JP4682888B2 - Method for producing ceramic ultrafine particle film - Google Patents

Method for producing ceramic ultrafine particle film Download PDF

Info

Publication number
JP4682888B2
JP4682888B2 JP2006079609A JP2006079609A JP4682888B2 JP 4682888 B2 JP4682888 B2 JP 4682888B2 JP 2006079609 A JP2006079609 A JP 2006079609A JP 2006079609 A JP2006079609 A JP 2006079609A JP 4682888 B2 JP4682888 B2 JP 4682888B2
Authority
JP
Japan
Prior art keywords
substrate
ultrafine particle
ceramic
particle film
surface potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006079609A
Other languages
Japanese (ja)
Other versions
JP2007256528A (en
Inventor
化冰 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006079609A priority Critical patent/JP4682888B2/en
Publication of JP2007256528A publication Critical patent/JP2007256528A/en
Application granted granted Critical
Publication of JP4682888B2 publication Critical patent/JP4682888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明はセラミック超微粒子膜を基板表面上に形成する製造方法に関するものである。   The present invention relates to a manufacturing method for forming a ceramic ultrafine particle film on a substrate surface.

基板上に無機酸化物粒子膜を形成する方法として特許文献1・特許文献2が開示されている。   Patent Documents 1 and 2 are disclosed as methods for forming an inorganic oxide particle film on a substrate.

特許文献1は、フォトニック結晶およびその製造方法に関する発明であり、2種類の方法でフォトニック結晶構造体を製造する。第1の方法は、自己組織膜を利用して第1官能基修飾粒子層と第2官能基修飾粒子層を官能基間の化学結合により個々に積層していくものである。第2の方法は、第1官能基修飾粒子層と第2官能基修飾粒子とを溶媒に分散させ、両官能基間の化学結合により粒子を核成長させていくものである。図1・図2は、それらの工程を繰り返すことにより粒子膜の積層構造体を構成するイメージを表したものである。   Patent Document 1 is an invention related to a photonic crystal and a manufacturing method thereof, and a photonic crystal structure is manufactured by two kinds of methods. In the first method, a first functional group-modified particle layer and a second functional group-modified particle layer are individually laminated by chemical bonding between functional groups using a self-organized film. In the second method, the first functional group-modified particle layer and the second functional group-modified particle are dispersed in a solvent, and the particles are nucleated by chemical bonding between the two functional groups. FIG. 1 and FIG. 2 represent an image of forming a laminated structure of particle films by repeating these steps.

特許文献2は、光触媒性金属酸化物のパターン形成方法に関する発明であり、基板上に感光性の疎水基を有する膜(疎水性被膜)を形成してから、光照射により親水性パターンを形成する。この親水性と疎水性の共存基板を加水分解性金属酸化物前駆体液中に浸漬した後、加水分解雰囲気中で反応させて、親水性パターン上に金属化合物を析出させる方法である。図3は、この製造工程のイメージを示すものである。
特開2002−341161号公報 特開2002−169303号公報
Patent Document 2 is an invention relating to a photocatalytic metal oxide pattern formation method, in which a hydrophilic pattern is formed by light irradiation after forming a film having a hydrophobic hydrophobic group (hydrophobic film) on a substrate. . In this method, the hydrophilic and hydrophobic coexisting substrate is immersed in a hydrolyzable metal oxide precursor solution and then reacted in a hydrolyzing atmosphere to deposit a metal compound on the hydrophilic pattern. FIG. 3 shows an image of this manufacturing process.
JP 2002-341161 A JP 2002-169303 A

ところが、特許文献1に示されている方法では官能基修飾による結合欠陥が生じやすく、積層に影響を及ぼすので、広い面積の粒子膜を形成するのは困難である。また、同じ理由で粒子構造に規則性がなく、ランダム堆積となる。   However, in the method disclosed in Patent Document 1, bond defects due to functional group modification are likely to occur and affect the lamination, so that it is difficult to form a particle film with a large area. For the same reason, there is no regularity in the particle structure, resulting in random deposition.

また、特許文献2に示されている製造方法では、基板上に付着した加水分解性金属酸化物前駆体液から得られた金属酸化物膜なので、粒子配列に規則性がなく、粒子の充填密度が高められないという問題があった。   Moreover, in the manufacturing method shown by patent document 2, since it is a metal oxide film obtained from the hydrolyzable metal oxide precursor liquid adhering on a board | substrate, there is no regularity in a particle arrangement and the packing density of particle | grains is There was a problem that it could not be raised.

これに対し、本願の発明はセラミック超微粒子(100nm径以下のセラミックナノ粒子)を用いて規則配列構造体を実現しようとするものであり、従来のセラミック微粒子(数100nm〜1μm径のセラミック微粒子)では得られない新規な機能性を有する膜を得るものである。   On the other hand, the invention of the present application intends to realize a regular array structure using ceramic ultrafine particles (ceramic nanoparticles having a diameter of 100 nm or less), and conventional ceramic fine particles (ceramic particles having a diameter of several hundred nm to 1 μm). Thus, a film having a novel functionality that cannot be obtained by the method is obtained.

この発明は、例えばSiO2を主成分とする「天然オパール石」やCaCOを主成分とする「真珠」など、自然界に存在する有機物と無機物からなる規則的構造体にヒントを得て、セラミック超微粒子の規則配列構造体を人工的に形成しようとするものである。また、このような自然界の規則的構造体に倣うだけでなく、自然環境に優しい常温・常圧の下で形成しようとするものである。 This invention is inspired by a regular structure composed of organic and inorganic substances existing in nature, such as “natural opalite” mainly composed of SiO 2 and “pearl” mainly composed of CaCO 3. An attempt is made to artificially form an ordered structure of ultrafine particles. In addition to imitating such a regular structure in the natural world, it is intended to be formed under normal temperature and normal pressure which is friendly to the natural environment.

基板の表面にセラミック超微粒子膜を形成するためには、基板上にセラミック超微粒子を適切な方法で吸着させることが重要である。   In order to form a ceramic ultrafine particle film on the surface of the substrate, it is important to adsorb the ceramic ultrafine particles on the substrate by an appropriate method.

基板上に粒子を吸着させる従来の一般的な方法は(1)静電的吸着による方法と(2)基板処理剤と粒子との間で共有結合させる方法があった。
しかし、基板上への吸着後のセラミック超微粒子による膜はセラミック超微粒子間の相互作用や吸脱着平衡が維持されていて、その膜の粒子の状態は粒子−基板間相互作用より粒子間同士の相互作用の影響を大きく受ける。
Conventional general methods for adsorbing particles on a substrate include (1) a method based on electrostatic adsorption and (2) a method in which a substrate treatment agent and particles are covalently bonded.
However, the film of ceramic ultrafine particles after adsorption onto the substrate maintains the interaction between ceramic ultrafine particles and the adsorption / desorption equilibrium, and the state of the particles of the film is between particles due to the particle-substrate interaction. Largely affected by interaction.

すなわち、(1)の静電的吸着による方法では基板表面での粒子間同士の相互作用(吸着力)が大き過ぎて凝集してしまい、充填率の高い単粒子膜が形成できない。   That is, in the method (1) based on electrostatic adsorption, the interaction (adsorption force) between particles on the substrate surface is too large and aggregates, and a single particle film with a high filling rate cannot be formed.

また、(2)の基板処理剤と粒子間共有結合の方法では、ある限られた材料では比較的良好な密度の粒子膜が形成できるが、例えば基板処理剤としてPVP(ポリビニルポリマー)系化合物を用いると、その厚い(分子レベルではない厚さの)高分子層が基板表面と粒子間に介在することになるので、一般的には後処理でその高分子層を除去しなければならない。   In addition, in the method of (2) the substrate treating agent and the interparticle covalent bonding method, a particle film having a relatively good density can be formed with a certain limited material. For example, a PVP (polyvinyl polymer) compound is used as the substrate treating agent. If used, the thick (non-molecular level) polymer layer will be interposed between the substrate surface and the particles, and therefore generally the polymer layer must be removed by post-treatment.

そこで、この発明の目的は、セラミック超微粒子を静電力で基板表面に近寄せ、化学結合によって固定させることによって、セラミック超微粒子の規則配列単粒子膜を製造することにある。   Accordingly, an object of the present invention is to produce an ordered single particle film of ceramic ultrafine particles by bringing the ceramic ultrafine particles close to the substrate surface with an electrostatic force and fixing them by chemical bonding.

具体的には、基板を少なくとも2種類の有機化合物溶液中に浸漬し、当該基板の表面電位をセラミック超微粒子分散溶液のゼータ電位とは逆極性で前記セラミック超微粒子分散溶液中のセラミック粒子と共有結合可能な電位に制御する表面電位制御工程と、前記基板を前記セラミック超微粒子分散溶液中に浸漬する工程と、前記基板を乾燥させる工程と、を備える。   Specifically, the substrate is immersed in at least two kinds of organic compound solutions, and the surface potential of the substrate is opposite to the zeta potential of the ceramic ultrafine particle dispersion solution and is shared with the ceramic particles in the ceramic ultrafine particle dispersion solution. A surface potential control step for controlling the potential to allow bonding; a step of immersing the substrate in the ceramic ultrafine particle dispersion; and a step of drying the substrate.

前記表面電位制御工程は、化学分子式がR−Si−X(Rは炭化水素基、XはClまたはアルコキシ基)で表される第1のシラン系化合物溶液中に前記基板を浸漬する第1処理工程と、この第1処理工程に続いて化学分子式が(RO)n−Si−Ym(Rは炭化水素基、Yはアミノ基、メルカプト基、アミン基またはカルボキシル基のうちいずれか、n=1〜3、m=1〜3)で表される第2のシラン系化合物溶液中に前記基板を浸漬する第2処理工程とから構成する。   The surface potential control step includes a first treatment of immersing the substrate in a first silane compound solution having a chemical molecular formula represented by R-Si-X (R is a hydrocarbon group, X is a Cl or alkoxy group). And a chemical molecular formula (RO) n-Si-Ym (R is a hydrocarbon group, Y is an amino group, a mercapto group, an amine group, or a carboxyl group, and n = 1 -3, m = 1-3) and a second treatment step of immersing the substrate in a second silane compound solution.

また、具体的には、基板を第1の有機化合物溶液中に浸漬し、かつ、当該基板に紫外光を照射し、当該基板の表面電位をセラミック超微粒子分散溶液のゼータ電位とは逆極性で前記セラミック超微粒子分散溶液中のセラミック粒子と共有結合可能な電位に制御する表面電位制御工程と、前記基板を前記セラミック超微粒子分散溶液中に浸漬する工程と、前記基板を乾燥させる工程と、を備える。   Specifically, the substrate is immersed in the first organic compound solution, and the substrate is irradiated with ultraviolet light so that the surface potential of the substrate has a polarity opposite to the zeta potential of the ceramic ultrafine particle dispersion solution. A surface potential control step of controlling the potential to be capable of covalently bonding with ceramic particles in the ceramic ultrafine particle dispersion solution, a step of immersing the substrate in the ceramic ultrafine particle dispersion solution, and a step of drying the substrate. Prepare.

また、前記表面電位制御工程は、化学分子式がR−Si−X(Rは炭化水素基、XはClまたはアルコキシ基)で表される第1のシラン系化合物溶液中に前記基板を浸漬する第1処理工程と、この第1処理工程に続いて紫外光を照射する第2処理工程とから構成する。   The surface potential control step includes immersing the substrate in a first silane compound solution represented by a chemical molecular formula R-Si-X (R is a hydrocarbon group, X is a Cl or alkoxy group). The first processing step and the second processing step of irradiating ultraviolet light subsequent to the first processing step.

前記セラミック超微粒子膜は、SiO超微粒子膜、TiO超微粒子膜、またはBaTiO超微粒子膜のいずれかである。また、セラミック超微粒子膜が、SiO超微粒子膜またはTiO超微粒子膜の場合には、前記表面電位は例えば3.1〜5.7Vであり、且つ前記基板の表面の接触角は90°以下とする。 The ceramic ultrafine particle film is any one of a SiO 2 ultrafine particle film, a TiO 2 ultrafine particle film, and a BaTiO 3 ultrafine particle film. When the ceramic ultrafine particle film is an SiO 2 ultrafine particle film or a TiO 2 ultrafine particle film, the surface potential is, for example, 3.1 to 5.7 V, and the contact angle of the surface of the substrate is 90 °. The following.

この発明によれば、表面電位制御工程で、基板の表面電位が、セラミック超微粒子分散溶液のゼータ電位とは逆極性でセラミック超微粒子と共有結合可能な電位になるので、セラミック超微粒子を静電力で基板に近寄せ、化学結合により固定することができ、その結果、基板上にセラミック超微粒子による規則配列単粒子膜が得られる。   According to the present invention, in the surface potential control step, the surface potential of the substrate becomes a potential that can be covalently bonded to the ceramic ultrafine particles with a polarity opposite to the zeta potential of the ceramic ultrafine particle dispersion solution. Then, it can be brought close to the substrate and fixed by chemical bonding, and as a result, an ordered single particle film made of ultrafine ceramic particles can be obtained on the substrate.

また、表面電位制御工程として、第1・第2の2種類のシラン系化合物溶液中に基板を浸漬する第1・第2処理工程を実行することにより、基板の表面電位をより高くすることができ、基板上のセラミック超微粒子の充填率を高めることができる。   Further, as the surface potential control step, the surface potential of the substrate can be further increased by performing the first and second treatment steps of immersing the substrate in the first and second types of silane compound solutions. In addition, the filling rate of the ceramic ultrafine particles on the substrate can be increased.

また、表面電位制御工程として、第1のシラン系化合物溶液中に基板を浸漬し、その後に紫外光の照射によって光化学反応を起こすことによって、基板の表面電位をより高くでき、基板上のセラミック超微粒子の充填率を高めることができる。   In addition, as the surface potential control step, the substrate is immersed in the first silane compound solution, and then a photochemical reaction is caused by irradiation with ultraviolet light, so that the surface potential of the substrate can be increased, and the ceramic superposition on the substrate can be increased. The filling rate of fine particles can be increased.

また、この発明は、セラミック超微粒子膜として、SiO超微粒子膜、TiO超微粒子膜、またはBaTiO超微粒子膜を製造することが可能である。 In addition, according to the present invention, a SiO 2 ultrafine particle film, a TiO 2 ultrafine particle film, or a BaTiO 3 ultrafine particle film can be manufactured as the ceramic ultrafine particle film.

また、セラミック超微粒子膜が、SiO超微粒子膜またはTiO超微粒子膜の場合には、基板の表面電位が3.1〜5.7Vの範囲で且つ基板表面の接触角が90°以下であることにより、基板上のセラミック超微粒子の規則配列単粒子膜を最密充填で且つ広面積に亘って形成できる。 When the ceramic ultrafine particle film is a SiO 2 ultrafine particle film or a TiO 2 ultrafine particle film, the surface potential of the substrate is in the range of 3.1 to 5.7 V and the contact angle of the substrate surface is 90 ° or less. As a result, a regularly arranged single particle film of ceramic ultrafine particles on a substrate can be formed over a wide area with close packing.

(1)まず、セラミック超微粒子膜が形成される基板の表面のゴミ等を除去するために、有機溶剤で超音波洗浄し、続いて、水洗・水分除去を行う。 (1) First, in order to remove dust and the like on the surface of the substrate on which the ceramic ultrafine particle film is formed, ultrasonic cleaning is performed with an organic solvent, followed by water washing and moisture removal.

(2)次に、基板に対し、エキシマランプを用いて紫外光(UV光)の照射を行い、基板の表面の有機物を除去し、親水性にする(ドライ洗浄)。 (2) Next, the substrate is irradiated with ultraviolet light (UV light) using an excimer lamp to remove organic substances on the surface of the substrate to make it hydrophilic (dry cleaning).

(3)次に、基板の表面電位制御を行う。基板の表面電子制御は次の2つの方法のいずれかを行う。 (3) Next, the surface potential of the substrate is controlled. The surface electronic control of the substrate is performed by one of the following two methods.

(a)化学分子式がR−Si−X(Rは炭化水素基、XはClまたはアルコキシ基)で表されるシラン系化合物溶液中に基板を浸漬する第1処理工程と、この第1処理工程に続いて化学分子式が(RO)n−Si−Ym(Rは炭化水素基、Yはアミノ基、メルカプト基、アミン基またはカルボキシル基のうちいずれか、n=1〜3、m=1〜3)で表されるシラン系化合物溶液中に基板を浸漬する第2処理工程とを行う方法。 (A) a first treatment step in which a substrate is immersed in a silane compound solution represented by the chemical molecular formula R-Si-X (R is a hydrocarbon group, X is a Cl or alkoxy group), and the first treatment step Then, the chemical molecular formula is (RO) n-Si-Ym (R is a hydrocarbon group, Y is an amino group, mercapto group, amine group or carboxyl group, n = 1-3, m = 1-3. And a second treatment step of immersing the substrate in a silane compound solution represented by

(b)化学分子式がR−Si−X(Rは炭化水素基、XはClまたはアルコキシ基)で表されるシラン系化合物溶液中に基板を浸漬する第1処理工程と、この第1処理工程に続いて紫外光を照射する第2処理工程とを行う方法。 (B) a first treatment step in which the substrate is immersed in a silane compound solution represented by the chemical molecular formula R-Si-X (R is a hydrocarbon group, X is a Cl or alkoxy group), and the first treatment step. And a second treatment step of irradiating with ultraviolet light.

ここで、上記シラン系化合物は、水と接すると加水分解してシラノール基を生成する。このシラノール基は自己縮合によって高分子化すると同時に、基板表面のOH基と水素結合する。一方、官能基Rはセラミック超微粒子と化学結合する。   Here, the silane-based compound is hydrolyzed when it comes into contact with water to generate a silanol group. These silanol groups are polymerized by self-condensation and at the same time hydrogen bond with OH groups on the substrate surface. On the other hand, the functional group R chemically bonds with the ceramic ultrafine particles.

(4)そして、前記表面電位制御を行った基板を、セラミック超微粒子が分散された溶液(サスペンション)中に浸漬し、乾燥させ、基板上にセラミック超微粒子膜を形成する。 (4) The substrate on which the surface potential has been controlled is dipped in a solution (suspension) in which ceramic ultrafine particles are dispersed and dried to form a ceramic ultrafine particle film on the substrate.

図4は、上述の(3)基板の表面電位制御の(a)に相当する2種類のシラン系化合物溶液を用いた場合の結果である。(A)は第1処理工程でトリメチルクロロシラン溶液(以下「TMCS」とする)を用い、第2処理工程でアミノプロピルトリエトキシシラン溶液(以下「APES」とする)を用いたものであり、表面電位は3.42V、接触角は50.4°となった。(B)は第1処理工程でクロロトリヘキシルシラン溶液(以下「CTHS」とする)を用い、第2処理工程でアミノエチルアミノプロピルトリメトキシシラン溶液(以下「AAPMS」とする)を用いたものであり、表面電位は5.61V、接触角は36.0°となった。(C)は第1処理工程でクロロジメタルピニルシラン溶液(以下「CDMS」とする)を用い、第2処理工程でAAPMSを用いたものであり、表面電位は5.57V、接触角は63.4°となった。   FIG. 4 shows the results when two types of silane compound solutions corresponding to (a) (a) of the surface potential control of the substrate are used. (A) uses a trimethylchlorosilane solution (hereinafter referred to as “TMCS”) in the first treatment step and an aminopropyltriethoxysilane solution (hereinafter referred to as “APES”) in the second treatment step. The potential was 3.42 V and the contact angle was 50.4 °. (B) uses a chlorotrihexylsilane solution (hereinafter referred to as “CTHS”) in the first treatment step and an aminoethylaminopropyltrimethoxysilane solution (hereinafter referred to as “AAPMS”) in the second treatment step. The surface potential was 5.61 V and the contact angle was 36.0 °. (C) uses a chlorodimetalpinylsilane solution (hereinafter referred to as “CDMS”) in the first treatment step, and uses AAPMS in the second treatment step, the surface potential is 5.57 V, and the contact angle is It was 63.4 °.

なお、第1処理工程で用いられる第1のシラン系化合物溶液のTMCS,CTHS,CDMSは、いずれも化学分子式がR−Si−X(Rは炭化水素基、XはClまたはアルコキシ基)で表されるシラン系化合物溶液である。また、第2処理工程で用いられる第2のシラン系化合物溶液のAPES、AAPMSは、いずれも化学分子式が(RO)n−Si−Ym(Rは炭化水素基、Yはアミノ基、メルカプト基、アミン基またはカルボキシル基のうちいずれか、n=1〜3、m=1〜3)で表されるシラン系化合物溶液である。基板表面に付着しているシラン系化合物のR基(疎水基)の種類と量によって表面電位が変わるので、シラン系化合物溶液の組成に応じて、結果的に得られる表面電位は変わる。   The TMCS, CTHS, and CDMS of the first silane compound solution used in the first treatment step are all represented by the chemical molecular formula R-Si-X (R is a hydrocarbon group, X is a Cl or alkoxy group). Silane-based compound solution. Further, APES and AAPMS of the second silane compound solution used in the second treatment step are both chemical molecular formulas (RO) n-Si-Ym (R is a hydrocarbon group, Y is an amino group, a mercapto group, It is a silane compound solution represented by either an amine group or a carboxyl group, n = 1-3, m = 1-3). Since the surface potential varies depending on the type and amount of the R group (hydrophobic group) of the silane compound adhering to the substrate surface, the resulting surface potential varies depending on the composition of the silane compound solution.

この結果から、基板の表面電位が高くなるほどSiO2超微粒子の付着量が増すことが分かる。 From this result, it can be seen that the higher the surface potential of the substrate, the more the SiO 2 ultrafine particles are attached.

ここで、比較例として、基板の表面電位制御を行うために、1種類のシラン系化合物を用いた場合の結果を図5に示す。(A)はオクタデシルトリメトキシシラン(以下「OTS」とする)に基板を浸漬したものであり、表面電位は0.64V、接触角は104.4°、(B)はCDMSに基板を浸漬したものであり、表面電位は1.15V、接触角は51.4°となった。(C)はAPESに基板を浸漬したものであり、表面電位は2.58V、接触角は40.2°、(D)はAAPMSに基板を浸漬した例であり、表面電位は2.78V、接触角は40.5°となった。このように1種類のシラン系化合物溶液に基板を浸漬したものは、いずれもSiO2超微粒子の付着量が少ない。図5(D)に示したように、表面電位が2.78Vでも粒子の充填度は未だ低い。 Here, as a comparative example, FIG. 5 shows the result when one kind of silane compound is used to control the surface potential of the substrate. (A) is a substrate immersed in octadecyltrimethoxysilane (hereinafter referred to as “OTS”), the surface potential is 0.64 V, the contact angle is 104.4 °, and (B) is the substrate immersed in CDMS. The surface potential was 1.15 V, and the contact angle was 51.4 °. (C) shows a substrate immersed in APES, surface potential is 2.58V, contact angle is 40.2 °, (D) is an example where a substrate is immersed in AAPMS, surface potential is 2.78V, The contact angle was 40.5 °. As described above, all the substrates immersed in one kind of silane compound solution have a small amount of SiO 2 ultrafine particles attached thereto. As shown in FIG. 5D, even when the surface potential is 2.78 V, the degree of particle packing is still low.

以上のように、基板を2種類のシラン系化合物溶液に浸漬することによって、比較例で示した1種類のシラン系化合物溶液に浸漬した場合に比べて基板の表面電位が高くなり、その表面電位が高くなる程、充填度の高い膜(最密充填膜)が得られることが分かる。これは、2種類のシラン系化合物溶液を用い、2度にわたって基板の浸漬を行うことによって、第1処理工程で1層目の表面電位を低くし、第2処理工程で2層目の有機化合物が付着し易くなって、結果的に多くの有機化合物が付着して、基板の表面電位が高まるものと推定される。   As described above, by immersing the substrate in two types of silane compound solution, the surface potential of the substrate is higher than that in the case of immersing in one type of silane compound solution shown in the comparative example. It can be seen that the higher the film thickness, the higher the degree of filling (close-packed film). This is because the surface potential of the first layer is lowered in the first treatment step by using two types of silane compound solutions and the substrate is immersed twice, and the organic compound of the second layer in the second treatment step. As a result, it is presumed that the surface potential of the substrate is increased due to adhesion of many organic compounds.

図6は、上述の(3)基板の表面電位制御の(b)に相当するシラン系化合物溶液と紫外光照射を用いた場合の結果である。(A)は第1処理工程でOTSを用い、第2処理工程で紫外光を照射したものであり、表面電位は4.22V、接触角は10°となった。(B)は第1処理工程でTMCSを用い、第2処理工程で紫外光を照射した例であり、表面電位は4.35V、接触角は10°となった。   FIG. 6 shows the results when the silane compound solution corresponding to (b) of the above-mentioned (3) substrate surface potential control and ultraviolet light irradiation are used. (A) was obtained by using OTS in the first treatment step and irradiating with ultraviolet light in the second treatment step. The surface potential was 4.22 V and the contact angle was 10 °. (B) is an example in which TMCS was used in the first processing step and ultraviolet light was irradiated in the second processing step. The surface potential was 4.35 V and the contact angle was 10 °.

このように1種類のシラン系化合物溶液に基板を浸漬した場合であっても、それと紫外光照射を組み合わせることによって表面電位が高くなる。これは、基板表面に付着しているシラン系化合物のR基(疎水基)の分子が紫外光による光化学反応(活性化)で切れ、その結果、表面電位が高くなるものと推定される。   Thus, even when the substrate is immersed in one kind of silane compound solution, the surface potential is increased by combining it with ultraviolet light irradiation. This is presumed that the R group (hydrophobic group) molecules of the silane compound adhering to the substrate surface are cut by the photochemical reaction (activation) by ultraviolet light, and as a result, the surface potential is increased.

よって、基板を1種類のシラン系化合物溶液に浸漬した後に紫外光の照射を組み合わせることによって、広面積に亘ってセラミック超微粒子による最密充填の規則配列単粒子膜が得られた。   Therefore, a close-packed ordered single-particle film of ceramic ultrafine particles over a wide area was obtained by combining ultraviolet irradiation after immersing the substrate in one kind of silane compound solution.

以上のことから、基板の表面電位が3.1V〜5.7Vの範囲で規則配列単粒子膜が得られることがわかった。また、接触角について着目すると、接触角90°以下という条件も付加される。   From the above, it was found that an ordered single particle film can be obtained when the surface potential of the substrate is in the range of 3.1V to 5.7V. When attention is paid to the contact angle, a condition that the contact angle is 90 ° or less is also added.

図7はセラミック超微粒子分散溶液(サスペンション)のゼータ電位の影響について調べた結果である。ここで示すゼータ電位は、マルバーン社製のゼータサイザーナノシリーズ(Nano-ZS)を用いた。   FIG. 7 shows the results of examining the influence of the zeta potential of the ceramic ultrafine particle dispersion (suspension). For the zeta potential shown here, a Zetasizer nano series (Nano-ZS) manufactured by Malvern was used.

図7は基板の表面電位を3.10Vで一定とし、ゼータ電位を変化させた時の超微粒子膜の状態を示している。セラミック超微粒子分散溶液として、SiO水性ゾル(日産化学工業社製、商品名:STSOL)を用い、水で濃度を調整してゼータ電位を変化させてから超微粒子膜を形成した。(A)はゼータ電位が−22.4mVのセラミック超微粒子分散溶液(STSOL原液)を用いた場合の得られた膜のSEM写真である。(B)はゼータ電位が−40.2mVのセラミック超微粒子分散溶液(STSOL原液を10倍に薄めた溶液)を用いた場合の得られた膜のSEM写真である。(C)はゼータ電位が−53.3mVのセラミック超微粒子分散溶液(STSOL原液を20倍に薄めた溶液)を用いた場合の得られた膜のSEM写真である。 FIG. 7 shows the state of the ultrafine particle film when the surface potential of the substrate is constant at 3.10 V and the zeta potential is changed. An SiO 2 aqueous sol (manufactured by Nissan Chemical Industries, Ltd., trade name: STSOL) was used as the ceramic ultrafine particle dispersion solution, and after adjusting the concentration with water to change the zeta potential, an ultrafine particle film was formed. (A) is a SEM photograph of a film obtained when a ceramic ultrafine particle dispersion solution (STSOL stock solution) having a zeta potential of −22.4 mV is used. (B) is an SEM photograph of a film obtained when a ceramic ultrafine particle dispersion solution (solution of 10 times STSOL stock solution) having a zeta potential of −40.2 mV is used. (C) is an SEM photograph of a film obtained when a ceramic ultrafine particle dispersion solution (solution in which STSOL stock solution is diluted 20 times) having a zeta potential of −53.3 mV is used.

このようにセラミック超微粒子分散溶液のゼータ電位を基板の表面電位とは逆極性で、かつ、その絶対値を大きくすることによって基板表面への超微粒子の付着量が多くなることがわかる。   Thus, it can be seen that the amount of ultrafine particles attached to the substrate surface increases by increasing the absolute value of the zeta potential of the ceramic ultrafine particle dispersion solution having the opposite polarity to the surface potential of the substrate.

ここで、既に図6を用いて説明したように、表面電位制御工程で紫外光の照射を行うことによって表面電位の制御が可能であるので、この紫外光照射によって超微粒子膜のパターニングを行うことも可能である。図8・図9はその例について示している。   Here, as already described with reference to FIG. 6, since the surface potential can be controlled by irradiating with ultraviolet light in the surface potential control step, the ultrafine particle film is patterned by this ultraviolet light irradiation. Is also possible. 8 and 9 show an example thereof.

図8は、基板をOTSに浸漬した後に、ラインパターン状の紫外光の照射を行った結果であり、(A)はその広域SEM写真、(B)は(A)の紫外光照射領域(b)の拡大SEM写真、(C)は(A)の紫外光非照射領域(c)の拡大SEM写真である。   FIGS. 8A and 8B show the results of performing line pattern ultraviolet light irradiation after the substrate was immersed in OTS. FIG. 8A is a wide-area SEM photograph, and FIG. 8B is an ultraviolet light irradiation region (b) of FIG. ) Is an enlarged SEM photograph of the ultraviolet light non-irradiated region (c) of (A).

図9は、基板をTMCSに浸漬した後に、ラインパターン状の紫外光の照射を行った結果であり、(A)はその広域SEM写真、(B)は(A)の紫外光照射領域(b)の拡大写真、(C)は(A)の紫外光照射領域と非照射領域の境界部分(c)の拡大写真である。   FIGS. 9A and 9B show the results of irradiating line pattern ultraviolet light after immersing the substrate in TMCS. FIG. 9A is a wide-area SEM photograph, and FIG. 9B is an ultraviolet light irradiation region (b) of FIG. (C) is an enlarged photograph of the boundary portion (c) between the ultraviolet light irradiation region and the non-irradiation region of (A).

このように紫外光を照射した領域には緻密な超微粒子膜が形成され、照射しなかった領域には超微粒子膜が形成されない。   Thus, a dense ultrafine particle film is formed in the region irradiated with ultraviolet light, and no ultrafine particle film is formed in the region not irradiated.

以上に示した例はいずれもSiO2超微粒子膜についてであったが、他のセラミック超微粒子膜を形成する場合についても同様である。図10はTiO2超微粒子膜の例であり、基板の表面電位を3.10Vで一定とし、TiO2を含むセラミック超微粒子分散溶液のゼータ電位を変化させた例である。(A)はセラミック超微粒子分散溶液の平均ゼータ電位が−29.6mVの場合であり、平均粒径17nmのTiO2超微粒子膜が得られた。また(B)はセラミック超微粒子分散溶液の平均ゼータ電位が−50.2mVの場合であり、平均粒径40nmの超微粒子膜が得られた。このようにTiO2についても、基板全面に緻密な超微粒子膜を形成できる。 All the examples shown above are for the SiO 2 ultrafine particle film, but the same applies to the case of forming other ceramic ultrafine particle films. FIG. 10 shows an example of a TiO 2 ultrafine particle film, in which the surface potential of the substrate is made constant at 3.10 V, and the zeta potential of the ceramic ultrafine particle dispersion containing TiO 2 is changed. (A) is a case where the average zeta potential of the ceramic ultrafine particle dispersion is −29.6 mV, and a TiO 2 ultrafine particle film having an average particle diameter of 17 nm was obtained. (B) shows the case where the average zeta potential of the ceramic ultrafine particle dispersion is −50.2 mV, and an ultrafine particle film having an average particle diameter of 40 nm was obtained. In this way, a dense ultrafine particle film can be formed on the entire surface of TiO 2 as well.

また、図11は、BaTiO超微粒子膜の例であり、基板の表面電位を−0.03Vで調整して、BaTiOを含むセラミック超微粒子分散溶液のゼータ電位が+43.9mVの場合で得られた膜のSEM写真である。このようにBaTiOについても、基板全面に緻密な超微粒子膜を形成できる。 FIG. 11 shows an example of a BaTiO 3 ultrafine particle film, which is obtained when the surface potential of the substrate is adjusted to −0.03 V, and the zeta potential of the ceramic ultrafine particle dispersion containing BaTiO 3 is +43.9 mV. It is a SEM photograph of the obtained film. As described above, with BaTiO 3 as well, a dense ultrafine particle film can be formed on the entire surface of the substrate.

以上に述べた範囲では、基板の表面に単層のセラミック超微粒子の超微粒子膜を形成しただけであるが、この発明はセラミック超微粒子膜の積層構造体へ発展し得るものである。例えば図12の(A)に示すように、基板上に有機化合物を介してそれぞれナノ粒子A,B,Cの層を積層し、その後、加熱処理などによって有機化合物を除去することによって(B)のようにセラミック超微粒子膜の多層構造体が得られる。   In the above-mentioned range, only a single layer ultrafine particle film of ceramic ultrafine particles is formed on the surface of the substrate, but the present invention can be developed into a laminated structure of ceramic ultrafine particle films. For example, as shown in FIG. 12A, layers of nanoparticles A, B, and C are stacked on the substrate via the organic compound, and then the organic compound is removed by heat treatment or the like (B). Thus, a multilayer structure of ceramic ultrafine particle film is obtained.

また、多層構造体を応用して、例えばBT(BaTiO)/ST(SrTiO)の相交積層構造体を作製すれば、BST((Ba,Sr)TiO)のバルクと比べて新たな機能性が生じることが考えられる。 In addition, if a multilayer structure is applied to produce an BT (BaTiO 3 ) / ST (SrTiO 3 ) cross-layered structure, for example, a new function compared with the bulk of BST ((Ba, Sr) TiO 3 ) It is thought that sex will occur.

以上、この発明に係るセラミック超微粒子膜の製造方法を説明したが、その他種々の変形例が可能である。
例えば、有機化合物溶液として、シラン系化合物溶液を用いたが、これに限られるものではなく、少なくとも2種類の有機化合物溶液を用いるか、または、有機化合物溶液と紫外光を用いることで、基板の表面電位をセラミック超微粒子分散溶液のゼータ電位とは逆極性でセラミック超微粒子分散溶液中のセラミック粒子と共有結合可能な電位に制御することが可能であれば、その他の有機化合物溶液を用いることも可能である。
The method for manufacturing the ceramic ultrafine particle film according to the present invention has been described above, but various other modifications are possible.
For example, a silane-based compound solution is used as the organic compound solution, but the organic compound solution is not limited to this. At least two types of organic compound solutions are used, or the organic compound solution and ultraviolet light are used. Other organic compound solutions may be used as long as the surface potential can be controlled to a potential opposite to the zeta potential of the ceramic ultrafine particle dispersion solution and capable of covalent bonding with the ceramic particles in the ceramic ultrafine particle dispersion solution. Is possible.

また、有機化合物溶液は2種類以上用いても構わない。その場合、最初の処理工程で1層目の表面電位を低くし、以降の処理工程で有機化合物が付着し易くする必要がある。   Two or more organic compound solutions may be used. In that case, it is necessary to lower the surface potential of the first layer in the first treatment step, and to easily adhere the organic compound in the subsequent treatment steps.

以下に示す第1〜第3の実施例では、基板およびセラミック超微粒子分散溶液(サスペンション)として次のものを用いた。まず、基板としては、次の表面処理を施したSiウエハ(100面)を用意した。基板をアセトン溶液中に超音波で10分間洗浄して、エタノール置換してから、水洗を行い、基板上の水分を150℃で5分間加熱して除去した。次に、基板表面の有機成分を取り除くために、エキシマランプで30分以上紫外光照射を行った。   In the following first to third examples, the following were used as the substrate and the ceramic ultrafine particle dispersion (suspension). First, as a substrate, a Si wafer (100 surface) subjected to the following surface treatment was prepared. The substrate was washed in an acetone solution for 10 minutes with an ultrasonic wave and replaced with ethanol, followed by washing with water, and water on the substrate was removed by heating at 150 ° C. for 5 minutes. Next, in order to remove organic components on the substrate surface, ultraviolet light irradiation was performed for 30 minutes or more with an excimer lamp.

また、セラミック超微粒子分散溶液としては、市販の水性SiO2ゾル溶液(日産化学工業社製、商品名:STSOL)を用いた。この水性SiO2ゾル溶液のpHは9〜10、ゼータ電位は−32.4mV、平均粒径は約50nmである。 As the ceramic ultrafine particle dispersion solution, a commercially available aqueous SiO 2 sol solution (manufactured by Nissan Chemical Industries, Ltd., trade name: STSOL) was used. The aqueous SiO 2 sol solution has a pH of 9 to 10, a zeta potential of −32.4 mV, and an average particle size of about 50 nm.

なお、基板の表面電位の測定は、AFM(原子間力顕微鏡:Atomic Force Microscope)を用いた。付着元素の検出は、XPS(X線光電子分光:Xrayphotoelectron spectroscopy)を用いた。親・疎水性は、界面張力計を用いて接触角を計測した。水性SiO2ゾル溶液の粒径、粒度分布、ゼータ電位の測定は、マルバーン社製のゼータサイザーナノシリーズ(Nano-ZS)を用いた。SEM観察は、FE−SEM(電界放射型走査電子顕微鏡)を用いた。 The surface potential of the substrate was measured using an AFM (Atomic Force Microscope). XPS (X-ray photoelectron spectroscopy) was used to detect the adhering elements. For hydrophilicity / hydrophobicity, the contact angle was measured using an interfacial tension meter. For measurement of the particle size, particle size distribution, and zeta potential of the aqueous SiO 2 sol solution, Zeta Sizer Nano Series (Nano-ZS) manufactured by Malvern was used. For the SEM observation, an FE-SEM (field emission scanning electron microscope) was used.

《第1の実施例》
基板の表面電位制御のための第1処理工程として、基板を第1のシラン系化合物溶液であるTMCS(トリメチルクロロシラン:(CH3)3SiCl)の1vol%トルエン溶液)中に10分間浸漬して、取り出した後120℃で5分間加熱した。これにより基板と第1のシラン系化合物の分子膜間の固着力を向上させた。
<< First Example >>
As the first treatment step for controlling the surface potential of the substrate, the substrate is immersed in TMCS (trimethylchlorosilane: (CH 3 ) 3 SiCl) 1 vol% toluene solution) that is the first silane compound solution for 10 minutes. After being taken out, it was heated at 120 ° C. for 5 minutes. As a result, the adhesion between the substrate and the molecular film of the first silane compound was improved.

続いて、第2処理工程として、基板を第2のシラン系化合物溶液であるAPES(γ-アミノプロピルトリエトキシシラン:HN(CH3)2Si(OC2H5)3)の1vol%トルエン溶液中に60分間浸漬して、取り出した後120℃で5分間加熱した。 Subsequently, as a second treatment step, the substrate is a 1 vol% toluene solution of APES (γ-aminopropyltriethoxysilane: HN (CH 3 ) 2 Si (OC 2 H 5 ) 3 ), which is a second silane compound solution. It was immersed for 60 minutes, taken out and heated at 120 ° C. for 5 minutes.

上記第1・第2処理工程を行った後、基板を水性SiO2ゾル溶液中に30分浸漬した。取り出した後、水ですすいでから、1℃で48時間乾燥させた。 After performing the first and second treatment steps, the substrate was immersed in an aqueous SiO 2 sol solution for 30 minutes. After removal, it was rinsed with water and dried at 1 ° C. for 48 hours.

《第2の実施例》
基板の表面電位制御のための第1処理工程として、基板を第1のシラン系化合物溶液であるCTHS(クロロトリヘキシルシラン:[CH3(CH2)53SiCl)の1vol%トルエン溶液中に10分間浸漬して、取り出した後120℃で5分間加熱した。これにより基板と第1のシラン系化合物の分子膜間の固着力を向上させた。
<< Second Embodiment >>
As a first treatment step for controlling the surface potential of the substrate, the substrate is placed in a 1 vol% toluene solution of CTHS (chlorotrihexylsilane: [CH 3 (CH 2 ) 5 ] 3 SiCl) which is the first silane compound solution. For 10 minutes, and after taking out, heated at 120 ° C. for 5 minutes. As a result, the adhesion between the substrate and the molecular film of the first silane compound was improved.

続いて、第2処理工程として、基板を第2のシラン系化合物溶液であるAAPMS(アミノエチルアミノプロピルトリメトキシシラン:NH2C=ONH2C3H6Si(OC2H5)3)の1vol%トルエン溶液中に60分間浸漬して、取り出した後120℃で5分間加熱した。 Subsequently, as a second treatment step, the substrate is made of AAPMS (aminoethylaminopropyltrimethoxysilane: NH 2 C = ONH 2 C 3 H 6 Si (OC 2 H 5 ) 3 ) which is the second silane compound solution. It was immersed in a 1 vol% toluene solution for 60 minutes, taken out, and then heated at 120 ° C. for 5 minutes.

上記第1・第2処理工程を行った後、基板を水性SiO2ゾル溶液中に30分浸漬した。取り出した後、水ですすいでから、1℃で48時間乾燥させた。 After performing the first and second treatment steps, the substrate was immersed in an aqueous SiO 2 sol solution for 30 minutes. After removal, it was rinsed with water and dried at 1 ° C. for 48 hours.

《第3の実施例》
基板の表面電位制御のための第1処理工程として、基板を第1のシラン系化合物溶液であるフェニルトリクロロシラン(PTCS):C6H5Cl3Si)の1vol%トルエン溶液中に10分間浸漬し、取り出した後120℃で5分間加熱した。これにより基板と第1のシラン系化合物の分子膜間の固着力を向上させた。
<< Third embodiment >>
As a first treatment step for controlling the surface potential of the substrate, the substrate is immersed in a 1 vol% toluene solution of phenyltrichlorosilane (PTCS): C 6 H 5 Cl 3 Si, which is the first silane compound solution, for 10 minutes. Then, after taking out, it was heated at 120 ° C. for 5 minutes. As a result, the adhesion between the substrate and the molecular film of the first silane compound was improved.

続いて、第2処理工程として、基板にエキシマランプ(波長172nm)を用いて紫外光を60分間照射した。照射後の基板を水性SiO2ゾル溶液中に30分浸漬した。取り出した後、水ですすいでから、1℃で48時間乾燥させた。 Subsequently, as a second treatment step, the substrate was irradiated with ultraviolet light for 60 minutes using an excimer lamp (wavelength 172 nm). The substrate after irradiation was immersed in an aqueous SiO 2 sol solution for 30 minutes. After removal, it was rinsed with water and dried at 1 ° C. for 48 hours.

得られた超微粒子膜をFE−SEMで観察した結果を図13に示す。第1〜第3の実施例において、処理した基板の表面電位はそれぞれ3.42、5.61、4.33であった。得られた超微粒子膜のSEM写真から、いずれも広い面積に亘って最密充填で規則性が高いことが分かった。 FIG. 13 shows the result of observing the obtained ultrafine particle film with FE-SEM. In the first to third examples, the surface potentials of the treated substrates were 3.42 V , 5.61 V , and 4.33 V , respectively. From the SEM photograph of the obtained ultrafine particle film, it was found that all of them were close-packed over a wide area and highly regular.

特許文献1に示されているフォトニック結晶の製造方法のイメージを示す図である。It is a figure which shows the image of the manufacturing method of the photonic crystal shown by patent document 1. FIG. 特許文献1に示されているフォトニック結晶の他の製造方法のイメージを示す図である。It is a figure which shows the image of the other manufacturing method of the photonic crystal shown by patent document 1. FIG. 特許文献2に示されている金属化合物のパターン形成工程のイメージを示す図である。It is a figure which shows the image of the pattern formation process of the metal compound shown by patent document 2. FIG. 2種類のシラン系化合物溶液を用いて基板の表面電位を制御した場合の超微粒子膜のSEM写真である。It is a SEM photograph of an ultrafine particle film when the surface potential of a substrate is controlled using two types of silane compound solutions. 比較例である1種類のシラン系化合物溶液を用いて基板の表面電位を制御した場合の超微粒子膜のSEM写真である。It is a SEM photograph of the ultrafine particle film when the surface potential of the substrate is controlled using one type of silane compound solution as a comparative example. シラン系化合物溶液と紫外光を用いて基板の表面電位を制御した場合の超微粒子膜のSEM写真である。It is a SEM photograph of the ultrafine particle film when the surface potential of the substrate is controlled using a silane compound solution and ultraviolet light. セラミック超微粒子分散溶液のゼータ電位の影響を示す超微粒子膜のSEM写真である。It is a SEM photograph of the ultrafine particle film showing the influence of the zeta potential of the ceramic ultrafine particle dispersion. 紫外光の照射による超微粒子膜のパターニングの例を示すSEM写真である。It is a SEM photograph which shows the example of the patterning of the ultrafine particle film | membrane by irradiation of an ultraviolet light. 紫外光の照射による超微粒子膜のパターニングの例を示すSEM写真である。It is a SEM photograph which shows the example of the patterning of the ultrafine particle film | membrane by irradiation of an ultraviolet light. TiO2超微粒子膜の例を示すSEM写真である。Is a SEM photograph showing an example of TiO 2 ultrafine particle film. BaTiO超微粒子膜の例を示すSEM写真である。BaTiO 3 is an SEM photograph showing an example of a ultrafine particle film. セラミック超微粒子膜の積層構造の例を示す図である。It is a figure which shows the example of the laminated structure of a ceramic ultrafine particle film | membrane. 第1〜第3の実施例により形成した超微粒子膜のSEM写真である。It is a SEM photograph of the ultrafine particle film formed according to the first to third examples.

Claims (6)

基板を少なくとも2種類の有機化合物溶液中に浸漬し、当該基板の表面電位をセラミック超微粒子分散溶液のゼータ電位とは逆極性で前記セラミック超微粒子分散溶液中のセラミック粒子と共有結合可能な電位に制御する表面電位制御工程と、
前記基板を前記セラミック超微粒子分散溶液中に浸漬する工程と、
前記基板を乾燥させる工程と、
を備えることを特徴とするセラミック超微粒子膜の製造方法。
The substrate is immersed in at least two kinds of organic compound solutions, and the surface potential of the substrate is opposite to the zeta potential of the ceramic ultrafine particle dispersion solution so as to be capable of covalent bonding with the ceramic particles in the ceramic ultrafine particle dispersion solution. A surface potential control step to control;
Immersing the substrate in the ceramic ultrafine particle dispersion solution;
Drying the substrate;
A method for producing a ceramic ultrafine particle film.
前記表面電位制御工程は、化学分子式がR−Si−X(Rは炭化水素基、XはClまたはアルコキシ基)で表される第1のシラン系化合物溶液中に前記基板を浸漬する第1処理工程と、この第1処理工程に続いて化学分子式が(RO)n−Si−Ym(Rは炭化水素基、Yはアミノ基、メルカプト基、アミン基またはカルボキシル基のうちいずれか、n=1〜3、m=1〜3)で表される第2のシラン系化合物溶液中に前記基板を浸漬する第2処理工程とからなる請求項1に記載のセラミック超微粒子膜の製造方法。   The surface potential control step includes a first treatment of immersing the substrate in a first silane compound solution having a chemical molecular formula represented by R-Si-X (R is a hydrocarbon group, X is a Cl or alkoxy group). And a chemical molecular formula (RO) n-Si-Ym (R is a hydrocarbon group, Y is an amino group, a mercapto group, an amine group, or a carboxyl group, and n = 1 The method for producing a ceramic ultrafine particle film according to claim 1, further comprising a second treatment step of immersing the substrate in a second silane compound solution represented by ˜3, m = 1 to 3). 基板を有機化合物溶液中に浸漬し、かつ、当該基板に紫外光を照射し、当該基板の表面電位をセラミック超微粒子分散溶液のゼータ電位とは逆極性で前記セラミック超微粒子分散溶液中のセラミック粒子と共有結合可能な電位に制御する表面電位制御工程と、
前記基板を前記セラミック超微粒子分散溶液中に浸漬する工程と、
前記基板を乾燥させる工程と、
を備えることを特徴とするセラミック超微粒子膜の製造方法。
The substrate is immersed in an organic compound solution, and the substrate is irradiated with ultraviolet light, and the surface potential of the substrate is opposite to the zeta potential of the ceramic ultrafine particle dispersion solution, and the ceramic particles in the ceramic ultrafine particle dispersion solution A surface potential control step for controlling the potential to a potential capable of covalent bonding with
Immersing the substrate in the ceramic ultrafine particle dispersion solution;
Drying the substrate;
A method for producing a ceramic ultrafine particle film.
前記表面電位制御工程は、化学分子式がR−Si−X(Rは炭化水素基、XはClまたはアルコキシ基)で表される第1のシラン系化合物溶液中に前記基板を浸漬する第1処理工程と、この第1処理工程に続いて紫外光を照射する第2処理工程とからなる請求項3に記載のセラミック超微粒子膜の製造方法。   The surface potential control step includes a first treatment of immersing the substrate in a first silane compound solution having a chemical molecular formula represented by R-Si-X (R is a hydrocarbon group, X is a Cl or alkoxy group). 4. The method for producing a ceramic ultrafine particle film according to claim 3, comprising a step and a second treatment step of irradiating ultraviolet light subsequent to the first treatment step. 前記セラミック超微粒子膜は、SiO超微粒子膜、TiO超微粒子膜、またはBaTiO超微粒子膜のいずれかである請求項1〜4のうちいずれか1項に記載のセラミック超粒子膜の製造方法。 Said ceramic ultrafine particle film, SiO 2 ultrafine particle film, TiO 2 ultrafine particle film or manufacture of ceramic ultra-particle film according to any one of BaTiO 3 claims 1 to 4 is either ultrafine particle film, Method. 前記セラミック超微粒子膜は、SiO超微粒子膜またはTiO超微粒子膜のいずれかであり、前記表面電位は3.1〜5.7Vの範囲であり、且つ前記基板の表面の接触角が90°以下である請求項1〜4のうちいずれか1項に記載のセラミック超微粒子膜の製造方法。 It said ceramic ultrafine particle film is either SiO 2 ultrafine particle film or TiO 2 ultrafine particle film, the surface potential is in the range of 3.1~5.7V, and the contact angle of the surface of the substrate 90 The method for producing a ceramic ultrafine particle film according to any one of claims 1 to 4, wherein the temperature is not more than ° C.
JP2006079609A 2006-03-22 2006-03-22 Method for producing ceramic ultrafine particle film Active JP4682888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079609A JP4682888B2 (en) 2006-03-22 2006-03-22 Method for producing ceramic ultrafine particle film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079609A JP4682888B2 (en) 2006-03-22 2006-03-22 Method for producing ceramic ultrafine particle film

Publications (2)

Publication Number Publication Date
JP2007256528A JP2007256528A (en) 2007-10-04
JP4682888B2 true JP4682888B2 (en) 2011-05-11

Family

ID=38630841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079609A Active JP4682888B2 (en) 2006-03-22 2006-03-22 Method for producing ceramic ultrafine particle film

Country Status (1)

Country Link
JP (1) JP4682888B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278666B2 (en) * 2008-07-29 2013-09-04 株式会社村田製作所 Manufacturing method of ultrafine particle thin film
JP2010215470A (en) * 2009-03-18 2010-09-30 Murata Mfg Co Ltd Production method of nano-sheet deposition film
JP2014063062A (en) * 2012-09-21 2014-04-10 Fujitsu Ltd Optical unit and method for manufacturing the same
JP6589330B2 (en) * 2015-03-27 2019-10-16 東洋インキScホールディングス株式会社 Method for producing colored film exhibiting structural color

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374845A (en) * 1989-08-16 1991-03-29 Hitachi Ltd Method of controlling adhesion of particles in liquid
JPH0433382A (en) * 1990-05-29 1992-02-04 Sharp Corp Manufacture of ceramic superconducting film
JPH0570104A (en) * 1990-10-01 1993-03-23 Sharp Corp Production of oxide superconducting film
JPH0745528A (en) * 1993-07-27 1995-02-14 Nissin Electric Co Ltd Selective deposition method of fine particles
JP2003160883A (en) * 2001-11-27 2003-06-06 Toshiba Corp Method and device for arranging fine particles
JP2004344854A (en) * 2003-05-26 2004-12-09 Nagoya Industrial Science Research Inst Method of forming fine particles accumulated body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374845A (en) * 1989-08-16 1991-03-29 Hitachi Ltd Method of controlling adhesion of particles in liquid
JPH0433382A (en) * 1990-05-29 1992-02-04 Sharp Corp Manufacture of ceramic superconducting film
JPH0570104A (en) * 1990-10-01 1993-03-23 Sharp Corp Production of oxide superconducting film
JPH0745528A (en) * 1993-07-27 1995-02-14 Nissin Electric Co Ltd Selective deposition method of fine particles
JP2003160883A (en) * 2001-11-27 2003-06-06 Toshiba Corp Method and device for arranging fine particles
JP2004344854A (en) * 2003-05-26 2004-12-09 Nagoya Industrial Science Research Inst Method of forming fine particles accumulated body

Also Published As

Publication number Publication date
JP2007256528A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Cho et al. Fabrication of highly ordered multilayer films using a spin self‐assembly method
Boudreau et al. Deposition of oriented zeolite A films: in situ and secondary growth
KR101411769B1 (en) Superhydrophilic coating compositions and their preparation
JP5950399B2 (en) Organic-inorganic transparent hybrid film and production method thereof
US5451459A (en) Chemically absorbed film comprising fluorocarbon chains
TWI472641B (en) A method for treating high hydrophobic surface of substrate
Xiang et al. Fabrication of self-assembled monolayers (SAMs) and inorganic micropattern on flexible polymer substrate
WO2014136275A1 (en) Organic/inorganic transparent hybrid coating film and process for producing same
WO2009012116A2 (en) Superhydrophobic diatomaceous earth
BRPI0621423A2 (en) super hydrophobic surface and method to form the same
US20080014356A1 (en) Selective metal patterns using polyelect rolyte multilayer coatings
JP2013540604A (en) Method for producing a deposit of inorganic nanoparticles with microscopic gaps on a light transparent support
MX2008012426A (en) Modified surfaces and method for modifying a surface.
JP4682888B2 (en) Method for producing ceramic ultrafine particle film
JP2017526971A (en) Alternate laminated textured multilayer laminate transfer film
Masuda et al. Arrangement of nanosized ceramic particles on self-assembled monolayers
Laurenti et al. How micropatterning and surface functionalization affect the wetting behavior of ZnO nanostructured surfaces
JP2007117827A (en) Pattern-like fine particle film and its production method
JP4742327B2 (en) Spatial precision placement technology for materials
KR101421064B1 (en) Hydrophobic nano-graphene laminate and method for preparing same
Kanovsky et al. In-situ design of hierarchical durable silica-based coatings on polypropylene films with superhydrophilic, superhydrophobic and self-cleaning properties
JP2008142636A (en) Method of applying photocatalyst on polyolefin based resin molding
KR102523915B1 (en) Coating process
EP3749708A1 (en) Process for modification of a solid surface
JP5278666B2 (en) Manufacturing method of ultrafine particle thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4682888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150