JP4682979B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP4682979B2
JP4682979B2 JP2006356385A JP2006356385A JP4682979B2 JP 4682979 B2 JP4682979 B2 JP 4682979B2 JP 2006356385 A JP2006356385 A JP 2006356385A JP 2006356385 A JP2006356385 A JP 2006356385A JP 4682979 B2 JP4682979 B2 JP 4682979B2
Authority
JP
Japan
Prior art keywords
back pressure
pressure chamber
fuel
valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006356385A
Other languages
Japanese (ja)
Other versions
JP2008163903A (en
Inventor
健治 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006356385A priority Critical patent/JP4682979B2/en
Priority to DE200710055895 priority patent/DE102007055895B4/en
Publication of JP2008163903A publication Critical patent/JP2008163903A/en
Application granted granted Critical
Publication of JP4682979B2 publication Critical patent/JP4682979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/025Hydraulically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、エンジンに燃料を噴射供給する燃料噴射弁に関する。   The present invention relates to a fuel injection valve that injects and supplies fuel to an engine.

〔従来の技術〕
従来から、燃料をエンジンに噴射して供給する燃料噴射弁が公知である。
この燃料噴射弁は、噴孔を開閉するノズルニードルを備え、ノズルニードルの一端に第1背圧室を形成している。そして、この第1背圧室を所定の制御弁により開閉することで、第1背圧室の燃料圧を増減してノズルニードルを駆動し、噴孔を開閉する。
[Conventional technology]
2. Description of the Related Art Conventionally, fuel injection valves that supply fuel by injecting it into an engine are known.
The fuel injection valve includes a nozzle needle that opens and closes a nozzle hole, and forms a first back pressure chamber at one end of the nozzle needle. The first back pressure chamber is opened and closed by a predetermined control valve to increase or decrease the fuel pressure in the first back pressure chamber to drive the nozzle needle and open and close the nozzle hole.

ところで、制御弁を駆動するための駆動力は電動アクチュエータから得られるが、近年の噴射圧の高圧力化に伴い、より大きい駆動力が要求されるようになっている。このため、電動アクチュエータを高性能にする必要があり、結果的に燃料噴射弁のコストが高くなっている。
そこで、高性能の電動アクチュエータの使用を回避するために、制御弁の動作により駆動されるサーボ弁を配し、第1背圧室をサーボ弁により開閉する技術が開示されている(特許文献1)。
By the way, the driving force for driving the control valve can be obtained from an electric actuator. However, with the recent increase in the injection pressure, a larger driving force is required. For this reason, it is necessary to make the electric actuator have high performance, and as a result, the cost of the fuel injection valve is increased.
Therefore, in order to avoid the use of a high-performance electric actuator, a technique is disclosed in which a servo valve driven by the operation of a control valve is provided and the first back pressure chamber is opened and closed by the servo valve (Patent Document 1). ).

つまり、特許文献1に記載の燃料噴射弁100は、一端に第1背圧室101を形成し、この第1背圧室101の燃料圧の増減により噴孔を開閉するノズルニードル102と、一端に第2背圧室103を形成し、他端に第1背圧室101に接続する第1連通流路104、高圧流路105に通じる第1流入流路107、および低圧流路109へ通じる第1流出流路110が接続する弁室112を形成するサーボ弁115と、第2背圧室103に接続するとともに低圧流路109に通じる第2流出流路117を、ソレノイドコイルへの通電に応じて開閉する制御弁118とを備える(図6参照)。また、サーボ弁115には、弁室112と第2背圧室103とを連通し、高圧流路105から第2背圧室103に燃料を導く昇圧流路120が設けられている。なお、高圧流路105は高圧燃料源に通じており、低圧流路109は燃料のリターン流路に通じている。   That is, the fuel injection valve 100 described in Patent Document 1 has a first back pressure chamber 101 formed at one end, a nozzle needle 102 that opens and closes an injection hole by increasing or decreasing the fuel pressure in the first back pressure chamber 101, and one end. The second back pressure chamber 103 is formed at the other end, and the other end communicates with the first communication channel 104 connected to the first back pressure chamber 101, the first inflow channel 107 leading to the high pressure channel 105, and the low pressure channel 109. The servo valve 115 forming the valve chamber 112 to which the first outflow passage 110 is connected and the second outflow passage 117 connected to the second back pressure chamber 103 and leading to the low pressure passage 109 are used to energize the solenoid coil. And a control valve 118 that opens and closes accordingly (see FIG. 6). Further, the servo valve 115 is provided with a pressure increasing flow path 120 that communicates the valve chamber 112 and the second back pressure chamber 103 and guides fuel from the high pressure flow path 105 to the second back pressure chamber 103. The high-pressure channel 105 communicates with a high-pressure fuel source, and the low-pressure channel 109 communicates with a fuel return channel.

そして、サーボ弁115は、制御弁118による第2背圧室103と低圧流路109との間の開閉に伴う第2背圧室103の燃料圧の増減によって、一端側又は他端側へ変位し、第1連通流路104と第1流入流路107とが連通する閉状態(図6(a)参照)と、第1連通流路104と第1流出流路110とが連通する開状態(図6(b)参照)とを切り替える。   The servo valve 115 is displaced to one end side or the other end side by increasing or decreasing the fuel pressure in the second back pressure chamber 103 when the control valve 118 opens and closes between the second back pressure chamber 103 and the low pressure passage 109. The closed state (see FIG. 6A) in which the first communication channel 104 and the first inflow channel 107 communicate with each other, and the open state in which the first communication channel 104 and the first outflow channel 110 communicate with each other. (See FIG. 6B).

すなわち、ソレノイドコイルへの通電が開始し、制御弁118が第2流出流路117を開放すると、第2流出流路117を介して第2背圧室103から燃料が低圧流路109へリークするため、第2背圧室103の燃料圧が低下し、サーボ弁115が一端側に変位して開状態となる。これにより、第1連通流路104、弁室112、および第1流出流路110を介して燃料が第1背圧室101から低圧流路109へリークするため、第1背圧室101の燃料圧が低下し、ノズルニードル102が一端側に変位して噴孔を開放する。   That is, when energization to the solenoid coil is started and the control valve 118 opens the second outflow passage 117, the fuel leaks from the second back pressure chamber 103 to the low pressure passage 109 through the second outflow passage 117. Therefore, the fuel pressure in the second back pressure chamber 103 decreases, and the servo valve 115 is displaced to one end side to be in an open state. As a result, the fuel leaks from the first back pressure chamber 101 to the low pressure channel 109 via the first communication channel 104, the valve chamber 112, and the first outflow channel 110, so that the fuel in the first back pressure chamber 101 The pressure drops, and the nozzle needle 102 is displaced to one end side to open the nozzle hole.

また、ソレノイドコイルへの通電が停止し、制御弁118が第2流出流路117を閉鎖すると、第1流入流路107、弁室112、および昇圧流路120を介して高圧流路105から第2背圧室103に燃料が流入するため、第2背圧室103の燃料圧が増加し、サーボ弁115が他端側に変位して閉状態となる。これにより、第1背圧室101から低圧流路109への燃料リークは停止し、第1流入流路107、弁室112、および第1連通流路104を介して第1背圧室101に燃料が流入するため、第1背圧室101の燃料圧が増加し、ノズルニードル102が他端側に変位して噴孔を閉鎖する。   Further, when the energization to the solenoid coil is stopped and the control valve 118 closes the second outflow passage 117, the high pressure passage 105 passes through the first inflow passage 107, the valve chamber 112, and the boost passage 120. Since the fuel flows into the two back pressure chambers 103, the fuel pressure in the second back pressure chamber 103 increases, and the servo valve 115 is displaced to the other end side to be closed. As a result, fuel leakage from the first back pressure chamber 101 to the low pressure passage 109 is stopped, and the first back pressure chamber 101 passes through the first inflow passage 107, the valve chamber 112, and the first communication passage 104. Since the fuel flows in, the fuel pressure in the first back pressure chamber 101 increases, and the nozzle needle 102 is displaced to the other end side to close the nozzle hole.

このように、燃料噴射弁100によれば、第1背圧室101を開閉するサーボ弁115の駆動力を、主に燃料圧の増減により得ることができる。このため、高性能の電動アクチュエータを用いなくても、第1背圧室101を開閉して燃料を噴射することができる。   Thus, according to the fuel injection valve 100, the driving force of the servo valve 115 that opens and closes the first back pressure chamber 101 can be obtained mainly by increasing or decreasing the fuel pressure. For this reason, the fuel can be injected by opening and closing the first back pressure chamber 101 without using a high-performance electric actuator.

〔従来技術の不具合〕
しかし、燃料噴射弁100では、サーボ弁115の変位に関係なく、第2背圧室103と高圧流路105との間が、昇圧流路120により燃料が常に流通可能となっている。このため、制御弁118が第2流出流路117を開放すると、第1流入流路107、弁室112、昇圧流路120、第2背圧室103、および第2流出流路117を介して燃料の高圧流路105と低圧流路109とが連通する(図6(b)参照)。
[Problems with conventional technology]
However, in the fuel injection valve 100, fuel can always flow between the second back pressure chamber 103 and the high pressure flow path 105 through the pressure increase flow path 120 regardless of the displacement of the servo valve 115. For this reason, when the control valve 118 opens the second outflow passage 117, the first inflow passage 107, the valve chamber 112, the pressure increase passage 120, the second back pressure chamber 103, and the second outflow passage 117 are used. The high-pressure flow path 105 and the low-pressure flow path 109 communicate with each other (see FIG. 6B).

これにより、ノズルニードル102の駆動時に、第1背圧室101からの燃料リーク以外に、第1流入流路107、弁室112、昇圧流路120、第2背圧室103、および第2流出流路117を介する燃料リークが発生する。このため、燃料噴射弁100は、高圧燃料源から高圧燃料が余分にリークし、エネルギ損失が大きい。
特開2006−257874号公報
Thus, when the nozzle needle 102 is driven, in addition to the fuel leak from the first back pressure chamber 101, the first inflow passage 107, the valve chamber 112, the pressure increase passage 120, the second back pressure chamber 103, and the second outflow A fuel leak occurs through the flow path 117. For this reason, in the fuel injection valve 100, the high-pressure fuel leaks excessively from the high-pressure fuel source, and the energy loss is large.
JP 2006-257874 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、ソレノイドコイルへの通電に応じて開閉する制御弁、および制御弁の動作により駆動されるサーボ弁を備え、第1背圧室をサーボ弁により開閉する燃料噴射弁において、高圧燃料の余分なリークを低減することにある。   The present invention has been made in order to solve the above-described problems, and the object thereof is to include a control valve that opens and closes in response to energization of the solenoid coil, and a servo valve that is driven by the operation of the control valve. In the fuel injection valve that opens and closes the first back pressure chamber by a servo valve, an object is to reduce excessive leakage of high-pressure fuel.

〔請求項1の手段〕
請求項1に記載の燃料噴射弁は、一端に第1背圧室を形成し、この第1背圧室の燃料圧の増減により噴孔を開閉するノズルニードルと、一端に第2背圧室、および他端に弁室を形成し、第2背圧室と弁室との燃料圧の差により移動して、第1背圧室と高圧流路との間を開閉するサーボ弁と、第1背圧室と弁室との間を、燃料が常に流通可能となるように接続する第1連通流路と、電動アクチュエータへの通電により動作し、第2背圧室と低圧流路との間を開放する制御弁とを備え、電動アクチュエータの動作によりノズルニードルを駆動して噴孔を開放する燃料噴射弁である。
そして、第1背圧室と前記第2背圧室との間を燃料が常に流通可能となるように接続する第2連通流路と、第1連通流路および前記第2連通流路を含んで形成され、第2背圧室と高圧流路との間を接続し、高圧流路から第2背圧室に燃料を導く昇圧流路を備え、制御弁の動作により第2背圧室と低圧流路との間を開放し、第2背圧室の燃料圧を低下させてサーボ弁を一端側に変位させることで昇圧流路を閉鎖する。
[Means of Claim 1]
The fuel injection valve according to claim 1 forms a first back pressure chamber at one end, a nozzle needle that opens and closes a nozzle hole by increasing or decreasing the fuel pressure in the first back pressure chamber, and a second back pressure chamber at one end. And a servo valve that forms a valve chamber at the other end, moves by the difference in fuel pressure between the second back pressure chamber and the valve chamber, and opens and closes between the first back pressure chamber and the high pressure flow path, The first communication flow path that connects the back pressure chamber and the valve chamber so that fuel can always flow, and the electric actuator is energized to operate the second back pressure chamber and the low pressure flow path. and a control valve that opens between, Ru fuel injection valve der to open the nozzle hole by driving the nozzle needle by the operation of the electric actuator.
And a second communication channel that connects the first back pressure chamber and the second back pressure chamber so that fuel can always flow, a first communication channel, and the second communication channel. in is formed, and connects the second back pressure chamber and the high-pressure line, and a boosting passage for guiding the fuel to the second back pressure chamber from the high-pressure line, the second back pressure chamber by the operation of the control valve And the low pressure flow path are opened, the fuel pressure in the second back pressure chamber is lowered, and the servo valve is displaced to one end side to close the pressure increase flow path.

これにより、制御弁が動作してノズルニードルが駆動される際、第2背圧室と低圧流路との間が開放されるとともに、第2背圧室と高圧流路との間が閉鎖される。このため、ノズルニードルの駆動時に生じていた高圧燃料の余分なリークを削除でき、エネルギ損失を低減できる。   Accordingly, when the control valve is operated to drive the nozzle needle, the space between the second back pressure chamber and the low pressure channel is opened and the space between the second back pressure chamber and the high pressure channel is closed. The For this reason, the excess leak of the high-pressure fuel which has occurred when the nozzle needle is driven can be eliminated, and the energy loss can be reduced.

〔請求項の手段〕
請求項に記載の燃料噴射弁は、一端に第1背圧室を形成し、この第1背圧室の燃料圧の増減により噴孔を開閉するノズルニードルと、一端に第2背圧室、および他端に弁室を形成し、第2背圧室と弁室との燃料圧の差により移動して、第1背圧室と高圧流路との間を開閉するサーボ弁と、第1背圧室と弁室との間を、燃料が常に流通可能となるように接続する第1連通流路と、電動アクチュエータへの通電により動作し、第2背圧室と低圧流路との間を開放する制御弁とを備え、電動アクチュエータの動作によりノズルニードルを駆動して噴孔を開放する燃料噴射弁である。
そして、前記弁室と前記第2背圧室との間を燃料が常に流通可能となるように接続する第3連通流路と、第3連通流路を含んで形成されて、第2背圧室と高圧流路との間を接続し、高圧流路から第2背圧室に燃料を導く昇圧流路とを備え、制御弁の動作により第2背圧室と低圧流路との間を開放し、第2背圧室の燃料圧を低下させてサーボ弁を一端側に変位させることで昇圧流路を閉鎖する。
これにより、制御弁が動作してノズルニードルが駆動される際、第2背圧室と低圧流路との間が開放されるとともに、第2背圧室と高圧流路との間が閉鎖される。このため、ノズルニードルの駆動時に生じていた高圧燃料の余分なリークを削除でき、エネルギ損失を低減できる。
また、この手段によれば、第3連通流路を設けても、第1背圧室に接続する流路の数は増えないので、第1背圧室の実質的な容積は増加しない。このため、第1背圧室の燃料圧の増減のため第1背圧室に流出入させる燃料の必要量は変動しないので、ノズルニードルによる噴孔開閉の応答性も変動しない。
[Means of claim 2 ]
According to a second aspect of the present invention, there is provided a fuel injection valve having a first back pressure chamber at one end, a nozzle needle that opens and closes an injection hole by increasing or decreasing the fuel pressure in the first back pressure chamber, and a second back pressure chamber at one end. And a servo valve that forms a valve chamber at the other end, moves by the difference in fuel pressure between the second back pressure chamber and the valve chamber, and opens and closes between the first back pressure chamber and the high pressure flow path, The first communication flow path that connects the back pressure chamber and the valve chamber so that fuel can always flow, and the electric actuator is energized to operate the second back pressure chamber and the low pressure flow path. A fuel injection valve that opens a nozzle hole by driving a nozzle needle by operation of an electric actuator.
The second back pressure chamber is formed to include a third communication channel that connects the valve chamber and the second back pressure chamber so that fuel can always flow, and a third communication channel. And a pressure increasing flow path that leads fuel from the high pressure flow path to the second back pressure chamber, and the control valve operates between the second back pressure chamber and the low pressure flow path. The pressure increase flow path is closed by opening and lowering the fuel pressure in the second back pressure chamber and displacing the servo valve to one end side.
Accordingly, when the control valve is operated to drive the nozzle needle, the space between the second back pressure chamber and the low pressure channel is opened and the space between the second back pressure chamber and the high pressure channel is closed. The For this reason, the excess leak of the high-pressure fuel which has occurred when the nozzle needle is driven can be eliminated, and the energy loss can be reduced.
Further, according to this means, even if the third communication flow path is provided, the number of flow paths connected to the first back pressure chamber does not increase, so the substantial volume of the first back pressure chamber does not increase. For this reason, since the required amount of fuel flowing into and out of the first back pressure chamber does not fluctuate in order to increase or decrease the fuel pressure in the first back pressure chamber, the responsiveness of opening and closing the nozzle hole by the nozzle needle does not fluctuate.

最良の形態1の燃料噴射弁は、一端に第1背圧室を形成し、この第1背圧室の燃料圧の増減により噴孔を開閉するノズルニードルと、一端に第2背圧室、および他端に弁室を形成し、第2背圧室と弁室との燃料圧の差により移動して、第1背圧室と高圧流路との間を開閉するサーボ弁と、第1背圧室と弁室との間を、燃料が常に流通可能となるように接続する第1連通流路と、電動アクチュエータへの通電により動作し、第2背圧室と低圧流路との間を開放する制御弁とを備え、電動アクチュエータの動作によりノズルニードルを駆動して噴孔を開放する燃料噴射弁であって、第2背圧室と高圧流路との間を接続し、高圧流路から第2背圧室に燃料を導く昇圧流路を備え、制御弁の動作により第2背圧室と低圧流路との間を開放し、第2背圧室の燃料圧を低下させてサーボ弁を一端側に変位させることで昇圧流路を閉鎖する。また、第1背圧室と第2背圧室との間を燃料が常に流通可能となるように接続する第2連通流路が設けられ、昇圧流路は、第1連通流路および前記第2連通流路を含んで形成される。   The fuel injection valve of the best mode 1 has a first back pressure chamber at one end, a nozzle needle that opens and closes a nozzle hole by increasing or decreasing the fuel pressure in the first back pressure chamber, a second back pressure chamber at one end, And a servo valve that forms a valve chamber at the other end, moves by the difference in fuel pressure between the second back pressure chamber and the valve chamber, and opens and closes between the first back pressure chamber and the high pressure flow path, The first communication channel that connects the back pressure chamber and the valve chamber so that the fuel can always flow, and the electric actuator is energized to operate between the second back pressure chamber and the low pressure channel. A fuel injection valve that opens a nozzle hole by driving a nozzle needle by the operation of an electric actuator, connecting a second back pressure chamber and a high pressure flow path, A pressure increasing flow path for guiding fuel from the passage to the second back pressure chamber, and opening the space between the second back pressure chamber and the low pressure flow path by the operation of the control valve. It lowers the fuel pressure to close the booster channel by displacing the servo valve at one end. In addition, a second communication flow path is provided to connect the first back pressure chamber and the second back pressure chamber so that fuel can always flow, and the pressure increase flow path includes the first communication flow path and the first back flow chamber. It is formed including two communication channels.

最良の形態2の燃料噴射弁によれば、弁室と第2背圧室との間を燃料が常に流通可能となるように接続する第3連通流路を設け、昇圧流路は、第3連通流路を含んで形成される。   According to the fuel injection valve of the best mode 2, the third communication flow path is provided to connect the valve chamber and the second back pressure chamber so that the fuel can always flow. It is formed including a communication channel.

〔実施例1の構成〕
実施例1の燃料噴射弁1の構成を、図1ないし図3を用いて説明する。
燃料噴射弁1は、図1に示すように、燃料を噴射するノズル2と、ノズル2の一端側に連結され、コモンレール(図示せず)等の燃料供給源から燃料を受け入れてノズル2に導く本体3とを備える。
[Configuration of Example 1]
The structure of the fuel injection valve 1 of Example 1 is demonstrated using FIG. 1 thru | or FIG.
As shown in FIG. 1, the fuel injection valve 1 is connected to a nozzle 2 that injects fuel and one end side of the nozzle 2, receives fuel from a fuel supply source such as a common rail (not shown), and guides the fuel to the nozzle 2. A main body 3.

ノズル2は、ノズルボディ5の他端に形成された噴孔6を開閉するノズルニードル7を有する。ノズルニードル7の一端には第1背圧室8が形成され、第1背圧室8の燃料圧の増減により、ノズルニードル7が一端側又は他端側に変位して噴孔6を開閉する。
また、本体3は、ソレノイドコイル11への通電により一端側に駆動される制御弁12と、制御弁12の動作により一端側又は他端側に変位するサーボ弁13とを有する。
The nozzle 2 has a nozzle needle 7 that opens and closes a nozzle hole 6 formed at the other end of the nozzle body 5. A first back pressure chamber 8 is formed at one end of the nozzle needle 7, and the nozzle needle 7 is displaced to one end side or the other end side by opening / closing the nozzle hole 6 by increasing / decreasing the fuel pressure in the first back pressure chamber 8. .
The main body 3 includes a control valve 12 that is driven to one end side by energization of the solenoid coil 11 and a servo valve 13 that is displaced to one end side or the other end side by the operation of the control valve 12.

サーボ弁13は、図2に示すように、ボディ14に摺動自在に支持される軸部17と、開閉機能を発揮する弁部18とを有し、軸部17の一端側に第2背圧室19を形成し、軸部17の他端側に弁部18を収容する弁室20を形成する。   As shown in FIG. 2, the servo valve 13 includes a shaft portion 17 that is slidably supported by the body 14 and a valve portion 18 that exhibits an opening / closing function. A pressure chamber 19 is formed, and a valve chamber 20 that houses the valve portion 18 is formed on the other end side of the shaft portion 17.

弁室20には、第1背圧室8と弁室20との間を燃料が常に流通可能となるように接続する第1連通流路22、高圧流路23から弁室20へ燃料を供給する第1流入流路24、および弁室20を介して第1背圧室8から低圧流路25へ燃料を排出する第1流出流路26が接続する。   Fuel is supplied to the valve chamber 20 from the first communication channel 22 and the high-pressure channel 23 that are connected so that fuel can always flow between the first back pressure chamber 8 and the valve chamber 20. The first inflow passage 24 and the first outflow passage 26 for discharging fuel from the first back pressure chamber 8 to the low pressure passage 25 are connected via the valve chamber 20.

なお、高圧流路23はコモンレールに接続しており、低圧流路25は燃料のリターン流路に接続している。また、第1連通流路22には、第1背圧室8への燃料の流入流量を規制するオリフィス29が設けられ、第1流出流路26には、第1背圧室8からの燃料の流出流量を規制するオリフィス30が設けられている。   The high pressure channel 23 is connected to a common rail, and the low pressure channel 25 is connected to a fuel return channel. The first communication flow path 22 is provided with an orifice 29 that regulates the flow rate of the fuel flowing into the first back pressure chamber 8, and the first outflow flow path 26 is fuel from the first back pressure chamber 8. An orifice 30 is provided for regulating the outflow rate of the gas.

第1連通流路22の一端は、弁室20の他端に開口し、常時、弁室20に開放されている。また、第1流出流路26は、弁室20の他端に開口し、弁部18の他端面32により開閉される。すなわち、第1流出流路26は、サーボ弁13が一端側に変位すると弁室20に開放され(図3参照)、サーボ弁13が他端側に変位すると弁室20に対して閉鎖される。また、第1流入流路24は、弁室20の一端に開口し、常時、弁室20に開放されている。   One end of the first communication channel 22 opens to the other end of the valve chamber 20 and is always open to the valve chamber 20. The first outflow channel 26 opens to the other end of the valve chamber 20 and is opened and closed by the other end surface 32 of the valve portion 18. That is, the first outflow passage 26 is opened to the valve chamber 20 when the servo valve 13 is displaced to one end side (see FIG. 3), and is closed to the valve chamber 20 when the servo valve 13 is displaced to the other end side. . The first inflow channel 24 opens at one end of the valve chamber 20 and is always open to the valve chamber 20.

第1連通流路22と第1流入流路24との間は、テーパ状に設けられた弁部18の一端面33が第1連通流路22の開口部34と、第1流入流路24の開口部35との間に形成されるシート部36に着座又は離座することで開閉される。すなわち、サーボ弁13が一端側に変位すると、一端面33がシート部36に着座して第1連通流路22と第1流入流路24との間が閉鎖され(図3参照)、サーボ弁13が他端側に変位すると、一端面33がシート部36から離座して第1連通流路22と第1流入流路24との間が開放される。   Between the first communication channel 22 and the first inflow channel 24, one end surface 33 of the valve portion 18 provided in a tapered shape is connected to the opening 34 of the first communication channel 22 and the first inflow channel 24. It opens and closes by seating on or leaving a seat portion 36 formed between the opening portion 35 and the opening portion 35. That is, when the servo valve 13 is displaced to one end side, the one end surface 33 is seated on the seat portion 36 and the space between the first communication channel 22 and the first inflow channel 24 is closed (see FIG. 3). When 13 is displaced to the other end side, the one end surface 33 is separated from the seat portion 36 and the space between the first communication channel 22 and the first inflow channel 24 is opened.

以上のように、サーボ弁13が一端側に変位すると、第1流出流路26が弁室20に開放され、第1連通流路22と第1流入流路24との間が閉鎖され、第1連通流路22と第1流出流路26とが弁室20を介して連通する(図3参照)。また、サーボ弁13が他端側に変位すると、第1流出流路26が弁室20に対して閉鎖され、第1連通流路22と第1流入流路24とが連通する。   As described above, when the servo valve 13 is displaced to one end side, the first outflow passage 26 is opened to the valve chamber 20, the space between the first communication passage 22 and the first inflow passage 24 is closed, The 1 communication channel 22 and the 1st outflow channel 26 are connected via the valve chamber 20 (refer FIG. 3). Further, when the servo valve 13 is displaced to the other end side, the first outflow channel 26 is closed with respect to the valve chamber 20, and the first communication channel 22 and the first inflow channel 24 are communicated.

すなわち、サーボ弁13は、一端側又は他端側に変位することにより、第1連通流路22と第1流入流路24とが連通するとともに第1流出流路26が弁室20に対して閉鎖される閉状態と、第1連通流路22と第1流入流路24との間が閉鎖されるとともに第1連通流路22と第1流出流路26とが連通する開状態とを切り替える。
サーボ弁13の開状態と閉状態との切替は、第2背圧室19の燃料圧の増減によって行われる。
That is, the servo valve 13 is displaced to one end side or the other end side, whereby the first communication flow path 22 and the first inflow flow path 24 communicate with each other, and the first outflow flow path 26 is connected to the valve chamber 20. Switching between a closed state in which the first communication channel 22 and the first inflow channel 24 are closed and an open state in which the first communication channel 22 and the first outflow channel 26 communicate with each other is switched. .
Switching between the open state and the closed state of the servo valve 13 is performed by increasing or decreasing the fuel pressure in the second back pressure chamber 19.

第2背圧室19には、低圧流路25に通じる第2流出流路39が接続している。なお、第2流出流路39には、第2背圧室19からの燃料の流出流量を規制するオリフィス40が設けられている。また、実施例1の燃料噴射弁1には、第1背圧室8と第2背圧室19との間を燃料が常に流通可能となるように接続する第2連通流路43が設けられている。そして、制御弁12による第2流出流路39の開閉によりサーボ弁13の開状態と閉状態との切替が行われ、ノズルニードル7が変位して噴孔6が開閉される。   The second back pressure chamber 19 is connected to a second outflow passage 39 that leads to the low pressure passage 25. The second outflow passage 39 is provided with an orifice 40 that regulates the outflow rate of the fuel from the second back pressure chamber 19. Further, the fuel injection valve 1 of the first embodiment is provided with a second communication channel 43 that connects the first back pressure chamber 8 and the second back pressure chamber 19 so that fuel can always flow. ing. Then, the servo valve 13 is switched between an open state and a closed state by opening and closing the second outflow passage 39 by the control valve 12, and the nozzle needle 7 is displaced to open and close the nozzle hole 6.

すなわち、ソレノイドコイル11への通電が開始し制御弁12が第2流出流路39を開放すると、第2背圧室19の燃料が第2流出流路39を介して低圧流路25へリークする(図3参照)。このため、第2背圧室19の燃料圧が低下し、サーボ弁13は閉状態から開状態に移行する。これにより、第1連通流路22と第1流出流路26とが連通するため、第1連通流路22、弁室20、および第1流出流路26を介して第1背圧室8の燃料が低圧流路25へリークする。また、第2連通流路43、第2背圧室19、第2流出流路39を介する流路からも第1背圧室8の燃料が低圧流路25へリークする。このため、第1背圧室8の燃料圧が低下し、ノズルニードル7が一端側に変位して噴孔6を開放する。   That is, when energization of the solenoid coil 11 is started and the control valve 12 opens the second outflow passage 39, the fuel in the second back pressure chamber 19 leaks into the low pressure passage 25 through the second outflow passage 39. (See FIG. 3). For this reason, the fuel pressure in the second back pressure chamber 19 decreases, and the servo valve 13 shifts from the closed state to the open state. As a result, the first communication flow path 22 and the first outflow flow path 26 communicate with each other, so that the first back pressure chamber 8 passes through the first communication flow path 22, the valve chamber 20, and the first outflow flow path 26. The fuel leaks into the low pressure channel 25. In addition, the fuel in the first back pressure chamber 8 leaks to the low pressure flow path 25 from the flow path via the second communication flow path 43, the second back pressure chamber 19, and the second outflow flow path 39. For this reason, the fuel pressure in the first back pressure chamber 8 is lowered, and the nozzle needle 7 is displaced to one end side to open the nozzle hole 6.

そして、ソレノイドコイル11への通電が停止し制御弁12が第2流出流路39を閉鎖すると、第2連通流路43を介する第1背圧室8から第2背圧室19への燃料の流入により、第2背圧室19の燃料圧が上昇する。この結果、第2背圧室19の燃料圧が増加し、サーボ弁13が他端側への変位を開始して開状態から閉状態に移行する。これにより、第1流出流路26が閉鎖され、第1連通流路22と第1流入流路24とが連通するため、低圧流路25への燃料リークは停止し、第1流入流路24、弁室20、および第1連通流路22を介して第1背圧室8に燃料が流入する。このため、第1背圧室8の燃料圧が増加し、ノズルニードル7が他端側に変位して噴孔6を閉鎖する。   When energization of the solenoid coil 11 is stopped and the control valve 12 closes the second outflow passage 39, the fuel from the first back pressure chamber 8 to the second back pressure chamber 19 via the second communication passage 43 is discharged. Due to the inflow, the fuel pressure in the second back pressure chamber 19 increases. As a result, the fuel pressure in the second back pressure chamber 19 increases, the servo valve 13 starts to move to the other end side, and shifts from the open state to the closed state. As a result, the first outflow passage 26 is closed, and the first communication passage 22 and the first inflow passage 24 communicate with each other. Therefore, fuel leakage to the low pressure passage 25 stops, and the first inflow passage 24 The fuel flows into the first back pressure chamber 8 through the valve chamber 20 and the first communication flow path 22. For this reason, the fuel pressure in the first back pressure chamber 8 increases, the nozzle needle 7 is displaced to the other end side, and the nozzle hole 6 is closed.

ここで、第1流入流路24、弁室20、第1連通流路22、第1背圧室8、および第2連通流路43は、第2背圧室19と高圧流路23との間を接続し、高圧流路23から第2背圧室19に燃料を導く昇圧流路45としての機能を有する。   Here, the first inflow channel 24, the valve chamber 20, the first communication channel 22, the first back pressure chamber 8, and the second communication channel 43 are connected between the second back pressure chamber 19 and the high pressure channel 23. And has a function as a pressure increasing channel 45 that leads fuel from the high pressure channel 23 to the second back pressure chamber 19.

そして、燃料噴射弁1は、制御弁12の動作により第2背圧室19と低圧流路25との間を開放し、第2背圧室19の燃料圧を低下させてサーボ弁13を一端側に変位させることで昇圧流路45を閉鎖する(つまり、燃料噴射弁1はサーボ弁13を開状態にすることで、昇圧流路45を閉鎖する)。
すなわち、サーボ弁13が開状態になると、第1連通流路22と第1流入流路24との間が閉鎖されて、昇圧流路45が閉鎖され、高圧流路23から第2背圧室19への燃料の流入が遮断される。
Then, the fuel injection valve 1 opens the space between the second back pressure chamber 19 and the low pressure passage 25 by the operation of the control valve 12, lowers the fuel pressure in the second back pressure chamber 19, and starts the servo valve 13 at one end. The booster passage 45 is closed by being displaced to the side (that is, the fuel injection valve 1 closes the booster passage 45 by opening the servo valve 13).
That is, when the servo valve 13 is opened, the space between the first communication flow path 22 and the first inflow flow path 24 is closed, the pressure increase flow path 45 is closed, and the second back pressure chamber is opened from the high pressure flow path 23. Inflow of fuel to 19 is blocked.

〔実施例1の効果〕
実施例1の燃料噴射弁1は、第1流入流路24、弁室20、第1連通流路22、第1背圧室8、および第2連通流路43からなる昇圧流路45を備える。そして、制御弁12の動作によりサーボ弁13が開状態になると、第1連通流路22と第1流入流路24との間が閉鎖されることで、昇圧流路45が閉鎖され、高圧流路23から第2背圧室19への燃料の流入が遮断される。
これにより、制御弁12が動作してノズルニードル7が駆動される際、第2背圧室19と低圧流路25との間が開放されるとともに、第2背圧室19と高圧流路23との間が閉鎖される。このため、ノズルニードル7の駆動時に高圧燃料の余分なリークが生じず、エネルギ損失を低減できる。
[Effect of Example 1]
The fuel injection valve 1 according to the first embodiment includes a pressure increasing channel 45 including a first inflow channel 24, a valve chamber 20, a first communication channel 22, a first back pressure chamber 8, and a second communication channel 43. . Then, when the servo valve 13 is opened by the operation of the control valve 12, the boosting channel 45 is closed by closing the first communication channel 22 and the first inflow channel 24. Inflow of fuel from the passage 23 to the second back pressure chamber 19 is blocked.
Thereby, when the control valve 12 operates and the nozzle needle 7 is driven, the space between the second back pressure chamber 19 and the low pressure passage 25 is opened, and the second back pressure chamber 19 and the high pressure passage 23 are opened. Is closed. For this reason, excessive leakage of high-pressure fuel does not occur when the nozzle needle 7 is driven, and energy loss can be reduced.

また、実施例1の燃料噴射弁1は、第1背圧室8と第2背圧室19との間を燃料が常に流通可能となるように接続する第2連通流路43が設けられ、第2連通流路43を通じて第1背圧室8から第2背圧室19に燃料を流入させることで第2背圧室19の燃料圧を増加し、サーボ弁13を開状態から閉状態に切り替えることができる。
このため、第2背圧室19と高圧流路23との間を燃料が常に流通可能となるように連通させる流路(例えば、従来例の昇圧流路120)、すなわち、第2背圧室19の燃料圧を増加するための流路が不要になる。この結果、第2流出流路39が開放されているときに、第1背圧室8からの燃料リーク以外の燃料リークが発生しなくなるので、第1背圧室8をサーボ弁13により開閉する燃料噴射弁1において、余分な燃料リークを低減することができる。
Further, the fuel injection valve 1 of the first embodiment is provided with a second communication channel 43 that connects the first back pressure chamber 8 and the second back pressure chamber 19 so that fuel can always flow. By flowing fuel from the first back pressure chamber 8 into the second back pressure chamber 19 through the second communication channel 43, the fuel pressure in the second back pressure chamber 19 is increased, and the servo valve 13 is changed from the open state to the closed state. Can be switched.
For this reason, the flow path (for example, the pressure increasing flow path 120 of the conventional example) that communicates between the second back pressure chamber 19 and the high pressure flow path 23 so that the fuel can always flow, that is, the second back pressure chamber. The flow path for increasing the fuel pressure of 19 becomes unnecessary. As a result, when the second outflow passage 39 is opened, no fuel leak other than the fuel leak from the first back pressure chamber 8 occurs, so the first back pressure chamber 8 is opened and closed by the servo valve 13. In the fuel injection valve 1, excess fuel leakage can be reduced.

〔実施例2の構成〕
実施例2の燃料噴射弁1の構成を、図4および図5を用いて説明する。
実施例2の燃料噴射弁1は、弁室20と第2背圧室19との間を燃料が常に流通可能となるように接続する第3連通流路46が設けられている。そして、第3連通流路46は、サーボ弁13が開状態にあるときに第1流入流路24との間を閉鎖され(図5参照)、サーボ弁13が閉状態にあるときに第1流入流路24との間を開放される(図4参照)。
[Configuration of Example 2]
The structure of the fuel injection valve 1 of Example 2 is demonstrated using FIG. 4 and FIG.
The fuel injection valve 1 according to the second embodiment is provided with a third communication channel 46 that connects the valve chamber 20 and the second back pressure chamber 19 so that fuel can always flow. The third communication flow path 46 is closed between the first inflow flow path 24 when the servo valve 13 is in the open state (see FIG. 5) and is first when the servo valve 13 is in the closed state. The space between the inflow channel 24 is opened (see FIG. 4).

すなわち、第3連通流路46は、弁室20の他端に開口しており、第3連通流路46と第1流入流路24との間は、第1連通流路22と第1流入流路24との間と同様に、弁部18の一端面33がシート部36に着座又は離座することで開閉される。つまり、サーボ弁13が一端側に変位すると、一端面33がシート部36に着座して第3連通流路46と第1流入流路24との間が閉鎖され、サーボ弁13が他端側に変位すると、一端面33がシート部36から離座して第3連通流路46と第1流入流路24との間が開放される。   That is, the third communication channel 46 opens to the other end of the valve chamber 20, and the first communication channel 22 and the first inflow are between the third communication channel 46 and the first inflow channel 24. As with the flow path 24, the one end surface 33 of the valve portion 18 is opened and closed by being seated or separated from the seat portion 36. That is, when the servo valve 13 is displaced to one end side, the one end surface 33 is seated on the seat portion 36 and the space between the third communication flow path 46 and the first inflow flow path 24 is closed, and the servo valve 13 is moved to the other end side. Is displaced from the seat portion 36 and the space between the third communication channel 46 and the first inflow channel 24 is opened.

そして、ソレノイドコイル11への通電が開始し制御弁12が第2流出流路39を開放すると、第1連通流路22、弁室20、および第1流出流路26を介する流路とともに、第1連通流路22、弁室20、第3連通流路46、第2背圧室19、第2流出流路39を介する流路からも第1背圧室8の燃料が低圧流路25へリークする。このため、第1背圧室8の燃料圧が低下し、ノズルニードル7が一端側に変位して噴孔6を開放する。   Then, when energization of the solenoid coil 11 is started and the control valve 12 opens the second outflow passage 39, the first communication passage 22, the valve chamber 20, and the flow passage through the first outflow passage 26, The fuel in the first back pressure chamber 8 also enters the low pressure passage 25 from the passage through the first communication passage 22, the valve chamber 20, the third communication passage 46, the second back pressure chamber 19, and the second outflow passage 39. To leak. For this reason, the fuel pressure in the first back pressure chamber 8 is lowered, and the nozzle needle 7 is displaced to one end side to open the nozzle hole 6.

また、ソレノイドコイル11への通電が停止し制御弁12が第2流出流路39を閉鎖すると、第1連通流路22、弁室20、第3連通流路46を介する第1背圧室8から第2背圧室19への燃料の流入により第2背圧室19の燃料圧が上昇する。この結果、第2背圧室19の燃料圧が増加し、サーボ弁13が他端側への変位を開始して開状態から閉状態に移行する。このため、第1背圧室8の燃料圧が増加し、ノズルニードル7が他端側に変位して噴孔6を閉鎖する。   When the energization of the solenoid coil 11 is stopped and the control valve 12 closes the second outflow passage 39, the first back pressure chamber 8 via the first communication passage 22, the valve chamber 20, and the third communication passage 46 is used. The fuel pressure in the second back pressure chamber 19 rises due to the inflow of fuel from the second back pressure chamber 19 to the second back pressure chamber 19. As a result, the fuel pressure in the second back pressure chamber 19 increases, the servo valve 13 starts to move to the other end side, and shifts from the open state to the closed state. For this reason, the fuel pressure in the first back pressure chamber 8 increases, the nozzle needle 7 is displaced to the other end side, and the nozzle hole 6 is closed.

ここで、実施例2の昇圧流路45は、第1流入流路24、弁室20、および第3連通流路46から形成されている。
そして、サーボ弁13が一端側へ変位し開状態になると、第3連通流路46と第1流入流路24との間が閉鎖されて、昇圧流路45が閉鎖され、高圧流路23から第2背圧室19への燃料の流入が遮断される。
Here, the pressure increasing channel 45 of the second embodiment is formed by the first inflow channel 24, the valve chamber 20, and the third communication channel 46.
When the servo valve 13 is displaced to one end side and is in an open state, the space between the third communication flow path 46 and the first inflow flow path 24 is closed, the pressure increase flow path 45 is closed, and the high pressure flow path 23 is The flow of fuel into the second back pressure chamber 19 is blocked.

〔実施例2の効果〕
実施例2の燃料噴射弁1は、弁室20と第2背圧室19との間を燃料が常に流通可能となるように接続する第3連通流路46が設けられている。
これにより、第1連通流路22、弁室20、および第3連通流路46を通じて第1背圧室8から第2背圧室19に燃料を流入させることで第2背圧室19の燃料圧を増加し、サーボ弁13を開状態から閉状態に切り替えることができる。このため、第2流出流路39が開放されているときに、第1背圧室8からの燃料リーク以外の燃料リークが発生しなくなるので、第1背圧室8をサーボ弁13により開閉する燃料噴射弁1において、余分な燃料リークを低減することができる。
[Effect of Example 2]
The fuel injection valve 1 according to the second embodiment is provided with a third communication channel 46 that connects the valve chamber 20 and the second back pressure chamber 19 so that fuel can always flow.
Accordingly, the fuel in the second back pressure chamber 19 is caused to flow into the second back pressure chamber 19 from the first back pressure chamber 8 through the first communication channel 22, the valve chamber 20, and the third communication channel 46. The pressure can be increased and the servo valve 13 can be switched from the open state to the closed state. For this reason, when the second outflow passage 39 is opened, no fuel leak other than the fuel leak from the first back pressure chamber 8 occurs, so the first back pressure chamber 8 is opened and closed by the servo valve 13. In the fuel injection valve 1, excess fuel leakage can be reduced.

また、実施例2の燃料噴射弁1では、第2背圧室19に連通する第3連通流路46が弁室20に接続するため、第1背圧室8に接続する流路の数は増えない。これにより、第1背圧室8の実質的な容積は増加しないので、第1背圧室8の燃料圧増減のため第1背圧室8に流出入させる燃料の必要量は変動しない。このため、ノズルニードル7による噴孔開閉の応答性を従来と同等にすることができる。   In the fuel injection valve 1 according to the second embodiment, the third communication flow path 46 communicating with the second back pressure chamber 19 is connected to the valve chamber 20, so the number of flow paths connected to the first back pressure chamber 8 is Will not Increase. Thereby, since the substantial volume of the first back pressure chamber 8 does not increase, the required amount of fuel flowing into and out of the first back pressure chamber 8 does not fluctuate due to the increase or decrease of the fuel pressure in the first back pressure chamber 8. For this reason, the response of opening and closing the nozzle hole by the nozzle needle 7 can be made equivalent to the conventional one.

また、ボディ14は、弁室20の他端を境界とする2部材(2部材の内、一端側を部材47、他端側を部材48とする)により構成されている。これにより、第3連通流路46は、部材47のみに加工を施すことで設けられるので、部材47、48の両方に流路を設けて、これらの流路の位置合わせを行う必要がない。   The body 14 is configured by two members having the other end of the valve chamber 20 as a boundary (one of the two members is a member 47 and the other end is a member 48). Thereby, since the 3rd communication channel 46 is provided by processing only member 47, it is not necessary to provide a channel in both members 47 and 48 and to align these channels.

燃料噴射弁の全体構成図である(実施例1)。1 is an overall configuration diagram of a fuel injection valve (Example 1). FIG. サーボ弁が閉状態にあるときの燃料噴射弁の要部構成図である(実施例1)。(Example 1) which is a principal part block diagram of a fuel injection valve when a servo valve is in a closed state. サーボ弁が開状態にあるときの燃料噴射弁の要部構成図である(実施例1)。(Example 1) which is a principal part block diagram of a fuel injection valve when a servo valve is in an open state. サーボ弁が閉状態にあるときの燃料噴射弁の要部構成図である(実施例2)。(Example 2) which is a principal part block diagram of a fuel injection valve when a servo valve is in a closed state. サーボ弁が開状態にあるときの燃料噴射弁の要部構成図である(実施例2)。(Example 2) which is a principal part block diagram of a fuel injection valve when a servo valve is in an open state. (a)は、サーボ弁が閉状態にあるときの燃料噴射弁の要部構成図であり、(b)は、サーボ弁が開状態にあるときの燃料噴射弁の要部構成図である(従来例)。(A) is a principal part block diagram of a fuel injection valve when a servo valve is a closed state, (b) is a principal part block diagram of a fuel injection valve when a servo valve is an open state ( Conventional example).

符号の説明Explanation of symbols

1 燃料噴射弁
2 ノズル
3 本体
6 噴孔
7 ノズルニードル
8 第1背圧室
11 ソレノイドコイル(電動アクチュエータ)
12 制御弁
13 サーボ弁
19 第2背圧室
20 弁室
22 第1連通流路
23 高圧流路
24 第1流入流路
25 低圧流路
26 第1流出流路
39 第2流出流路
43 第2連通流路
45 昇圧流路
46 第3連通流路
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 2 Nozzle 3 Main body 6 Injection hole 7 Nozzle needle 8 1st back pressure chamber 11 Solenoid coil (electric actuator)
12 control valve 13 servo valve 19 second back pressure chamber 20 valve chamber 22 first communication channel 23 high pressure channel 24 first inflow channel 25 low pressure channel 26 first outflow channel 39 second outflow channel 43 second Communication channel 45 Boost channel 46 Third communication channel

Claims (2)

一端に第1背圧室を形成し、この第1背圧室の燃料圧の増減により噴孔を開閉するノズルニードルと、
一端に第2背圧室、および他端に弁室を形成し、前記第2背圧室と前記弁室との燃料圧の差により移動して、前記第1背圧室と高圧流路との間を開閉するサーボ弁と、
前記第1背圧室と前記弁室との間を、燃料が常に流通可能となるように接続する第1連通流路と、
電動アクチュエータへの通電により動作し、前記第2背圧室と低圧流路との間を開放する制御弁とを備え、
前記電動アクチュエータの動作により前記ノズルニードルを駆動して前記噴孔を開放する燃料噴射弁であって、
前記第1背圧室と前記第2背圧室との間を燃料が常に流通可能となるように接続する第2連通流路と、
前記第1連通流路および前記第2連通流路を含んで形成されて、前記第2背圧室と前記高圧流路との間を接続し、前記高圧流路から前記第2背圧室に燃料を導く昇圧流路を備え、
前記制御弁の動作により前記第2背圧室と前記低圧流路との間を開放し、前記第2背圧室の燃料圧を低下させて前記サーボ弁を一端側に変位させることで前記昇圧流路を閉鎖することを特徴とする燃料噴射弁。
A nozzle needle for forming a first back pressure chamber at one end and opening and closing the nozzle hole by increasing or decreasing the fuel pressure in the first back pressure chamber;
A second back pressure chamber is formed at one end, and a valve chamber is formed at the other end, and the first back pressure chamber and the high pressure flow path are moved by the difference in fuel pressure between the second back pressure chamber and the valve chamber. A servo valve that opens and closes between,
A first communication flow path connecting the first back pressure chamber and the valve chamber so that fuel can always flow;
A control valve that operates by energizing the electric actuator and opens between the second back pressure chamber and the low pressure flow path;
A fuel injection valve that opens the nozzle hole by driving the nozzle needle by the operation of the electric actuator,
A second communication channel that connects the first back pressure chamber and the second back pressure chamber so that fuel can always flow therethrough,
The first communication channel and the second communication channel are formed to connect between the second back pressure chamber and the high pressure channel, and from the high pressure channel to the second back pressure chamber. and a boost flow path for guiding the fuel,
The operation of the control valve opens the space between the second back pressure chamber and the low pressure flow path, reduces the fuel pressure in the second back pressure chamber, and displaces the servo valve to one end side to increase the pressure. A fuel injection valve characterized by closing a flow path.
一端に第1背圧室を形成し、この第1背圧室の燃料圧の増減により噴孔を開閉するノズルニードルと、
一端に第2背圧室、および他端に弁室を形成し、前記第2背圧室と前記弁室との燃料圧の差により移動して、前記第1背圧室と高圧流路との間を開閉するサーボ弁と、
前記第1背圧室と前記弁室との間を、燃料が常に流通可能となるように接続する第1連通流路と、
電動アクチュエータへの通電により動作し、前記第2背圧室と低圧流路との間を開放する制御弁とを備え、
前記電動アクチュエータの動作により前記ノズルニードルを駆動して前記噴孔を開放する燃料噴射弁であって、
前記弁室と前記第2背圧室との間を燃料が常に流通可能となるように接続する第3連通流路と、
前記第3連通流路を含んで形成されて、前記第2背圧室と前記高圧流路との間を接続し、前記高圧流路から前記第2背圧室に燃料を導く昇圧流路とを備え、
前記制御弁の動作により前記第2背圧室と前記低圧流路との間を開放し、前記第2背圧室の燃料圧を低下させて前記サーボ弁を一端側に変位させることで前記昇圧流路を閉鎖することを特徴とする燃料噴射弁
A nozzle needle for forming a first back pressure chamber at one end and opening and closing the nozzle hole by increasing or decreasing the fuel pressure in the first back pressure chamber;
A second back pressure chamber is formed at one end, and a valve chamber is formed at the other end, and the first back pressure chamber and the high pressure flow path are moved by the difference in fuel pressure between the second back pressure chamber and the valve chamber. A servo valve that opens and closes between,
A first communication flow path connecting the first back pressure chamber and the valve chamber so that fuel can always flow;
A control valve that operates by energizing the electric actuator and opens between the second back pressure chamber and the low pressure flow path;
A fuel injection valve that opens the nozzle hole by driving the nozzle needle by the operation of the electric actuator,
A third communication channel that connects the valve chamber and the second back pressure chamber so that fuel can always flow therethrough,
A pressure increasing channel that is formed including the third communication channel, connects the second back pressure chamber and the high pressure channel, and guides fuel from the high pressure channel to the second back pressure chamber; With
The operation of the control valve opens the space between the second back pressure chamber and the low pressure flow path, reduces the fuel pressure in the second back pressure chamber, and displaces the servo valve to one end side to increase the pressure. A fuel injection valve characterized by closing a flow path .
JP2006356385A 2006-12-28 2006-12-28 Fuel injection valve Expired - Fee Related JP4682979B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006356385A JP4682979B2 (en) 2006-12-28 2006-12-28 Fuel injection valve
DE200710055895 DE102007055895B4 (en) 2006-12-28 2007-12-20 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356385A JP4682979B2 (en) 2006-12-28 2006-12-28 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2008163903A JP2008163903A (en) 2008-07-17
JP4682979B2 true JP4682979B2 (en) 2011-05-11

Family

ID=39465932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356385A Expired - Fee Related JP4682979B2 (en) 2006-12-28 2006-12-28 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP4682979B2 (en)
DE (1) DE102007055895B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240181B2 (en) * 2009-12-24 2013-07-17 株式会社デンソー Fuel injection device
DE102012220025A1 (en) 2012-06-29 2014-01-02 Robert Bosch Gmbh Fuel injection valve for internal combustion engines

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087821A (en) * 1998-09-14 2000-03-28 Denso Corp Injection valve
JP2004251205A (en) * 2003-02-20 2004-09-09 Denso Corp Injector
JP2006257874A (en) * 2004-04-30 2006-09-28 Denso Corp Injector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651188B2 (en) * 1997-07-02 2005-05-25 トヨタ自動車株式会社 Fuel injection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087821A (en) * 1998-09-14 2000-03-28 Denso Corp Injection valve
JP2004251205A (en) * 2003-02-20 2004-09-09 Denso Corp Injector
JP2006257874A (en) * 2004-04-30 2006-09-28 Denso Corp Injector

Also Published As

Publication number Publication date
DE102007055895A1 (en) 2008-07-03
DE102007055895B4 (en) 2010-04-29
JP2008163903A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP4286770B2 (en) Control valve and fuel injection valve having the same
JP4535037B2 (en) Injector and fuel injection device
JP2006257874A (en) Injector
US8333175B2 (en) Fuel supply systems
US8215287B2 (en) Fuel supply apparatus for engine and injector for the same
JP2008261224A (en) Fuel injection control device of internal combustion engine
JP2002322970A (en) Fuel injection device
JP4226011B2 (en) Fuel injection device
JP2005188511A (en) Fuel injector
JP4523559B2 (en) Engine valve drive
US7370636B2 (en) Fuel injection system
JP4682979B2 (en) Fuel injection valve
JP4113223B2 (en) Switching valve with pressure regulator for fuel injector with intensifier
JP4483828B2 (en) Fuel injection valve
JP2006144698A (en) Fuel injection device for internal combustion engine
JP4107277B2 (en) Fuel injection device for internal combustion engine
JP2008304017A (en) Three-way selector valve and fuel injection device using the same
JP4407655B2 (en) Injector
JP4329704B2 (en) Fuel injection device
JP4407590B2 (en) Fuel injection device for internal combustion engine
JP4506744B2 (en) Three-way switching valve and injector provided with the same
JP2004518881A (en) 3 port 2 position valve
JP4716142B2 (en) Fuel injection device
JP2005320904A (en) Fuel injection valve
JP4548406B2 (en) Three-way switching valve and injector provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees