JP4680492B2 - Robot controller - Google Patents

Robot controller Download PDF

Info

Publication number
JP4680492B2
JP4680492B2 JP2003387355A JP2003387355A JP4680492B2 JP 4680492 B2 JP4680492 B2 JP 4680492B2 JP 2003387355 A JP2003387355 A JP 2003387355A JP 2003387355 A JP2003387355 A JP 2003387355A JP 4680492 B2 JP4680492 B2 JP 4680492B2
Authority
JP
Japan
Prior art keywords
power supply
smoothing capacitor
contact
drive
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003387355A
Other languages
Japanese (ja)
Other versions
JP2005151729A (en
Inventor
裕隆 森田
道春 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003387355A priority Critical patent/JP4680492B2/en
Publication of JP2005151729A publication Critical patent/JP2005151729A/en
Application granted granted Critical
Publication of JP4680492B2 publication Critical patent/JP4680492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)
  • Manipulator (AREA)
  • Rectifiers (AREA)

Description

本発明は、モータ駆動を行なう制御装置において、駆動用エネルギー供給断、すなわち駆動用電源が遮断された時に、停電検出回路の出力に基づいて、蓄積されているエネルギーの開放をする、またはしないを選択する制御装置で、特にロボット制御装置に関する。
According to the present invention, in a control device for driving a motor, when the drive energy supply is cut off, that is, when the drive power supply is cut off, the stored energy is released or not released based on the output of the power failure detection circuit. More specifically, the present invention relates to a robot control device .

1軸のモータが適用される加工機への部品供給用のスライダやターンテーブルにおいて、作業者により部品を取り付け治具への取り付けや加工済み部品の取り外しが行なわれる場合がある。また、複数のモータが適用される特に産業用ロボットにおいても、作業者により部品を取り付け治具への取り付けや加工済み部品の取り外しが行なわれる。さらには、産業用ロボットに作業プログラムの登録や編集を行なう教示中においては、教示作業者がロボットの近傍でペンダントを操作することでロボットを所望する位置へ動作させて、その位置の登録または変更するティーチング作業を行なう。この様に、モータが適用された加工機や産業用ロボットの動作範囲、あるいは、近傍に作業者が接近することがある。モータが外来ノイズ等やモータ駆動装置の部品故障を原因として意図しない動作に対し、作業者の安全を確保するために、モータの駆動電源の遮断を、自動的にまたは操作で行なう。   In a slider or turntable for supplying parts to a processing machine to which a single-axis motor is applied, there are cases where an operator attaches a part to an attachment jig or removes a processed part. Also in an industrial robot to which a plurality of motors are applied, particularly, an operator attaches a component to a mounting jig or removes a processed component. Furthermore, during teaching to register and edit work programs for industrial robots, the teaching operator operates the pendant in the vicinity of the robot to move the robot to the desired position and register or change the position. Perform teaching work. In this way, an operator may approach the operating range or the vicinity of a processing machine or an industrial robot to which a motor is applied. In order to ensure the safety of the operator against unintended operations caused by external noise or a motor drive device component failure, the motor drive power is shut off automatically or by operation.

更にモータ駆動を行なう制御装置の詳細を、産業用ロボットを例に図を用いて説明する。図7は、従来のロボット制御装置およびシステムの構成を示す図である。
図において、1はロボットであり、ロボット制御装置2に接続されている。ロボット1の手首部先端には、作業を行なうための作業ツールが取り付けられている。ロボット制御装置2には、ペンダント3が接続されており、教示中にモータ電源を作業者7の手元操作で投入と遮断できるイネーブル装置9が備わっている。ロボット1が作業中は、その動作範囲に作業者7が進入しないように、図示しない防護柵で囲われている。8は外部操作装置であり、ロボット制御装置2に接続されており、非常停止、モータ電源投入指令、動作開始指令、及び停止指令等の信号をロボット制御装置2に与える。5はモータによって旋回するターンテーブル6を備える作業台であり、ロボット制御装置2に接続されている。
Further, details of the control device for driving the motor will be described with reference to the drawings, taking an industrial robot as an example. FIG. 7 is a diagram showing a configuration of a conventional robot control apparatus and system.
In the figure, reference numeral 1 denotes a robot, which is connected to a robot control device 2. A work tool for performing work is attached to the tip of the wrist of the robot 1. The robot control device 2 is connected to a pendant 3 and is provided with an enable device 9 that can turn on and off the motor power by a hand operation of the operator 7 during teaching. While the robot 1 is working, it is surrounded by a protective fence (not shown) so that the worker 7 does not enter the operating range. Reference numeral 8 denotes an external operating device, which is connected to the robot control device 2 and gives signals such as an emergency stop, a motor power-on command, an operation start command, and a stop command to the robot control device 2. Reference numeral 5 denotes a work table including a turntable 6 that is turned by a motor, and is connected to the robot control device 2.

作業者7は作業台5に加工すべきワーク4の装着、あるいは、ロボット1による作業後のワーク4の取り外しを、図示しない防護柵の開口部より行なう。この際、作業者7はターンテーブル6に直接触れることがあり、また、作業者7の体の少なくとも一部はロボット1の可動範囲に入る事がある。作業者7の安全確保のため、これら段取り作業は外部操作装置8の非常停止ボタンの操作等で、ロボット1及び作業台5のモータ駆動電源を遮断した後に行なう。作業者7は、これら段取り作業後ロボット1及び作業台5の動作範囲より退避して、外部操作装置8のモータ電源投入指令の入力でモータ駆動電源の投入、及び、動作開始指令の入力で作業プログラムに基づく動作の起動を行ない、ワーク4に対する作業を行なう。 The operator 7 attaches the work 4 to be processed to the work table 5 or removes the work 4 after the work by the robot 1 from an opening of a protection fence (not shown). At this time, the operator 7 may directly touch the turntable 6, and at least a part of the body of the operator 7 may enter the movable range of the robot 1. In order to ensure the safety of the operator 7, these setup operations are performed after the motor drive power of the robot 1 and the work table 5 is shut off by operating the emergency stop button of the external operation device 8 or the like. The worker 7 evacuates from the operating range of the robot 1 and the work table 5 after the setup work, and works by turning on the motor drive power by inputting the motor power on command of the external operation device 8 and inputting the operation start command. The operation based on the program is started and the work for the work 4 is performed.

また、作業者7は、教示作業中にロボット1に接近して、ペンダント3の操作でロボット1を動作させるが、作業者7がペンダント3への誤操作を行なうと、ロボット1は作業者7の意図しない動作をすることなる。この意図しないロボット1の動作は、ロボット周辺設備の破損や教示操作者へ危害を与える可能性があるという問題がある。このためペンダント3にはイネーブル装置9が備えられ、ペンダント3を把持状態より放すとロボット1の駆動電源を遮断することで、ロボット1を完全に停止させ、前述の問題の軽減化が行なわれている。
このように、稼動中あるいは教示中において、駆動電源の投入と遮断は頻繁に行なわれている。
Further, the worker 7 approaches the robot 1 during the teaching work and operates the robot 1 by operating the pendant 3. However, if the operator 7 performs an erroneous operation on the pendant 3, the robot 1 Unintended operation will be performed. This unintended operation of the robot 1 has a problem that the peripheral equipment of the robot may be damaged or the teaching operator may be harmed. For this reason, the pendant 3 is provided with an enable device 9, and when the pendant 3 is released from the gripping state, the driving power of the robot 1 is cut off, so that the robot 1 is completely stopped and the aforementioned problems are reduced. Yes.
Thus, the drive power supply is frequently turned on and off during operation or teaching.

一方、ロボット制御装置2に収まっているモータ駆動装置やロボットの制御部の保守作業においては、ロボット制御装置2に備わるブレーカなどの電源遮断手段で供給電源の遮断を行ない、モータを確実に停止し、ロボット制御装置2内に蓄積している電荷エネルギーの開放(放電)を行ない、感電の危険を無くした後に行なわれる。
尚、ロボットは垂直多関節型、水平多間接型、円筒座標型など種々の構成があるが、供給電源の遮断のため駆動軸のトルク出力が止まり、自らのアームが重力方向に落下することを防ぐために、各駆動軸には電磁ブレーキなどの保持器が備えられている。
On the other hand, in the maintenance work of the motor drive unit and the robot control unit housed in the robot control device 2, the power supply is cut off by the power cut-off means such as a breaker provided in the robot control device 2 to surely stop the motor. This is performed after releasing (discharging) the charge energy accumulated in the robot controller 2 and eliminating the risk of electric shock.
There are various types of robots such as vertical multi-joint type, horizontal multi-indirect type, and cylindrical coordinate type, but the torque output of the drive shaft stops because the power supply is cut off, and its arm falls in the direction of gravity. In order to prevent this, each drive shaft is provided with a cage such as an electromagnetic brake.

従来のモータ駆動装置は、駆動用の交流電源入力を遮断すると、直流に変換され平滑コンデンサに充電された電荷の強制放電を行ない、又は、平滑コンデンサの充電状態を表示している(例えば、特許文献1、特許文献2参照)。
このように、従来のモータ駆動装置は、モータの駆動電源を遮断した時に、平滑コンデンサに充電された電荷を強制放電して、保守点検等のために直接モータ駆動装置に触れても感電事故を防いでいる。また充電表示を行なうことで、作業者に対し感電への注意を促している。
特開平9−37562号公報 特開平10−225583号公報
When the driving power supply for driving is cut off, the conventional motor driving device forcibly discharges the electric charge converted into direct current and charged in the smoothing capacitor, or displays the charging state of the smoothing capacitor (for example, patents). Reference 1 and Patent Reference 2).
As described above, the conventional motor drive device forcibly discharges the electric charge charged in the smoothing capacitor when the motor drive power is cut off, and even if the motor drive device is directly touched for maintenance and inspection, an electric shock accident may occur. It is preventing. In addition, by displaying the charge, the operator is cautioned about electric shock.
JP-A-9-37562 Japanese Patent Application Laid-Open No. 10-225583

従来のモータ駆動装置は、モータ駆動装置への電源供給を遮断した時に平滑コンデンサの放電を制御しており、工作機や産業用ロボットに代表される駆動電源の頻繁な投入と遮断を行なう作業機械への適用では次にあげるような問題があった。
(1)駆動電源の遮断では放電用の抵抗器で平滑コンデンサに充電された電荷を強制放電するため、頻度が高くなると放電用の抵抗器は過熱状態となり焼損する恐れがある。
(2)平滑コンデンサの温度上昇を招き、平滑コンデンサが短寿命化する。
(3)平滑コンデンサ放電後に駆動用の電源を投入したときには、モータに適正なトルクを発生するための平滑コンデンサへの充電に数百ミリ秒の充電時間が必要となり、タクトタイムが伸びる障害となる。
また、平滑コンデンサの充電状態表示を行なう場合は、保守点検を行なう時には表示が消灯して感電の危険がなくなるまで待たなければならなかった。平滑コンデンサ両端の電圧が人体にとって危険電圧以下(例えば直流30V)になるためには、充電された電荷が自然放電及び駆動回路部品の漏洩電流に頼り、強制放電を行なわないと数分から数十分必要である。この強制放電を作業者の操作に頼ることは、操作を忘れると安全が阻害されることとなるため問題があった。
尚、段取り時に駆動電源の遮断は、前述の作業者への安全確保の他に、工作機の非動作時の節電となり、省エネルギーの効果があり要望が多くなっている。
Conventional motor drive devices control the discharge of the smoothing capacitor when the power supply to the motor drive device is cut off, and work machines that frequently turn on and off the drive power represented by machine tools and industrial robots There were the following problems in the application.
(1) Since the electric charge charged in the smoothing capacitor is forcibly discharged by the discharge resistor when the drive power supply is cut off, the discharge resistor may be overheated and burned if the frequency increases.
(2) The temperature of the smoothing capacitor is increased and the life of the smoothing capacitor is shortened.
(3) When the driving power supply is turned on after discharging the smoothing capacitor, charging of the smoothing capacitor to generate an appropriate torque for the motor requires a charging time of several hundred milliseconds, which is an obstacle to increase the tact time. .
Further, when displaying the state of charge of the smoothing capacitor, it was necessary to wait until the display was turned off and there was no risk of electric shock when performing maintenance and inspection. In order for the voltage across the smoothing capacitor to be below the dangerous voltage for the human body (for example, DC 30V), the charged charge depends on the natural discharge and the leakage current of the drive circuit components. is necessary. Relying on this forced discharge by the operator's operation has been problematic because forgetting the operation will impede safety.
In addition to shutting off the drive power supply during setup, in addition to ensuring the safety for the above-mentioned workers, it also saves power when the machine tool is not in operation, which has the effect of saving energy and has been increasingly demanded.

本発明はこのような問題点に鑑みてなされたものであり、駆動用の電源遮断のみでは平滑コンデンサの強制放電を行なわないことで、放電用の抵抗器容量の小型化と共に平滑コンデンサの短命化を防止し、更には継続する作業のためにモータ駆動電源を投入した時の平滑コンデンサへの充電時間を短縮化すると共に、制御装置の全電源遮断、すなわち制御用の電源遮断時には、平滑コンデンサに充電された電荷を強制放電することで遅滞なく感電事故等無く安全に保守点検を行なうことのできる制御装置を提供することを目的とする。   The present invention has been made in view of such problems, and by not cutting the smoothing capacitor forcibly only by shutting off the driving power source, the capacity of the discharging resistor can be reduced and the life of the smoothing capacitor can be shortened. In addition to shortening the charging time of the smoothing capacitor when the motor drive power is turned on for continuing work, the smoothing capacitor is turned off when the entire power supply of the control device is cut off, that is, when the control power supply is turned off. It is an object of the present invention to provide a control device that can perform maintenance and inspection safely without delay and without causing an electric shock accident by forcibly discharging the charged electric charge.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、電源から直列接続した遮断器の接点と継電器の接点とを介して電源供給され、前記遮断器の接点および前記継電器の接点が閉路したときにエネルギーを蓄える平滑コンデンサを備える駆動電源部と、前記駆動電源部より電力供給を受け駆動回路を介してモータを駆動する駆動部と、前記遮断器の接点と前記継電器の接点との間に接続され前記電源の供給停止を検出して電源供給停止信号を出力する停電検出回路と、前記モータの減速時に該モータからの回生による余剰エネルギーの開放および前記平滑コンデンサに蓄えられたエネルギーを開放するエネルギー開放手段と、を備えたロボット制御装置において、前記停電検出回路が前記停電検出信号を出力した際には前記エネルギー開放手段で前記平滑コンデンサに蓄えられたエネルギーの開放を行ない、前記電源から前記遮断器の接点と前記継電器の接点とを介して前記駆動電源部へ電源供給された状態から、前記遮断器の接点は閉路した状態で前記継電器の接点を開路して前記駆動電源部への電源供給の遮断に際し、前記停電検出回路が前記電源供給停止信号を出力していなければ、前記エネルギー開放手段で前記平滑コンデンサに蓄えられたエネルギーの開放を行なわないで自然放電を行なうことを特徴とするものである。

In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a smoothing capacitor which stores power when power is supplied from a power source through a contact of a circuit breaker connected in series and a contact of a relay, and the contact of the circuit breaker and the contact of the relay are closed A drive power supply unit comprising: a drive unit that receives power supply from the drive power supply unit and drives a motor via a drive circuit; and is connected between the contact of the circuit breaker and the contact of the relay, and stops the supply of the power And a power failure detection circuit that outputs a power supply stop signal and energy release means for releasing excess energy due to regeneration from the motor and releasing energy stored in the smoothing capacitor when the motor decelerates. in the robot control apparatus, when the power failure detection circuit outputs the power failure detection signal to the smoothing capacitor by the energy release means Performs opening of the obtained energy, the relay in a state from a state in which the power is supplied to the drive power supply portion via the contact of the relay and the contacts of the circuit breaker from said power source, contact of the circuit breaker was closed If the power failure detection circuit does not output the power supply stop signal when the power supply to the drive power supply unit is cut off by opening the contact of the power supply, the energy stored in the smoothing capacitor is released by the energy release means It is characterized by performing natural discharge without performing the above.

請求項1に記載の発明によると、ロボット制御装置であってモータの駆動電源遮断の時に、停電検出回路より、電源供給停止信号が出力されていなければコンデンサに蓄積された電荷エネルギーを強制放電せず、電源供給停止信号が出力されていればコンデンサに蓄積された電荷エネルギーを強制放電することができ、コンデンサや放電手段部品の長寿命化と、投入時の待ち時間を最小として稼動継続ができる。更には保守に際しては感電事故を防止することができる。更に作業者がロボットの動作領域に入り、駆動電源の投入と遮断頻度の高い生産機械でも部品の短命化などの障害を排除することができる。

According to the invention described in claim 1, a robot control device when the drive power shutdown of the motor, from the power failure detection circuit, the forced discharge causes a charge energy power supply stop signal is accumulated in the capacitor if it is not output If the power supply stop signal is output, the charge energy stored in the capacitor can be forcibly discharged, extending the life of the capacitor and discharge means components, and continuing the operation with minimum waiting time at the time of input. . Furthermore, an electric shock accident can be prevented during maintenance. Furthermore, it is possible to eliminate obstacles such as shortening of parts even in a production machine where the operator enters the robot operation area and the drive power is turned on and shut off frequently.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施例を示す電源回路の接続図である。図において、21は遮断器であり制御装置への電源20の継断を行なう。遮断器21より分岐して、片方は電源装置22より駆動電源制御回路24へ制御用の電源を供給すると共に、停電検出回路23で電源20の停電あるいは遮断器21による電源遮断を検出して、電源供給停止信号を駆動電源制御回路24へ出力する。図示しない制御装置の制御部より駆動電源制御回路24へ駆動電源投入指令が入力され、駆動電源部35への電源投入と遮断を制御する。尚、電源装置22は、後述する平滑コンデンサ33の強制放電時間相当の電圧保持時間が確保されている。他方は継電器25を介して駆動電源部35へ接続されており、駆動電源制御回路24の指令に基づき電源20を整流器26へ継電する。整流器26は交流を直流へ変換するダイオードアレーである。27は抵抗器、28は継電器、29は電圧検出回路、30は回生制御回路、31はトランジスタ、32は回生抵抗器、33は平滑コンデンサ、34は駆動回路である。   FIG. 1 is a connection diagram of a power supply circuit showing a first embodiment of the present invention. In the figure, reference numeral 21 denotes a circuit breaker, which disconnects the power supply 20 to the control device. Branching from the circuit breaker 21, one side supplies power for control from the power supply device 22 to the drive power supply control circuit 24, and a power failure detection circuit 23 detects a power failure of the power source 20 or power interruption by the circuit breaker 21. A power supply stop signal is output to the drive power supply control circuit 24. A drive power-on command is input to the drive power control circuit 24 from a control unit (not shown) to control power-on / off of the drive power-supply unit 35. The power supply device 22 has a voltage holding time equivalent to a forced discharge time of the smoothing capacitor 33 described later. The other is connected to the drive power supply unit 35 via the relay 25 and relays the power supply 20 to the rectifier 26 based on a command from the drive power supply control circuit 24. The rectifier 26 is a diode array that converts alternating current into direct current. Reference numeral 27 denotes a resistor, 28 denotes a relay, 29 denotes a voltage detection circuit, 30 denotes a regeneration control circuit, 31 denotes a transistor, 32 denotes a regeneration resistor, 33 denotes a smoothing capacitor, and 34 denotes a drive circuit.

抵抗器27は突入電流抑制を目的としており、平滑コンデンサ33の両端電圧が所定の電圧以下では継電器28は開路して、継電器25を閉路して整流器26により直流変換された電流で平滑コンデンサ33への充電電流が過大とならないように抵抗器27で電流を制限する。平滑コンデンサ33の両端電圧が所定の電圧となったことが電圧検出回路29で検出されると、継電器28が閉路して直接充電される。
また、モータ減速時にはモータより回生エネルギーが駆動回路34より戻されて、平滑コンデンサ33の両端電圧は高くなるが、この高い電圧によって回路部品の焼損や回路の絶縁破壊を防ぐために、電圧検出回路29が所定の過電圧より高くなったことを検出すると、回生制御回路30へ結果が出力され、回生制御回路30ではトランジスタ31を駆動して、平滑コンデンサ33に蓄えられている電荷を回生抵抗器32を介して放電する。この回生抵抗器32は平滑コンデンサ33に蓄積されエネルギーを強制放電する際にも使用される。すなわち、駆動電源制御回路24より回生制御回路30へ強制放電信号が出力されると、回生制御回路30はトランジスタ31を駆動して、平滑コンデンサ33に蓄積されている電荷エネルギーを、回生抵抗器32を使用して強制的に放電する。
The resistor 27 is intended to suppress inrush current. When the voltage across the smoothing capacitor 33 is equal to or lower than a predetermined voltage, the relay 28 is opened, the relay 25 is closed, and the current converted into DC by the rectifier 26 is passed to the smoothing capacitor 33. The current is limited by the resistor 27 so that the charging current is not excessive. When the voltage detection circuit 29 detects that the voltage across the smoothing capacitor 33 has become a predetermined voltage, the relay 28 is closed and charged directly.
Further, when the motor decelerates, the regenerative energy is returned from the drive circuit 34 from the motor, and the voltage across the smoothing capacitor 33 becomes high. In order to prevent the circuit components from being burned out and the circuit from being broken down by this high voltage, the voltage detection circuit 29 Is detected to be higher than a predetermined overvoltage, a result is output to the regenerative control circuit 30. The regenerative control circuit 30 drives the transistor 31 to transfer the electric charge stored in the smoothing capacitor 33 to the regenerative resistor 32. To discharge through. The regenerative resistor 32 is also used when the energy stored in the smoothing capacitor 33 is forcibly discharged. That is, when a forced discharge signal is output from the drive power supply control circuit 24 to the regeneration control circuit 30, the regeneration control circuit 30 drives the transistor 31 to convert the charge energy stored in the smoothing capacitor 33 into the regeneration resistor 32. Use to forcibly discharge.

駆動回路34よりは図示しないモータに接続されており、図示しない制御回路よりの指令に基づいてモータを駆動する。多軸モータ駆動のためには、駆動電源部35を複数備える構成と、平滑コンデンサ33より並列に駆動回路34を複数備える構成があるが、本発明の実施においては構成を問わず、1軸制御の図で説明する。 The drive circuit 34 is connected to a motor (not shown), and drives the motor based on a command from a control circuit (not shown). In order to drive the multi-axis motor, there are a configuration including a plurality of drive power supply units 35 and a configuration including a plurality of drive circuits 34 in parallel with the smoothing capacitor 33. In the practice of the present invention, one-axis control is possible regardless of the configuration. This will be described with reference to FIG.

以下、本発明の動作を説明する。遮断器21を閉路して電源20が継電されると、電源装置22は駆動電源制御回路24に必要な制御電源を供給すると共に、停電検出回路23は「電源正常」を駆動電源制御回路24に出力する。
次に外部操作装置8のモータ電源投入指令の入力でモータ駆動電源の投入を行なう。
駆動電源制御回路24へ駆動電源投入指令が入力されると、駆動電源投入信号が継電器25へ出力され、継電器25は通電励磁され、その接点は閉路して、整流器26へ電源が供給される。
The operation of the present invention will be described below. When the circuit breaker 21 is closed and the power supply 20 is relayed, the power supply device 22 supplies necessary drive power to the drive power supply control circuit 24, and the power failure detection circuit 23 sets “power supply normal” to the drive power supply control circuit 24. Output to.
Next, the motor drive power is turned on by inputting the motor power on command of the external operating device 8.
When a drive power on command is input to the drive power control circuit 24, a drive power on signal is output to the relay 25, the relay 25 is energized and energized, the contact is closed, and power is supplied to the rectifier 26.

平滑コンデンサ33の両端電圧は電圧検出開路29で監視されており、過電流防止用として設定されている電圧以下では継電器28を開路して、整流器26より抵抗器27を介して平滑コンデンサ33への充電される。電圧検出開路29で過電流防止用として設定されている電圧を超える電圧を検出すると、継電器26を閉路する。
図2は、平滑コンデンサ33が完全放電状態から駆動電源を投入した時の両端電圧グラフである。平滑コンデンサ33が完全に放電の状態より充電され、支障なくモータ駆動を行なうために必要な電圧になるためには約250ミリ秒の時間が必要である。
The voltage across the smoothing capacitor 33 is monitored by a voltage detection open circuit 29. The relay 28 is opened below the voltage set for overcurrent prevention, and the voltage from the rectifier 26 to the smoothing capacitor 33 via the resistor 27 is opened. Charged. When the voltage detection open circuit 29 detects a voltage exceeding the voltage set for overcurrent prevention, the relay 26 is closed.
FIG. 2 is a both-ends voltage graph when the smoothing capacitor 33 is turned on from the completely discharged state. It takes about 250 milliseconds for the smoothing capacitor 33 to be fully charged from the discharged state and to have a voltage necessary for driving the motor without any trouble.

図3は、制御電源は遮断せずに駆動電源のみを遮断した時の平滑コンデンサ33の両端電圧グラフである。駆動電源制御回路24への駆動電源投入指令をオフして継電器25を開路する。停電検出回路23より電源供給停止信号は出力されていないため、駆動電源制御回路24から回生制御回路30へ強制放電信号は出力されず、その結果トランジスタ31は駆動されず、平滑コンデンサ33に蓄積された電荷エネルギーは回生抵抗器32を介して放電されない。この状態では平滑コンデンサ33には電荷は蓄積されたままであり、回路の漏洩電流による自然放電となるため、平滑コンデンサ33へ蓄積された電荷の放電には数分から数十分必要である。尚、モータが動作中に駆動電源が遮断されると、モータが減速されて回生エネルギーが戻り平滑コンデンサ33の電圧が高くなることがあるが、この過電圧は電圧検出回路28で検出され、出力が接続された回生制御回路30の指令に基づきトランジスタ31を駆動して回生抵抗器32で放電を行ない、平滑コンデンサ33の両端電圧が過電圧となる所定電圧より高くならないように制御される。   FIG. 3 is a voltage graph across the smoothing capacitor 33 when only the drive power supply is cut off without turning off the control power supply. The drive power-on command to the drive power control circuit 24 is turned off and the relay 25 is opened. Since no power supply stop signal is output from the power failure detection circuit 23, no forced discharge signal is output from the drive power supply control circuit 24 to the regeneration control circuit 30, and as a result, the transistor 31 is not driven and is stored in the smoothing capacitor 33. The charged energy is not discharged through the regenerative resistor 32. In this state, the charge is still accumulated in the smoothing capacitor 33 and spontaneous discharge is caused by the leakage current of the circuit. Therefore, it takes several minutes to several tens of minutes to discharge the charge accumulated in the smoothing capacitor 33. Note that if the drive power supply is cut off while the motor is operating, the motor is decelerated and the regenerative energy may be returned to increase the voltage of the smoothing capacitor 33. This overvoltage is detected by the voltage detection circuit 28, and the output is The transistor 31 is driven based on the command of the connected regenerative control circuit 30 and discharged by the regenerative resistor 32 so that the voltage across the smoothing capacitor 33 is controlled not to become higher than a predetermined voltage that is an overvoltage.

図4は、図3の駆動電源遮断に続き、平滑コンデンサ33より自然放電中に駆動電源を投入した時の両端電圧グラフである。上段は駆動電源遮断より駆動電源投入の全体を10S/divで示し、下段は駆動電源投入時の拡大を100mS/divである。尚、駆動電源投入は駆動電源遮断より約60秒後に行なわれた場合である。駆動電源投入指令に基づき、継電器25が閉路して電源20が駆動電源部35へ供給される。整流器26は、供給された交流を直流に変換して平滑コンデンサ33へ電荷を蓄積するが、平滑コンデンサ33は完全に放電されていないため、支障なくモータ駆動を行なうために必要な電圧に充電にかかる時間は、数60ミリ秒と図2の充電時間の約250ミリ秒と比較して格段に短い。   FIG. 4 is a both-ends voltage graph when the drive power supply is turned on during the natural discharge from the smoothing capacitor 33 after the drive power supply cut-off of FIG. In the upper part, the entire drive power supply is turned on at 10 S / div after the drive power supply is cut off, and in the lower part, the enlargement at the time of drive power supply is 100 mS / div. The drive power supply is turned on about 60 seconds after the drive power supply is cut off. Based on the drive power supply command, the relay 25 is closed and the power supply 20 is supplied to the drive power supply unit 35. The rectifier 26 converts the supplied alternating current into direct current and accumulates electric charge in the smoothing capacitor 33. However, since the smoothing capacitor 33 is not completely discharged, it is charged to a voltage necessary for driving the motor without any trouble. Such time is much shorter than several 60 milliseconds and about 250 milliseconds of the charging time in FIG.

図5は、電源供給が停止して駆動電源の遮断を行なう場合の平滑コンデンサ33の両端電圧グラフである。遮断器21を開路すると、停電検出回路23より電源供給停止信号が出力され、図示しない制御部は駆動電源の遮断を行なう。駆動電源制御回路24は、駆動電源投入指令がオフすると、駆動電源投入信号をオフして継電器25を開路する。電源供給停止信号が出力されているので、駆動電源制御回路24から回生制御回路30へ強制放電信号が出力され、その結果トランジスタ31は駆動され、平滑コンデンサ33に蓄積された電荷エネルギーは回生抵抗器32を介して強制放電される。この時の放電時間は約100ミリ秒である。   FIG. 5 is a voltage graph across the smoothing capacitor 33 when the power supply is stopped and the drive power supply is shut off. When the circuit breaker 21 is opened, a power supply stop signal is output from the power failure detection circuit 23, and a control unit (not shown) cuts off the drive power. When the drive power supply command is turned off, the drive power supply control circuit 24 turns off the drive power supply signal and opens the relay 25. Since the power supply stop signal is output, a forced discharge signal is output from the drive power supply control circuit 24 to the regeneration control circuit 30. As a result, the transistor 31 is driven, and the charge energy accumulated in the smoothing capacitor 33 is regenerative resistor. Forcible discharge is performed via 32. The discharge time at this time is about 100 milliseconds.

図6は、図3の駆動電源遮断に続き、平滑コンデンサ33より自然放電中に電源供給が停止した時の両端電圧グラフである。電源供給が停止すると、停電検出回路23がこれを検出し、電源供給停止信号を駆動電源制御回路24へ出力する。駆動電源制御回路24は回生制御回路30へ強制放電信号を出力し、回生制御回路30はトランジスタ31を駆動して回生抵抗器32を介して平滑コンデンサ33に蓄積されている電荷を強制放電する。モータ駆動装置や制御部が収納されている制御装置では、作業者等を感電から保護するために充電部はエンクロージャ内に収納され、保守などのためにエンクロージャを開ける時は遮断器21で電源を遮断する構成が機械安全に関する規格(例えばJIS B 843)で要請されている。図5および図6では、この要請に適合することは明らかである。
FIG. 6 is a both-ends voltage graph when the power supply is stopped during the natural discharge from the smoothing capacitor 33 after the drive power supply is cut off in FIG. When the power supply is stopped, the power failure detection circuit 23 detects this, and outputs a power supply stop signal to the drive power control circuit 24. The drive power supply control circuit 24 outputs a forced discharge signal to the regeneration control circuit 30, and the regeneration control circuit 30 drives the transistor 31 to forcibly discharge the electric charge accumulated in the smoothing capacitor 33 via the regeneration resistor 32. In the control device in which the motor driving device and the control unit are housed, the charging unit is housed in the enclosure in order to protect workers and the like from electric shocks, and when the enclosure is opened for maintenance, the circuit breaker 21 is used to supply power. A configuration for shutting off is required by a standard related to machine safety (for example, JIS B 843 3 ). In FIGS. 5 and 6, it is clear that this requirement is met.

図1に示す本発明の実施例では、停電検出回路23と電源装置22を別に構成しているが、これらは電源受電、内部制御電圧供給、内部回路構成に共通部分があるため、1つのユニットとして纏めて構成することで、制御装置の構成の上で小型化、相互間配線の簡略化と共に、構成部品削減ができるため信頼性の向上ができる。 In the embodiment of the present invention shown in FIG. 1, the power failure detection circuit 23 and the power supply device 22 are configured separately, but these units have common parts in power reception, internal control voltage supply, and internal circuit configuration. As a result, it is possible to improve the reliability because the size of the control device can be reduced, the interconnections can be simplified, and the number of components can be reduced.

本発明が特許文献1および特許文献2と異なる部分は、モータの駆動電源のみを遮断する場合は、平滑コンデンサに充電されている電荷の強制放電は行なわず、自然放電とし、制御電源を遮断する場合は、平滑コンデンサに充電された電荷の強制放電を行なうことを備えた部分である。 The present invention differs from Patent Document 1 and Patent Document 2 in that, when only the motor drive power is cut off, the charge charged in the smoothing capacitor is not forcedly discharged but is spontaneously discharged and the control power supply is cut off. In the case, it is a part provided to forcibly discharge the electric charge charged in the smoothing capacitor.

このように、駆動電源を遮断するときに、停電や遮断器21の遮断によって電源の供給が停電したか否かを停電検出回路23で検出し、停電の時に限り平滑コンデンサ33に蓄積されている電荷エネルギーを強制放電するような構成をしているので、頻繁な駆動電源の投入と遮断で放電用の抵抗器の加熱を防ぎ焼損を防止し、平滑コンデンサの充放電を少なくすることで短命化を防ぎ、更には充電時間を短縮することが出来るのでタクトタイムが伸びることが無く、保守に際しては短時間のうちに放電が完了しているので感電事故を防ぐことが出来る。   As described above, when the drive power supply is shut off, the power failure detection circuit 23 detects whether or not the power supply is interrupted due to a power failure or the circuit breaker 21 being interrupted, and is stored in the smoothing capacitor 33 only at the time of the power failure. Since the charge energy is forcibly discharged, frequent turning on and off of the drive power prevents heating of the discharge resistor, prevents burnout, and shortens the life of the smoothing capacitor by reducing charging and discharging. In addition, since the charging time can be shortened, the tact time does not increase, and the electric discharge accident can be prevented because the discharge is completed within a short time during maintenance.

本発明は、モータ駆動を行なう制御装置で駆動電源の投入と遮断を行なう工作機械に有効であり、数値制御装置、スライダやターンテーブル制御装置という用途にも適用できる。 INDUSTRIAL APPLICABILITY The present invention is effective for a machine tool that turns on and off a drive power source with a control device that drives a motor, and can also be applied to uses such as a numerical control device, a slider, and a turntable control device.

本発明の第1実施例を示す制御装置の電源回路の接続図Connection diagram of power supply circuit of control apparatus showing first embodiment of the present invention 本発明の第1実施例における平滑コンデンサ完全放電状態よりの駆動電源投入時の平滑コンデンサ両端電圧グラフSmoothing capacitor both-ends voltage graph at the time of driving power supply from the smoothing capacitor full discharge state in the first embodiment of the present invention 本発明の第1実施例における駆動電源遮断時の平滑コンデンサ両端電圧グラフSmoothing capacitor both-ends voltage graph at the time of driving power supply cutoff in the first embodiment of the present invention 本発明の第1実施例における平滑コンデンサ未放電状態よりの駆動電源投入時の平滑コンデンサ両端電圧グラフSmoothing capacitor both-ends voltage graph at the time of driving power supply from the smoothing capacitor undischarged state in the first embodiment of the present invention 本発明の第1実施例における電源供給停止時の平滑コンデンサ両端電圧グラフSmoothing capacitor both-ends voltage graph when power supply is stopped in the first embodiment of the present invention 本発明の第1実施例における平滑コンデンサ未放電状態よりの電源供給停止時の平滑コンデンサ両端電圧グラフSmoothing capacitor both-ends voltage graph at the time of power supply stop from the smoothing capacitor undischarged state in the first embodiment of the present invention ロボットによるワーク加工システムの概要図Outline diagram of workpiece machining system by robot

符号の説明Explanation of symbols

1 ロボット
2 ロボット制御装置
3 ペンダント
4 ワーク
5 作業台
6 ターンテーブル
7 作業者
8 外部操作装置
9 イネーブル装置
20 電源
21 遮断器
22 電源装置
23 停電検出回路
24 駆動電源制御回路
25、28 継電器
26 整流器
27 抵抗器
29 電圧検出回路
30 回生制御回路
31 トランジスタ
32 回生抵抗器
33 平滑コンデンサ
34 駆動回路
35 駆動電源部
DESCRIPTION OF SYMBOLS 1 Robot 2 Robot control device 3 Pendant 4 Work 5 Worktable 6 Turntable 7 Worker 8 External operation device 9 Enable device 20 Power supply 21 Circuit breaker 22 Power supply device 23 Power failure detection circuit 24 Drive power supply control circuit 25, 28 Relay 26 Rectifier 27 Resistor 29 Voltage detection circuit 30 Regenerative control circuit 31 Transistor 32 Regenerative resistor 33 Smoothing capacitor 34 Drive circuit 35 Drive power supply unit

Claims (1)

電源から直列接続した遮断器の接点と継電器の接点とを介して電源供給され、前記遮断器の接点および前記継電器の接点が閉路したときにエネルギーを蓄える平滑コンデンサを備える駆動電源部と、
前記駆動電源部より電力供給を受け駆動回路を介してモータを駆動する駆動部と、
前記遮断器の接点と前記継電器の接点との間に接続され前記電源の供給停止を検出して電源供給停止信号を出力する停電検出回路と、
前記モータの減速時に該モータからの回生による余剰エネルギーの開放および前記平滑コンデンサに蓄えられたエネルギーを開放するエネルギー開放手段と、を備えたロボット制御装置において、
前記停電検出回路が前記停電検出信号を出力した際には前記エネルギー開放手段で前記平滑コンデンサに蓄えられたエネルギーの開放を行ない、
前記電源から前記遮断器の接点と前記継電器の接点とを介して前記駆動電源部へ電源供給された状態から、前記遮断器の接点は閉路した状態で前記継電器の接点を開路して前記駆動電源部への電源供給の遮断に際し、前記停電検出回路が前記電源供給停止信号を出力していなければ、前記エネルギー開放手段で前記平滑コンデンサに蓄えられたエネルギーの開放を行なわないで自然放電を行なうことを特徴とするロボット制御装置。
A drive power supply unit comprising a smoothing capacitor that is supplied with power via a contact of a circuit breaker and a contact of a relay connected in series from a power source, and stores energy when the contact of the circuit breaker and the contact of the relay are closed;
A drive unit that receives power supply from the drive power supply unit and drives a motor via a drive circuit;
A power failure detection circuit that is connected between the contact of the circuit breaker and the contact of the relay and detects the supply stop of the power and outputs a power supply stop signal;
In a robot control apparatus comprising: energy release means for releasing surplus energy due to regeneration from the motor during deceleration of the motor and releasing energy stored in the smoothing capacitor;
When the power failure detection circuit outputs the power failure detection signal, the energy release means releases the energy stored in the smoothing capacitor,
From the state in which power is supplied from the power source to the drive power supply unit via the contact of the circuit breaker and the contact of the relay, the contact of the circuit breaker is opened while the contact of the circuit breaker is closed. If the power failure detection circuit does not output the power supply stop signal when the power supply to the unit is interrupted, the energy release means performs a natural discharge without releasing the energy stored in the smoothing capacitor. A robot controller characterized by the above.
JP2003387355A 2003-11-18 2003-11-18 Robot controller Expired - Fee Related JP4680492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387355A JP4680492B2 (en) 2003-11-18 2003-11-18 Robot controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387355A JP4680492B2 (en) 2003-11-18 2003-11-18 Robot controller

Publications (2)

Publication Number Publication Date
JP2005151729A JP2005151729A (en) 2005-06-09
JP4680492B2 true JP4680492B2 (en) 2011-05-11

Family

ID=34694724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387355A Expired - Fee Related JP4680492B2 (en) 2003-11-18 2003-11-18 Robot controller

Country Status (1)

Country Link
JP (1) JP4680492B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4418259B2 (en) * 2004-02-27 2010-02-17 株式会社日立製作所 Electric brake device
JP4568249B2 (en) * 2006-05-18 2010-10-27 シャープ株式会社 Power supply
BR112016007088B1 (en) 2013-09-30 2021-08-17 Nissan Motor Co., Ltd. WIRELESS POWER SUPPLY DEVICE AND PARKING ASSISTANT DEVICE
WO2015114796A1 (en) * 2014-01-31 2015-08-06 日産自動車株式会社 Wireless power supply system and power transmission device
BR112016019747B1 (en) 2014-02-25 2021-11-23 Nissan Motor Co. Ltd. WIRELESS POWER SUPPLY SYSTEM
US9845019B2 (en) 2014-02-25 2017-12-19 Nissan Motor Co., Ltd. Wireless power supply system and power transmission device
KR101817455B1 (en) 2014-02-25 2018-01-11 닛산 지도우샤 가부시키가이샤 Wireless power supply system and power transmission device
JP6451749B2 (en) 2015-01-29 2019-01-16 日産自動車株式会社 Parking support system and parking support method
JP6297999B2 (en) * 2015-03-18 2018-03-20 株式会社椿本チエイン Power supply
KR101730728B1 (en) 2015-10-01 2017-05-11 현대자동차주식회사 Method and apparatus for detecting ground assembly of wireless power charging system
GB2588035B (en) * 2018-06-12 2022-08-03 Nachi Fujikoshi Corp Brake circuit discharge system
CN109822620A (en) * 2019-03-05 2019-05-31 北京海益同展信息科技有限公司 A kind of robot device and control method
JP7238606B2 (en) * 2019-05-31 2023-03-14 日本電産株式会社 Power supply, motor and blower

Also Published As

Publication number Publication date
JP2005151729A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4680492B2 (en) Robot controller
US20160363924A1 (en) Servo motor stop controller to control and stop servo motor during emergency stop
JP4168072B2 (en) Robot system
CN107877548B (en) Production system for performing cooperative work between operator and robot
JP4817084B2 (en) Motor drive system and motor control device
US9377774B2 (en) Controller for machine tool including main shafts
JP6525933B2 (en) Machine Tools
JP6171466B2 (en) Robot control device
JP2008136312A (en) Motor drive apparatus
CN105555489A (en) Multiaxial robot power shut-off device and multiaxial robot
JP2015097045A (en) Motor controller for protecting tool and workpiece in emergency stop
JPH048190B2 (en)
JP2020091623A (en) Controller for machine tool
US20220131494A1 (en) Electric motor control device, robot having the same, and method of controlling electric motor
JP4003124B2 (en) Automatic machine control device
US20070163322A1 (en) Automatic machine control device
JP3091572B2 (en) Numerically controlled machine tool with power failure control
JP2004538155A (en) Short-time arc welding system and system and method for controlling such a system
US20060157329A1 (en) Safety apparatus in connection with work loading device to safe guard machine tools operation
JP3951131B2 (en) Teach pendant control method and apparatus
CN107030300A (en) A kind of lathe spindle safety device and its application method
WO1991009354A1 (en) Protection device in automatic production equipments
JPH03221394A (en) Industrial robot
JPH1177484A (en) Nc machine tool
JPH04401Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4680492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees