JP4680839B2 - Method for producing carbon nano-resin composite molded product - Google Patents

Method for producing carbon nano-resin composite molded product Download PDF

Info

Publication number
JP4680839B2
JP4680839B2 JP2006170287A JP2006170287A JP4680839B2 JP 4680839 B2 JP4680839 B2 JP 4680839B2 JP 2006170287 A JP2006170287 A JP 2006170287A JP 2006170287 A JP2006170287 A JP 2006170287A JP 4680839 B2 JP4680839 B2 JP 4680839B2
Authority
JP
Japan
Prior art keywords
carbon nanomaterial
acid
resin
tensile strength
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006170287A
Other languages
Japanese (ja)
Other versions
JP2008001749A (en
Inventor
佳年 山極
幸彦 高橋
恒司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2006170287A priority Critical patent/JP4680839B2/en
Publication of JP2008001749A publication Critical patent/JP2008001749A/en
Application granted granted Critical
Publication of JP4680839B2 publication Critical patent/JP4680839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明はカーボンナノ−樹脂複合成形品の製造方法に関する。   The present invention relates to a method for producing a carbon nano-resin composite molded article.

樹脂にカーボンナノ材料を含有させることで樹脂組成物を得る技術が提案されている(例えば、特許文献1参照。)。
特開2003−12939公報(図1)
A technique for obtaining a resin composition by incorporating a carbon nanomaterial into a resin has been proposed (for example, see Patent Document 1).
JP 2003-12939 A (FIG. 1)

特許文献1を次図に基づいて説明する。
図8は従来の技術の基本構成を説明する図であり、カーボン含有樹脂組成物1は、平均直径が1〜45nmで平均アスペクト比が5以上であるカーボンナノチューブ2を含む樹脂3で構成される。
Patent document 1 is demonstrated based on the following figure.
FIG. 8 is a diagram for explaining the basic structure of the prior art. The carbon-containing resin composition 1 is composed of a resin 3 including carbon nanotubes 2 having an average diameter of 1 to 45 nm and an average aspect ratio of 5 or more. .

特許文献1には、カーボンナノチューブ2に既に加えられている処理についての説明は記載されていない。
そこで、樹脂に含有するカーボンナノ材料に、予め施す処理技術が提案されている文献を参照する(例えば、特許文献2参照。)。
特開2004−176244公報(段落番号[0007]、段落番号[0021]、段落番号[0024])
Patent Document 1 does not describe the processing already applied to the carbon nanotube 2.
Therefore, reference is made to a document in which a treatment technique applied in advance to the carbon nanomaterial contained in the resin is proposed (see, for example, Patent Document 2).
JP 2004-176244 A (paragraph number [0007], paragraph number [0021], paragraph number [0024])

特許文献2の段落番号[0007]第8行に「6.繊維径が1〜500nmである前記1乃至3のいずれかに記載の気相法炭素繊維。」、段落番号[0024]に「本発明の方法で得られる炭素繊維は分岐度が高く、強固なネットワークを形成しやすいので、樹脂等のマトリックス中に少量添加するだけで導電性、熱伝導性が向上する。・・・以下省略・・・」及び段落番号[0021]に「このようにして得られた炭素繊維は、揮発分除去及び黒鉛化のために熱処理を行うことが好ましい。・・・以下省略・・・」の記載がある。   In paragraph No. [0007] of Patent Document 2, line 8 “6. Vapor grown carbon fiber according to any one of 1 to 3 above, wherein fiber diameter is 1 to 500 nm.” Since the carbon fiber obtained by the method of the invention has a high degree of branching and tends to form a strong network, conductivity and thermal conductivity can be improved by adding a small amount into a matrix such as a resin. .. ”and paragraph [0021],“ The carbon fiber thus obtained is preferably subjected to a heat treatment for devolatilization and graphitization. is there.

これらの記載から、樹脂マトリックスに添加するカーボンナノ材料は、黒鉛化処理することが望ましいことが分かる。
そこで、本発明者等は、黒鉛化処理済みのカーボンナノ材料を樹脂材料に混合して複合成形品を得る実験を行った。実験の条件及び結果は次の通りである。
From these descriptions, it is understood that the carbon nanomaterial added to the resin matrix is desirably graphitized.
Therefore, the present inventors conducted an experiment in which a graphitized carbon nanomaterial was mixed with a resin material to obtain a composite molded product. The experimental conditions and results are as follows.

○複合材料:樹脂とカーボンナノ材料との混合材料
・樹脂材料:ポリカーボネート(略称:PC)又はポリアミド12(略称:PA12)
・カーボンナノ材料:黒鉛化カーボンナノ材料
・混合割合:黒鉛化カーボンナノ材料が0、5又10質量%で残部が樹脂材料。
○ Composite material: Mixed material of resin and carbon nanomaterial / Resin material: Polycarbonate (abbreviation: PC) or polyamide 12 (abbreviation: PA12)
Carbon nanomaterial: graphitized carbon nanomaterial. Mixing ratio: 0, 5 or 10% by mass of graphitized carbon nanomaterial, and the balance being resin material.

○混練:混合混練機で60分間混練。
○射出成形:
・金型キャビティの大きさ:76mm×10mm×2mm
・射出機の種類:横型射出成形機
・射出圧力:176MPa
・加熱筒の温度:220〜240℃
・射出速度:30mm/秒
○ Kneading: Kneading for 60 minutes with a mixing kneader.
○ Injection molding:
-Mold cavity size: 76mm x 10mm x 2mm
・ Type of injection machine: Horizontal injection molding machine ・ Injection pressure: 176 MPa
・ Temperature of the heating cylinder: 220-240 ° C
・ Injection speed: 30mm / sec

○試験片の大きさ:76mm×10mm×2mm
○引張試験機:島津製作所製試験機(AUTOGRAPH AG−250KNIS)
引張試験機で得た引張強さを以下にグラフで示す。
○ Size of test piece: 76 mm × 10 mm × 2 mm
○ Tensile testing machine: Shimadzu Corporation testing machine (AUTOGRAPH AG-250KNIS)
The graph below shows the tensile strength obtained with the tensile tester.

図9は黒鉛化カーボンナノ材料の添加割合と引張強さの関係を示すグラフである。
PC樹脂のみで試験片を作製したときには、引張強さは58、0MPaであった。
95質量%のPC樹脂に5質量%の黒鉛化カーボンナノ材料を混合して試験片を作製したときには、引張強さは58.4MPaであった。
90質量%のPC樹脂に10質量%の黒鉛化カーボンナノ材料を混合して試験片を作製したときには、引張強さは58.2MPaであった。
FIG. 9 is a graph showing the relationship between the addition ratio of the graphitized carbon nanomaterial and the tensile strength.
When the test piece was made of only the PC resin, the tensile strength was 58, 0 MPa.
When a test piece was prepared by mixing 5% by mass of graphitized carbon nanomaterial with 95% by mass of PC resin, the tensile strength was 58.4 MPa.
When a test piece was prepared by mixing 90% by mass of PC resin with 10% by mass of graphitized carbon nanomaterial, the tensile strength was 58.2 MPa.

強度向上を目的にカーボンナノ材料を添加したわけであるが、グラフから明らかなように強度向上が殆ど認められなかった。   The carbon nanomaterial was added for the purpose of improving the strength, but as can be seen from the graph, the strength was hardly improved.

また、PA12樹脂のみで試験片を作製したときには、引張強さは38.3MPaであった。
95質量%のPA12樹脂に5質量%の黒鉛化カーボンナノ材料を混合して試験片を作製したときには、引張強さは42.3MPaであった。
90質量%のPA12樹脂に10質量%の黒鉛化カーボンナノ材料を混合して試験片を作製したときには、引張強さは43.8MPaであった。
Moreover, when the test piece was produced only with PA12 resin, the tensile strength was 38.3 MPa.
When a test piece was prepared by mixing 5% by mass of graphitized carbon nanomaterial with 95% by mass of PA12 resin, the tensile strength was 42.3 MPa.
When a test piece was prepared by mixing 90% by mass of PA12 resin with 10% by mass of graphitized carbon nanomaterial, the tensile strength was 43.8 MPa.

ところで、カーボンナノ材料は極めて高価な材料である。このように高価なカーボンナノ材料を混合した割には強度の向上効果が小さすぎる。高価なカーボンナノ材料の有効活用を図る上で、より高い強度の成形品を得ることができる技術が求められる。   By the way, carbon nanomaterials are extremely expensive materials. The effect of improving the strength is too small for such an expensive carbon nanomaterial mixed. In order to effectively use expensive carbon nanomaterials, a technique capable of obtaining a molded product with higher strength is required.

本発明は、高い強度のカーボンナノ−樹脂複合成形品を提供することを課題とする。   An object of the present invention is to provide a carbon nano-resin composite molded article having high strength.

先ず本発明者等は、走査電子顕微鏡(SEM)で、黒鉛化カーボンナノ材料の表面を観察した。すると、黒鉛化カーボンナノ材料の表面は、平滑であることが認められた。平滑であるため、樹脂との濡れ性が低下していると推測することができる。濡れ性が低下すれば樹脂とカーボンナノ材料との結合が不十分になり、強度向上の妨げになると考えることができる。   First, the inventors observed the surface of the graphitized carbon nanomaterial with a scanning electron microscope (SEM). Then, it was recognized that the surface of the graphitized carbon nanomaterial was smooth. Since it is smooth, it can be estimated that the wettability with the resin is reduced. If the wettability decreases, it can be considered that the bond between the resin and the carbon nanomaterial becomes insufficient, which hinders strength improvement.

この知見から、薬液で処理を施すことで、黒鉛化カーボンナノ材料の表面を粗面にすることを試みることにした。
図1は酸化還流処理装置の原理図であり、酸化還流処理装置10は、加熱機能付き電磁撹拌機11と、この電磁撹拌機11に載せるフラスコ12と、このフラスコ12に投入する磁石回転子13と、フラスコ12の口14に設けた冷却器15と、この冷却器15から延ばしたチューブ16と、このチューブ16の先端に接続する容器17、この容器17に貯留する水18とからなる。
From this finding, we decided to try to roughen the surface of graphitized carbon nanomaterials by treating with chemicals.
FIG. 1 is a principle diagram of an oxidation reflux treatment apparatus. An oxidation reflux treatment apparatus 10 includes an electromagnetic stirrer 11 with a heating function, a flask 12 mounted on the electromagnetic stirrer 11, and a magnet rotor 13 charged into the flask 12. And a cooler 15 provided at the mouth 14 of the flask 12, a tube 16 extending from the cooler 15, a container 17 connected to the tip of the tube 16, and water 18 stored in the container 17.

フラスコ12に、酸とカーボンナノ材料との混合物19を入れる。電磁撹拌機11を作動させると、混合物19が加熱される。同時に、電磁作用で磁石回転子13が水平に回転する。この磁石回転子13が混合物19を撹拌する。   A mixture 19 of acid and carbon nanomaterial is placed in the flask 12. When the electromagnetic stirrer 11 is operated, the mixture 19 is heated. At the same time, the magnet rotor 13 rotates horizontally by electromagnetic action. This magnet rotor 13 agitates the mixture 19.

混合物19の一部が蒸発して上昇するが、この蒸発物質の大部分は冷却器15で冷却され、液化してフラスコ12へ戻る。蒸発物質の一部がチューブ16を介して容器17に至り、水18に吸収される。   A part of the mixture 19 evaporates and rises, but most of the evaporated substance is cooled by the cooler 15, liquefied, and returned to the flask 12. A part of the evaporated substance reaches the container 17 through the tube 16 and is absorbed by the water 18.

酸化還流処理装置10は、通常の酸化処理よりも強い酸化処理を行うことができる装置である。すなわち、酸を暖めることで活性化させる。このときに、酸が蒸発して無くならないように、冷却器15でフラスコ12へ戻す(還流する)ことを特徴とする。   The oxidation reflux treatment apparatus 10 is an apparatus that can perform an oxidation treatment stronger than a normal oxidation treatment. That is, it is activated by warming the acid. At this time, it is characterized by returning (refluxing) the flask 12 with the cooler 15 so that the acid does not evaporate.

以上に説明した装置を用いて、次の要領でカーボンナノ材料を酸化還流処理した。
・処理装置:図1に示す酸化還流処理装置10
・カーボンナノ材料:黒鉛化カーボンナノ材料 6g
・酸の組成:硝酸原液:硫酸原液=1:1
・酸の量:500ml(ミリリットル)
・処理時間:12時間
Using the apparatus described above, the carbon nanomaterial was oxidized and refluxed in the following manner.
Treatment apparatus: oxidation reflux treatment apparatus 10 shown in FIG.
Carbon nanomaterial: graphitized carbon nanomaterial 6g
Acid composition: nitric acid stock solution: sulfuric acid stock solution = 1: 1
・ Amount of acid: 500 ml (milliliter)
・ Processing time: 12 hours

酸化還流処理したカーボンナノ材料10質量%を、PA12樹脂90質量%に混合して試験片を作製した。この試験片の引張強さは48.0MPaであった。
図2は酸処理の有無を比較するグラフである。先ず、図9において、PA12でカーボンナノ材料が10質量%では、引張強さは48.0MPaであった。これを「酸処理無」として棒グラフ化した。
その隣に、酸化還元処理した試験片から得た48.0MPaを「酸処理有り」として図示した。
A test piece was prepared by mixing 10% by mass of carbon nanomaterial subjected to oxidation reflux treatment with 90% by mass of PA12 resin. The tensile strength of this test piece was 48.0 MPa.
FIG. 2 is a graph comparing the presence or absence of acid treatment. First, in FIG. 9, the tensile strength was 48.0 MPa when the carbon nanomaterial was 10% by mass in PA12. This was graphed as “no acid treatment”.
Next to this, 48.0 MPa obtained from the redox-treated test piece is shown as “with acid treatment”.

両方とも、10質量%の黒鉛化カーボンナノ材料をPA12樹脂に混合したが、酸処理を施すことで、43.8MPaが48.0MPaに増加した。約10%の強度向上が達成できた。しかし、高価なカーボンナノ材料を使用するため、さらなる強度向上が望まれる。   In both cases, 10% by mass of graphitized carbon nanomaterial was mixed with PA12 resin, but the acid treatment increased 43.8 MPa to 48.0 MPa. About 10% strength improvement was achieved. However, since an expensive carbon nanomaterial is used, further strength improvement is desired.

そこで、本発明者等は、カーボンナノ材料の表面を処理する技術を種々検討するかたわら、黒鉛化処理する前のカーボンナノ材料を走査電子顕微鏡で観察した。黒鉛化処理する前のカーボンナノ材料は、表面が粗面であることが認められた。
黒鉛化処理前のカーボンナノ材料は強度が低く、補強材料としては全く注目されていなかった。しかし、表面が粗面であることから、濡れ性は高く、樹脂との十分な結合が見込める。
Therefore, the inventors of the present invention have examined various techniques for treating the surface of the carbon nanomaterial while observing the carbon nanomaterial before graphitization with a scanning electron microscope. The carbon nanomaterial before graphitization was found to have a rough surface.
The carbon nanomaterial before graphitization has low strength, and has not received any attention as a reinforcing material. However, since the surface is rough, the wettability is high and sufficient bonding with the resin can be expected.

そこで、酸処理と黒鉛化処理前のカーボン材料を使用することの2つを組み合わせることで、飛躍的な強度向上が達成できるのではないかと、考えるようになった。
以上の知見から黒鉛化処理前のカーボンナノ材料に酸処理を施し、この材料を樹脂に混合したところ、詳細な実験結果は後述するが、飛躍的に高い強度を得ることができた。そこで、本発明は次のようにまとめることができる。
Then, it came to think that a dramatic improvement in strength could be achieved by combining the two of using an acid treatment and a carbon material before graphitization.
From the above knowledge, when the carbon nanomaterial before graphitization treatment was subjected to acid treatment and this material was mixed with resin, detailed experimental results will be described later. Therefore, the present invention can be summarized as follows.

請求項1の発明は、樹脂材料にカーボンナノ材料を混合してなる複合材料を射出して成形品を得る複合成形品の製造方法において、前記カーボンナノ材料には、黒鉛化処理前の材料に酸処理を施した、酸処理済み未黒鉛化カーボンナノ材料を用い、前記酸処理は、1.0〜3.0モル/リットルの濃度の酸で、且つ暖められて活性化された酸で実施することを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a composite molded product in which a composite material obtained by mixing a carbon nanomaterial with a resin material is injected to obtain a molded product. The carbon nanomaterial includes a material before graphitization treatment. was subjected to acid treatment, had use of acid treated raw graphitized carbon nano material, the acid treatment, with acid at a concentration of 1.0 to 3.0 mol / liter, and in warmed with activated acid It is characterized by carrying out .

請求項1に係る発明では、カーボンナノ材料は酸処理済み未黒鉛化カーボンナノ材料を採用した。酸処理済み未黒鉛化カーボンナノ材料は濡れ性が良く、樹脂と良好に結合するため、極めて高い強度の複合成形品を得ることができる。   In the invention according to claim 1, an acid-treated non-graphitized carbon nanomaterial is used as the carbon nanomaterial. Since the acid-treated non-graphitized carbon nanomaterial has good wettability and binds well to the resin, a composite molded product with extremely high strength can be obtained.

加えて、請求項に係る発明では、酸処理は、1.0〜3.0モル/リットルの濃度の酸で実施する。1.0〜3.0モル/リットルの濃度の酸で未黒鉛化カーボンナノ材料を処理すると、極めて高い強度の複合成形品を得ることができる。
さらに、酸は暖められているため、通常の酸処理より強い酸処理が行われる。
In addition, in the invention according to claim 1 , the acid treatment is performed with an acid having a concentration of 1.0 to 3.0 mol / liter. When the non-graphitized carbon nanomaterial is treated with an acid having a concentration of 1.0 to 3.0 mol / liter, a composite molded article with extremely high strength can be obtained.
Furthermore, since the acid is warmed, an acid treatment stronger than a normal acid treatment is performed.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図3は本発明に係るカーボンナノ−樹脂複合成形品の製造フロー図である。
(a)に示すように、未黒鉛化カーボンナノ材料21と樹脂材料22とを準備する。そして、(b)に示すように、未黒鉛化カーボンナノ材料21に酸処理を施す。この酸処理は図1で説明した酸化還流処理装置10又は同等の装置、設備で実施する。酸処理を施すと未黒鉛化カーボンナノ材料21は(c)に示すように、酸処理済み未黒鉛化カーボンナノ材料23になる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 3 is a production flow diagram of a carbon nano-resin composite molded product according to the present invention.
As shown in (a), an ungraphitized carbon nanomaterial 21 and a resin material 22 are prepared. Then, as shown in (b), the non-graphitized carbon nanomaterial 21 is subjected to an acid treatment. This acid treatment is performed by the oxidation reflux treatment apparatus 10 described in FIG. 1 or an equivalent apparatus and equipment. When the acid treatment is performed, the non-graphitized carbon nanomaterial 21 becomes an acid-treated non-graphitized carbon nanomaterial 23 as shown in (c).

次に、(d)に示すように、酸処理済み未黒鉛化カーボンナノ材料23と樹脂材料22とを混合する。続いて、(e)で混合物を可塑化し、(f)で射出し、(g)に示すようなカーボンナノ−樹脂複合成形品24を得る。
以上に述べた(d)〜(f)を実施するに当たって、好適な射出機構を次図で説明する。
Next, as shown in (d), the acid-treated ungraphitized carbon nanomaterial 23 and the resin material 22 are mixed. Subsequently, the mixture is plasticized in (e) and injected in (f) to obtain a carbon nano-resin composite molded article 24 as shown in (g).
In carrying out (d) to (f) described above, a suitable injection mechanism will be described with reference to the following drawings.

図4は本発明に係るカーボンナノ−樹脂複合成形品の製造に用いる射出機構の一例を示す図であり、樹脂の射出機構には各種あるが、その一つが予備可塑化(一般にプリプラと呼ぶ)方式の射出機構である。
プリプラ式射出機構30は、可塑化筒体31に可塑化スクリュー32を内蔵した可塑化部33と、射出筒34にプランジャ35を内蔵し、このプランジャ35を射出ラム36で前後進させるようにした射出部37とからなり、予め可塑化部33で可塑化処理した材料を、射出部37で射出することができる射出機である。
FIG. 4 is a view showing an example of an injection mechanism used for manufacturing a carbon nano-resin composite molded article according to the present invention. There are various types of resin injection mechanisms, one of which is pre-plasticization (generally called pre-plastic). This is an injection mechanism of the type.
The pre-plastic injection mechanism 30 has a plasticizing portion 33 in which a plasticizing screw 32 is incorporated in a plasticizing cylinder 31 and a plunger 35 in an injection cylinder 34, and the plunger 35 is moved forward and backward by an injection ram 36. The injection machine includes an injection unit 37 and can inject the material plasticized by the plasticizing unit 33 in advance.

そして、可塑化筒体31の基部に混合装置40を装備する。
混合装置40は、樹脂材料22の投入口41並びに酸処理済み未黒鉛化カーボンナノ材料23の投入口42を備えた蓋43を有するホッパ形状の容器44と、この容器44に貼り付けたヒータ45・・・(・・・は複数を示す。以下同じ。)と、これらのヒータ45・・・に被せた保温材46と、容器44の内部温度を計測するために容器44に設けた温度センサ47と、容器44内の材料を撹拌して混合する撹拌手段50とからなる。
容器44の材質は、耐食性を考慮すると、炭素鋼よりはステンレス鋼が好ましい。
And the mixing apparatus 40 is equipped in the base part of the plasticization cylinder 31. FIG.
The mixing apparatus 40 includes a hopper-shaped container 44 having a lid 43 provided with an inlet 41 for the resin material 22 and an inlet 42 for the acid-treated ungraphitized carbon nanomaterial 23, and a heater 45 attached to the container 44. (... indicates a plurality. The same applies hereinafter), a heat insulating material 46 placed on the heaters 45, and a temperature sensor provided in the container 44 for measuring the internal temperature of the container 44. 47 and stirring means 50 for stirring and mixing the material in the container 44.
In consideration of corrosion resistance, the material of the container 44 is preferably stainless steel rather than carbon steel.

攪拌手段50は、蓋43から下げた回転軸51と、この回転軸51を回す電動機52と、回転軸51に取付けた攪拌羽根53とからなる。
なお、混合装置40は、可塑化筒体31に取付けないで、別の場所に配置し、予め混合した材料を可塑化筒体31に投入するようにしても良い。
The stirring means 50 includes a rotating shaft 51 lowered from the lid 43, an electric motor 52 that rotates the rotating shaft 51, and a stirring blade 53 attached to the rotating shaft 51.
Note that the mixing device 40 may be disposed in another place without being attached to the plasticizing cylinder 31, and the previously mixed material may be charged into the plasticizing cylinder 31.

(実験例)
本発明に係る実験例を以下に述べる。なお、本発明は実験例に限定されるものではない。
(Experimental example)
Experimental examples according to the present invention will be described below. Note that the present invention is not limited to experimental examples.

○複合材料:
・樹脂材料の種類:ポリアミド12(PA12)又はポリカーボネート(PC)
・樹脂材料の形態:平均粒径が200μmである粉末
・カーボンナノ材料:酸処理を施していない未黒鉛化カーボンナノ材料、又は酸処理を施した未黒鉛化カーボンナノ材料
・酸処理:酸濃度が2.67モル/リットルの強酸で、12時間処理。
・混合割合:次表に示す。
○ Composite materials:
-Resin material type: Polyamide 12 (PA12) or Polycarbonate (PC)
-Resin material form: powder having an average particle size of 200 µm-Carbon nanomaterial: ungraphitized carbon nanomaterial not subjected to acid treatment or ungraphitized carbon nanomaterial subjected to acid treatment-Acid treatment: acid concentration Treated with 2.67 mol / liter strong acid for 12 hours.
-Mixing ratio: Shown in the following table.

○混練:混合混練機で60分間混練。
○射出成形:
・金型キャビティの大きさ:76mm×10mm×2mm
・射出機の種類:横型射出成形機
・射出圧力:176MPa
・加熱筒の温度:220〜240℃
・射出速度:30mm/秒
○ Kneading: Kneading for 60 minutes with a mixing kneader.
○ Injection molding:
-Mold cavity size: 76mm x 10mm x 2mm
・ Type of injection machine: Horizontal injection molding machine ・ Injection pressure: 176 MPa
・ Temperature of the heating cylinder: 220-240 ° C
・ Injection speed: 30mm / sec

○試験片の大きさ:76mm×10mm×2mm
○引張試験機:島津製作所製試験機(AUTOGRAPH AG−250KNIS)
引張試験機で得た引張強さを以下に示す。
なお、PA12樹脂に対する表とPC樹脂に対する表とは別々に作成した。
○ Size of test piece: 76 mm × 10 mm × 2 mm
○ Tensile testing machine: Shimadzu Corporation testing machine (AUTOGRAPH AG-250KNIS)
The tensile strength obtained with the tensile tester is shown below.
The table for PA12 resin and the table for PC resin were prepared separately.

Figure 0004680839
Figure 0004680839

試料1では、PA12樹脂のみで試験片を作製した。このときには、引張強さは38、3MPaであった。   In sample 1, a test piece was prepared using only PA12 resin. At this time, the tensile strength was 38 and 3 MPa.

試料2では、95質量%のPA12樹脂に5質量%の未酸処理の未黒鉛化カーボンナノ材料を混合して試験片を作製した。このときには、引張強さは49.5MPaであった。
試料3では、95質量%のPA12樹脂に5質量%の酸処理済み未黒鉛化カーボンナノ材料を混合して試験片を作製した。このときには、引張強さは50.5MPaであった。
Sample 2, a test piece was produced by mixing 5 wt% of the non-sanshool management of non-graphitized carbon nanomaterial 95 wt% of PA12 resin. At this time, the tensile strength was 49.5 MPa.
Sample 3, a test piece was produced by mixing 5 wt% of sanshool sense already non-graphitizable carbon nanomaterial 95 wt% of PA12 resin. At this time, the tensile strength was 50.5 MPa.

試料4では、90質量%のPA12樹脂に10質量%の未酸処理の未黒鉛化カーボンナノ材料を混合して試験片を作製した。このときには、引張強さは53.8MPaであった。
試料5では、90質量%のPA12樹脂に10質量%の酸処理済み未黒鉛化カーボンナノ材料を混合して試験片を作製した。このときには、引張強さは56.2MPaであった。
Sample 4, a test piece was produced by mixing 10 mass% of the non-sanshool management of non-graphitized carbon nanomaterial 90 wt% of PA12 resin. At this time, the tensile strength was 53.8 MPa.
Sample 5, a test piece was produced by mixing 10 mass% of sanshool sense already non-graphitizable carbon nanomaterial 90 wt% of PA12 resin. At this time, the tensile strength was 56.2 MPa.

表中に示した引張強さを見易くするためにグラフ化する。
図5はPA12に対する未黒鉛化カーボンナノ材料の添加率と引張強さの関係を示すグラフである。
破線グラフは、従来技術を参考までに加えて。すなわち、黒鉛化カーボンナノ材料をPA12に添加した場合であって、引張強さは38.3〜43.8MPaである。
In order to make it easy to see the tensile strength shown in the table, it is graphed.
FIG. 5 is a graph showing the relationship between the addition rate of the non-graphitized carbon nanomaterial and the tensile strength with respect to PA12.
In addition to the reference of the prior art, the broken line graph. That is, when graphitized carbon nanomaterial is added to PA12, the tensile strength is 38.3 to 43.8 MPa.

その上に描いた、細線実線グラフは、試料2、4を表した。すなわち、酸処理を施さない未黒鉛化カーボンナノ材料をPA12に添加した。未黒鉛化カーボンを採用したので、強度は向上した。
一番上に描いた、太線実線グラフは、試料3、5を表した。すなわち、酸処理済み未黒鉛化カーボンナノ材料をPA12に添加した。酸処理済み未黒鉛化カーボンを採用したので、強度は更に向上した。
The thin solid line graph drawn thereon represents Samples 2 and 4. That is, non-graphitized carbon nanomaterial not subjected to acid treatment was added to PA12. Since non-graphitized carbon was used, the strength was improved.
The solid line graph drawn on the top represents Samples 3 and 5. That is, acid-treated ungraphitized carbon nanomaterial was added to PA12. Since acid-treated non-graphitized carbon was employed, the strength was further improved.

Figure 0004680839
Figure 0004680839

試料6では、PC樹脂のみで試験片を作製した。このときには、引張強さは50、8MPaであった。   In sample 6, a test piece was made of only PC resin. At this time, the tensile strength was 50 and 8 MPa.

試料7では、95質量%のPC樹脂に5質量%の未酸処理の未黒鉛化カーボンナノ材料を混合して試験片を作製した。このときには、引張強さは64.8MPaであった。
試料8では、95質量%のPC樹脂に5質量%の酸処理済み未黒鉛化カーボンナノ材料を混合して試験片を作製した。このときには、引張強さは67.0MPaであった。
Sample 7, a test piece was produced by mixing 5 wt% of the non-sanshool management of non-graphitized carbon nanomaterial 95% by weight of the PC resin. At this time, the tensile strength was 64.8 MPa.
Sample 8, a test piece was produced by mixing 5 wt% of sanshool sense already non-graphitizable carbon nanomaterial 95% by weight of the PC resin. At this time, the tensile strength was 67.0 MPa.

試料9では、90質量%のPC樹脂に10質量%の未酸処理の未黒鉛化カーボンナノ材料を混合して試験片を作製した。このときには、引張強さは66.1MPaであった。
試料10では、90質量%のPC樹脂に10質量%の酸処理済み未黒鉛化カーボンナノ材料を混合して試験片を作製した。このときには、引張強さは70.9MPaであった。
Sample 9, a test piece was produced by mixing 10 mass% of the non-sanshool management of non-graphitized carbon nanomaterial 90% by weight of the PC resin. At this time, the tensile strength was 66.1 MPa.
Sample 10, a test piece was produced by mixing 10 mass% of sanshool sense already non-graphitizable carbon nanomaterial 90% by weight of the PC resin. At this time, the tensile strength was 70.9 MPa.

表中に示した引張強さを見易くするためにグラフ化する。
図6はPCに対する未黒鉛化カーボンナノ材料の添加率と引張強さの関係を示すグラフである。
破線グラフは、従来技術を参考までに加えて。すなわち、黒鉛化カーボンナノ材料をPCに添加した場合であって、引張強さは58.0〜58.2MPaである。
In order to make it easy to see the tensile strength shown in the table, it is graphed.
FIG. 6 is a graph showing the relationship between the addition rate of the non-graphitized carbon nanomaterial to the PC and the tensile strength.
In addition to the reference of the prior art, the broken line graph. That is, the graphitized carbon nanomaterial is added to PC, and the tensile strength is 58.0 to 58.2 MPa.

その上に描いた、細線実線グラフは、試料7、9を表した。すなわち、酸処理を施さない未黒鉛化カーボンナノ材料をPCに添加した。未黒鉛化カーボンを採用したので、強度は向上した。
一番上に描いた、太線実線グラフは、試料8、10を表した。すなわち、酸処理済み未黒鉛化カーボンナノ材料をPCに添加した。酸処理済み未黒鉛化カーボンを採用したので、強度は更に向上した。
A thin solid line graph drawn thereon represents Samples 7 and 9. That is, non-graphitized carbon nanomaterial not subjected to acid treatment was added to PC. Since non-graphitized carbon was used, the strength was improved.
The thick solid line graph drawn at the top represents Samples 8 and 10. That is, acid-treated ungraphitized carbon nanomaterial was added to PC. Since acid-treated non-graphitized carbon was employed, the strength was further improved.

図5及び図6から、黒鉛化カーボンナノ材料よりも、未黒鉛化カーボンナノ材料の方が強度向上効果が高い。そして、未黒鉛化カーボンナノ材料では、酸処理を施さないものより、酸処理を施した方が強度向上効果が高いことが、判明した。
そこで、酸処理の好適条件を調べる追加実験を実施した。
From FIGS. 5 and 6, the strength improvement effect of the non-graphitized carbon nanomaterial is higher than that of the graphitized carbon nanomaterial. Then, the non-graphitizable carbon nanomaterials, than those not subjected to sanshool management, who were subjected to sanshool management to have a high strength improvement effect was found.
Therefore, we performed additional experiments to investigate the sanshool management preferred conditions.

酸処理:
・処理装置:図1に示す酸化還流処理装置10
・カーボンナノ材料:未黒鉛化カーボンナノ材料 6g
・酸濃度:下記表に示す。
・酸の量:500ml(ミリリットル)
・処理時間:12時間
sanshool management:
Treatment apparatus: oxidation reflux treatment apparatus 10 shown in FIG.
・ Carbon nanomaterial: 6g of non-graphitized carbon nanomaterial
Acid concentration: Shown in the table below.
・ Amount of acid: 500 ml (milliliter)
・ Processing time: 12 hours

○複合材料:
・樹脂材料の種類:ポリアミド12(PA12)
・カーボンナノ材料:酸処理済み未黒鉛化カーボンナノ材料
・混合割合:酸処理済み未黒鉛化カーボンナノ材料10質量%+PA12樹脂90質量%
○混練:混合混練機で60分間混練。
○射出成形:
・金型キャビティの大きさ:76mm×10mm×2mm
・射出機の種類:横型射出成形機
・射出圧力:176MPa
・加熱筒の温度:220〜240℃
・射出速度:30mm/秒
○ Composite materials:
・ Type of resin material: Polyamide 12 (PA12)
Carbon nanomaterial: acid-treated ungraphitized carbon nanomaterial Mixing ratio: acid-treated ungraphitized carbon nanomaterial 10% by mass + PA12 resin 90% by mass
○ Kneading: Kneading for 60 minutes with a mixing kneader.
○ Injection molding:
-Mold cavity size: 76mm x 10mm x 2mm
・ Type of injection machine: Horizontal injection molding machine ・ Injection pressure: 176 MPa
・ Temperature of the heating cylinder: 220-240 ° C
・ Injection speed: 30mm / sec

○試験片の大きさ:76mm×10mm×2mm
○引張試験機:島津製作所製試験機(AUTOGRAPH AG−250KNIS)
○ Size of test piece: 76 mm × 10 mm × 2 mm
○ Tensile testing machine: Shimadzu Corporation testing machine (AUTOGRAPH AG-250KNIS)

Figure 0004680839
Figure 0004680839

表中に示した引張強さを見易くするためにグラフ化する。
図7は酸濃度と引張強さの関係を示すグラフであり、横軸が対数目盛で、縦軸が等分目盛の片対数グラフを使用した。
酸濃度が2.67モル/リットルまでは、酸濃度に比例して成形品の引張強さが増加する。しかし、酸濃度が2.67モル/リットル以上では、成形品の引張強さが減少する。
In order to make it easy to see the tensile strength shown in the table, it is graphed.
FIG. 7 is a graph showing the relationship between the acid concentration and the tensile strength, and a semi-logarithmic graph having a logarithmic scale on the horizontal axis and an even scale on the vertical axis was used.
When the acid concentration is up to 2.67 mol / liter, the tensile strength of the molded article increases in proportion to the acid concentration. However, when the acid concentration is 2.67 mol / liter or more, the tensile strength of the molded article decreases.

横軸に平行に描いた、53.8の横線は試料11、すなわち酸処理を施さない未黒鉛化カーボンナノ材料を用いて製作した試験片の強度である。0.01〜6モル/リットルの範囲であれば、54MPaの強さが得られ、53.8MPa以上であるから、酸処理効果が得られる。
そこで、酸処理は、0.01〜6.0モル/リットルの濃度の酸で実施することが望ましい。
The horizontal line of 53.8 drawn in parallel with the horizontal axis is the strength of the specimen 11 manufactured using the non-graphitized carbon nanomaterial not subjected to acid treatment. If it is the range of 0.01-6 mol / liter, the intensity | strength of 54 Mpa will be obtained, and since it is 53.8 Mpa or more, the acid treatment effect is acquired.
Therefore, the acid treatment is desirably performed with an acid having a concentration of 0.01 to 6.0 mol / liter.

横軸に平行に描いた、55.7の横線は試料14の引張強さに相当する。この55.7MPaは、上述の53.8MPaより十分に大きい。このような55.7MPaは1.0〜3.3モル/リットルで得られる。3.3より小さな3.0モル/リットルであれば55.7MPaを十分に超える。
そこで、さらに望ましくは、酸処理は、1.0〜3.0モル/リットルの濃度の酸で実施する。
The 55.7 horizontal line drawn parallel to the horizontal axis corresponds to the tensile strength of the sample 14. This 55.7 MPa is sufficiently larger than the above-mentioned 53.8 MPa. Such 55.7 MPa is obtained at 1.0 to 3.3 mol / liter. If it is 3.0 mol / liter smaller than 3.3, it will sufficiently exceed 55.7 MPa.
Therefore, more preferably, the acid treatment is performed with an acid having a concentration of 1.0 to 3.0 mol / liter.

尚、樹脂材料は、実験で用いたポリアミド12(PA12)やポリカーボネート(PC)の他、ポリアセタール(POM)であってもよく、構造材料として実用化されている材料であれば種類は問わない。   The resin material may be polyamide 12 (PA12) or polycarbonate (PC) used in the experiment, or polyacetal (POM), and any kind of material may be used as long as it is a practical material as a structural material.

本発明は、カーボンナノ−樹脂複合成形品の製造方法に好適である。   The present invention is suitable for a method for producing a carbon nano-resin composite molded article.

酸化還流処理装置の原理図である。It is a principle diagram of an oxidation reflux treatment apparatus. 酸処理の有無を比較するグラフである。It is a graph which compares the presence or absence of an acid treatment. 従来の技術の基本構成を説明する図である。It is a figure explaining the basic composition of the conventional technology. 本発明に係るカーボンナノ−樹脂複合成形品の製造に用いる射出機構の一例を示す図である。It is a figure which shows an example of the injection mechanism used for manufacture of the carbon nano-resin composite molded product which concerns on this invention. PA12に対する未黒鉛化カーボンナノ材料の添加率と引張強さの関係を示すグラフである。It is a graph which shows the relationship between the addition rate of the nongraphitized carbon nanomaterial with respect to PA12, and tensile strength. PCに対する未黒鉛化カーボンナノ材料の添加率と引張強さの関係を示すグラフでである。It is a graph which shows the relationship between the addition rate of the non-graphitized carbon nanomaterial with respect to PC, and tensile strength. 酸濃度と引張強さの関係を示すグラフである。It is a graph which shows the relationship between an acid concentration and tensile strength. 従来の技術の基本構成を説明する図である。It is a figure explaining the basic composition of the conventional technology. 黒鉛化カーボンナノ材料の添加割合と引張強さの関係を示すグラフである。It is a graph which shows the relationship between the addition ratio of graphitized carbon nanomaterial, and tensile strength.

符号の説明Explanation of symbols

10…酸化還流処理装置、22…樹脂材料、23…酸処理済み未黒鉛化カーボンナノ材料、24…カーボンナノ−樹脂複合成形品、30…プリプラ式射出機構。   DESCRIPTION OF SYMBOLS 10 ... Oxidation reflux processing apparatus, 22 ... Resin material, 23 ... Acid-treated non-graphitized carbon nanomaterial, 24 ... Carbon nano-resin composite molded product, 30 ... Pre-plastic injection mechanism.

Claims (1)

樹脂材料にカーボンナノ材料を混合してなる複合材料を射出して成形品を得る複合成形品の製造方法において、
前記カーボンナノ材料には、黒鉛化処理前の材料に酸処理を施した、酸処理済み未黒鉛化カーボンナノ材料を用い、
前記酸処理は、1.0〜3.0モル/リットルの濃度の酸で、且つ暖められて活性化された酸で実施することを特徴とするカーボンナノ−樹脂複合成形品の製造方法。
In a method for manufacturing a composite molded product, in which a composite material obtained by injecting a carbon nanomaterial into a resin material is injected to obtain a molded product,
Wherein the carbon nano material was subjected to acid treatment graphitization pretreatment materials, have use an acid treated non-graphitizable carbon nanomaterials,
The method for producing a carbon nano-resin composite molded article, wherein the acid treatment is performed with an acid having a concentration of 1.0 to 3.0 mol / liter and a warmed and activated acid .
JP2006170287A 2006-06-20 2006-06-20 Method for producing carbon nano-resin composite molded product Expired - Fee Related JP4680839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006170287A JP4680839B2 (en) 2006-06-20 2006-06-20 Method for producing carbon nano-resin composite molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006170287A JP4680839B2 (en) 2006-06-20 2006-06-20 Method for producing carbon nano-resin composite molded product

Publications (2)

Publication Number Publication Date
JP2008001749A JP2008001749A (en) 2008-01-10
JP4680839B2 true JP4680839B2 (en) 2011-05-11

Family

ID=39006397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006170287A Expired - Fee Related JP4680839B2 (en) 2006-06-20 2006-06-20 Method for producing carbon nano-resin composite molded product

Country Status (1)

Country Link
JP (1) JP4680839B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10479853B2 (en) 2012-03-05 2019-11-19 Asahi Kasei Chemicals Corporation Surface-treated carbon nanotube and resin composition
JP2014101401A (en) * 2012-11-16 2014-06-05 Asahi Kasei Chemicals Corp Polyamide resin composition containing multilayer carbon nanotube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124086A (en) * 2002-09-13 2004-04-22 Osaka Gas Co Ltd Resin composition containing nano-scale carbon, conductive or antistatic resin molded product, conductive or antistatic resin coating composition, charge prevention film and method for producing the same
WO2004065496A1 (en) * 2003-01-20 2004-08-05 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
JP2004339407A (en) * 2003-05-16 2004-12-02 Nissan Motor Co Ltd Resin composition intermediate, resin composition, method for producing resin composition intermediate and method for producing resin composition
JP2007504338A (en) * 2003-09-05 2007-03-01 リサーチ ファウンデーション オブ ステイト ユニバーシティー オブ ニューヨーク Nanocomposite fibers and films containing polyolefins and surface-modified carbon nanotubes
JP2009526733A (en) * 2006-02-14 2009-07-23 エルジー・ケム・リミテッド Rigid random coil and composition containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124086A (en) * 2002-09-13 2004-04-22 Osaka Gas Co Ltd Resin composition containing nano-scale carbon, conductive or antistatic resin molded product, conductive or antistatic resin coating composition, charge prevention film and method for producing the same
WO2004065496A1 (en) * 2003-01-20 2004-08-05 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
JP2004339407A (en) * 2003-05-16 2004-12-02 Nissan Motor Co Ltd Resin composition intermediate, resin composition, method for producing resin composition intermediate and method for producing resin composition
JP2007504338A (en) * 2003-09-05 2007-03-01 リサーチ ファウンデーション オブ ステイト ユニバーシティー オブ ニューヨーク Nanocomposite fibers and films containing polyolefins and surface-modified carbon nanotubes
JP2009526733A (en) * 2006-02-14 2009-07-23 エルジー・ケム・リミテッド Rigid random coil and composition containing the same

Also Published As

Publication number Publication date
JP2008001749A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
Yao et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites
Zhang et al. Macroscopic fibers of well‐aligned carbon nanotubes by wet spinning
Cui et al. Effect of functionalization of multi-walled carbon nanotube on the curing behavior and mechanical property of multi-walled carbon nanotube/epoxy composites
Jacobs et al. Wear behaviour of carbon nanotube reinforced epoxy resin composites
Erden et al. Continuous atmospheric plasma oxidation of carbon fibres: influence on the fibre surface and bulk properties and adhesion to polyamide 12
Esawi et al. Effect of processing technique on the dispersion of carbon nanotubes within polypropylene carbon nanotube‐composites and its effect on their mechanical properties
Montazeri et al. The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite
US20130122202A1 (en) Composite Containing Polymer, Filler and Metal Plating Catalyst, Method of Making Same, and Article Manufactured Therefrom
Hayashi et al. Mechanical properties of carbon nanomaterials
Aziz et al. Experimental evaluation of the interfacial properties of carbon nanotube coated carbon fiber reinforced hybrid composites
Vidakis et al. Multi-functional medical grade Polyamide12/Carbon black nanocomposites in material extrusion 3D printing
Li et al. The tensile properties of short carbon fiber reinforced ABS and ABS/PA6 composites
Barikani et al. Effect of different chemical modification systems on thermal and electrical conductivity of functionalized multiwall carbon nanotube/epoxy nanocomposites
Jain et al. Polyacrylonitrile/carbon nanofiber nanocomposite fibers
JP4680839B2 (en) Method for producing carbon nano-resin composite molded product
Singh et al. Effect of sonication parameters on mechanical properties of in-situ amine functionalized multiple layer graphene/epoxy nanocomposites
KR101795788B1 (en) Polymer-carbon based filler composites and preparation methods thereof
CN108656272B (en) Wood-based composite material with controllable heat conductivity coefficient and preparation method thereof
Lin et al. Study on electroactive shape memory behaviors of polyvinyl alcohol/waterborne polyurethane/short carbon fiber composites
Yoo et al. Conductivities of graphite fiber composites with single-walled carbon nanotube layers
KR101756346B1 (en) Carbon nano structures-polymer composite and method of preparing the same
Shengbo et al. The surface modification of carbon fiber for thermoplastic HDPE composites
JP4467074B2 (en) Method for producing carbon nano-resin composite molded article and carbon nano-resin composite molded article
Zhang et al. Molecular dynamics for optimizing interfacial properties of carbon fiber-reinforced polycarbonate: molecular conformation
Taherian et al. The optimization of ball milling method in preparation of phenolic/functionalized multi-wall carbon nanotube composite and comparison with wet method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4680839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees