JP4681381B2 - Rotary draw bending control device, method, computer program, and computer-readable recording medium - Google Patents

Rotary draw bending control device, method, computer program, and computer-readable recording medium Download PDF

Info

Publication number
JP4681381B2
JP4681381B2 JP2005217646A JP2005217646A JP4681381B2 JP 4681381 B2 JP4681381 B2 JP 4681381B2 JP 2005217646 A JP2005217646 A JP 2005217646A JP 2005217646 A JP2005217646 A JP 2005217646A JP 4681381 B2 JP4681381 B2 JP 4681381B2
Authority
JP
Japan
Prior art keywords
strain
bending
value
pressing force
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005217646A
Other languages
Japanese (ja)
Other versions
JP2007029997A (en
Inventor
正昭 水村
幸久 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005217646A priority Critical patent/JP4681381B2/en
Publication of JP2007029997A publication Critical patent/JP2007029997A/en
Application granted granted Critical
Publication of JP4681381B2 publication Critical patent/JP4681381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

本発明は、自動車部品用管材や配管等の金属管の曲げ加工方法の一つである回転引き曲げ加工を制御する回転引き曲げ加工制御装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体に関する。   The present invention relates to a rotary draw bending control apparatus, a method, a computer program, and a computer-readable recording medium for controlling a rotary draw bending process, which is one of bending methods for metal pipes such as automobile parts and pipes. .

近年、金属管は、プラント用配管、ガス・水道用配管、ボイラー管等の内部に液体や気体を通す用途以外に、自動車や自転車等の軽量化を目的として適用される例も増加している。適用範囲が拡大されるに伴い、形状も複雑化しているが、その際には、コスト削減や生産性・作業性向上のため、予め曲げ加工が施されることが多い。   In recent years, metal pipes have been increasingly applied for the purpose of reducing the weight of automobiles, bicycles, etc., in addition to applications for passing liquids and gases inside plant pipes, gas / water pipes, boiler pipes, etc. . As the application range is expanded, the shape is also complicated. In this case, bending is often performed in advance in order to reduce costs and improve productivity and workability.

金属管の曲げ加工法には様々あるが(例えば非特許文献1を参照)、最も工業的に良く用いられる工法として回転引き曲げ工法が挙げられる。本工法は、図2に示されるように、金属管の一部を回転曲げ型と締付けダイで掴んだ状態で回転曲げ型を回転させる方法である。その際に、金属管内部に固定したマンドレルで金属管の扁平を防止し、曲げ内側後方に固定したワイパーダイでしわを防止する。また、曲げ外側に配置されているプレッシャーダイは、従来は位置が固定されていたが、最近の市販装置では曲げ回転速度に追従して前進するのが一般的である。本曲げ工法は、基本的には引っ張りながら曲げるため、回転引き曲げ或いはは引き曲げと呼ばれるが、装置によっては金属管の後端からブースターダイで押しながら曲げることも可能である。   There are various methods for bending metal pipes (see, for example, Non-Patent Document 1), and the most frequently used industrial method is a rotational pulling method. As shown in FIG. 2, this construction method is a method of rotating the rotary bending die in a state where a part of the metal tube is held by the rotary bending die and the clamping die. At that time, the mandrel fixed inside the metal tube prevents the metal tube from being flattened, and the wiper die fixed to the inner back of the bend prevents wrinkles. In addition, the position of the pressure die arranged outside the bending is conventionally fixed, but in a recent commercial apparatus, it is general to advance following the bending rotational speed. This bending method is basically referred to as rotational pulling or pulling because it is bent while being pulled, but depending on the apparatus, it can be bent while being pushed from the rear end of the metal tube with a booster die.

本曲げ工法は、上述のように各種の工具によって拘束されながら曲げられるため、しわや座屈等の加工不良が発生しにくく、かつ、曲げ加工後の形状(曲げ半径や断面形状)の再現性も高いため、工業生産的に非常に有利な工法と評価できる。   Since this bending method is bent while being constrained by various tools as described above, it is difficult to cause processing defects such as wrinkles and buckling, and the reproducibility of the shape after bending (bending radius and cross-sectional shape). Therefore, it can be evaluated as a very advantageous method for industrial production.

「チューブフォーミング」36頁〜64頁(1992年10月30日 コロナ社発行)“Tube Forming” pages 36-64 (issued by Corona on October 30, 1992) 日本鋼管技報,Vol.29(1964),28頁Nippon Steel Pipe Technical Report, Vol. 29 (1964), p. 28 塑性と加工,Vol.23,No.252(1982),17頁Plasticity and processing, Vol.23, No.252 (1982), p.17 JIS Z 2254「薄板金属材料の塑性ひずみ比試験方法」JIS Z 2254 "Plastic strain ratio test method for sheet metal materials" 「塑性力学」77頁(1965年1月25日 日刊工業発行)"Plastic Mechanics", p. 77 (published by Nikkan Kogyo on January 25, 1965)

回転引き曲げ工法では、曲げ外側で軸方向引張ひずみが発生し、肉厚は減少する。そのため、その傾向が顕著になると、曲げ外側で破断する危険性が生じる。また、破断まで至らなくても、製品の強度や腐食代確保の目的から定められている所定の肉厚を満足できない場合も起こりうる。一方、曲げ内側では軸方向圧縮ひずみが発生し、肉厚は増加するが、その傾向が顕著になると、曲げ内側でしわや座屈が発生する場合がある。   In the rotary bending method, axial tensile strain is generated outside the bend, and the wall thickness decreases. Therefore, when the tendency becomes remarkable, there is a risk of fracture on the outside of the bend. Moreover, even if it does not lead to breakage, there may occur a case where a predetermined thickness determined for the purpose of securing the strength of the product and securing the corrosion allowance cannot be satisfied. On the other hand, axial compressive strain occurs on the inner side of the bend and the wall thickness increases. However, when the tendency becomes significant, wrinkles and buckling may occur on the inner side of the bend.

以上の理由から、曲げ加工時に発生する軸方向ひずみや肉厚方向ひずみをある所定の範囲内にすれば、上述のような破断やしわ等の加工不良を防止することができる。そのために、まず必要となることは、回転引き曲げ工法で曲げた後のひずみを精度よく見積もることである。   For the above reasons, if the axial strain and thickness direction strain generated during bending are within a predetermined range, processing failures such as breakage and wrinkles as described above can be prevented. Therefore, first of all, it is necessary to accurately estimate the strain after bending by the rotary pull bending method.

しかしながら、回転引き曲げ工法では、上述のように各種の工具で拘束されながら曲げられるため、単純に幾何的な曲げ形状からはひずみを精度よく見積もることができない。これまでの検討例では、耳野ら(非特許文献2)が提唱した下式(1)又は下式(2)のような曲げ外側の減肉率ζ(=(素管の肉厚t0−曲げ後の肉厚t)/素管の肉厚t0)の計算式がある。 However, in the rotational pulling bending method, since it is bent while being restrained by various tools as described above, it is not possible to accurately estimate the strain from a simple geometric bending shape. In the examination examples so far, the thickness reduction ratio ζ (= (thickness t 0 of the raw tube) outside the bending as in the following formula (1) or the following formula (2) proposed by Oono et al. There is a calculation formula of wall thickness after bending t) / wall thickness t 0 ).

Figure 0004681381
Figure 0004681381

上式(2)は薄肉・小曲げ半径用の計算式であり、上式(1)はその他の場合に適用するための計算式であるが、いずれも素管の外径D(mm)と管中心部の曲げ半径R(mm)のみで曲げ外側の減肉率ζが計算される。   The above formula (2) is a calculation formula for thin wall and small bend radii, and the above formula (1) is a calculation formula to be applied to other cases, both of which are the outer diameter D (mm) of the raw pipe The thickness reduction ratio ζ on the outside of the bend is calculated only with the bend radius R (mm) at the center of the tube.

しかしながら、回転引き曲げ後の肉厚は、素管の材料特性や曲げ条件の影響も大きく受ける。また、上式では、プレッシャーダイの位置は固定されている前提であるが、最近では回転曲げ型の回転に追従して前進させる場合が多い。以上のような理由により、上式(1)や上式(2)では、実際の曲げ外側の減肉率ζを精度良く見積もることができない。   However, the wall thickness after rotational pulling is greatly affected by the material properties of the base tube and bending conditions. In the above equation, the position of the pressure die is assumed to be fixed, but recently, the pressure die is often moved forward following the rotation of the rotary bending die. For the reasons described above, the above formula (1) and formula (2) cannot accurately estimate the thickness reduction ratio ζ outside the bending.

また、上式(1)や上式(2)で求めた曲げ外側の減肉率ζより、下式(3)によって曲げ外側の肉厚方向真ひずみεt(以後、真ひずみを単にひずみと称す)が計算することができる。 Further, from the thickness reduction rate ζ on the outer side of the bend obtained from the above formula (1) or the above formula (2), the true strain ε t in the thickness direction of the outer side of the bend (hereinafter, true strain is simply referred to as strain) by the following formula (3). Can be calculated.

Figure 0004681381
Figure 0004681381

しかしながら、耳野らの方法では軸方向や周方向のひずみは求めることができない。また、曲げ内側のひずみに関しては全ての方向とも求めることができない。   However, the strain in the axial direction and the circumferential direction cannot be obtained by the method of Omino et al. In addition, it is not possible to obtain the strain inside the bending in all directions.

回転引き曲げ後の肉厚或いはひずみを計算的に求めた例としては、上記の耳野ら以外に佐藤ら(非特許文献3)の初等解析的に求めた例がある。本例では、曲げ外側の肉厚方向ひずみだけでなく、曲げ内側や軸方向・周方向ひずみも計算している。また、本計算では、素管材料のr値やブースターダイによる後方からの押し力(以後、押し力と称す)の影響も考慮している。   As an example of calculating the thickness or strain after the rotational pulling, there is an example obtained by elementary analysis of Sato et al. In this example, not only the thickness direction strain on the outer side of the bend but also the inner side of the bend and the axial / circumferential strain are calculated. In this calculation, the influence of the r value of the raw tube material and the pushing force from the rear by the booster die (hereinafter referred to as pushing force) is also taken into consideration.

しかしながら、本計算では軸方向の単軸引張状態を仮定しているが、本発明者らの検討結果から、実際には軸方向単軸引張状態にはならない。図3に、FEM解析結果例を示す。本例は、94φ×1.6tの鋼管を188(mm)の曲げ半径(R/D=2)で90°曲げた際のひずみ比β(=周方向ひずみεθ/軸方向ひずみεφ)の分布である。軸方向単軸引張状態でのひずみ比β0は、素管のr値より下式(4)のように表される。 However, in this calculation, a uniaxial tension state in the axial direction is assumed. However, from the examination results of the present inventors, the axial uniaxial tension state is not actually achieved. FIG. 3 shows an example of the FEM analysis result. This example shows a strain ratio β (= circumferential strain ε θ / axial strain ε φ ) when a steel tube of 94φ × 1.6 t is bent 90 ° with a bending radius (R / D = 2) of 188 (mm). Distribution. The strain ratio β 0 in the axial uniaxial tension state is expressed by the following equation (4) from the r value of the raw tube.

Figure 0004681381
Figure 0004681381

なお、r値は、塑性ひずみ比とも呼ばれ、JISの「薄板金属材料の塑性ひずみ比試験方法」(非特許文献4)に記載されている方法で得られる材料特性である。図3の結果を見て分かるように、FEM結果のひずみ比βは軸方向単軸引張状態のひずみ比β0よりも全体的に絶対値が小さい。これは、図4に示されるように、回転引き曲げが各種の工具で拘束されながら曲げられるためである。すなわち、曲げ加工を受ける範囲は、曲げ開始直後の非常に狭い領域に限られて材料が周方向に自由に流動しないため、単軸引張よりも平面ひずみ状態(β=0)に近づく。 In addition, r value is also called a plastic strain ratio, and is a material characteristic obtained by the method described in JIS "Plastic strain ratio test method for sheet metal material" (Non-Patent Document 4). As can be seen from the result of FIG. 3, the absolute value of the strain ratio β of the FEM result is generally smaller than the strain ratio β 0 in the axial uniaxial tension state. This is because, as shown in FIG. 4, the rotary pulling is bent while being constrained by various tools. That is, the range subjected to bending is limited to a very narrow region immediately after the start of bending, and the material does not flow freely in the circumferential direction, so that it approaches a plane strain state (β = 0) rather than uniaxial tension.

また、佐藤らの検討では素管の肉厚の影響は無視しているが、本発明者らの検討では図5のFEM結果例に示されるように、素管の肉厚−外径比(t0/D)によって肉厚方向ひずみは大きく変わる。 Further, although the influence of the wall thickness of the raw tube is ignored in the study by Sato et al., As shown in the FEM result example of FIG. The strain in the thickness direction varies greatly depending on t 0 / D).

以上の理由より、佐藤らの検討でも、回転引き曲げ後のひずみを精度良く見積もることができない。また、佐藤らの初等解析では、曲げ後のひずみを一つの単純な式には表現していないため、簡単に算出することもできない。   For the above reasons, even after the study by Sato et al., It is not possible to accurately estimate the strain after rotational pulling. Moreover, in the primary analysis by Sato et al., The strain after bending is not expressed as a single simple expression, so it cannot be easily calculated.

その他の手段としては、市販の有限要素法プログラムのPAM-STAMPにSimplified Bendingという機能があり、回転引き曲げ後の肉厚を簡易に計算できる。本計算における入力変数は、素管の外径、肉厚、r値、及び曲げ半径であり、後方からの押し力は考慮されていない。本計算方法における計算式は公開されていないため、詳細は不明だが、本発明者らの経験からは、実際の肉厚に対する精度は良くない。また、得られる情報も肉厚のみであり、軸方向ひずみや周方向ひずみは求められない。   As another means, PAM-STAMP, a commercially available finite element method program, has a function called Simplified Bending, which can easily calculate the wall thickness after rotational bending. The input variables in this calculation are the outer diameter, the wall thickness, the r value, and the bending radius of the raw tube, and the pushing force from the rear is not considered. Since the calculation formula in this calculation method is not disclosed, details are unknown, but from the experience of the present inventors, the accuracy with respect to the actual wall thickness is not good. Further, the information obtained is only the thickness, and neither axial strain nor circumferential strain is obtained.

また、有限要素法(FEM)で詳細にモデルを作成して計算する方法もある。FEMを用いれば、各種の条件を考慮した精度良いひずみの見積もりが可能となるが、前述のように、回転引き曲げでは多くの工具を使用するため、モデル作成に時間と手間が掛かってしまう。   There is also a method of creating and calculating a model in detail by a finite element method (FEM). If FEM is used, it is possible to accurately estimate the strain in consideration of various conditions. However, as described above, since many tools are used in the rotational bending, it takes time and labor to create a model.

以上のように、従来は、以下のA〜Eの条件を全て満足するような回転引き曲げ後のひずみを見積もる手段がなかった。
A.実験値を精度良く見積もり可能
B.曲げ外側及び曲げ内側の両方とも見積もり可能
C.素管の外径・肉厚・r値・曲げ半径・押し力の影響を考慮可能
D.肉厚方向・軸方向・周方向のすべてのひずみを見積もり可能
E.短時間で簡易に見積もり可能
As described above, conventionally, there has been no means for estimating the strain after rotational pulling that satisfies all the following conditions A to E.
A. B. Can estimate experimental values with high accuracy. B. Both bend outer side and inner bend can be estimated. Possible to consider the influence of the outer diameter, wall thickness, r value, bending radius, and pushing force of the tube. Estimate all strains in the thickness direction, axial direction and circumferential direction. Easy estimation in a short time

そこで、本発明では、上記の条件を全て兼ね備えた、回転引き曲げ後のひずみを実際に曲げ加工する前に見積もることを可能にし、そのひずみを用いて製品の合否を判定可能とすることを目的とする。また、不合格となることが予想される場合は、合格となるような押し力の値を出力可能とすることを目的とする。さらに、その合格となるような押し力の値に自動的に設定値を修正可能とすることを目的とする。   Therefore, in the present invention, it is possible to estimate the distortion after rotational pulling, which has all of the above conditions, before actually bending, and to determine whether the product is acceptable or not using the distortion. And Moreover, when it is anticipated that it will fail, it aims at enabling the output of the value of pushing force which becomes a pass. It is another object of the present invention to make it possible to automatically correct a set value to a value of a pressing force that passes the pass.

本発明による回転引き曲げ加工制御装置は、金属管の内部に、砲弾形マンドレル及び先端側の複数のマンドレル玉が直列状に互いに連結し、前記複数のマンドレル玉がフレキシブルに湾曲可能な芯金を挿入し、回転曲げ型及び締め型で金属管の一部を押さえながら金属管を曲げ加工する際に、管の外径、肉厚、曲げ半径、素材のr値、押し力、及び曲げ加工後の製品の合否判定基準となるひずみの基準値を入力する入力手段と、曲げ加工する前に前記外径、肉厚、曲げ半径、素材のr値、及び押し力に基づいて肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上を計算する計算手段と、曲げ加工する前に前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上と前記ひずみの基準値とに基づいて製品の合否を予測する手段とを備えた点に特徴を有する。
本発明による回転引き曲げ加工制御方法は、金属管の内部に、砲弾形マンドレル及び先端側の複数のマンドレル玉が直列状に互いに連結し、前記複数のマンドレル玉がフレキシブルに湾曲可能な芯金を挿入し、回転曲げ型及び締め型で金属管の一部を押さえながら金属管を曲げ加工する際に、管の外径、肉厚、曲げ半径、素材のr値、押し力、及び曲げ加工後の製品の合否判定基準となるひずみの基準値の入力をコンピュータが受け付ける入力工程と、曲げ加工する前に前記管の外径、肉厚、曲げ半径、素材のr値、及び押し力に基づいてコンピュータが肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上を計算する計算工程と、曲げ加工する前に前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上に基づいてコンピュータが製品の合否を判定する工程とを有する点に特徴を有する。
本発明によるコンピュータプログラムは、金属管の内部に、砲弾形マンドレル及び先端側の複数のマンドレル玉が直列状に互いに連結し、前記複数のマンドレル玉がフレキシブルに湾曲可能な芯金を挿入し、回転曲げ型及び締め型で金属管の一部を押さえながら金属管を曲げ加工する際に、管の外径、肉厚、曲げ半径、素材のr値、押し力、及び曲げ加工後の製品の合否判定基準となるひずみの基準値の入力を受け付ける入力処理と、曲げ加工する前に前記管の外径、肉厚、曲げ半径、素材のr値、及び押し力に基づいて肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上を計算する計算処理と、曲げ加工する前に前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上に基づいて製品の合否を判定する処理とをコンピュータに実行させる点に特徴を有する。
本発明によるコンピュータ読み取り可能な記録媒体は、本発明のコンピュータプログラムを記録した点に特徴を有する。
A rotary pull bending control device according to the present invention includes a shell-shaped mandrel and a plurality of mandrel balls on the tip side connected in series to each other inside a metal tube, and the mandrel balls that can be bent flexibly. When inserting and bending a metal tube while holding a part of the metal tube with a rotary bending die and clamping die, the outer diameter of the tube, the wall thickness, the bending radius, the r value of the material, the pushing force, and after bending An input means for inputting a strain reference value which is a pass / fail judgment criterion of the product, and a strain in the thickness direction based on the outer diameter, the wall thickness, the bending radius, the r value of the material, and the pressing force before bending, Calculation means for calculating one or more of axial strain and circumferential strain, and one or more of the thickness direction strain, axial strain, circumferential strain and the strain before bending. Predict pass / fail of products based on reference values Characterized in that and means for.
In the rotational pull bending control method according to the present invention , a shell-shaped mandrel and a plurality of mandrel balls on the tip side are connected in series to each other inside a metal tube, and the mandrel balls are bent flexibly. When inserting and bending a metal tube while holding a part of the metal tube with a rotary bending die and clamping die, the outer diameter of the tube, the wall thickness, the bending radius, the r value of the material, the pushing force, and after bending Based on the input process in which the computer accepts the input of the strain reference value, which is a pass / fail criterion for the product, and the outer diameter, the wall thickness, the bending radius, the r value of the material, and the pressing force before bending. A calculation process in which a computer calculates one or more of thickness direction strain, axial direction strain, and circumferential direction strain, and one type of thickness direction strain, axial strain, and circumferential strain before bending. Based on two or more Computer Te is characterized in that it has a step of determining acceptability of a product.
The computer program according to the present invention includes a shell-shaped mandrel and a plurality of mandrel balls on the tip side connected in series to each other in a metal tube, and a plurality of mandrel balls that are flexibly bent are inserted and rotated. When bending a metal tube while holding a part of the metal tube with a bending die and a clamping die, the outer diameter of the tube, the wall thickness, the bending radius, the r value of the material, the pressing force, and the pass / fail of the product after bending An input process that accepts an input of a strain reference value as a judgment criterion, and a thickness direction strain and axis based on the outer diameter, thickness, bending radius, material r value, and pushing force of the tube before bending. Based on the calculation process to calculate one or more of directional strain and circumferential strain, and one or more of the thickness direction strain, axial strain and circumferential strain before bending. Processing to determine pass / fail and Characterized in that causing a computer to execute.
The computer-readable recording medium according to the present invention is characterized in that the computer program of the present invention is recorded.

本発明によれば、従来は簡易で精度の良い見積もりが困難であった回転引き曲げ後のひずみを実際に曲げ加工する前に見積もることができ、それによって製品の合否を曲げ加工する前に予測することが可能になる。また、その結果、不合格となることが予想される場合は、合格となるような押し力の値を出力したり、自動的に押し力の値を修正したりすることによって、製品の合格比率を高めることが可能になる。その結果、不良品が削減できて歩留りが向上する。   According to the present invention, it is possible to estimate the strain after rotational pulling, which has been difficult in the past with simple and accurate estimation, before actually bending, thereby predicting the pass / fail of the product before bending. It becomes possible to do. As a result, if it is predicted that the product will be rejected, the product's acceptance ratio is output by outputting a value of the pressing force that passes or automatically correcting the value of the pressing force. Can be increased. As a result, defective products can be reduced and the yield is improved.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1は、本発明を適用した回転引き曲げ加工制御を説明するための図である。同図において、1は金属管、2は回転曲げ型、3は締付けダイ、4はプレッシャーダイ、5はワイパーダイ、6はマンドレル(砲弾)、7はマンドレル(玉)、8はマンドレル固定用ロッド、9はブースターダイであり、回転曲げ型2及び締付けダイ3で金属管1の一部(曲げ先端)を押さえながら金属管1を曲げ加工する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a diagram for explaining rotational draw bending control to which the present invention is applied. In the figure, 1 is a metal tube, 2 is a rotary bending die, 3 is a clamping die, 4 is a pressure die, 5 is a wiper die, 6 is a mandrel (cannonball), 7 is a mandrel (ball), and 8 is a rod for fixing a mandrel. , 9 is a booster die, which bends the metal tube 1 while holding a part (bending tip) of the metal tube 1 with the rotary bending die 2 and the clamping die 3.

前述のように、回転引き曲げ工法では多数の工具を使用するため、加工後のひずみに及ぼす条件因子は多いと考えられる。また、素管のサイズや材料特性の影響もあると考えられる。そこで考えうる条件因子として下記のような14種が挙げられる。
1)曲げ半径−外径比R/D
2)金属管1の肉厚−外径比t0/D
3)金属管1の強度
4)金属管1のn値
5)金属管1のr値
6)ブースターダイ9による押し力F(kN)
7)回転曲げダイ2とプレッシャーダイ4との速度比
8)ワイパーダイ5やマンドレル6、7と金属管1との摩擦係数
9)回転曲げ型2、プレッシャーダイ4、締付けダイ3と金属管1との摩擦係数
10)マンドレル玉7の個数
11)マンドレル6、7の軸方向位置
12)マンドレル6,7と金属管1との隙間量
13)ワイパーダイ5と金属管1との隙間量
14)プレッシャーダイ4と金属管1との隙間量
As described above, since many tools are used in the rotary pull bending method, it is considered that there are many condition factors affecting the strain after processing. In addition, it is considered that there is an influence of the size and material characteristics of the raw tube. The following 14 types of condition factors can be considered.
1) Bending radius-outer diameter ratio R / D
2) Thickness-outer diameter ratio t 0 / D of the metal tube 1
3) Strength of the metal tube 1 4) n value of the metal tube 1 5) r value of the metal tube 1 6) Pushing force F (kN) by the booster die 9
7) Speed ratio between the rotating bending die 2 and the pressure die 4 8) Friction coefficient between the wiper die 5, the mandrels 6, 7 and the metal tube 1) 9) The rotating bending die 2, the pressure die 4, the clamping die 3 and the metal tube 1 10) Number of mandrel balls 7 11) Axial position of mandrels 6, 7 12) Gap amount between mandrels 6, 7 and metal tube 13) Gap amount 14 between wiper die 5 and metal tube 1) Clearance between pressure die 4 and metal tube 1

これら14種類の条件因子を独立に変えてFEM解析して、それぞれの条件因子が曲げ後のひずみに及ぼす影響を調査した。具体的には、各条件因子を独立に変動させた際に、肉厚方向ひずみの振れ幅Δεtが0.05を越える条件因子を抽出した。その結果、抽出された条件因子は下記の4種類である。
1)曲げ半径−外径比R/D
2)金属管1の肉厚−外径比t0/D
5)金属管1のr値
6)ブースターダイ9による押し力F(kN)
These 14 kinds of conditional factors were changed independently and subjected to FEM analysis, and the influence of each conditional factor on the strain after bending was investigated. Specifically, when each condition factor was changed independently, a condition factor having a thickness direction strain Δε t exceeding 0.05 was extracted. As a result, the extracted condition factors are the following four types.
1) Bending radius-outer diameter ratio R / D
2) Thickness-outer diameter ratio t 0 / D of the metal tube 1
5) r value of metal tube 1 6) Pushing force F (kN) by booster die 9

よって、上記の4種類の条件因子を用いれば、回転引き曲げ後のひずみを精度良く、かつ、簡易に求めることが可能になる。すなわち、曲げ外側及び曲げ内側の肉厚方向ひずみεt、軸方向ひずみεφ、周方向ひずみεθがそれぞれ下式(5)〜(10)のように定式化された(添え字(o)は曲げ外側、(i)は曲げ内側を示す)。 Therefore, if the above four types of conditional factors are used, it is possible to accurately and easily obtain the strain after rotational pulling. That is, the thickness direction strain ε t , the axial direction strain ε φ , and the circumferential direction strain ε θ on the outside and inside of the bend were formulated as the following equations (5) to (10) (subscript (o) Indicates the outside of the bend, and (i) indicates the inside of the bend).

Figure 0004681381
Figure 0004681381

なお、式中のσFは、押し力Fを管の断面積で割った値であり、平均的な軸方向応力(MPa)を意味する。具体的には、下式(11)によって計算される。 In the equation, σ F is a value obtained by dividing the pressing force F by the cross-sectional area of the tube, and means an average axial stress (MPa). Specifically, it is calculated by the following formula (11).

Figure 0004681381
Figure 0004681381

また、各式における定数k1〜k12は、管材の材料特性や曲げ条件等が変化すると若干変動するが、およそ次のような範囲となる。
1=0.4〜0.6
2=0.01〜0.03
3=0.3〜0.6
4=0.01〜0.02
5=0〜200
6=1〜2
7=0.4〜0.6
8=0.01〜0.03
9=0.3〜0.6
10=0.001〜0.005
11=400〜800
12=1〜2
In addition, the constants k 1 to k 12 in each formula vary slightly when the material characteristics of the pipe material, bending conditions, and the like change, but are approximately in the following ranges.
k 1 = 0.4 to 0.6
k 2 = 0.01~0.03
k 3 = 0.3~0.6
k 4 = 0.01~0.02
k 5 = 0~200
k 6 = 1-2
k 7 = 0.4 to 0.6
k 8 = 0.01~0.03
k 9 = 0.3~0.6
k 10 = 0.001 to 0.005
k 11 = 400 to 800
k 12 = 1-2

上式(5)〜(11)を用いることにより、管の外径D(mm)、肉厚t0(mm)、曲げ半径R(mm)、素材のr値、及び押し力F(kN)から、曲げ外側及び曲げ内側の肉厚方向ひずみεt、軸方向ひずみεφ、周方向ひずみεθが見積もり可能になる。 By using the above equations (5) to (11), the outer diameter D (mm) of the tube, the thickness t 0 (mm), the bending radius R (mm), the r value of the material, and the pressing force F (kN) Therefore, it is possible to estimate the thickness direction strain ε t , the axial direction strain ε φ , and the circumferential direction strain ε θ on the outside and inside the bend.

上記のひずみを用いて、曲げ加工する前に製品の合否を予測する。例えば、製品の強度や腐食代の観点から最低肉厚を合否判定基準とする場合は、曲げ外側の肉厚方向ひずみεt(o)の絶対値がある値(例えばεt-cr)以下で合格と判断する。また、しわのないことが重要な製品の場合は、曲げ内側の軸方向ひずみεφ(i)の絶対値をある値(例えばεφ-cr)以下で合格とすればよい。その他にも製品の用途や目的によって、様々な判定基準が考えられる。例えば、非特許文献5に記載の下式(12)のような相当ひずみεeqを判定基準にする場合も考えられる。 Using the above strain, the product pass / fail is predicted before bending. For example, when the minimum thickness is used as a pass / fail criterion from the viewpoint of product strength and corrosion allowance, the absolute value of the strain ε t (o) in the thickness direction outside the bend is less than a certain value (eg, ε t-cr ). Judge that it is acceptable. In addition, in the case of a product in which wrinkles are important, the absolute value of the axial strain εφ (i) inside the bend may be accepted at a certain value (for example, εφ -cr ) or less. In addition, various criteria can be considered depending on the use and purpose of the product. For example, a case where an equivalent strain ε eq as in the following expression (12) described in Non-Patent Document 5 is used as a criterion is also conceivable.

Figure 0004681381
Figure 0004681381

また、上記のいずれの判定基準で不合格となることが曲げ加工前に予測されるような場合でも、押し力Fを変更すれば合格範囲に入る可能性もある。例えば、図1の場合は、曲げ外側の肉厚が重要となる製品の例であり、合否判定基準として、下式(13)のような肉厚方向ひずみの基準値εt-crが決まっていると考える。 Further, even if it is predicted that any of the above criteria will be rejected before bending, there is a possibility that the pass range can be entered if the pressing force F is changed. For example, the case of FIG. 1 is an example of a product in which the thickness on the outer side of the bending is important, and the reference value ε t-cr of the thickness direction strain as shown in the following formula (13) is determined as a pass / fail judgment criterion. I think.

Figure 0004681381
Figure 0004681381

すると、上式(5)、(11)より、製品が合格となるための押し力Fの条件が下式(14)のように求められる。   Then, from the above formulas (5) and (11), the condition of the pressing force F for the product to pass is obtained as the following formula (14).

Figure 0004681381
Figure 0004681381

ただし、実際の工業生産では、ある程度の余裕を見込んで、下式(15)のように係数a1を乗じた値にFを設定すればよい。係数a1の値としては、例えば1.1や1.2程度が適当である。 However, in actual industrial production, F may be set to a value obtained by multiplying the coefficient a 1 as shown in the following equation (15) with a certain margin. As the value of the coefficient a 1 , for example, about 1.1 or 1.2 is appropriate.

Figure 0004681381
Figure 0004681381

このように、実際に曲げ加工を行う前に、上式(15)を用いてコンピュータが押し力Fの値を計算して出力させる。その値に押し力Fの設定値を初期条件から変更して曲げ加工を行えば、基準の肉厚をクリアできる製品を得ることができる。また、上記のように計算した押し力Fの値に自動的に設定を修正するようにしてもよい。   Thus, before actually bending, the computer calculates and outputs the value of the pressing force F using the above equation (15). If the set value of the pressing force F is changed to the value from the initial condition and bending is performed, a product that can clear the standard thickness can be obtained. Further, the setting may be automatically corrected to the value of the pushing force F calculated as described above.

同様に、曲げ内側のしわを防止するために、合否判定基準として下式(16)のような軸方向ひずみの基準値εφ-crがある場合、上式(8)、(11)より、合格となるための押し力Fの範囲は下式(17)のように求まる。 Similarly, in order to prevent wrinkles inside the bend, when there is a reference value ε φ-cr of axial strain as in the following equation (16) as a pass / fail criterion, from the above equations (8) and (11), The range of the pressing force F for passing is obtained as in the following formula (17).

Figure 0004681381
Figure 0004681381

ここでも、先ほどと同様に、実際の工業生産を考えると、ある程度の余裕を見込んで下式(18)のような係数a2を乗じたFに設定すればよい。 Here, as in the previous case, considering actual industrial production, F may be set by multiplying by a coefficient a 2 as shown in the following equation (18) with a certain margin.

Figure 0004681381
Figure 0004681381

ここで、係数a2の値は、0.9や0.8程度が適当である。そして、当該押し力Fの値を曲げ加工前に出力して、その値に押し力の設定値を変更したり、自動的に押し力Fの設定値を修正したりするようにしておけば、曲げ内側の軸方向ひずみが合格範囲に入り、その結果しわを防止した製品を得ることができる。 Here, the value of the coefficient a 2 is suitably about 0.9 or 0.8. Then, if the value of the pressing force F is output before bending and the setting value of the pressing force is changed to that value, or the setting value of the pressing force F is automatically corrected, The axial strain inside the bend falls within the acceptable range, and as a result, a product in which wrinkles are prevented can be obtained.

また、周方向ひずみを合否判定基準に用いる場合は一般的には少ないが、仮に曲げ内側の周方向ひずみが基準値εθ-cr以下であることが合格判定基準となる例では、合格となるための押し力Fの範囲は、上式(10)、(11)より、下式(19)のように求まる。 In addition, when the circumferential strain is used as a pass / fail criterion, it is generally small. However, if the circumferential strain inside the bend is equal to or less than the reference value ε θ-cr , the pass criterion is acceptable. The range of the pressing force F for this is obtained from the above equations (10) and (11) as in the following equation (19).

Figure 0004681381
Figure 0004681381

ここでも、先ほどと同様に、実際の工業生産を考えると、ある程度の余裕を見込んで下式(20)のような係数a3を乗じたFに設定すればよい。 Here, as in the previous case, considering actual industrial production, F may be set by multiplying by a coefficient a 3 as shown in the following equation (20) in consideration of a certain margin.

Figure 0004681381
Figure 0004681381

ここで、係数a3の値は、0.9や0.8程度が適当である。そして、当該押し力Fの値を曲げ加工前に出力して、その値に押し力の設定値を変更したり、自動的に押し力Fの設定値を修正したりするようにしておけば、曲げ内側の周方向ひずみが合格範囲に入り、不良品として歩留り落ちすることを防止できる。 Here, the value of the coefficient a 3 is suitably about 0.9 or 0.8. Then, if the value of the pressing force F is output before bending and the setting value of the pressing force is changed to that value, or the setting value of the pressing force F is automatically corrected, It is possible to prevent the circumferential strain on the inner side of the bending from being in the acceptable range and preventing the yield as a defective product.

(実施例1)
まず、製品強度の制約上、最低肉厚を確保したい場合の実施例を説明する。金属管1には外径D=60.5(mm)、肉厚t0=2.0(mm)、r値=0.8の溶接鋼管を用い、曲げ半径R=181.5(mm)の回転引き曲げ加工を行う。また、合否判定基準となる肉厚方向ひずみの基準値εt-crを−0.1とし、押し力Fの初期設定値は0(kN)とした。
Example 1
First, an embodiment in the case where it is desired to secure the minimum wall thickness due to product strength restrictions will be described. The metal pipe 1 is a welded steel pipe having an outer diameter D = 60.5 (mm), a wall thickness t 0 = 2.0 (mm), and an r value = 0.8, and a bending radius R = 181.5 (mm). Rotational pull bending process. Further, the reference value ε t-cr of the thickness direction strain that is a pass / fail criterion is set to −0.1, and the initial setting value of the pressing force F is set to 0 (kN).

最初に、上式(5)、(11)を用いて曲げ外側の肉厚方向ひずみεt(o)を計算した。その際、キーボードから入力し、パーソナルコンピュータで計算した。また、定数k1〜k6は溶接鋼管においての推定精度の高い、以下の値を使用した。
1=0.51
2=0.020
3=0.41
4=0.0118
5=93
6=1.36
First, the thickness direction strain ε t (o) on the outside of the bend was calculated using the above equations (5) and (11). At that time, it was input from a keyboard and calculated with a personal computer. The constants k 1 to k 6 used the following values with high estimation accuracy in the welded steel pipe.
k 1 = 0.51
k 2 = 0.020
k 3 = 0.41
k 4 = 0.0118
k 5 = 93
k 6 = 1.36

計算の結果、εt(o)=−0.122となり、εt(o)<εt-crとなるため、製品は不合格になると予想される。そこで、上式(15)を用いて、製品が合格となるような押し力Fを算出した。その際、余裕を見込むための係数a1は1.1とした。その結果、F=39.1(kN)と算出された。その値を、押し力の設定値として入力して実際の曲げ加工を実施した。 As a result of the calculation, ε t (o) = −0.122 and ε t (o)t-cr , so the product is expected to be rejected. Therefore, the pressing force F that would pass the product was calculated using the above equation (15). At that time, the coefficient a 1 for allowing a margin was set to 1.1. As a result, F = 39.1 (kN) was calculated. The value was input as a set value of the pressing force, and actual bending was performed.

その結果、実際に曲げられた鋼管の曲げ外側の肉厚を超音波厚さ計で測定し、肉厚方向ひずみに換算すると、εt(o)=−0.095であった。よって、εt(o)>εt-crとなり、合格となる製品が得られた。 As a result, when the thickness of the bent outer side of the actually bent steel pipe was measured with an ultrasonic thickness meter and converted into strain in the thickness direction, ε t (o) = −0.095. Therefore, ε t (o) > ε t-cr and a product that passed was obtained.

比較のため、初期の押し力設定値である0(kN)のまま曲げ加工を実際に行って、同様に曲げ外側の肉厚を測定し肉厚方向ひずみに換算すると、εt(o)=−0.119であった。よって、εt(o)<εt-crであるため製品としては不合格であった。 For comparison, when bending is actually performed with the initial push force setting value of 0 (kN), the thickness outside the bend is measured in the same manner and converted into the thickness direction strain, ε t (o) = -0.119. Therefore, since ε t (o)t-cr , the product was rejected.

(実施例2)
次に、外観上の制約から、曲げ内側にしわがないような製品を得たい場合の実施例を説明する。金属管1や曲げ半径の条件は実施例1と同一とした。また、しわを発生させないための合否判定基準となる軸方向ひずみの基準値εφ-crを−0.2とし、押し力Fの初期設定値は60(kN)とした。
(Example 2)
Next, an example in which it is desired to obtain a product having no wrinkles on the inner side of the bend due to restrictions on the appearance will be described. The conditions of the metal tube 1 and the bending radius were the same as in Example 1. The axial strain reference value εφ -cr, which is a pass / fail criterion for preventing wrinkles, was set to −0.2, and the initial setting value of the pressing force F was set to 60 (kN).

最初に、上式(8)、(11)を用いて曲げ内側の軸方向ひずみεφ(i)を計算した。その際、キーボードから入力し、パーソナルコンピュータで計算した。また、定数k7〜k9は溶接鋼管においての推定精度の高い、以下の値を使用した。
7=0.50
8=0.021
9=0.46
First, the axial strain εφ (i) inside the bend was calculated using the above equations (8) and (11). At that time, it was input from a keyboard and calculated with a personal computer. Moreover, the constant k 7 to k 9 are high estimation accuracy of the welded steel pipe were used the following values.
k 7 = 0.50
k 8 = 0.021
k 9 = 0.46

計算の結果、εφ(i)=−0.203となり、εφ(o)<εφ-crとなるため、製品は不合格になると予想される。そこで、上式(17)を用いて、製品が合格となるような押し力Fを算出した。その際、余裕を見込むための係数a2は0.9とした。その結果、F=44.4(kN)と算出された。その値を、押し力の設定値として入力して実際の曲げ加工を実施した。 As a result of the calculation, εφ (i) = − 0.203 and εφ (o) <εφ -cr , so the product is expected to be rejected. Therefore, the pressing force F that would pass the product was calculated using the above equation (17). At that time, the coefficient a 2 for allowing a margin was set to 0.9. As a result, F = 44.4 (kN) was calculated. The value was input as a set value of the pressing force, and actual bending was performed.

その結果、実際に曲げられた鋼管の曲げ内側の軸方向ひずみを測定すると、εφ(i)=−0.196であった。よって、εφ(i)>εφ-crとなり、実際にもしわのない製品が得られた。なお、軸方向ひずみは、あらかじめ鋼管外表面に5(mm)角のスクライブドサークルを転写しておき、その変形形状から求めた。 As a result, when measuring the axial strain inside the bent steel pipe, εφ (i) = − 0.196. Therefore, εφ (i) > εφ -cr , and a product without wrinkles was obtained. The axial strain was obtained from a deformed shape obtained by transferring a 5 (mm) square scribed circle to the outer surface of the steel pipe in advance.

また、比較のため、初期の押し力設定値である60(kN)のまま曲げ加工を実際に行って、同様に曲げ内側の軸方向ひずみを測定すると、εφ(i)=−0.208であり、εφ(i)<εφ-crとなっていた。なお、実際の製品においても微小なしわが発生していた。 For comparison, when bending is actually performed with the initial pressing force setting value of 60 (kN) and the axial strain inside the bending is measured in the same manner, ε φ (i) = −0.208 And εφ (i) <εφ -cr . In the actual product, fine wrinkles were generated.

なお、以上述べた実施形態の各処理動作は具体的にはコンピュータシステム或いは装置により実行されるものである。したがって、上述した機能を実現するソフトウェアのプログラムコードを記録した記憶媒体をシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても、達成されることは言うまでもない。   Each processing operation of the embodiment described above is specifically executed by a computer system or apparatus. Accordingly, a storage medium storing software program codes for realizing the functions described above is supplied to the system or apparatus, and a computer (or CPU or MPU) of the system or apparatus reads and executes the program codes stored in the storage medium. Needless to say, this can be achieved.

この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施形態の機能を実現することになり、プログラムコード自体及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。   In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention. As a storage medium for supplying the program code, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.

本発明を適用した回転引き曲げ加工制御を説明するための図である。It is a figure for demonstrating the rotation draw bending process control to which this invention is applied. 一般的な回転引き曲げ工法を説明するための図である。It is a figure for demonstrating a general rotation draw bending method. 回転引き曲げ工法で発生するひずみのひずみ比分布の例を示す図である。It is a figure which shows the example of the strain ratio distribution of the distortion which generate | occur | produces with a rotation drawing bending method. 回転引き曲げ工法における工具の拘束状態を説明するための図である。It is a figure for demonstrating the restraint state of the tool in a rotation drawing bending method. 回転引き曲げ後の肉厚方向ひずみに及ぼす初期肉厚の影響を示す図である。It is a figure which shows the influence of the initial thickness which acts on the thickness direction distortion | strain after rotation drawing.

符号の説明Explanation of symbols

1……金属管
2……回転曲げ型
3……締付けダイ
4……プレッシャーダイ
5……ワイパーダイ
6……マンドレル(砲弾)
7……マンドレル(玉)
8……マンドレル固定用ロッド
9……ブースターダイ
DESCRIPTION OF SYMBOLS 1 ... Metal pipe 2 ... Rotary bending type 3 ... Tightening die 4 ... Pressure die 5 ... Wiper die 6 ... Mandrel (cannonball)
7. Mandrel (ball)
8 …… Rod for fixing mandrel 9 …… Booster die

Claims (9)

金属管の内部に、砲弾形マンドレル及び先端側の複数のマンドレル玉が直列状に互いに連結し、前記複数のマンドレル玉がフレキシブルに湾曲可能な芯金を挿入し、回転曲げ型及び締め型で金属管の一部を押さえながら金属管を曲げ加工する際に、管の外径、肉厚、曲げ半径、素材のr値、押し力、及び曲げ加工後の製品の合否判定基準となるひずみの基準値を入力する入力手段と、
曲げ加工する前に前記外径、肉厚、曲げ半径、素材のr値、及び押し力に基づいて肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上を計算する計算手段と、
曲げ加工する前に前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上と前記ひずみの基準値とに基づいて製品の合否を予測する手段とを備えたことを特徴とする回転引き曲げ加工制御装置。
Inside the metal tube, a shell-shaped mandrel and a plurality of mandrel balls on the tip side are connected to each other in series, and a mandrel that can be bent flexibly is inserted into the plurality of mandrel balls, and the metal is rotated and bent and clamped. When bending a metal tube while holding a part of the tube, the outer diameter of the tube, the wall thickness, the bending radius, the r-value of the material, the pressing force, and the strain criteria that are the acceptance criteria for the product after bending An input means for inputting a value;
Calculation means for calculating one or more kinds of strain in the thickness direction, strain in the axial direction, and strain in the circumferential direction based on the outer diameter, the thickness, the bending radius, the r value of the material, and the pressing force before bending. When,
And a means for predicting pass / fail of a product based on one or more of the strain in the thickness direction, the strain in the axial direction, and the strain in the circumferential direction and a reference value of the strain before bending. Rotating draw bending control device.
曲げ加工する前に前記管の外径、肉厚、曲げ半径、素材のr値と、前記ひずみの基準値とに基づいて、製品の前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上が合格となるような押し力を計算する手段と、曲げ加工する前に当該押し力の値を出力する出力手段とを備えたことを特徴とする請求項1に記載の回転引き曲げ加工制御装置。   Based on the outer diameter of the tube, the wall thickness, the bending radius, the r value of the material and the reference value of the strain before bending, 1 of the thickness direction strain, axial strain and circumferential strain of the product. The rotation according to claim 1, further comprising means for calculating a pressing force such that a seed or two or more kinds pass, and an output means for outputting a value of the pressing force before bending. Drawing bending control device. 曲げ加工する前に前記管の外径、肉厚、曲げ半径、素材のr値と、前記ひずみの基準値とに基づいて、製品の前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上が合格となるような押し力を計算する手段と、
当該押し力の設定条件を初期条件から、前記計算手段で計算後の押し力に自動的に修正する修正手段とを備えたことを特徴とする請求項1に記載の回転引き曲げ加工制御装置。
Based on the outer diameter of the tube, the wall thickness, the bending radius, the r value of the material and the reference value of the strain before bending, 1 of the thickness direction strain, axial strain and circumferential strain of the product. Means for calculating a pressing force such that a seed or two or more seeds pass;
The rotary pull bending control apparatus according to claim 1, further comprising a correcting unit that automatically corrects the setting condition of the pressing force from an initial condition to a pressing force calculated by the calculating unit.
前記計算手段では、管の外径D、肉厚tIn the calculation means, the outer diameter D of the pipe, the wall thickness t 00 、曲げ半径R、素材のr値、押し力F、定数k, Bending radius R, r value of material, pressing force F, constant k 11 〜k~ K 1212 、及び下式(11)に示されるσ, And σ shown in the following equation (11) FF を用いて、肉厚方向ひずみεUsing the thickness direction strain ε tt 、軸方向ひずみεφ、及び周方向ひずみεθを下式(5)〜(10)(添え字(o)は曲げ外側、(i)は曲げ内側を示す)The axial strain εφ and the circumferential strain εθ are expressed by the following equations (5) to (10) (the subscript (o) indicates the outside of the bend, and (i) indicates the inside of the bend).
Figure 0004681381
Figure 0004681381
により算出することを特徴とする請求項1乃至3のいずれか1項に記載の回転引き曲げ加工制御装置。The rotation drawing bending process control apparatus according to claim 1, wherein the rotation drawing bending process control apparatus is calculated according to claim 1.
金属管の内部に、砲弾形マンドレル及び先端側の複数のマンドレル玉が直列状に互いに連結し、前記複数のマンドレル玉がフレキシブルに湾曲可能な芯金を挿入し、回転曲げ型及び締め型で金属管の一部を押さえながら金属管を曲げ加工する際に、管の外径、肉厚、曲げ半径、素材のr値、押し力、及び曲げ加工後の製品の合否判定基準となるひずみの基準値の入力をコンピュータが受け付ける入力工程と、
曲げ加工する前に前記管の外径、肉厚、曲げ半径、素材のr値、及び押し力に基づいてコンピュータが肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上を計算する計算工程と、
曲げ加工する前に前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上に基づいてコンピュータが製品の合否を判定する工程とを有することを特徴とする回転引き曲げ加工制御方法。
Inside the metal tube, a shell-shaped mandrel and a plurality of mandrel balls on the tip side are connected to each other in series, and a mandrel that can be bent flexibly is inserted into the plurality of mandrel balls, and the metal is rotated and bent and clamped. When bending a metal tube while holding a part of the tube, the outer diameter of the tube, the wall thickness, the bending radius, the r-value of the material, the pressing force, and the strain criteria that are the acceptance criteria for the product after bending An input process in which a computer accepts input of values;
Before bending, the computer calculates one or more of thickness direction strain, axial strain, and circumferential strain based on the outer diameter, thickness, bending radius, r value of material, and pressing force. A calculation process to calculate,
And a process of determining whether the product has passed or not based on one or more of the strain in the thickness direction, the strain in the axial direction, and the strain in the circumferential direction before bending. Method.
曲げ加工する前に前記管の外径、肉厚、曲げ半径、素材のr値と、前記ひずみの基準値とに基づいて、製品の前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上が合格となるような押し力をコンピュータが計算する工程と、曲げ加工する前に当該押し力の値をコンピュータが出力する出力工程とを有することを特徴とする請求項に記載の回転引き曲げ加工制御方法。 Based on the outer diameter of the tube, the wall thickness, the bending radius, the r value of the material and the reference value of the strain before bending, 1 of the thickness direction strain, axial strain and circumferential strain of the product. 6. The method according to claim 5 , further comprising: a step in which a computer calculates a pressing force such that a seed or two or more types pass, and an output step in which the computer outputs a value of the pressing force before bending. The rotation drawing bending process control method as described. 曲げ加工する前に前記管の外径、肉厚、曲げ半径、素材のr値と、前記ひずみの基準値とに基づいて、製品のひずみが合格となるような押し力を計算する工程と、
当該押し力の設定条件を初期条件から、前記計算工程で計算後の押し力にコンピュータが自動的に修正する修正工程とを有することを特徴とする請求項に記載の回転引き曲げ加工制御方法。
A step of calculating a pushing force to pass the product strain based on the outer diameter of the tube, the wall thickness, the bending radius, the r value of the material, and the reference value of the strain before bending;
6. The rotational pull bending control method according to claim 5 , further comprising: a correction step in which the computer automatically corrects the pressing force setting condition from the initial condition to the pressing force calculated in the calculation step. .
金属管の内部に、砲弾形マンドレル及び先端側の複数のマンドレル玉が直列状に互いに連結し、前記複数のマンドレル玉がフレキシブルに湾曲可能な芯金を挿入し、回転曲げ型及び締め型で金属管の一部を押さえながら金属管を曲げ加工する際に、管の外径、肉厚、曲げ半径、素材のr値、押し力、及び曲げ加工後の製品の合否判定基準となるひずみの基準値の入力を受け付ける入力処理と、
曲げ加工する前に前記管の外径、肉厚、曲げ半径、素材のr値、及び押し力に基づいて肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上を計算する計算処理と、
曲げ加工する前に前記肉厚方向ひずみ、軸方向ひずみ、周方向ひずみの1種又は2種以上に基づいて製品の合否を判定する処理とをコンピュータに実行させることを特徴とするコンピュータプログラム。
Inside the metal tube, a shell-shaped mandrel and a plurality of mandrel balls on the tip side are connected to each other in series, and a mandrel that can be bent flexibly is inserted into the plurality of mandrel balls, and the metal is rotated and bent and clamped. When bending a metal tube while holding a part of the tube, the outer diameter of the tube, the wall thickness, the bending radius, the r-value of the material, the pressing force, and the strain criteria that are the acceptance criteria for the product after bending Input processing that accepts input of values;
Before bending, calculate one or more of thickness direction strain, axial strain and circumferential strain based on the outer diameter, thickness, bending radius, r value of material, and pressing force of the tube. Calculation processing,
A computer program that causes a computer to execute pass / fail judgment processing based on one or more of the thickness direction strain, axial direction strain, and circumferential direction strain before bending.
請求項に記載のコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体。 The computer-readable recording medium which recorded the computer program of Claim 8 .
JP2005217646A 2005-07-27 2005-07-27 Rotary draw bending control device, method, computer program, and computer-readable recording medium Active JP4681381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217646A JP4681381B2 (en) 2005-07-27 2005-07-27 Rotary draw bending control device, method, computer program, and computer-readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217646A JP4681381B2 (en) 2005-07-27 2005-07-27 Rotary draw bending control device, method, computer program, and computer-readable recording medium

Publications (2)

Publication Number Publication Date
JP2007029997A JP2007029997A (en) 2007-02-08
JP4681381B2 true JP4681381B2 (en) 2011-05-11

Family

ID=37789883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217646A Active JP4681381B2 (en) 2005-07-27 2005-07-27 Rotary draw bending control device, method, computer program, and computer-readable recording medium

Country Status (1)

Country Link
JP (1) JP4681381B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5237619B2 (en) * 2007-12-13 2013-07-17 日新製鋼株式会社 Steel pipe bending apparatus and steel pipe bending method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586624A (en) * 1978-12-22 1980-06-30 Hitachi Ltd Bending method for pipe
JP2001105035A (en) * 1999-10-05 2001-04-17 Toyota Motor Corp Method for deciding bending condition of metallic tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586624A (en) * 1978-12-22 1980-06-30 Hitachi Ltd Bending method for pipe
JP2001105035A (en) * 1999-10-05 2001-04-17 Toyota Motor Corp Method for deciding bending condition of metallic tube

Also Published As

Publication number Publication date
JP2007029997A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
Daxin et al. Springback and time-dependent springback of 1Cr18Ni9Ti stainless steel tubes under bending
Buchanan et al. Testing, simulation and design of cold-formed stainless steel CHS columns
Jiang et al. Coupling effects of material properties and the bending angle on the springback angle of a titanium alloy tube during numerically controlled bending
CN108982223B (en) Method for measuring large-strain-range stress strain of metal round bar sample in uniaxial tensile test
Al-Qureshi et al. Spring-back and residual stresses in bending of thin-walled aluminium tubes
Liu et al. Effects of cross-sectional ovalization on springback and strain distribution of circular tubes under bending
He et al. Analytical model for tube hydro-bulging tests, part II: Linear model for pole thickness and its application
KR20190047075A (en) Method of predicting collapse strength
CN109396226A (en) A kind of bending pipes neutral line deviation post determines method
Lou et al. Three-dimensional tube geometry control for rotary draw tube bending, Part 1: Bend angle and overall tube geometry control
Demeri et al. A benchmark test for springback simulation in sheet metal forming
Lăzărescu Effect of internal fluid pressure on quality of aluminum alloy tube in rotary draw bending
JP4681381B2 (en) Rotary draw bending control device, method, computer program, and computer-readable recording medium
Ancellotti et al. Rotary draw bending of rectangular tubes using a novel parallelepiped elastic mandrel
CN110849727B (en) Method for determining anisotropy parameters of pipe
Xue et al. Control strategy of twist springback for aluminium alloy hybrid thin-walled tube under mandrel-rotary draw bending
Orhan et al. Effects of the semi die/plug angles on cold tube drawing with a fixed plug by FEM for AISI 1010 steel tube
Samal et al. Investigation of deformation behavior of ring-tensile specimens machined from pressure tubes of Indian PHWR
JP4690808B2 (en) Strain estimation apparatus, method, program, and recording medium in rotary pull bending method
Lin et al. Optimization of bending process parameters for seamless tubes using Taguchi method and finite element method
Van de Velde et al. Towards best practice in numerical simulation of blind rivet nut installation
Tkaczyk et al. Fracture assessment procedures for steel pipelines using a modified reference stress solution
Huang et al. Wall thinning characteristics of Ti-3Al-2.5 V tube in numerical control bending process
Mentink et al. Determining material properties of sheet metal on a press brake
JP2006284199A (en) Apparatus and method for measurement of residual stress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R151 Written notification of patent or utility model registration

Ref document number: 4681381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350