figure 0004685205
After injecting the base resin raw material 9 composed of the above, it was immersed in a 60 ° C. bath for 8 hours, and then heated in a hot air circulating furnace at 120 ° C. for 2 hours to polymerize the base resin raw material 9. After cooling and releasing the glass plates 1 and 6, the hardness of the surface of the synthetic resin molded product was confirmed. As a result, the surface resistance value of the antistatic coating 3A was 1.1 × 1010Ω / □ and the pencil hardness was 6H. Scratch resistance was shown.
[0049]
Example 2
Figure 0004685205
An antistatic coating material 3 comprising a surface of the glass plate 1 having an area of 460 mm × 610 mm and a thickness of 5 mm on which an uneven pattern 2 having an average size of about 30 μm and a thickness of about 0.1 μm is formed is about 5 μm thick. It was applied.
[0050]
Subsequently, the glass plate 1 was irradiated with ultraviolet rays at 120 W / cm and an irradiation distance of 150 mm for 15 seconds by the metahalide lamps 4 arranged at intervals of 40 cm in the atmosphere to form an antistatic coating 3A.
[0051]
further,
Figure 0004685205
The scratch-resistant coating material 5A comprising the above was applied on the antistatic coating 3A of the glass plate 1 to a thickness of about 100 μm.
[0052]
Subsequently, the glass plate 1 was irradiated with ultraviolet rays at 120 W / cm and an irradiation distance of 150 mm for 25 seconds by the metahalide lamps 4 arranged at intervals of 40 cm in the atmosphere to form the scratch-resistant coating 5A. The scratch-resistant film 5A formed at this time had a hardness of about 20 μm so that it could be scratched by a nail.
[0053]
The glass plate 1 treated in this way was adjusted to have a thickness of 2 mm so that the surface on which the scratch-resistant coating 5A was formed faced another untreated glass plate 6 with the surface formed on the inside. A gasket 7 made of soft vinyl chloride was provided around to form a mold.
[0054]
In this mold,
Figure 0004685205
After injecting the base resin raw material 9 composed of the above, it was immersed in a 60 ° C. bath for 8 hours, and then heated in a hot air circulating furnace at 120 ° C. for 2 hours to polymerize the base resin raw material 9. After cooling and releasing the glass plates 1 and 6, the hardness of the surface of the synthetic resin molded product was confirmed. The surface resistance value of the antistatic coating 3A was 2.1 × 10 7 Ω / □, and the pencil hardness was 6H. The scratch resistance was shown.
[0055]
Example 3
Figure 0004685205
An antistatic coating material 3 comprising a surface of the glass plate 1 having an area of 460 mm × 610 mm and a thickness of 5 mm on which an uneven pattern 2 having an average size of about 30 μm and a thickness of about 0.1 μm is formed is about 5 μm thick. It was applied.
[0056]
Subsequently, the glass plate 1 was irradiated with ultraviolet rays at 120 W / cm and an irradiation distance of 150 mm for 15 seconds by the metahalide lamps 4 arranged at intervals of 40 cm in the atmosphere to form an antistatic coating 3A.
[0057]
further,
Figure 0004685205
The scratch-resistant coating material 5A comprising the above was applied on the antistatic coating 3A of the glass plate 1 to a thickness of about 100 μm.
[0058]
Subsequently, the glass plate 1 was irradiated with ultraviolet rays at 120 W / cm and an irradiation distance of 150 mm for 25 seconds by the metahalide lamps 4 arranged at intervals of 40 cm in the atmosphere to form the scratch-resistant coating 5A. The scratch-resistant film 5A formed at this time was about 30 μm thick and hard enough to be damaged by steel wool # 0000.
[0059]
The glass plate 1 treated in this way was adjusted to have a thickness of 2 mm so that the surface on which the scratch-resistant coating 5A was formed faced another untreated glass plate 6 with the surface formed on the inside. A gasket 7 made of soft vinyl chloride was provided around to form a mold.
[0060]
In this mold,
Figure 0004685205
After injecting the base resin raw material 9 composed of the above, it was immersed in a 60 ° C. bath for 8 hours, and then heated in a hot air circulating furnace at 120 ° C. for 2 hours to polymerize the base resin raw material 9. After cooling and releasing the glass plates 1 and 6, the hardness of the surface of the synthetic resin molded product was confirmed. The surface resistance value of the antistatic coating 3A was 2.1 × 10 9 Ω / □, and the pencil hardness was 6H. The scratch resistance was shown.
[0061]
The following table shows the surface resistance value, hardness, permeability, and turbidity value of seven types of synthetic resin molded articles 11 having different blending ratios of the antistatic coating material.
[0062]
Figure 0004685205
According to the table, the surface resistance value when the conductive tin oxide is 1.1% is the maximum, and the surface resistance value when the conductive tin oxide is 2.0% is the minimum. It can be seen that when the content percentage of the conductive tin oxide is 1.1 or more, the surface resistance value decreases as the conductive tin oxide content increases, and the antistatic effect increases.
[0063]
Each of the synthetic resin molded products has a good hardness that is not damaged by the nails.
[0064]
In addition, this invention is not limited to embodiment mentioned above, A various change is possible as needed.
[0065]
【The invention's effect】
As described above, according to the synthetic resin molded product of the present invention, antistatic properties and scratch resistance can be maintained over a long period of time, and according to the method of manufacturing a synthetic resin molded product of the present invention, Such a synthetic resin molded product can be easily manufactured.
[0066]
  That is, in the method for producing a synthetic resin molded article of the present invention, an antistatic film material containing methyl methacrylate is applied to the surface of the first mold forming material, and the surface of the antistatic film material is exposed to air. This antistatic coating material is partially polymerized to form an antistatic coating, and a scratch resistant coating material containing methyl methacrylate is applied to the surface of the antistatic coating, and the surface of the scratch resistant coating material is exposed to air. The antistatic coating is polymerized in an exposed state and partially polymerized so that the reactivity of the upper portion of the scratch-resistant coating material is 60% to less than 90% to form a scratch-resistant coating, and the scratch-resistant coating The first mold-forming material and the second mold-forming material are arranged with a gasket so as to have an interval between the first mold-forming material and the gasket, and the scratch-resistant film, the second mold-forming material, and the gasket Na Since the base resin material containing methyl methacrylate is filled inside the mold, and the filled base resin material and the scratch-resistant coating are polymerized and integrated by radical polymerization, a synthetic resin molded product is formed. , By partially polymerizing the scratch-resistant coating material from the side of the joint surface with the antistatic coating by utilizing the air polymerization inhibition effect, then the base resin material and the scratch-resistant coating are polymerized and strengthened It is possible to produce a synthetic resin molded product having one surface having antistatic properties and scratch resistance. In addition, since the antistatic coating material, the scratch resistant coating material and the base resin material all contain methyl methacrylate, the antistatic coating material and the scratch resistant coating material and the base resin material and the scratch resistant coating are also included. The raw materials can be polymerized and integrated, and methyl methacrylate remains at the time of partial polymerization of the scratch-resistant coating material, which contributes to the polymerization of the next base resin material and the scratch-resistant coating material. it can.
[0067]
  Moreover, by forming in advance a satin pattern composed of a large number of fine irregularities on the surface of the first mold forming material to which the antistatic coating material is applied, a synthetic resin molding having non-glare properties in addition to antistatic properties and scratch resistance. Product can be manufactured.
[0070]
Further, an antistatic coating material containing methyl methacrylate is applied to the surface of the first mold forming material, and the antistatic coating material is partially polymerized while the surface of the antistatic coating material is exposed to air. Forming a protective film, applying a scratch-resistant coating material containing methyl methacrylate to the surface of the antistatic coating, and polymerizing the antistatic coating with the surface of the scratch-resistant coating material exposed to air; The first scratch-resistant coating material is formed by partially polymerizing the scratch-resistant coating material so that the reactivity of the upper part is less than 60% to less than 90%, and the antistatic coating material containing methyl methacrylate is the second. The antistatic coating material is applied to the surface of the mold forming material, and the antistatic coating material is partially polymerized with the surface of the antistatic coating material exposed to air to form an antistatic coating. A scratch-resistant coating material is applied to the surface of the anti-static coating, and the anti-static coating is polymerized with the surface of the scratch-resistant coating material exposed to air, and the reactivity of the upper portion of the scratch-resistant coating material is 60. The second mold-forming material and the second mold are formed so that the second scratch-resistant film is formed by partial polymerization so that the ratio is less than 90% to less than 90%, and both the scratch-resistant films are located inside the mold. The base material raw material containing methyl methacrylate is filled inside the mold composed of both the scratch-resistant coating and the gasket, and the base material raw material filled with Since both the scratch-resistant coatings are polymerized by radical polymerization and integrated to form a synthetic resin molded product, a synthetic resin molded product having antistatic properties and scratch resistance on both sides can be produced. In addition, since the antistatic coating material, the scratch resistant coating material and the base resin material all contain methyl methacrylate, the antistatic coating material and the scratch resistant coating material and the base resin material and the scratch resistant coating are also included. The raw materials can be polymerized and integrated, and methyl methacrylate remains at the time of partial polymerization of the scratch-resistant coating material, which contributes to the polymerization of the next base resin material and the scratch-resistant coating material. it can.
[0071]
  Furthermore, a satin pattern having a large number of irregularities is formed in advance on at least one of the surfaces to which the antistatic coating material of both mold forming materials is applied, so that at least one of the surfaces is non-glare in addition to antistatic properties and scratch resistance. A synthetic resin molded product having a property can be produced.
[0072]
  On the other hand, the synthetic resin molded product of the present invention isA synthetic resin molded product produced by the method of the present invention,A scratch-resistant film containing methyl methacrylate is integrated with the substrate on at least one surface of the substrate containing methyl methacrylate, and methyl methacrylate is contained on the surface of the scratch-resistant film. Since the antistatic coating is integrated with the scratch-resistant coating, the antistatic property and scratch resistance can be maintained for a long period of time, and the antistatic coating material, the scratch-resistant coating material and the base resin are retained. Since both raw materials contain methyl methacrylate, the antistatic coating material and the scratch-resistant coating material as well as the base resin material and the scratch-resistant coating material can be polymerized and integrated, and the scratch resistance Methyl methacrylate remains during partial polymerization of the coating material, and can contribute to the polymerization of the next base resin material and scratch-resistant coating material.
[0073]
  Further, by forming fine irregularities on the surface of the antistatic coating, non-glare properties can be maintained over a long period of time in addition to antistatic properties and scratch resistance.
[0074]
  furtherThe film thickness of the antistatic coating is thinner than that of the scratch-resistant coating.Less than 1 μmTherefore, it is possible to reduce the thickness of the antistatic coating that can function even if it is thin compared to the scratch-resistant coating that requires a certain thickness.AndCan be made thinner.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first step of a first embodiment of a method for producing a synthetic resin molded product according to the present invention.
FIG. 2 is a longitudinal sectional view showing a second step of the first embodiment of the method for producing a synthetic resin molded product according to the present invention.
FIG. 3 is a longitudinal sectional view showing a third step of the first embodiment of the method for producing a synthetic resin molded product according to the present invention.
FIG. 4 is a longitudinal sectional view showing a fourth step of the first embodiment of the method for producing a synthetic resin molded product according to the present invention.
FIG. 5 is a longitudinal sectional view showing a fifth step of the first embodiment of the method for producing a synthetic resin molded product according to the present invention.
FIG. 6 is a longitudinal sectional view showing a sixth step of the first embodiment of the method for producing a synthetic resin molded product according to the present invention.
FIG. 7 is a longitudinal sectional view showing a completed synthetic resin molded product in the first embodiment of the synthetic resin molded product manufacturing method according to the present invention.
FIG. 8 is a longitudinal sectional view showing the final process of the second embodiment of the method for producing a synthetic resin molded product according to the present invention.
FIG. 9 is a longitudinal sectional view showing a completed synthetic resin molded product in the second embodiment of the synthetic resin molded product manufacturing method according to the present invention.
[Explanation of symbols]
1 Glass plate
2 Uneven pattern
3 Antistatic coating material
3A antistatic coating
4 Metahalide lamp
5 Scratch-resistant coating material
5A Scratch resistant coating
6 Glass plate
7 Gasket
8 sealed space
9 Acrylic resin monomer
9A base material
10 Uneven pattern
11 Synthetic resin molded products

Claims (7)

メタクリル酸メチルを含有した帯電防止被膜原料を第1鋳型形成材の表面に塗布し、
前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、
メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、
前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料の上部の反応度が60%〜90%未満となるように一部重合させて耐擦傷性被膜を形成し、
前記耐擦傷性被膜が鋳型の内側に位置するように前記第1鋳型形成材と第2鋳型形成材とをガスケットにより間隔を有するように配設し、
前記耐擦傷性被膜、第2鋳型形成材およびガスケットからなる鋳型の内側にメタクリル酸メチルを含有した基材樹脂原料を充填し、
充填された基材樹脂原料および耐擦傷性被膜をラジカル重合により重合して一体化することにより合成樹脂成型品を形成すること
を特徴とする合成樹脂成型品の製造方法。
An antistatic coating material containing methyl methacrylate is applied to the surface of the first mold forming material,
The antistatic coating material is partially polymerized with the surface of the antistatic coating material exposed to air to form an antistatic coating,
A scratch-resistant coating material containing methyl methacrylate is applied to the surface of the antistatic coating,
The antistatic coating is polymerized with the surface of the scratch-resistant coating material exposed to air and partially polymerized so that the reactivity of the upper portion of the scratch-resistant coating material is 60% to less than 90%. Forming a scratch-resistant coating,
The first mold-forming material and the second mold-forming material are arranged with a gap with a gasket so that the scratch-resistant film is located inside the mold,
Filling a base resin material containing methyl methacrylate inside a mold comprising the scratch-resistant film, the second mold forming material and the gasket,
A method for producing a synthetic resin molded product, comprising forming a synthetic resin molded product by polymerizing and integrating the filled base resin material and the scratch-resistant film by radical polymerization.
前記第1鋳型形成材の前記帯電防止被膜原料が塗布される表面に微細な多数の凹凸からなる梨地模様をあらかじめ形成したことを特徴とする請求項に記載の合成樹脂成型品の製造方法。The method for producing a synthetic resin molded product according to claim 1 , wherein a satin pattern made of a large number of fine irregularities is formed in advance on the surface of the first mold forming material to which the antistatic coating material is applied. メタクリル酸メチルを含有した帯電防止被膜原料を第1鋳型形成材の表面に塗布し、
前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、
メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、
前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料を上部の反応度が60%〜90%未満となるように一部重合させて第1耐擦傷性被膜を形成し、
メタクリル酸メチルを含有した帯電防止被膜原料を第2鋳型形成材の表面に塗布し、
前記帯電防止被膜原料の表面を空気に露出した状態でこの帯電防止被膜原料を一部重合させて帯電防止被膜を形成し、
メタクリル酸メチルを含有した耐擦傷性被膜原料を帯電防止被膜の表面に塗布し、
前記耐擦傷性被膜原料の表面を空気に露出した状態で前記帯電防止被膜を重合させるとともに前記耐擦傷性被膜原料の上部の反応度が60%〜90%未満となるように一部重合させて第2耐擦傷性被膜を形成し、
前記両耐擦傷性被膜が鋳型の内側に位置するように前記第1鋳型形成材と第2鋳型形成材とをガスケットにより間隔を有するように配設し、
前記両耐擦傷性被膜およびガスケットからなる鋳型の内側にメタクリル酸メチルを含有した基材樹脂原料を充填し、
充填された基材樹脂原料および両耐擦傷性被膜をラジカル重合により重合して一体化することにより合成樹脂成型品を形成すること
を特徴とする合成樹脂成型品の製造方法。
An antistatic coating material containing methyl methacrylate is applied to the surface of the first mold forming material,
The antistatic coating material is partially polymerized with the surface of the antistatic coating material exposed to air to form an antistatic coating,
A scratch-resistant coating material containing methyl methacrylate is applied to the surface of the antistatic coating,
The antistatic coating is polymerized with the surface of the scratch-resistant coating material exposed to air, and the scratch-resistant coating material is partially polymerized so that the reactivity of the upper portion is 60% to less than 90%. Forming a first scratch-resistant coating;
Applying an antistatic coating material containing methyl methacrylate to the surface of the second mold forming material,
The antistatic coating material is partially polymerized with the surface of the antistatic coating material exposed to air to form an antistatic coating,
A scratch-resistant coating material containing methyl methacrylate is applied to the surface of the antistatic coating,
The antistatic coating is polymerized with the surface of the scratch-resistant coating material exposed to air and partially polymerized so that the reactivity of the upper portion of the scratch-resistant coating material is 60% to less than 90%. Forming a second scratch-resistant coating;
Disposing the first mold forming material and the second mold forming material so as to be spaced apart by a gasket so that the two scratch-resistant coatings are located inside the mold;
Filling a base resin material containing methyl methacrylate inside the mold consisting of both the scratch-resistant coating and the gasket,
A method for producing a synthetic resin molded article, comprising forming a synthetic resin molded article by polymerizing and integrating the filled base resin raw material and both scratch-resistant films by radical polymerization.
前記両鋳型形成材の前記帯電防止被膜原料が塗布される表面の少なくとも一方に多数の凹凸からなる梨地模様をあらかじめ形成したことを特徴とする請求項に記載の合成樹脂成型品の製造方法。The method for producing a synthetic resin molded product according to claim 3 , wherein a satin pattern having a large number of irregularities is formed in advance on at least one of the surfaces of the mold forming materials on which the antistatic coating material is applied. 請求項1ないし請求項4のいずれか1項に記載の方法により製造される合成樹脂成型品であって、
メタクリル酸メチルを含有した基材の少なくとも一方の表面に、メタクリル酸メチルを含有した耐擦傷性被膜が前記基材と一体にされており、この耐擦傷性被膜の表面に、メタクリル酸メチルを含有した帯電防止被膜が前記耐擦傷性被膜と一体にされていることを特徴とする合成樹脂成型品。
A synthetic resin molded product produced by the method according to any one of claims 1 to 4,
A scratch-resistant film containing methyl methacrylate is integrated with the substrate on at least one surface of the substrate containing methyl methacrylate, and methyl methacrylate is contained on the surface of the scratch-resistant film. A synthetic resin molded product, wherein the antistatic coating is integrated with the scratch-resistant coating.
前記帯電防止被膜の表面に微細な凹凸が形成されていることを特徴とする請求項に記載の合成樹脂成型品。6. The synthetic resin molded product according to claim 5 , wherein fine irregularities are formed on the surface of the antistatic coating. 前記帯電防止被膜の膜厚は前記耐擦傷性被膜の膜厚より薄く1μm未満とされていることを特徴とする請求項または請求項に記載の合成樹脂成型品。The synthetic resin molded product according to claim 5 or 6 , wherein the film thickness of the antistatic coating is smaller than the thickness of the scratch-resistant coating and less than 1 µm .
JP34173798A 1998-12-01 1998-12-01 Method for producing synthetic resin molded article and synthetic resin molded article produced by this method Expired - Lifetime JP4685205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34173798A JP4685205B2 (en) 1998-12-01 1998-12-01 Method for producing synthetic resin molded article and synthetic resin molded article produced by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34173798A JP4685205B2 (en) 1998-12-01 1998-12-01 Method for producing synthetic resin molded article and synthetic resin molded article produced by this method

Publications (2)

Publication Number Publication Date
JP2000167995A JP2000167995A (en) 2000-06-20
JP4685205B2 true JP4685205B2 (en) 2011-05-18

Family

ID=18348391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34173798A Expired - Lifetime JP4685205B2 (en) 1998-12-01 1998-12-01 Method for producing synthetic resin molded article and synthetic resin molded article produced by this method

Country Status (1)

Country Link
JP (1) JP4685205B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484662B2 (en) * 2004-10-21 2010-06-16 日東電工株式会社 Method for producing antistatic adhesive optical film
JP4818682B2 (en) * 2005-10-20 2011-11-16 三菱レイヨン株式会社 Manufacturing method of resin laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290707A (en) * 1991-03-19 1992-10-15 Mitsubishi Rayon Co Ltd Synthtic resin molded object with surface excellent in abrasion resistance and antistatic property and its manufacture
JPH04298348A (en) * 1991-03-27 1992-10-22 Mitsubishi Rayon Co Ltd Synthetic resin molded product having surface excellent in scratch resistance and antistatic properties and manufacture thereof
JPH05293835A (en) * 1992-02-18 1993-11-09 Mitsubishi Rayon Co Ltd Manufacture of resin molding
JPH06201903A (en) * 1992-08-20 1994-07-22 Mitsubishi Rayon Co Ltd Manufacture of lens sheet
JPH07266351A (en) * 1994-03-30 1995-10-17 Sumitomo Chem Co Ltd Production of conductive resin composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061258A (en) * 1983-09-13 1985-04-09 積水化学工業株式会社 Conductive plastic sheet
JPH0731953B2 (en) * 1986-03-04 1995-04-10 住友化学工業株式会社 Method for manufacturing conductive plastic molded product
JP3259040B2 (en) * 1992-09-08 2002-02-18 住友化学工業株式会社 Manufacturing method of synthetic resin molded product with scratch-resistant film
JP3277606B2 (en) * 1993-05-26 2002-04-22 住友化学工業株式会社 Method for producing scratch-resistant non-glare synthetic resin plate
JPH10235807A (en) * 1997-02-25 1998-09-08 Nippon Kayaku Co Ltd Antistatic transparent sheet or film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290707A (en) * 1991-03-19 1992-10-15 Mitsubishi Rayon Co Ltd Synthtic resin molded object with surface excellent in abrasion resistance and antistatic property and its manufacture
JPH04298348A (en) * 1991-03-27 1992-10-22 Mitsubishi Rayon Co Ltd Synthetic resin molded product having surface excellent in scratch resistance and antistatic properties and manufacture thereof
JPH05293835A (en) * 1992-02-18 1993-11-09 Mitsubishi Rayon Co Ltd Manufacture of resin molding
JPH06201903A (en) * 1992-08-20 1994-07-22 Mitsubishi Rayon Co Ltd Manufacture of lens sheet
JPH07266351A (en) * 1994-03-30 1995-10-17 Sumitomo Chem Co Ltd Production of conductive resin composite

Also Published As

Publication number Publication date
JP2000167995A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
KR101097518B1 (en) Sheet for preventing Newton&#39;s ring and touch panel using the same
US7472999B2 (en) Antiglare film, process for producing the same, and display device using antiglare film
WO1995031737A1 (en) Glare-proof film
JP2003039607A (en) Antistatic hard coat film and method for manufacturing the same
JP6498857B2 (en) Display element front film and display element with surface member
KR101081987B1 (en) Article having a hardcoating layer prevented from curling
JP6812853B2 (en) A transfer sheet, a method for manufacturing a decorative molded product using the transfer sheet, and a mold for molding the transfer sheet.
JP3688136B2 (en) Transparent conductive film
CN110809518B (en) Decorative molded article, method for producing decorative molded article, transfer sheet, and display device
KR100930781B1 (en) Transparent hard coat film
JPH09193332A (en) Glare protecting film
JP2005031282A (en) Resin composition for optical element, resin cured product for optical element, and optical element
JPH09193333A (en) Glare protecting film
JP2008064946A (en) Anti-newton, anti-glare film
JP4685205B2 (en) Method for producing synthetic resin molded article and synthetic resin molded article produced by this method
JP3471217B2 (en) Transparent conductive film
JP4191844B2 (en) Synthetic resin molded product and manufacturing method thereof
JP4112704B2 (en) Manufacturing method of synthetic resin molded products
JP2004341553A (en) Antidazzle film
JP2018126905A (en) Release sheet, transfer sheet, and method of manufacturing decorative molding
JP2019171702A (en) Decorative formed product, image display unit, and transfer sheet
JP2000158599A (en) Surface-treated resin plate
JP2003198184A (en) Electromagnetic wave shielding sheet and method for manufacturing the same
JPS63159098A (en) Sheet material for writing and manufacture thereof
JP2004348156A (en) Antiglare film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term