JP4684154B2 - Carbonated beverage production equipment - Google Patents

Carbonated beverage production equipment Download PDF

Info

Publication number
JP4684154B2
JP4684154B2 JP2006111996A JP2006111996A JP4684154B2 JP 4684154 B2 JP4684154 B2 JP 4684154B2 JP 2006111996 A JP2006111996 A JP 2006111996A JP 2006111996 A JP2006111996 A JP 2006111996A JP 4684154 B2 JP4684154 B2 JP 4684154B2
Authority
JP
Japan
Prior art keywords
container
stock solution
carbonated
beverage
carbonated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006111996A
Other languages
Japanese (ja)
Other versions
JP2007284089A (en
Inventor
田中  誠
滋 南原
真史 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006111996A priority Critical patent/JP4684154B2/en
Publication of JP2007284089A publication Critical patent/JP2007284089A/en
Application granted granted Critical
Publication of JP4684154B2 publication Critical patent/JP4684154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭酸飲料製造装置に関する。   The present invention relates to a carbonated beverage manufacturing apparatus.

ビールやソーダ水のような炭酸飲料は、缶やペットボトル等に充填されて提供されるだけでなく、ビールサーバやドリンクサーバ等からコップ等の器に注がれて提供されることもある。その場合に、器に注がれる直前に、冷却された水及び飲料の原液と、炭酸ガスボンベから供給される炭酸ガスとが混合されて、炭酸飲料が製造される。しかしながら、炭酸ガスボンベの取り扱いが困難であるという問題があった。   Carbonated beverages such as beer and soda water are not only filled and provided in cans or plastic bottles, but are sometimes poured from a beer server or drink server into a cup or the like. In this case, immediately before being poured into the vessel, the cooled water and beverage stock solution and the carbon dioxide gas supplied from the carbon dioxide cylinder are mixed to produce a carbonated beverage. However, there is a problem that it is difficult to handle the carbon dioxide cylinder.

これを解決する方法として、下記の特許文献1に、二酸化炭素と水とをタンク内で接触させてガスハイドレートを製造するガスハイドレート製造装置と、該ガスハイドレートを水から分離する分離装置と、水が分離されたガスハイドレートを貯蔵するガスハイドレート貯蔵タンクと、炭酸水を製造する炭酸水製造タンクと、飲料貯蔵タンクとよりなり、前記貯蔵タンク内のガスハイドレートを前記炭酸水製造タンクに供給して炭酸水を製造するとともに、該炭酸水を取り出して前記飲料貯蔵タンクから取り出された飲料の原液とを混合するようにしたことを特徴とする炭酸飲料製造装置が記載されている。   As a method for solving this, Patent Literature 1 listed below discloses a gas hydrate production apparatus for producing gas hydrate by bringing carbon dioxide and water into contact with each other in a tank, and a separation apparatus for separating the gas hydrate from water. A gas hydrate storage tank for storing the gas hydrate from which water has been separated, a carbonated water production tank for producing carbonated water, and a beverage storage tank, wherein the gas hydrate in the storage tank is converted into the carbonated water. A carbonated beverage production apparatus is described in which carbonated water is produced by supplying to a production tank, and the carbonated water is taken out and mixed with a beverage stock solution taken out from the beverage storage tank. Yes.

また、二酸化炭素ガスハイドレートは、0 ℃ 程度で 1 m3 のガスハイドレート中に 50 m3 の二酸化炭素ガス及び 0.8 m3の水を含むことが、下記の特許文献2に記載されている。
特開2005−224146号公報 特開2005−305128号公報
Patent Document 2 below describes that carbon dioxide gas hydrate contains 50 m 3 carbon dioxide gas and 0.8 m 3 water in 1 m 3 gas hydrate at about 0 ° C. .
JP 2005-224146 A JP-A-2005-305128

しかしながら、上記特許文献1記載の装置では、ガスハイドレート製造装置と、分離装置と、ガスハイドレート貯蔵タンクと、炭酸水製造タンクと、飲料貯蔵タンクとが必要で、これらの装置を組み合わせて使用するので、費用が掛かるとともに、ビールサーバやドリンクサーバ等に比べて持ち運びが困難或いは不可能である。また、炭酸水製造タンク内の炭酸水の残量及び飲料貯蔵タンク内の飲料原液の残量が減少するにつれて、炭酸水の供給量及び飲料原液の供給量が減少して、炭酸水の供給量と飲料原液の供給量の比、すなわち炭酸飲料中の炭酸水と飲料原液の混合比を一定に保つことができなくなるが、これを解決する手段について記載されていない。   However, the apparatus described in Patent Document 1 requires a gas hydrate production apparatus, a separation apparatus, a gas hydrate storage tank, a carbonated water production tank, and a beverage storage tank. These apparatuses are used in combination. Therefore, it is expensive, and it is difficult or impossible to carry compared to a beer server or a drink server. Further, as the remaining amount of carbonated water in the carbonated water production tank and the remaining amount of beverage stock solution in the beverage storage tank decrease, the supply amount of carbonated water and the supply amount of beverage stock solution decrease, and the carbonated water supply amount The ratio of the supply amount of the beverage stock solution, that is, the mixing ratio of the carbonated water and the beverage stock solution in the carbonated beverage cannot be kept constant, but no means for solving this is described.

本発明の目的は、炭酸水と飲料原液とが所定の混合比で含まれる炭酸飲料を継続して製造できる、持ち運びが容易で簡易な構造の炭酸水製造装置を提供することである。   An object of the present invention is to provide a carbonated water production apparatus that is easy to carry and has a simple structure capable of continuously producing a carbonated drink containing carbonated water and a beverage stock solution at a predetermined mixing ratio.

本発明では、炭酸水を製造するために、二酸化炭素ハイドレートを使用する。二酸化炭素ハイドレートは、時間が経過するにつれて二酸化炭素と水とに分解する。なお、0 ℃ 常圧下におけるその体積は、二酸化炭素が二酸化炭素ハイドレートの 50 倍、水が二酸化炭素ハイドレートの 0.8 倍である(特許文献2参照)。そして、二酸化炭素と水とが共存する系において、二酸化炭素は水に溶解する。二酸化炭素の圧力(分圧)が高い場合には、大量の二酸化炭素が水に溶解して、炭酸水が生成する。   In the present invention, carbon dioxide hydrate is used to produce carbonated water. Carbon dioxide hydrate decomposes into carbon dioxide and water over time. Note that the volume of carbon dioxide at 50 ° C. and normal pressure is 50 times that of carbon dioxide hydrate and that of water is 0.8 times that of carbon dioxide hydrate (see Patent Document 2). In a system in which carbon dioxide and water coexist, carbon dioxide is dissolved in water. When the pressure (partial pressure) of carbon dioxide is high, a large amount of carbon dioxide is dissolved in water to produce carbonated water.

本発明の炭酸飲料製造装置は、全体が断熱材に覆われた容器と、前記容器の上部に設けられた圧力調節弁と、前記容器内に設けられ、二酸化炭素ハイドレートを載せることができ、かつ該二酸化炭素ハイドレートが分解して生成した水に二酸化炭素が溶解してできた炭酸水を通す孔を有する支持板と、前記容器の下部に設けられた開閉可能な炭酸水出口とを有する炭酸水供給装置、及び、別の容器と、一端が該容器内に入れられた飲料原液に浸からない位置に取り付けられ、他端が前記炭酸水供給装置の前記支持板よりも高い位置で前記炭酸水供給装置の前記容器に取り付けられた、前記炭酸水供給装置の前記容器内部と容器内部18前記別の容器内部とを通じさせる導管と、前記別の容器の下部に設けられた開閉可能な原液出口とを有する飲料原液供給装置とを備え、前記水出口から供給された炭酸水と、前記原液出口から供給された飲料原液とを混合して炭酸飲料を作るように構成したことを特徴とする。 The carbonated beverage production apparatus of the present invention is a container entirely covered with a heat insulating material, a pressure control valve provided at the top of the container, and provided in the container, and can place carbon dioxide hydrate, And a support plate having a hole through which carbonated water formed by dissolving carbon dioxide in water generated by decomposition of the carbon dioxide hydrate, and an openable and closable carbonated water outlet provided at the lower portion of the container. The carbonated water supply device and another container, and one end is attached to a position not immersed in the beverage stock solution contained in the container, and the other end is higher than the support plate of the carbonated water supply device. A conduit that is attached to the container of the carbonated water supply apparatus and passes through the inside of the container of the carbonated water supply apparatus and the interior of the container 18 and the interior of the other container, and an openable / closable undiluted solution provided at the lower part of the other container With exit Charge and a starting solution feed device, and carbonated water supplied from said water outlet, and characterized by being configured to make the carbonated beverages by mixing a beverage concentrate which is supplied from the stock outlet.

本発明の装置は、前記容器内で二酸化炭素ハイドレートが分解して生成した水が凍ってできた氷を融かす加熱手段を備えることが望ましい。これは、例えば、前記容器の外に設けられた電源に電気的に接続する、電源スイッチを備えた電熱器である。
The apparatus of the present invention preferably includes a heating means for melting ice formed by freezing water generated by decomposition of carbon dioxide hydrate in the container. This is, for example, an electric heater provided with a power switch that is electrically connected to a power source provided outside the container.

また、前記飲料原液供給装置は1つでもよいし、複数備えてもよい。   Moreover, the said beverage undiluted solution supply apparatus may be one, and may be provided with two or more.

本発明の装置は、全体が断熱材に覆われた容器に、圧力調節弁、支持板、及び水出口を設けた炭酸水供給装置と、別の容器に、導管及び原液出口を設けた飲料原液装置とを組み合わせたものであるから、小型かつ軽量に形成される。すなわち、二酸化炭素ハイドレートから炭酸水を製造するのに必要な手段及び炭酸水と飲料原液とを供給する手段の全てが、2つの容器に盛り込まれているので、構成が簡易で、持ち運びが容易な炭酸飲料製造装置が提供される。   The apparatus of the present invention includes a carbonated water supply device in which a pressure control valve, a support plate, and a water outlet are provided in a container entirely covered with a heat insulating material, and a beverage stock solution in which a conduit and a concentrate outlet are provided in another container. Since it is a combination with a device, it is formed small and lightweight. That is, all the means required for producing carbonated water from carbon dioxide hydrate and the means for supplying carbonated water and beverage stock solution are contained in two containers, so the configuration is simple and easy to carry An apparatus for producing carbonated beverages is provided.

また、飲料原液供給装置の別の容器に設けられた導管は、炭酸水供給装置の容器内部と飲料原液供給装置の別の容器内部とに通じているので、炭酸水供給装置の容器内部の圧力と、飲料原液供給装置の別の容器内部の圧力とが等しくなる。これにより、炭酸水供給装置の水出口からの炭酸水の供給量と飲料原液供給装置の原液出口からの飲料原液の供給量は、炭酸水の残量及び飲料原液の残量に依存することなく常に等しくなるので、炭酸水と飲料原液とが所定の混合比で含まれる炭酸飲料を継続して製造できる炭酸飲料製造装置が提供される。   Moreover, since the conduit | pipe provided in the other container of the beverage undiluted solution supply device leads to the inside of the container of the carbonated water supply device and the other container of the beverage undiluted solution supply device, And the pressure inside another container of the beverage stock solution supply device becomes equal. Thereby, the supply amount of carbonated water from the water outlet of the carbonated water supply device and the supply amount of beverage stock solution from the stock solution outlet of the beverage stock solution supply device do not depend on the remaining amount of carbonated water and the remaining amount of beverage stock solution. Since it always becomes equal, the carbonated beverage manufacturing apparatus which can manufacture continuously the carbonated beverage containing carbonated water and a drink undiluted | stock solution with a predetermined | prescribed mixing ratio is provided.

本発明の装置においては、炭酸水供給装置の容器内部を所定の温度及び所定の圧力に保持することができる。これは、炭酸水供給装置の容器に設けられた断熱材及び圧力調節弁により実現される。所定の温度及び所定の圧力とは、例えば -20 ℃ 〜 -10 ℃ 及び 2 kg/cm2 (すなわち 0.2 MPa)である。この状態に保持されると、例えば外気温が 30 ℃ の場合には約 2.5 日間、外気温が 0 ℃ の場合には約 8 日間、二酸化炭素ハイドレートを炭酸水供給装置の容器内に蓄えておくことができるので、この期間中は炭酸飲料を製造することができる。また、-20 ℃ 〜 -10 ℃ に保持できる断熱材は、例えば厚さ 2 cm の発泡ポリウレタンである。 In the apparatus of the present invention, the inside of the container of the carbonated water supply apparatus can be maintained at a predetermined temperature and a predetermined pressure. This is realized by a heat insulating material and a pressure control valve provided in the container of the carbonated water supply device. The predetermined temperature and the predetermined pressure are, for example, −20 ° C. to −10 ° C. and 2 kg / cm 2 (that is, 0.2 MPa). If this condition is maintained, for example, carbon dioxide hydrate is stored in the carbonated water supply container for about 2.5 days when the outside air temperature is 30 ° C and for about 8 days when the outside air temperature is 0 ° C. During this period, carbonated beverages can be produced. The heat insulating material that can be maintained at -20 ° C to -10 ° C is, for example, foamed polyurethane having a thickness of 2 cm.

-20 ℃ 〜 -10 ℃ 下で二酸化炭素ハイドレートが分解すると、生成した水はしばらくすると氷になり、周りの二酸化炭素ハイドレートや支持板等に付着してしまう。しかし、時間が経つにつれて、容器外部から供給される熱によって氷は融けて水になる。   When carbon dioxide hydrate is decomposed at -20 ° C to -10 ° C, the generated water becomes ice after a while and adheres to the surrounding carbon dioxide hydrate and support plate. However, as time goes on, the ice melts into water by heat supplied from outside the container.

図1は、実施例の炭酸飲料製造装置の全体構成を示す図である。炭酸飲料製造装置1は、炭酸水供給装置10と飲料原液供給装置20とで構成される。飲料原液供給装置20は1台でもよいし、複数(図1では、20A及び20Bで示す2台)設けてもよい。   Drawing 1 is a figure showing the whole carbonated drink manufacturing device composition of an example. The carbonated beverage production apparatus 1 includes a carbonated water supply device 10 and a beverage stock solution supply device 20. One beverage undiluted solution supply device 20 may be provided, or a plurality (two in FIG. 1 indicated by 20A and 20B) may be provided.

炭酸水供給装置10は、容器11と、断熱材12と、圧力調節弁13と、遮蔽板14と、水出口15とで構成される。   The carbonated water supply device 10 includes a container 11, a heat insulating material 12, a pressure control valve 13, a shielding plate 14, and a water outlet 15.

容器11は、直径 300 mm 程度、高さ 510 mm 程度、厚さ 1 mm 程度のステンレス製のタンクから成り、容積 は 30 リットル 程度、重さは 4 kg 程度である。その全体は断熱材3に覆われている。断熱材12は、厚さ 2 cm の発泡ポリウレタンから成り、これによって容器内部18の温度は -20 ℃ 〜 -10 ℃ に保持される。   The container 11 is composed of a stainless steel tank having a diameter of about 300 mm, a height of about 510 mm, and a thickness of about 1 mm, and has a volume of about 30 liters and a weight of about 4 kg. The whole is covered with the heat insulating material 3. The heat insulating material 12 is made of foamed polyurethane having a thickness of 2 cm, whereby the temperature inside the container 18 is maintained at -20 ° C to -10 ° C.

容器11の上部には、蓋11aと圧力調節弁13が設けられている。蓋11aとそれを覆う断熱材の蓋部12aを外して、二酸化炭素ハイドレート2を容器11内に供給することができる。圧力調節弁13によって、容器内部18の気体が容器11外に排出されて、容器内部18は所定の圧力、例えば 2 kg/cm2 に保持される。 A lid 11 a and a pressure control valve 13 are provided on the top of the container 11. The carbon dioxide hydrate 2 can be supplied into the container 11 by removing the lid 11a and the lid portion 12a of the heat insulating material covering the lid 11a. The gas inside the container 18 is discharged out of the container 11 by the pressure control valve 13, and the container inside 18 is maintained at a predetermined pressure, for example, 2 kg / cm 2 .

容器11内には、二酸化炭素ハイドレート2を載せる支持板として、水を通す(しかし、二酸化炭素ハイドレート2は通さない)孔14aを有する遮蔽板14が設けられている。この孔14aの大きさは、二酸化炭素ハイドレート2よりも小さい、直径 5 mm 程度が望ましい。なお、遮蔽板14は、同程度の網目を有する金属製の網、例えば、熱伝導性に優れる銅製の網であってもよい。さらに、遮蔽板14の上に、11 kg 程度の二酸化炭素ハイドレート2を載せられることが望ましい。そして、遮蔽板14の下に炭酸水3が溜まる。炭酸水3が溜まるこの部分、すなわち遮蔽板14下の容積は 10 リットル 程度であることが望ましい。また、二酸化炭素ハイドレート2が分解して生成した炭酸水3が溜まる前に炭酸飲料製造装置1を使用したい場合に備えて、遮蔽板14下に別に用意した 6 リットル程度の炭酸水3を予め貯蔵しておくことが望ましい。   In the container 11, a shielding plate 14 having a hole 14 a through which water passes (but carbon dioxide hydrate 2 does not pass) is provided as a support plate on which the carbon dioxide hydrate 2 is placed. The size of the hole 14a is preferably smaller than the carbon dioxide hydrate 2 and about 5 mm in diameter. Note that the shielding plate 14 may be a metal net having a similar mesh, for example, a copper net excellent in thermal conductivity. Further, it is desirable to place about 11 kg of carbon dioxide hydrate 2 on the shielding plate 14. Then, the carbonated water 3 accumulates under the shielding plate 14. This portion where the carbonated water 3 accumulates, that is, the volume under the shielding plate 14, is preferably about 10 liters. In addition, in order to use the carbonated beverage production apparatus 1 before the carbonated water 3 generated by decomposition of the carbon dioxide hydrate 2 is collected, about 6 liters of carbonated water 3 separately prepared under the shielding plate 14 is previously prepared. It is desirable to store it.

遮蔽板14の上には、容器11の外に設けられた電源35に、電源スイッチ36を介して電気的に接続する電熱器(ヒータ)34が設けられている。電源スイッチ36をオンすることにより、電熱器34が通電されて 1 ℃ 程度まで昇温することができる。   On the shielding plate 14, an electric heater (heater) 34 that is electrically connected to a power source 35 provided outside the container 11 via a power switch 36 is provided. By turning on the power switch 36, the electric heater 34 is energized and can be heated to about 1 ° C.

容器11の下部には、一端が容器11内に通じていて、他端が水出口15となっていて、途中にコック弁32及び流量調節弁17を備えた導管16が設けられている。このコック弁32を開けることにより、容器11の底に溜まった炭酸水3を水出口15から容器11外に出すことができる。また、流量調節弁17を開閉することにより、水出口15から出る炭酸水3の流量を制御することができる。   At the lower part of the container 11, one end communicates with the container 11, the other end serves as the water outlet 15, and a conduit 16 having a cock valve 32 and a flow rate adjusting valve 17 is provided in the middle. By opening the cock valve 32, the carbonated water 3 accumulated at the bottom of the container 11 can be taken out of the container 11 from the water outlet 15. Further, the flow rate of the carbonated water 3 coming out of the water outlet 15 can be controlled by opening and closing the flow rate adjusting valve 17.

実施例で使用される二酸化炭素ハイドレート2は、例えば、上記特許文献1に記載のガスハイドレート製造装置によって製造されるものである。   The carbon dioxide hydrate 2 used in the examples is manufactured by, for example, the gas hydrate manufacturing apparatus described in Patent Document 1.

実施例において、時間が経過するにつれて、二酸化炭素ハイドレート2は、容器内部18において、二酸化炭素及び水に分解する。生成した水は、容器内部18の温度が低いためにしばらくすると氷になり、周りの二酸化炭素ハイドレート2や遮蔽板14等に付着する。時間が経つにつれて、容器11外部及び電熱器34から供給される熱によって、氷は融けて水になる。そして、生成した二酸化炭素によって容器内部18の圧力が高まるので、常圧下に比べてより大量の二酸化炭素が水に溶解して、炭酸水3が生成する。例えば、11 kg 程度の二酸化炭素ハイドレート2から、10 リットル 程度の炭酸水3が生成する。炭酸水3は、遮蔽板14の孔14aを通って、容器11内の底に溜まる。そして、コック弁32を開けると、前述のように炭酸水3が水出口15から出てくる。   In the example, as time passes, the carbon dioxide hydrate 2 decomposes into carbon dioxide and water in the container interior 18. The generated water becomes ice after a while because the temperature inside the container 18 is low, and adheres to the surrounding carbon dioxide hydrate 2, the shielding plate 14, and the like. Over time, the ice melts into water by the heat supplied from the outside of the container 11 and the electric heater 34. Then, since the pressure inside the container 18 is increased by the generated carbon dioxide, a larger amount of carbon dioxide is dissolved in water than under normal pressure, and carbonated water 3 is generated. For example, about 10 liters of carbonated water 3 is produced from about 11 kg of carbon dioxide hydrate 2. The carbonated water 3 accumulates at the bottom in the container 11 through the hole 14 a of the shielding plate 14. When the cock valve 32 is opened, the carbonated water 3 comes out from the water outlet 15 as described above.

一方、飲料原液供給装置20は、原液容器21と、原液出口25と、ガス導管29とで構成される。なお、図1に原液容器21Aと原液容器21Bとが記載されているが、以下、これらを区別する必要がある場合を除いて「原液容器21」と記載する。   On the other hand, the beverage stock solution supply device 20 includes a stock solution container 21, a stock solution outlet 25, and a gas conduit 29. In FIG. 1, the stock solution container 21 </ b> A and the stock solution container 21 </ b> B are described. However, these are hereinafter referred to as “stock solution container 21” unless it is necessary to distinguish them.

原液容器21は、製造しようとする炭酸飲料に必要な飲料原液の量に応じて、必要な容積を有することが望ましい。例えば、炭酸水と飲料原液の混合比が1:0.25である炭酸飲料を製造する場合には、原液容器21は、容積が 4 リットル 程度(なぜなら、11 kg 程度の二酸化炭素ハイドレート2から生成する炭酸水3は 10 リットル 程度であり、容器11下部に予め貯蔵しておいた炭酸水3 は 6 リットル 程度であるから、炭酸水3の合計は 16 リットル 程度である)であることが望ましい。また、4 リットル よりも多い場合には、飲料原液4を原液容器21に供給する回数を減らすことができる。   The stock solution container 21 desirably has a required volume according to the amount of beverage stock solution required for the carbonated beverage to be produced. For example, when a carbonated beverage having a mixing ratio of carbonated water and beverage stock solution of 1: 0.25 is manufactured, the stock solution container 21 has a volume of about 4 liters (because the carbon dioxide hydrate 2 of about 11 kg is used). The generated carbonated water 3 is about 10 liters, and the carbonated water 3 stored in the lower part of the container 11 is about 6 liters, so the total amount of carbonated water 3 is about 16 liters). . Moreover, when more than 4 liters, the frequency | count of supplying the drink stock solution 4 to the stock solution container 21 can be reduced.

原液容器21は、直径 160 mm 程度、高さ 200 mm 程度、厚さ 1 mm 程度のステンレス製のタンクから成り、容積 は 4 リットル 程度、重さは 1 kg 程度である。原液容器21の上部に設けられた蓋21aを外して、飲料原液4を原液容器21内に供給することができる。なお、原液容器21A内の飲料原液4Aと原液容器21B内の飲料原液4Bとは、同じ飲料原液であってもよいし、異なる飲料原液であってもよい。   The stock solution container 21 is made of a stainless steel tank having a diameter of about 160 mm, a height of about 200 mm, and a thickness of about 1 mm, and has a volume of about 4 liters and a weight of about 1 kg. By removing the lid 21 a provided on the upper part of the stock solution container 21, the beverage stock solution 4 can be supplied into the stock solution container 21. The beverage stock solution 4A in the stock solution container 21A and the beverage stock solution 4B in the stock solution container 21B may be the same beverage stock solution or different beverage stock solutions.

原液容器21内の飲料原液4に浸からない位置には、炭酸水供給装置10の遮蔽板14よりも高い位置で容器内部18に通じるガス導管29が設けられている。容器内部18のガス(二酸化炭素)がガス導管29中を通って原液容器内部28に移動するので、原液容器内部28の圧力は容器内部18の圧力に等しくなる。なお、原液容器21が複数(21A及び21B)設けられている場合には、ガス導管29A及び29Bのそれぞれを直に容器内部18に通じさせてもよいし、継ぎ手30を用いて、容器内部18に通じるガス導管29Aにガス導管29Bを接続することにしてもよい。   A gas conduit 29 that leads to the container interior 18 is provided at a position higher than the shielding plate 14 of the carbonated water supply device 10 at a position where the beverage stock solution 4 in the stock solution container 21 is not immersed. Since the gas (carbon dioxide) in the container interior 18 moves through the gas conduit 29 to the stock solution container interior 28, the pressure in the stock solution container interior 28 becomes equal to the pressure in the container interior 18. When a plurality of stock solution containers 21 (21A and 21B) are provided, each of the gas conduits 29A and 29B may be directly communicated with the container interior 18, or the joint 30 may be used to connect the interior 18 of the container. The gas conduit 29B may be connected to the gas conduit 29A leading to

原液容器21の下部には、一端が原液容器21内に通じていて、他端が原液出口25となっていて、途中に原液コック弁33及び原液流量調節弁27を備えた原液導管26が設けられている。この原液コック弁33を開けることにより、原液容器21内の飲料原液4を原液出口25から原液容器21外に出すことができる。また、流量調節弁27を開閉することにより、原液出口25から出る飲料原液4の流量を制御することができる。   At the lower part of the stock solution container 21, one end communicates with the stock solution container 21, the other end serves as a stock solution outlet 25, and a stock solution conduit 26 having a stock solution cock valve 33 and a stock solution flow rate adjustment valve 27 is provided in the middle. It has been. By opening the stock solution cock valve 33, the beverage stock solution 4 in the stock solution container 21 can be taken out of the stock solution container 21 from the stock solution outlet 25. Further, the flow rate of the beverage stock solution 4 coming out from the stock solution outlet 25 can be controlled by opening and closing the flow rate adjusting valve 27.

コック弁32及び原液コック弁33を同時に開けて、水出口15及び原液出口25から出てくる炭酸水3及び飲料原液4をコップ31に注ぐと、コップ31内で炭酸水3と飲料原液4とが混合して、炭酸飲料5となる。   When the cock valve 32 and the stock solution cock valve 33 are simultaneously opened and the carbonated water 3 and the beverage stock solution 4 coming out of the water outlet 15 and the stock solution outlet 25 are poured into the cup 31, the carbonated water 3 and the beverage stock solution 4 Are mixed to form a carbonated beverage 5.

このとき、製造される炭酸飲料5中に含まれる炭酸水3と飲料原液4の混合比は、炭酸飲料3の残量H及び飲料原液4の残量hに依存することなく、常に一定となる。 At this time, the mixing ratio of the carbonated water 3 and the beverage stock solution 4 contained in the carbonated beverage 5 to be produced is always constant without depending on the remaining amount H 1 of the carbonated beverage 3 and the remaining amount h 1 of the beverage stock solution 4. It becomes.

以下、炭酸飲料5中に含まれる炭酸水3と飲料原液4の混合比が一定となることについて説明する。   Hereinafter, it will be described that the mixing ratio between the carbonated water 3 and the beverage stock solution 4 contained in the carbonated beverage 5 is constant.

→P、p→pL、→PG、→pG、→P、p→p
水出口15からの炭酸水3の供給量Q(m3/s)は、次式で表される。
P v → P L, p v → p L, P g → P G, p g → p G, P w → P W, p w → p W
The supply amount Q (m 3 / s) of the carbonated water 3 from the water outlet 15 is expressed by the following equation.

Q=πR×V …(1)
R:導管16の内径(m)
V:炭酸水の平均流速(m/s)
ここで、炭酸水3が導管16内を流れることにより発生する圧力損失P(MPa)は、次式の関数Fで表される。
Q = πR 2 × V (1)
R: Inner diameter of conduit 16 (m)
V: Average flow rate of carbonated water (m / s)
Here, the pressure loss P L (MPa) generated when the carbonated water 3 flows in the conduit 16 is expressed by a function F of the following equation.

=F(R,V,Μ,D,Ζ) …(2)
:炭酸水3が導管16内を流れることにより発生する圧力損失(MPa)
Μ:炭酸水3の粘度(Pa・s)
D:炭酸水3の密度(kg/m3)
Ζ:導管16の形状に関する係数
なお、導管16の形状に関する係数Ζは、導管16の長さ、容器11から導管16への入口部の形状、導管16のエルボ部の形状、流量調節弁17、コック弁32の形状等により決定される。
P L = F (R, V, Μ, D, Ζ) (2)
P L : Pressure loss (MPa) generated when carbonated water 3 flows in the conduit 16
Μ: Viscosity of carbonated water 3 (Pa · s)
D: Density of carbonated water 3 (kg / m 3 )
Ζ: Factor relating to the shape of the conduit 16 Note that the factor に 関 す る relating to the shape of the conduit 16 is the length of the conduit 16, the shape of the inlet from the container 11 to the conduit 16, the shape of the elbow of the conduit 16, the flow control valve 17, It is determined by the shape of the cock valve 32 or the like.

よって、炭酸水3の平均流速V(m/s)は、次式の関数Hで表される。   Therefore, the average flow velocity V (m / s) of the carbonated water 3 is expressed by the function H of the following equation.

V=H(P,R,Μ,D,Ζ) …(3)
(3)式を(1)式に代入すると、
Q=πR×H(P,R,Μ,D,Ζ) …(4)
となる。ここで、圧力損失P(MPa)は、次式で表される。
V = H (P L , R, Μ, D, Ζ) (3)
Substituting equation (3) into equation (1) gives
Q = πR 2 × H (P L, R, Μ, D, Ζ) ... (4)
It becomes. Here, the pressure loss P L (MPa) is expressed by the following equation.

=P−P0+P=P−P0+Dg(H+H) …(5)
:容器内部18の圧力(MPa)
0:大気圧(MPa)
:炭酸水3の残量に起因する圧力(MPa)
g:標準重力加速度(m/s3)
:炭酸水3の水面から容器11の底までの高さ(m)
:容器11の底から水出口15までの高さ(m)
各変数の値は次の通りである。容器内部18の圧力Pは前述のように0.2 MPa である。大気圧P0は 0.1013 MPa である。炭酸水3の密度Dは、水と同じとみなして 0.001 kg/m3 である。炭酸水3の水面から容器11の底までの高さ、すなわち炭酸水3の残量Hは最大 0.14 m である(なぜなら、二酸化炭素ハイドレート2の分解により生成する炭酸水3は 10 リットル である)が、二酸化炭素ハイドレート2の分解途中、又は炭酸水3の一部を使用した(すなわち水出口15から出した)後には、それよりも小さな値となる。容器11の底から水出口15までの高さHは、水出口15の設置箇所に依存するが、例えばH=0.03 m とする。(5)式に各値を代入すると、
=0.2−0.1013+0.001×9.807×(H+0.03) …(6)
となる。ここで、Hが 0.14 m 以下であることからP−P0≫D(H+H)であるので、(5)式のD(H+H2)の項を無視することができて、(2)式を
=P−P0 …(7)
と近似できる。従って、(7)式から、炭酸水3が導管16内を流れることにより発生する圧力損失Pは、炭酸水3の水面から容器11の底までの高さH、すなわち炭酸水3の残量に依存することなく、容器内部18の圧力Pのみに依存することがわかる。
P L = P G −P 0 + P W = P G −P 0 + Dg (H 1 + H 2 ) (5)
P G : Pressure inside the container 18 (MPa)
P 0 : Atmospheric pressure (MPa)
P W : Pressure caused by the remaining amount of carbonated water 3 (MPa)
g: Standard gravity acceleration (m / s 3 )
H 1 : Height from the surface of carbonated water 3 to the bottom of container 11 (m)
H 2 : Height from the bottom of the container 11 to the water outlet 15 (m)
The value of each variable is as follows. The pressure P G inside the container 18 is 0.2 MPa, as described above. The atmospheric pressure P 0 is 0.1013 MPa. The density D of the carbonated water 3 is 0.001 kg / m 3 assuming that it is the same as that of water. From the water surface of the carbonated water 3 to the bottom of the container 11 height, i.e. the remaining amount H 1 of the carbonated water 3 is the maximum 0.14 m (since carbonated water 3 produced by the decomposition of carbon dioxide hydrate 2 in 10 liters However, the value becomes smaller during decomposition of the carbon dioxide hydrate 2 or after a part of the carbonated water 3 is used (that is, from the water outlet 15). The height H 2 from the bottom of the container 11 to the water outlet 15 depends on the installation location of the water outlet 15, but for example, H 2 = 0.03 m. Substituting each value into equation (5)
P L = 0.2−0.1013 + 0.001 × 9.807 × (H 1 +0.03) (6)
It becomes. Since H 1 is P G -P 0 »D from not more than 0.14 m (H 1 + H 2 ), can ignore the terms of equation (5) D (H 1 + H 2) Equation (2) can be expressed as P L = P G −P 0 (7)
Can be approximated. Therefore, (7) from the equation, the pressure loss P L generated by carbonated water 3 flows through the conduit 16, the height H 1 to the bottom of the container 11 from the water surface of the carbonated water 3, namely the carbonated water 3 residues without depending on the amount, it can be seen that depends only on the pressure P G in the vessel interior 18.

ここで、(7)式を(4)式に代入すると、
Q=πR×F(P,P,R,Μ,D,Ζ) …(8)
となる。
Here, substituting equation (7) into equation (4),
Q = πR 2 × F (P G , P 0 , R, Μ, D, Ζ) (8)
It becomes.

同様に、原液出口25からの飲料原液4の供給量q(m3/s)は、次式で表される。 Similarly, the supply amount q (m 3 / s) of the beverage stock solution 4 from the stock solution outlet 25 is expressed by the following equation.

q=πr×v …(9)
r:原液導管26の内径(m)
v:飲料原液4の平均流速(m/s)
ここで、飲料原液4が原液導管26内を流れることにより発生する圧力損失p(MPa)は、次式の関数fで表される。
q = πr 2 × v (9)
r: Inner diameter of stock solution conduit 26 (m)
v: Average flow rate of beverage stock solution 4 (m / s)
Here, the pressure loss p L (MPa) generated by the beverage stock solution 4 flowing through the stock solution conduit 26 is expressed by the function f of the following equation.

=f(r,v,μ,d,ζ) …(10)
:飲料原液4が原液導管26内を流れることにより発生する圧力損失(MPa)
μ:飲料原液4の粘度(Pa・s)
d:飲料原液4の密度(kg/m3)
ζ:導管26の形状に関する係数
なお、導管26の形状に関する係数ζは、導管26の長さ、原液容器21から導管26への入口部の形状、導管26のエルボ部の形状、原液流量調節弁27、原液コック弁33の形状等により決定される。
p L = f (r, v, μ, d, ζ) (10)
p L : Pressure loss (MPa) generated by the beverage stock solution 4 flowing in the stock solution conduit 26
μ: Viscosity of beverage stock solution 4 (Pa · s)
d: Density of beverage stock solution 4 (kg / m 3 )
ζ: coefficient relating to the shape of the conduit 26 Note that the factor ζ relating to the shape of the conduit 26 is the length of the conduit 26, the shape of the inlet portion from the concentrate container 21 to the conduit 26, the shape of the elbow portion of the conduit 26, and the concentrate flow rate regulating valve. 27, determined by the shape of the stock cock 33, etc.

よって、飲料原液4の平均流速v(m/s)は、次式の関数hで表される。   Therefore, the average flow velocity v (m / s) of the beverage stock solution 4 is represented by the function h of the following equation.

v=h(p,r,μ,d,ζ) …(11)
(11)式を(9)式に代入すると、
q=πr×h(p,r,μ,d,ζ) …(12)
となる。ここで、圧力損失p(MPa)は、次式であらわされる。
v = h (p L , r, μ, d, ζ) (11)
Substituting equation (11) into equation (9),
q = πr 2 × h (p L , r, μ, d, ζ) (12)
It becomes. Here, the pressure loss p L (MPa) is expressed by the following equation.

=p−P0+p=p−P0+dg(h+h) …(13)
:原液容器内部28の圧力(MPa)
:飲料原液4の残量に起因する圧力(MPa)
:飲料原液4の水面から原液容器21の底までの高さ(m)
:原液容器21の底から水出口25までの高さ(m)
各変数の値は次の通りである。原液容器内部28の圧力Pは前述のように容器内部18に等しいので、p=P=0.2 MPa となる。また、飲料原液4の密度dは飲料原液の種類によって異なるが、例えばd=0.0013 kg/m3 とする。飲料原液4の水面から原液容器21の底までの高さ、すなわち飲料原液4の残量hは最大 0.2 m である(なぜなら、原液容器21の容積は 4 リットルである)が、飲料原液4の一部を使用した(すなわち原液出口25から出した)後には、それよりも小さな値となる。原液容器21の底から水出口25までの高さhは、水出口25の設置箇所に依存するが、例えば水出口15と同じ高さ、すなわちh=0.03 m とする。(7)式に各値を代入すると、
=0.2−0.1013+0.0013×9.807×(h+0.03)−P …(14)
となる。ここで、hが 0.2 m 以下であることからp−P0≫d(h+h)であるので、(13)式のd(h+h)の項を無視することができて、(13)式を
=p−P0=P−P0 …(15)
と近似できる。従って、(15)式から、飲料原液4が導管26内を流れることにより発生する圧力損失pは、飲料原液4の水面から原液容器21の底までの高さh、すなわち飲料原液4の残量に依存することなく、容器内部18の圧力Pのみに依存することがわかる。
p L = p G -P 0 + p W = p G -P 0 + dg (h 1 + h 2) ... (13)
p G : Pressure inside the stock solution container (MPa)
p W : Pressure resulting from the remaining amount of the beverage stock solution 4 (MPa)
h 1 : Height from the surface of the beverage stock solution 4 to the bottom of the stock solution container 21 (m)
h 2 : Height from the bottom of the stock solution container 21 to the water outlet 25 (m)
The value of each variable is as follows. Since the pressure P G inside the stock solution container 28 is equal to the container interior 18 as described above, p G = P G = 0.2 MPa. Further, the density d of the beverage stock solution 4 varies depending on the type of the beverage stock solution, but for example, d = 0.0013 kg / m 3 . From the water surface of the beverage concentrate 4 to the bottom of the stock container 21 height, i.e. the remaining amount h 1 of beverage concentrate 4 is the maximum 0.2 m (since the volume of the stock solution vessel 21 is 4 liters) is a beverage concentrate 4 After using a part of (that is, from the stock solution outlet 25), the value becomes smaller. Although the height h 2 from the bottom of the undiluted solution container 21 to the water outlet 25 depends on the installation location of the water outlet 25, for example, it is set to the same height as the water outlet 15, that is, h 2 = 0.03 m. Substituting each value into equation (7)
p L = 0.2−0.1013 + 0.0013 × 9.807 × (h 1 +0.03) −P s (14)
It becomes. Here, since h 1 is 0.2 m or less, p G −P 0 >> d (h 1 + h 2 ), so the d (h 1 + h 2 ) term in the equation (13) can be ignored. Then, the equation (13) is changed to p L = p G −P 0 = P G −P 0 (15)
Can be approximated. Therefore, from equation (15), the pressure loss p L generated when the beverage stock solution 4 flows in the conduit 26 is the height h 1 from the surface of the beverage stock solution 4 to the bottom of the stock solution container 21, that is, the beverage stock solution 4. without depending on the remaining amount, it can be seen that depends only on the pressure P G in the vessel interior 18.

ここで、(15)式を(12)式に代入すると、
q=πr×h(p,P,r,μ,d,ζ) …(16)
となる。
Here, when substituting equation (15) into equation (12),
q = πr 2 × h (p G , P 0 , r, μ, d, ζ) (16)
It becomes.

次に、水出口15からの炭酸水3の供給量Qと原液出口25からの飲料原液4の供給量qの比Q/qは、(5)式及び(10)式から次式のように表される。   Next, the ratio Q / q of the supply amount Q of the carbonated water 3 from the water outlet 15 and the supply amount q of the beverage stock solution 4 from the stock solution outlet 25 is expressed by the following equation from the equations (5) and (10): expressed.

Q/q=πR×F(P,P,R,Μ,D,Ζ)/{πr×h(p,P,r,μ,
d,ζ)}
=R/r×F(P,P,R,Μ,D,Ζ)/h(p,P,r,μ,d,ζ) …(17)
(17)式中の各変数は、炭酸飲料5を製造する最中に変化することはないので、Q/q=一定である。従って、製造される炭酸飲料5中に含まれる炭酸水3と飲料原液4の混合比は、炭酸水3の残量H及び飲料原液4の残量hに依存することなく、常に一定であることがわかる。
Q / q = πR 2 × F (P G , P 0 , R, Μ, D, Ζ) / {πr 2 × h (p G , P 0 , r, μ,
d, ζ)}
= R 2 / r 2 × F (P G , P 0 , R, Μ, D, Ζ) / h (p G , P 0 , r, μ, d, ζ) (17)
Since each variable in the equation (17) does not change during the production of the carbonated beverage 5, Q / q = constant. Therefore, the mixing ratio of the carbonated water 3 and the beverage stock solution 4 contained in the carbonated beverage 5 to be produced is always constant without depending on the remaining amount H 1 of the carbonated water 3 and the remaining amount h 1 of the beverage stock solution 4. I know that there is.

以上から、実施例の炭酸飲料製造装置1は、炭酸水3と飲料原液4とが所定の混合比で含まれる炭酸飲料5を継続して製造することができる。また、実施例の炭酸飲料製造装置1は、以上のように、容積が 38 リットル 程度、重さが 7 kg 程度(飲料原液供給装置20が2台の場合。ただし、二酸化炭素ハイドレート2、炭酸水供給装置10の容器11下部に予め貯蔵しておいた炭酸水3、及び飲料原液4を除く)と、小型で比較的軽量であるので、持ち運びが容易である。   From the above, the carbonated beverage production apparatus 1 of the embodiment can continuously produce the carbonated beverage 5 in which the carbonated water 3 and the beverage stock solution 4 are contained at a predetermined mixing ratio. In addition, the carbonated beverage production apparatus 1 of the embodiment has a volume of about 38 liters and a weight of about 7 kg as described above (when there are two beverage stock solution supply devices 20. However, carbon dioxide hydrate 2, carbonate Since the carbonated water 3 and the beverage stock solution 4 stored in the lower part of the container 11 of the water supply device 10 are small and relatively light in weight, it is easy to carry.

炭酸水供給装置10の容器内部18は、断熱材12及び圧力調節弁13によって -20 ℃ 及び 2 kg/cm2 に保持されるので、例えば外気温が 30 ℃ の場合には約 2.5 日間、外気温が 0 ℃ の場合には約 8 日間、二酸化炭素ハイドレート2を容器13内に蓄えておくことができ、この期間中は炭酸飲料5を製造することができる。 Since the inside 18 of the carbonated water supply device 10 is maintained at −20 ° C. and 2 kg / cm 2 by the heat insulating material 12 and the pressure control valve 13, for example, when the outside temperature is 30 ° C., the outside 18 When the temperature is 0 ° C., the carbon dioxide hydrate 2 can be stored in the container 13 for about 8 days, and the carbonated beverage 5 can be produced during this period.

二酸化炭素ハイドレート2の分解速度が遅くて、炭酸水供給装置10に必要量の炭酸水3が貯蔵されていない場合には、容器内部18を加熱して二酸化炭素ハイドレート2の分解を促進させることができる。断熱材12をパネル状にして、断熱材12の一部を外して断熱効果を弱めることにより、容器内部18の温度を上げてもよいし、電熱器34の温度を高くしてもよい。   When the decomposition rate of the carbon dioxide hydrate 2 is slow and the carbonated water supply device 10 does not store the required amount of carbonated water 3, the inside of the container 18 is heated to promote the decomposition of the carbon dioxide hydrate 2. be able to. By making the heat insulating material 12 into a panel shape and removing a part of the heat insulating material 12 to weaken the heat insulating effect, the temperature inside the container 18 may be increased, or the temperature of the electric heater 34 may be increased.

また、炭酸水供給装置10の容器11内の下部に貯蔵されている炭酸水3が凍ってしまうことを防ぐために、容器11内の下部に、容器11を覆う断熱材12とは別の断熱材を設けてもよい。この断熱材は、プラスチック等で覆われていて清潔であることが望ましい。   In addition, in order to prevent the carbonated water 3 stored in the lower part of the container 11 of the carbonated water supply apparatus 10 from freezing, a heat insulating material different from the heat insulating material 12 covering the container 11 is provided in the lower part of the container 11. May be provided. It is desirable that this heat insulating material is covered with plastic and clean.

また、炭酸水供給装置10の圧力調節弁13を調節して容器内部18の圧力を変えることにより、用途に応じて必要な炭酸濃度を有する炭酸飲料5を得ることができる。   Moreover, the carbonated beverage 5 which has a required carbonic acid density | concentration according to a use can be obtained by adjusting the pressure control valve 13 of the carbonated water supply apparatus 10 and changing the pressure of the container inside 18. FIG.

さらに、炭酸水供給装置10の流量調節弁17及び飲料原液供給装置20の原液流量調節弁27の開け具合を調節することにより、製造される炭酸飲料5中に含まれる炭酸水3と飲料原液4の混合比を変更することもできる。   Further, the carbonated water 3 and the beverage stock solution 4 contained in the carbonated beverage 5 to be produced are adjusted by adjusting the opening degree of the flow rate control valve 17 of the carbonated water supply device 10 and the stock solution flow rate control valve 27 of the beverage stock solution supply device 20. It is also possible to change the mixing ratio.

本発明は、以上の実施形態に限定されるものでなく、本発明の技術思想の範囲内において種々の変形及び変更が可能である。例えば、炭酸飲料製造装置1は、炭酸水供給装置10のコック弁32及び飲料原液供給装置20の原液コック弁33を同時に開閉するための機械的手段又は電気的手段を設けていてもよい。   The present invention is not limited to the above embodiment, and various modifications and changes can be made within the scope of the technical idea of the present invention. For example, the carbonated beverage production apparatus 1 may be provided with mechanical means or electrical means for opening and closing the cock valve 32 of the carbonated water supply device 10 and the stock solution cock valve 33 of the beverage stock solution supply device 20 simultaneously.

実施例の炭酸飲料製造装置の全体構成を示す図。The figure which shows the whole structure of the carbonated beverage manufacturing apparatus of an Example.

符号の説明Explanation of symbols

1:炭酸飲料製造装置、2:二酸化炭素ハイドレート、3:炭酸水、4:飲料原液、5:炭酸飲料、10:炭酸水供給装置、11:容器、12:断熱材、13:圧力調節弁、14:遮蔽板、15:水出口、16:導管、17:流量調節弁、18:容器内部、20:飲料原液供給装置、21:容器、25:原液出口、26:原液導管、27:原液流量調節弁、28:原液容器内部、29:ガス導管、30:継ぎ手、31:コップ、32:コック弁、33:原液コック弁、34:電熱器、35:電源、36:電源スイッチ。   1: Carbonated beverage manufacturing device, 2: Carbon dioxide hydrate, 3: Carbonated water, 4: Drinking stock solution, 5: Carbonated beverage, 10: Carbonated water supply device, 11: Container, 12: Heat insulating material, 13: Pressure regulating valve , 14: Shield plate, 15: Water outlet, 16: Conduit, 17: Flow control valve, 18: Inside the container, 20: Beverage stock solution supply device, 21: Container, 25: Stock solution outlet, 26: Stock solution conduit, 27: Stock solution Flow control valve, 28: inside of stock solution container, 29: gas conduit, 30: joint, 31: cup, 32: cock valve, 33: stock cock valve, 34: electric heater, 35: power source, 36: power switch.

Claims (3)

全体が断熱材に覆われた容器と、前記容器の上部に設けられた圧力調節弁と、前記容器内に設けられ、二酸化炭素ハイドレートを載せることができ、かつ該二酸化炭素ハイドレートが分解して生成した水に二酸化炭素が溶解してできた炭酸水を通す孔を有する支持板と、前記容器の下部に設けられた開閉可能な炭酸水出口とを有する炭酸水供給装置、及び、
別の容器と、一端が該容器内に入れられた飲料原液に浸からない位置に取り付けられ、他端が前記炭酸水供給装置の前記支持板よりも高い位置で前記炭酸水供給装置の前記容器に取り付けられた、前記炭酸水供給装置の前記容器内部と前記別の容器内部とを通じさせる導管と、前記別の容器の下部に設けられた開閉可能な原液出口とを有する飲料原液供給装置とを備え、
前記水出口から供給された炭酸水と、前記原液出口から供給された飲料原液とを混合して炭酸飲料を作るように構成したことを特徴とする炭酸飲料製造装置。
A container entirely covered with a heat insulating material, a pressure control valve provided at the top of the container, and provided in the container, on which carbon dioxide hydrate can be placed, and the carbon dioxide hydrate is decomposed. A carbonated water supply device having a support plate having a hole through which carbonated water formed by dissolving carbon dioxide in the water generated in this manner, and an openable and closable carbonated water outlet provided at the bottom of the container, and
The container of the carbonated water supply apparatus is attached to another container and a position where one end is not immersed in the beverage stock solution contained in the container, and the other end is higher than the support plate of the carbonated water supply apparatus. A beverage stock solution supply device having a conduit for passing through the inside of the container of the carbonated water supply device and the inside of the other container, and an openable and closable stock solution outlet provided at a lower portion of the other container, Prepared,
An apparatus for producing carbonated beverages, wherein carbonated water supplied from the water outlet and beverage stock solution supplied from the concentrate outlet are mixed to produce carbonated beverages.
請求項1記載の炭酸飲料製造装置において、
前記炭酸水供給装置の前記容器内で二酸化炭素ハイドレートが分解して生成した水が凍ってできた氷を融かす加熱手段を備えたことを特徴とする炭酸飲料製造装置。
In the carbonated beverage manufacturing apparatus according to claim 1,
An apparatus for producing carbonated beverages, comprising heating means for melting ice produced by freezing water generated by decomposition of carbon dioxide hydrate in the container of the carbonated water supply apparatus.
請求項1又は2記載の炭酸飲料製造装置において、前記飲料原液供給装置を複数備えたことを特徴とする炭酸飲料製造装置。   The carbonated beverage manufacturing apparatus according to claim 1 or 2, comprising a plurality of the beverage stock solution supply devices.
JP2006111996A 2006-04-14 2006-04-14 Carbonated beverage production equipment Expired - Fee Related JP4684154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111996A JP4684154B2 (en) 2006-04-14 2006-04-14 Carbonated beverage production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111996A JP4684154B2 (en) 2006-04-14 2006-04-14 Carbonated beverage production equipment

Publications (2)

Publication Number Publication Date
JP2007284089A JP2007284089A (en) 2007-11-01
JP4684154B2 true JP4684154B2 (en) 2011-05-18

Family

ID=38756233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111996A Expired - Fee Related JP4684154B2 (en) 2006-04-14 2006-04-14 Carbonated beverage production equipment

Country Status (1)

Country Link
JP (1) JP4684154B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103735160A (en) * 2013-12-12 2014-04-23 宁波瑞易电器科技发展有限公司 Soda beverage dispenser
CN104116411A (en) * 2014-07-17 2014-10-29 胡海明 Automatic carbonated beverage quick manufacturing glass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103735161B (en) * 2013-12-12 2015-11-18 宁波瑞易电器科技发展有限公司 Soda water preparation device
CN103720361B (en) * 2013-12-19 2016-01-20 宁波瑞易电器科技发展有限公司 A kind of Efficient soda water beverage machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224146A (en) * 2004-02-12 2005-08-25 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing carbonated drink

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224146A (en) * 2004-02-12 2005-08-25 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing carbonated drink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103735160A (en) * 2013-12-12 2014-04-23 宁波瑞易电器科技发展有限公司 Soda beverage dispenser
CN104116411A (en) * 2014-07-17 2014-10-29 胡海明 Automatic carbonated beverage quick manufacturing glass

Also Published As

Publication number Publication date
JP2007284089A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4684154B2 (en) Carbonated beverage production equipment
US5873262A (en) Desalination through methane hydrate
WO1993010035A1 (en) Compact water purification and beverage dispensing apparatus
JP4559898B2 (en) Gas hydrate production equipment
KR102375729B1 (en) Beverage supply device
TWI432273B (en) Production of an inert blanket in a furnace
JP4679420B2 (en) Carbonated water production equipment
JP4679419B2 (en) Carbonated water production equipment
EP1698391B1 (en) Refrigerated core comprising carbonating system for drinks dispenser
JP4575206B2 (en) Method and apparatus for producing gas hydrate
JP2008246333A (en) Measuring method for gas hydrate concentration and measuring device used for the same, and control method for gas hydrate generation device using measuring method and control device using the same
MXPA03011960A (en) Beverage cooler.
JP3938866B2 (en) Carbonated water production apparatus and water purifier equipped with the same
JP2008056325A (en) Drinking water supplying machine
US2394303A (en) Manufacture and bottling of carbonated milk beverages
JP4093980B2 (en) Ice making and ice
US20090263257A1 (en) System and method for delivery of precursor material
JP5669490B2 (en) Foaming liquid filling equipment
JP2021053614A (en) Hydrogen water and hydrogen air producing apparatus
KR200294432Y1 (en) Gas filling up equipments by using self pressure
EP0649508A1 (en) Method and plant for converting gas into hydrate
KR20020062902A (en) Gas filling up equipments by using self pressure
JP2005061720A (en) Salt-containing ice manufacturing device
JP6910215B2 (en) Slurry ice making equipment and method
JPH04316974A (en) Sterilizer for drink outpouring nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees