JP4678831B2 - Process for treating waste liquid from sugarmaking waste, sugar production liquid, or fermentation process of sugar production - Google Patents

Process for treating waste liquid from sugarmaking waste, sugar production liquid, or fermentation process of sugar production Download PDF

Info

Publication number
JP4678831B2
JP4678831B2 JP2005037563A JP2005037563A JP4678831B2 JP 4678831 B2 JP4678831 B2 JP 4678831B2 JP 2005037563 A JP2005037563 A JP 2005037563A JP 2005037563 A JP2005037563 A JP 2005037563A JP 4678831 B2 JP4678831 B2 JP 4678831B2
Authority
JP
Japan
Prior art keywords
membrane
waste
waste liquid
sugar
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005037563A
Other languages
Japanese (ja)
Other versions
JP2005313148A (en
Inventor
俊和 河合
雅浩 奥野
浩 波部
雅人 鈴木
涼 塩野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MUROMACHI CHEMICALS INC.
Mitsui DM Sugar Co Ltd
Original Assignee
MUROMACHI CHEMICALS INC.
Mitsui Sugar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MUROMACHI CHEMICALS INC., Mitsui Sugar Co Ltd filed Critical MUROMACHI CHEMICALS INC.
Priority to JP2005037563A priority Critical patent/JP4678831B2/en
Publication of JP2005313148A publication Critical patent/JP2005313148A/en
Application granted granted Critical
Publication of JP4678831B2 publication Critical patent/JP4678831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

本発明は、製糖廃蜜、製糖廃液、又は製糖廃蜜の発酵工程からの廃液の処理方法に関する。   The present invention relates to a method for treating a waste liquid from a fermentation process of sugar-making waste, sugar-making waste liquid, or sugar-making waste.

食品製造工場では、様々な廃液が排出される。特に原料として植物及び動物を扱う、農産加工食品、畜産加工食品及び水産加工食品を製造する工場からは、有機物を多く含む廃液(有機性廃液)が多く排出されている。この中でも焼酎かす、発酵廃液、製糖廃蜜、梅漬調味廃液などの廃液の一部については、海洋投棄処分が行われている。しかし、地球自然環境保護の観点に基づき1975年に発効され、1993年に改正された「廃棄物その他の物の投棄による海洋汚染の防止に関する条約(ロンドン条約)」により、このような海洋投棄処分が禁止された。日本はこの条約をまだ批准していない。しかし、2004〜2005年に、この条約を批准する方向で検討が進められている。従って、海洋投棄に代わる有機性廃液の処理方法が開発されている。   Various waste liquids are discharged at food manufacturing plants. In particular, waste liquids (organic waste liquids) containing a large amount of organic matter are discharged from factories that manufacture plants and animals as raw materials and produce processed agricultural foods, processed livestock foods and processed fishery foods. Among these, a part of the waste liquids such as shochu lees, fermentation waste liquid, sugar-making waste nectar, and umezuke seasoning waste liquid are disposed of by ocean dumping. However, in accordance with the “Convention on the Prevention of Marine Pollution Caused by the Disposal of Waste and Others (London Convention)”, which came into effect in 1975 based on the viewpoint of protecting the global natural environment and was revised in 1993. Was banned. Japan has not yet ratified the treaty. However, studies are underway to ratify the treaty between 2004 and 2005. Therefore, organic waste liquid treatment methods have been developed to replace ocean dumping.

製糖廃蜜、製糖廃液、及び製糖廃蜜の発酵工程からの廃液は、蛋白質又は糖質、着色物質等に由来する有機物並びに塩素、カリウム等の無機物を高濃度含有している。廃液を処理して環境中に排出するためには有機物、無機物の含量を低減して排出基準以下にまで下げる必要がある。従来、これら廃液の処理方法としては、(1)生物処理法、(2)焼却処理法、(3)飼料および有機肥料への利用、並びに(4)ボイラー燃焼法が行われていた。   Sugarmaking waste, sugarmaking wastewater, and wastewater from the fermentation process of sugarmaking waste contain high concentrations of organic substances derived from proteins or sugars, coloring substances, and inorganic substances such as chlorine and potassium. In order to treat the waste liquid and discharge it into the environment, it is necessary to reduce the content of organic and inorganic substances to below the emission standard. Conventionally, as a treatment method of these waste liquids, (1) biological treatment method, (2) incineration treatment method, (3) use for feed and organic fertilizer, and (4) boiler combustion method have been performed.

一般に有機性廃水を安価に処理する方法として、生物処理が有効であることが知られている。また、活性汚泥法、膜分離活性汚泥法、生物膜法等が知られている。製糖廃蜜、製糖廃液、及び製糖廃蜜の発酵工程からの廃液は、一般の有機性廃水と比べて非常に有機物濃度が高いことから、古くからメタン発酵処理が用いられてきた。近年には、UASB法によるメタン発酵法により、高速処理が可能になってきた(非特許文献1)。   In general, biological treatment is known to be effective as a method for treating organic wastewater at low cost. Moreover, the activated sludge method, the membrane separation activated sludge method, the biofilm method, etc. are known. Since the sugarmaking waste, the sugarmaking waste liquid, and the waste liquid from the fermentation process of the sugarmaking waste have a very high organic substance concentration compared with general organic wastewater, methane fermentation treatment has been used for a long time. In recent years, high-speed processing has become possible by the methane fermentation method using the UASB method (Non-Patent Document 1).

また、廃液の焼却処理法として、噴霧焼却法、液中燃焼法、及び流動層焼却法などが開発されている。噴霧焼却法は、高濃度有機廃液を炉内に噴霧し、焼却処理する方法であり、具体的には有機性廃液を高温高圧に保持して流状化し、この流状化物を噴霧焼却する方法として知られている(特許文献1〜3及び非特許文献2)。液中燃焼法は、燃焼によって発生した高温燃焼ガスを一気に液体中に噴出させ、液体と燃焼ガス気泡との直接接触により熱の伝達や燃焼ガス成分の吸収などを効率的に行う方法である(特許文献4〜7並びに非特許文献3及び4)。また、流動層焼却法は、珪砂または酸化アルミニウムを流動媒体として炉内に高温の流動状態に保ち、この中に焼却物を投入して瞬時に完全焼却する方法である(特許文献8及び9)。以上のような焼却処理法には、専用の設備および装置が開発され、販売されている。   Further, spray incineration, submerged combustion, fluidized bed incineration, and the like have been developed as waste liquid incineration methods. The spray incineration method is a method in which high-concentration organic waste liquid is sprayed into the furnace and incinerated. Specifically, the organic waste liquid is fluidized by holding it at high temperature and high pressure, and this fluidized product is spray incinerated. (Patent documents 1 to 3 and non-patent document 2). The submerged combustion method is a method in which high-temperature combustion gas generated by combustion is ejected into the liquid at once, and heat transfer, absorption of combustion gas components, and the like are efficiently performed by direct contact between the liquid and the combustion gas bubbles ( Patent Documents 4 to 7 and Non-Patent Documents 3 and 4). The fluidized-bed incineration method is a method in which silica sand or aluminum oxide is used as a fluid medium to maintain a high-temperature fluid state in a furnace, and incineration is put into the furnace to instantaneously completely incinerate (Patent Documents 8 and 9). . In the incineration treatment method as described above, dedicated equipment and devices have been developed and sold.

飼料及び有機肥料としての利用は、家畜用の飼料に製糖廃液を用いることが行われている。また、水産加工廃水処理場から排出される凝集物、沈殿物に、甜菜糖製造工程から排出されるステフェン廃液とベントナイトとを加え、造粒することにより製造された肥料(特許文献10)、並びに製糖廃液を電気透析処理することにより得られる肥料(特許文献11)が知られている。   As a feed and an organic fertilizer, a sugar-making waste liquid is used for livestock feed. Moreover, the fertilizer manufactured by adding the stefene waste liquid and bentonite discharged | emitted from a beet sugar manufacturing process to the aggregates and sediment discharged | emitted from an aquatic processing wastewater treatment plant, and granulating (patent document 10), and There is known a fertilizer (Patent Document 11) obtained by electrodialyzing a sugar-making waste liquid.

製糖廃液を燃料として、特殊な炉を有するボイラーで燃焼する方法も試験された。糖蜜のみを燃焼させた場合、その燃料価は石炭の5分の1であったと報告されている(非特許文献5)。   A method of burning in a boiler with a special furnace using sugar-making waste as a fuel was also tested. When only molasses is burned, the fuel value is reported to be 1/5 that of coal (Non-patent Document 5).

これまで製糖工場では、砂糖製造工程における糖液の清浄に有機高分子及びセラミック素材の限外濾過膜を用いる研究(非特許文献6及び7)、廃蜜から糖を回収する研究(非特許文献8及び9)が行われてきた。
非特許文献6及び7の記載によると、砂糖製造工程における糖液の清浄化は廃液の脱色・脱塩と異なり、原料由来の着色成分より大きな高分子物質を除去することを目的としていた。従って、限外濾過膜または精密濾過膜(MF膜)が検討され、限外濾過膜の方が適していると結論づけられた。これは不純物が多い液を処理する際、分離したい高分子物質に近い分画分子量をもつ精密濾過膜では目詰まりが生じやすく、高分子物質より遙かに小さい分画分子量の限外濾過膜を使用した方が目詰まりし難いためであった。この従来技術では、分子量が数千の着色成分を除去するために、脱色用吸着剤として樹脂又は粒状炭を用いている。従って、着色成分の分離に膜を用いていない。また、使用する膜は主にセラミック膜であり、有機高分子膜も使用することができるが寿命が短く、耐熱性及び耐薬品性が低いため、実用化が難しいとされた。当時、セラミック膜の方が耐熱性及び耐薬品性が高いため、糖液の清浄に適していると考えられたからである。以上より、この方法では着色成分と塩類はどちらも膜を透過してしまい、これらを分離することができなかった。
So far, sugar factories have been researching the use of ultrafiltration membranes made of organic polymers and ceramic materials to clean sugar solutions in the sugar production process (Non-Patent Documents 6 and 7), and research on recovering sugar from waste nectar (Non-Patent Documents). 8 and 9) have been performed.
According to the description in Non-Patent Documents 6 and 7, the purification of the sugar solution in the sugar production process was intended to remove a polymer substance larger than the coloring component derived from the raw material, unlike the decolorization / desalting of the waste solution. Therefore, ultrafiltration membranes or microfiltration membranes (MF membranes) were studied and it was concluded that ultrafiltration membranes were more suitable. This is because when a liquid containing a large amount of impurities is processed, a microfiltration membrane having a molecular weight close to that of the polymer substance to be separated is likely to be clogged. It was because it was less likely to clog when used. In this prior art, in order to remove a coloring component having a molecular weight of several thousand, a resin or granular charcoal is used as a decoloring adsorbent. Therefore, no membrane is used to separate the colored components. Moreover, the film to be used is mainly a ceramic film, and an organic polymer film can also be used. However, since the lifetime is short and the heat resistance and chemical resistance are low, it has been considered difficult to put to practical use. This is because, at that time, ceramic membranes were considered to be suitable for cleaning sugar solutions because of their higher heat resistance and chemical resistance. As described above, in this method, both the coloring component and the salt permeate the membrane and cannot be separated.

次に、非特許文献8及び9の記載によると、廃糖蜜から糖を回収する研究に関しては、限外濾過により高分子物質を除去し、引き続き電気透析により脱塩を行っていた。使用した限外濾過膜は、分画分子量が40,000、ポリエーテルサルホンの管状膜であり、他には分画分子量30,000のポリエーテルスルホン中空糸膜及び分画分子量20,000のアクリルニトリル管状膜が用いられている。限外濾過膜による膜分離は分画分子量からわかるように、比較的大きな物質を除去することを目的としていた。また、脱塩では電気透析が用いられている。従って、この方法では、着色成分と塩類はどちらも膜を透過してしまい、これらを分離できなかった。   Next, according to the description of Non-Patent Documents 8 and 9, regarding the research for recovering sugar from molasses, the polymer substance was removed by ultrafiltration, followed by desalting by electrodialysis. The ultrafiltration membrane used was a polyethersulfone tubular membrane with a molecular weight cut off of 40,000, and a polyethersulfone hollow fiber membrane with a molecular weight cut off of 30,000 and an acrylonitrile tubular membrane with a molecular weight cut off of 20,000. It has been. Membrane separation by ultrafiltration membrane was aimed at removing relatively large substances, as can be seen from the molecular weight cut-off. Further, electrodialysis is used for desalting. Therefore, in this method, both the coloring component and the salt permeate the membrane and cannot be separated.

発酵工業においては、糖蜜由来の発酵廃液からの着色成分除去も検討されてきた(非特許文献10及び11)。また、発酵原料として製糖工場由来の廃蜜を使用する場合に、廃蜜中の着色成分が製品である酵母に移行することから、糖蜜を脱色して発酵に用いることが検討されてきた(非特許文献11)。   In the fermentation industry, removal of coloring components from fermentation waste liquid derived from molasses has also been studied (Non-Patent Documents 10 and 11). In addition, when using waste honey derived from a sugar factory as a fermentation raw material, the coloring components in the waste honey move to the yeast product, so it has been studied to decolorize the molasses and use it for fermentation (non- Patent Document 11).

非特許文献10の記載によると、発酵に用いる糖蜜を脱色する膜処理方法の検討では、実験室レベルの選択で3種類の膜が選択された。限外濾過膜として、分画分子量5,000のポリスルホンのホローファイバー膜及び分画分子量2,000のポリスルホンの平膜(スパイラル型モジュール)、また逆浸透膜として、ポリスルホンの管状膜(チューブラ型モジュール)が選択された。糖蜜の脱色は着色成分の除去を意味し、糖蜜中の着色成分の分子量のピークは3,000〜5,000の範囲であるため分子量3,000程度の着色成分を除去することを目標にしていた。しかし、限外濾過膜のうち前者は、着色成分の分子量と比較して分画分子量が大きいため(分画分子量5,000)、脱色率が56%となり望まれる結果ではなかった。また、限外濾過膜のうち後者は実用化試験にも用いられた。一方逆浸透膜は、膜の破損、セラミックと膜の分離などの問題があり、最終試験は行われなかった。しかし、3種類のいずれの膜の場合においてもファウリングによる膜寿命の低下及び透過流束の低下による経済性の問題が残った。   According to the description of Non-Patent Document 10, in the examination of the membrane treatment method for decolorizing molasses used for fermentation, three types of membranes were selected at the laboratory level. A polysulfone hollow fiber membrane with a molecular weight cut off of 5,000 and a flat membrane of polysulfone with a molecular weight cut off of 2,000 (spiral type module) are selected as the ultrafiltration membrane, and a polysulfone tubular membrane (tubular type module) is selected as the reverse osmosis membrane. It was. The decolorization of molasses means the removal of colored components, and since the peak of the molecular weight of the colored components in molasses is in the range of 3,000 to 5,000, the goal was to remove colored components with a molecular weight of about 3,000. However, the former of the ultrafiltration membranes has a large molecular weight cut off compared to the molecular weight of the coloring component (fraction molecular weight 5,000), and the decolorization rate is 56%, which is not a desirable result. Of the ultrafiltration membranes, the latter was also used in practical tests. On the other hand, the reverse osmosis membrane has problems such as membrane breakage and ceramic / membrane separation, and the final test was not performed. However, in any of the three types of membranes, there remains a problem of economics due to a decrease in membrane life due to fouling and a decrease in permeation flux.

非特許文献11の記載によると、発酵原料の廃糖蜜の脱色に限外濾過膜又は逆浸透膜を用いることを検討し、いくつかの限外濾過膜及び逆浸透膜が検討されたが、スクリーニングにより選択したポリスルホンの逆浸透膜であっても、ファウリングによる処理能力の低下があるため濾過処理前に遠心分離による前処理を行う必要及び頻繁な膜洗浄が必要になるため、経済性に問題があり実用化は困難とされた。また同じ文献には、酵母培養廃液(発酵廃液)の膜による脱色について記載されており、使用できる膜として合成高分子系複合膜のスルホン化ポリエーテルスルホンの逆浸透膜(荷電膜)であり、0.2%(w/v)塩化ナトリウム水溶液を評価液として0.5 MPa、25℃で測定したときの塩阻止率が5%である膜が選択された。この膜は、塩阻止率からわかるように、非常に透過性が良く、透過水量も多い膜であった。   According to the description of Non-Patent Document 11, the use of an ultrafiltration membrane or a reverse osmosis membrane for decolorizing the molasses of fermentation raw materials was examined, and several ultrafiltration membranes and reverse osmosis membranes were examined. Even with the polysulfone reverse osmosis membranes selected by the above, there is a problem in terms of economy because it requires a pretreatment by centrifugation before the filtration treatment and frequent membrane washing because the processing capacity is reduced by fouling. It was difficult to put it to practical use. In addition, the same document describes decolorization by a membrane of yeast culture waste liquid (fermentation waste liquid), and is a reverse osmosis membrane (charged membrane) of a sulfonated polyether sulfone of a synthetic polymer composite membrane as a usable membrane. A membrane having a salt rejection of 5% when measured at 0.5 MPa and 25 ° C. using a 0.2% (w / v) sodium chloride aqueous solution as an evaluation solution was selected. As can be seen from the salt rejection, this membrane was very permeable and had a large amount of permeated water.

特開平11−304125号公報JP-A-11-304125 特開平10−253034号公報Japanese Patent Laid-Open No. 10-253034 特開平5−337497号公報JP-A-5-337497 特開2002−89820号公報JP 2002-89820 A 特公昭52−3232号公報Japanese Patent Publication No.52-3232 特開昭51−142877号公報JP 51-142877 A 特開昭49−46576号公報JP 49-46576 A 特開昭59−138804号公報JP 59-138804 A 特開昭57−16715号公報Japanese Patent Laid-Open No. 57-16715 特開昭52−50878号公報Japanese Patent Laid-Open No. 52-50878 特開平1−38193号公報JP-A-1-38193 食品設備・機器事典編集委員会編集、「第2章 排水処理技術と装置」、食品設備・機器事典、産業調査会事典出版センター発行、1006〜1026頁、2002年7月Edited by Food Equipment and Equipment Encyclopedia Editorial Committee, “Chapter 2 Wastewater Treatment Technology and Equipment”, Food Equipment and Equipment Encyclopedia, Industry Research Association Encyclopedia Publishing Center, 1006-1026, July 2002 木下芳明、「噴霧燃焼法による濃厚廃液処理」、水質汚濁研究(日本水環境学会)Vol.12(2)、79〜86頁、1989Yoshiaki Kinoshita, "Concentrated waste liquid treatment by spray combustion method", Water pollution research (Japan Water Environment Society) Vol.12 (2), 79-86, 1989 小澤洋一、「廃棄物・リサイクル 廃液焼却設備 液中燃焼を利用した廃液焼却技術の紹介」、環境浄化技術Vol.2(12)、60〜64頁、2003.Yoichi Ozawa, "Waste / Recycling Waste Liquid Incineration Equipment Introduction of Waste Liquid Incineration Technology Using In-Liquid Combustion", Environmental Purification Technology Vol.2 (12), 60-64, 2003. 出口昌男、「液中燃焼式無機塩含有廃液焼却設備」、工業加熱Vol.36(1)、46〜54、1999Masao Deguchi, “Submerged combustion type inorganic salt-containing waste liquid incinerator”, Industrial Heating Vol.36 (1), 46-54, 1999 “Queensland Society of Sugar Technologists”The International Sugar Journal, 62〜64頁、1932“Queensland Society of Sugar Technologists” The International Sugar Journal, pp. 62-64, 1932 長瀬裕和、日野正夫、藤田洋久、「膜分離技術を用いた糖液清浄プロセス」、精糖技術研究会誌、Vol.50、5〜9頁、2002Nagakase Hirokazu, Hino Masao, Fujita Hirohisa, “Sugar Solution Cleaning Process Using Membrane Separation Technology”, Journal of Refined Sugar Technology, Vol. 50, pp. 5-9, 2002 岸原士郎、奥野雅浩、義本圭、細川友宏、藤本敏子、藤井聰、「膜分離による糖液精製が蔗糖の結晶化および吸着脱色に及ぼす効果」、精糖技術研究会誌、Vol.48、27〜34、2001Kishihara Shiro, Okuno Masahiro, Yoshimoto Satoshi, Hosokawa Tomohiro, Fujimoto Toshiko, Fujii Satoshi, "Effects of Membrane Separation on Sugar Crystallization and Adsorption Decolorization", Journal of Refining Sugar Technology, Vol.48, 27 ~ 34, 2001 清水博・西村正人監修、「第8節 糖液の精製」、最新の膜処理技術とその応用、(株)フジテクノシステム発行、634〜638頁、1984年8月Supervised by Hiroshi Shimizu and Masato Nishimura, "Section 8 Sugar Purification", Latest Membrane Processing Technology and Its Applications, Fuji Techno System Co., Ltd., 634-638, August 1984 中垣正幸監修、「第IV編 膜の応用・用途の実例 6.糖液の脱塩」、普及版膜処理技術、(株)フジテクノシステム発行、144〜152頁、1999年2月Supervised by Masayuki Nakagaki, “Part IV: Examples of membrane applications and applications 6. Desalination of sugar solutions”, Popular membrane treatment technology, Fuji Techno System Co., Ltd., pages 144-152, February 1999 食品産業膜利用技術研究組合編集委員会編集、「12.廃糖蜜の清澄と脱色」、食品産業膜利用技術研究組合発行、353〜372頁、1987年9月Edited by Editorial Committee of Food Industry Membrane Utilization Technology Research Association, “12. Clarification and Decolorization of Molasses”, Published by Food Industry Membrane Utilization Technology Research Association, pages 353-372, September 1987 膜利用技術研究会編集、「イースト製造排水の脱色と水の循環利用システムの開発」、食品産業における膜処理システム、143〜195頁、1989年11月Edited by Membrane Utilization Technology Study Group, “Development of Decolorization of Yeast Manufacturing Wastewater and Water Circulation System”, Membrane Treatment System in Food Industry, pp. 143-195, November 1989

(1)製糖廃液及び製糖廃蜜の発酵工程からの廃液は、大部分が水分であるが、不溶性の固形分、微生物難分解性の着色物質等の有機物又は灰分などを高濃度含む。該廃液は通常、メタン発酵処理後、活性汚泥処理されていた。しかし、この方法では、微生物難分解性の着色物質が処理後の液にそのまま移行してしまう。糖液に含まれる着色物質は、分子量1,000〜25,000程度の範囲内に分布し、特に分子量3,000以上の高分子の着色物質は微生物により分解されにくいことが知られている。この着色物質は非常に着色が強く、色度は下水処理場の処理水の数万倍に達するため、他の方法で着色物質を分解除去するか又は希釈放流をする必要がある。しかしながら、安価な着色物質の分解方法はこれまで実用化されていなかった。(2)各種廃液焼却処理法は、低公害型の優れた処理方法の一つに数えられるが、設備に対する初期投資費用が高く、加えて運転経費も高い。従って、該各種廃液焼却処理法は、砂糖又は発酵生産物等の製品に対するコスト負荷が大きくなり、食品工業では用い難いという問題があった。(3)肥料、飼料への利用では、廃液の発生量(供給側)と肥料・飼料の消費量(消費側)との需給関係が大きく変化する。近年では、経済性の点で他の肥料及び飼料への切り替えが進み、製糖廃液及び製糖廃蜜由来の飼肥料の消費量そのものが減少の一途をたどっているため、廃液が余剰する事態に陥る危険性が大きい。(4)バガス焚ボイラーなどのボイラーで燃焼する方法では、製糖廃液や製糖廃蜜を原料とする発酵廃液中には、多くの無機塩類が含まれ、特にボイラー燃焼において腐食の原因となる塩素イオン、及び腐食を促進するカリウムが多く含まれることから、スーパーヒーターに腐食を生じ、ボイラーを損傷するという欠点を有する。また、これらの無機塩は炉内で溶融温度以上に保たれなければ炉内に固着する。従って、炉が高温に耐えられる必要がある。また、炉床を有する炉では、炉底に固相化した無機塩が堆積し運転障害が発生するため、特殊な炉である必要がある。更に塩素イオンは焼却条件によりダイオキシンを発生することが知られており、廃棄物焼却施設の構造基準及び維持管理基準を満たさない一般的なボイラーで、塩素を多く含む廃液を焼却することは好ましくない。   (1) The waste liquid from the fermentation process of sugar-making waste liquid and sugar-making waste nectar is mostly water, but contains a high concentration of insoluble solids, organic substances such as microbial-degradable coloring substances, or ash. The waste liquid was usually treated with activated sludge after methane fermentation. However, in this method, the microbial difficult-to-decompose colored substance is transferred as it is to the treated liquid. It is known that the colored substance contained in the sugar liquid is distributed in a molecular weight range of about 1,000 to 25,000, and in particular, a high-molecular colored substance having a molecular weight of 3,000 or more is hardly decomposed by microorganisms. Since this coloring substance is very strongly colored and the chromaticity reaches several tens of thousands of times of the treated water in the sewage treatment plant, it is necessary to decompose and remove the coloring substance or dilute and discharge by other methods. However, an inexpensive method for decomposing colored substances has not been put to practical use. (2) Although various waste liquid incineration treatment methods are counted as one of the low-pollution type excellent treatment methods, the initial investment cost for the equipment is high and the operation cost is also high. Therefore, the various waste liquid incineration treatment methods have a problem that the cost burden on products such as sugar or fermentation products increases, and it is difficult to use in the food industry. (3) In use for fertilizer and feed, the supply-demand relationship between the amount of waste liquid generated (supply side) and the amount of fertilizer / feed consumption (consumption side) changes significantly. In recent years, the switch to other fertilizers and feeds has progressed in terms of economic efficiency, and the consumption of fertilizer derived from sugar-making waste liquid and sugar-making waste nectar has been steadily decreasing. The danger is great. (4) In a method of burning in a boiler such as a bagasse-fired boiler, a lot of inorganic salts are contained in the fermentation waste liquid made from sugar-making waste liquid or sugar-making waste nectar, especially chlorine ions that cause corrosion in boiler combustion And a large amount of potassium that promotes corrosion has the disadvantage of causing corrosion in the superheater and damaging the boiler. In addition, these inorganic salts adhere to the furnace unless maintained at the melting temperature or higher in the furnace. Therefore, the furnace needs to be able to withstand high temperatures. Further, a furnace having a hearth needs to be a special furnace because an inorganic salt solidified on the bottom of the furnace accumulates and operation failure occurs. Furthermore, chlorine ions are known to generate dioxins depending on the incineration conditions, and it is not preferable to incinerate waste liquids that contain a lot of chlorine in general boilers that do not meet the structural standards and maintenance management standards of waste incineration facilities. .

従って、製糖廃蜜、製糖廃液、及び製糖廃蜜の発酵工程からの廃液を焼却処分するには、塩類、特に塩素イオンをこれら廃蜜または廃液から分離し、塩素イオンを含む廃液は排水処理を行い、残りを焼却する必要がある。この際、焼却処分を行う側の廃液に、着色成分が含まれる必要がある。前述の背景技術で述べたように、着色成分は通常の排水処理では分解されないからである。従って、簡便に着色成分と塩素イオンを分離する必要がある。
着色物質と塩素イオンを分離するためには、膜処理、イオン交換樹脂による分離、及び電気透析による分離が考えられる。しかし、これまでに製糖工場又は発酵工場で検討されてきた膜処理技術は、ほとんどが限外濾過膜を使用したものである。この際の分画分子量は数万という単位であるため、着色成分及び塩類より遙かに大きな異物を廃液から除くことが目的であった。従って、着色成分と塩類は分離していなかった。また、膜処理後のこれらの廃蜜及び廃液からの塩類除去には、電気透析が用いられ、膜処理は電気透析の前段階という位置づけであった。すなわち、従来の方法は、限外濾過と電気透析を組み合わせた膜処理技術である。これらの液は高濃度有機物廃液であるため電気透析及び限外濾過で使用される膜のファウリングを起こしやすく、また電気透析は設備が大きくランニングコストもかかる。従って、これらの液を電気透析又は限外濾過のいずれか一段階で脱塩することは難しい。別の技術として、着色成分除去に逆浸透膜を利用することが検討されたが、ファウリングの問題から実用化が難しく、塩類の挙動については不明であった。
Therefore, in order to incinerate the sugarmaking waste, the sugarmaking waste liquid, and the waste liquid from the fermentation process of the sugarmaking waste, salt, in particular, chlorine ions are separated from these waste or waste liquid, and the waste liquid containing chlorine ions is treated with waste water. Need to do and incinerate the rest. At this time, it is necessary that a colored component is contained in the waste liquid on the incineration side. This is because the coloring component is not decomposed by ordinary waste water treatment as described in the background art. Therefore, it is necessary to easily separate the coloring component and chloride ion.
In order to separate colored substances and chloride ions, membrane treatment, separation by ion exchange resin, and separation by electrodialysis can be considered. However, most of the membrane treatment techniques that have been studied in sugar mills or fermentation factories so far use ultrafiltration membranes. Since the molecular weight cut-off at this time is a unit of several tens of thousands, the object was to remove foreign matters much larger than the coloring components and salts from the waste liquid. Therefore, the coloring component and the salt were not separated. In addition, electrodialysis is used to remove salts from these waste honey and waste liquid after membrane treatment, and membrane treatment is positioned as a pre-stage of electrodialysis. That is, the conventional method is a membrane treatment technique that combines ultrafiltration and electrodialysis. Since these liquids are high-concentration organic waste liquids, they tend to cause fouling of membranes used in electrodialysis and ultrafiltration, and electrodialysis requires large equipment and high running costs. Therefore, it is difficult to desalinate these solutions in one step of either electrodialysis or ultrafiltration. As another technique, the use of a reverse osmosis membrane for removing colored components was studied, but it was difficult to put it to practical use due to fouling problems, and the behavior of salts was unknown.

また、塩素イオンを除くには、イオン交換樹脂による方法が考えられる。しかし、塩類濃度が非常に高い廃液、例えば塩濃度が固形分当たり30重量%を超えるようなクロマト分離廃液を樹脂処理すると、必要な樹脂量が多く、さらに樹脂の再生に多大なコストがかかり、実用的ではない。   In order to remove chlorine ions, a method using an ion exchange resin can be considered. However, wastewater with a very high salt concentration, for example, chromatographic separation wastewater whose salt concentration exceeds 30% by weight per solid content, requires a large amount of resin, and it takes a great deal of cost to regenerate the resin. Not practical.

このように、製糖廃蜜、製糖廃液、及び製糖廃蜜の発酵工程からの廃液の着色成分と無機塩類、特に塩素イオンの分離を一段階の膜処理で行う技術は知られていなかった。   As described above, there has been no known technique for separating sugar-making waste, sugar-making waste liquid, and coloring components and inorganic salts, particularly chloride ions, from the fermentation process of sugar-making waste by a single-stage membrane treatment.

以上のことから、前述したような従来の方法はいずれも問題を有しており、これら諸問題を解決した有効な廃液処理手段は未だ提案されていないのが現状である。そこで本発明は、製糖廃蜜、製糖廃液、及び製糖廃蜜の発酵工程からの廃液について経済的に実行可能であり、加えて低環境負荷型の有効な処理手段を提供することを解決すべき課題とするものである。   From the above, the conventional methods as described above have problems, and no effective waste liquid treatment means for solving these problems has been proposed yet. Therefore, the present invention should be able to solve the problem of providing an effective processing means that is economically feasible with respect to the sugar beet waste, the sugar bean waste liquid, and the waste liquid from the fermentation process of the sugar bean waste. It is to be an issue.

本発明者らは鋭意検討の結果、製糖廃蜜、製糖廃液、又は製糖廃蜜の発酵工程からの廃液を、合成高分子系複合膜である限外濾過膜又は逆浸透膜を用いて着色成分を含む濃縮液と塩素イオンを含む透過液とに分離することにより、前記の課題を効果的に解決することを見出し、本発明を完成させた。
また、本発明は、製糖廃蜜、製糖廃液、又は製糖廃蜜の発酵工程からの廃液を、分画分子量2,000以上4,000以下であり且つ合成高分子系複合膜である限外濾過膜を用いて着色成分を含む濃縮液と塩素イオンを含む透過液とに分離することを含む、廃液の処理方法を提供する。
さらに、本発明は、製糖廃蜜、製糖廃液、又は製糖廃蜜を発酵させて生じた廃液を、0.05%(w/v)以上3.5%(w/v)以下の塩化ナトリウム水溶液の塩阻止率が0.3 MPa以上5.6 MPa以下の圧力及び25℃の温度条件下で40%以上60%以下であり且つ合成高分子系複合膜である逆浸透膜を用いて着色成分を含む濃縮液と塩素イオンを含む透過液に分離することを含む、廃液の処理方法を提供する。
As a result of intensive studies, the present inventors have found that sugar-making waste, sugar-making waste liquid, or waste liquid from the fermentation process of sugar-making waste is colored using an ultrafiltration membrane or a reverse osmosis membrane that is a synthetic polymer composite membrane. The present invention has been completed by finding that the above-mentioned problems can be effectively solved by separating the concentrate into a concentrate containing chlorine and a permeate containing chlorine ions.
In addition, the present invention provides a sugarmaking waste, a sugarmaking waste liquid, or a waste liquid from a fermentation process of sugarmaking waste using an ultrafiltration membrane having a fractional molecular weight of 2,000 to 4,000 and being a synthetic polymer composite membrane. Provided is a method for treating a waste liquid, comprising separating into a concentrated liquid containing a coloring component and a permeate containing chlorine ions.
Furthermore, the present invention provides a salt inhibition rate of a sodium chloride aqueous solution of 0.05% (w / v) or more and 3.5% (w / v) or less of sugar cane waste, sugar waste liquid, or waste liquid produced by fermenting sugar waste. A concentrated solution containing colored components and chloride ions using a reverse osmosis membrane that is a synthetic polymer composite membrane that is 40% to 60% under a pressure of 0.3 MPa to 5.6 MPa and a temperature of 25 ° C. Provided is a method for treating a waste liquid, comprising separating the permeated liquid.

本発明によれば、製糖廃蜜、製糖廃液、及び製糖廃蜜の発酵工程からの廃液の簡便で経済的な処理が可能となる。具体的には、以下のような利点が得られる。
(1)塩素イオンと着色成分の分離を一段階の膜処理で行うことができることから、工程が簡単になる。
(2)透過液は着色成分の量が低減されていることから、通常の生物処理法による排水処理が可能となる。
(3)濃縮液は塩素イオンの量が低減されていることから、ボイラーで濃縮液を焼却する場合、塩素イオンによるボイラー水管の腐食および減耗並びに有害物質の発生を軽減することができる。
(4)製糖工場では、既存のバガス焚ボイラーを利用して濃縮液を焼却処分することによって設備投資額を低減でき、ひいては製品に対するコスト負荷を軽減することができる。
(5)海洋投棄による自然環境に対する負荷を防ぐことができる。
ADVANTAGE OF THE INVENTION According to this invention, the simple and economical process of the waste liquid from the fermentation process of sugar-making waste liquid, sugar-making waste liquid, and sugar-making waste liquid is attained. Specifically, the following advantages are obtained.
(1) Since the separation of chlorine ions and colored components can be performed by one-stage membrane treatment, the process is simplified.
(2) Since the amount of coloring components in the permeate is reduced, wastewater treatment by a normal biological treatment method is possible.
(3) Since the concentration of chlorine ions in the concentrated liquid is reduced, when the concentrated liquid is incinerated with a boiler, corrosion and depletion of the boiler water pipe and generation of harmful substances due to chlorine ions can be reduced.
(4) In a sugar factory, the amount of capital investment can be reduced by incinerating the concentrated liquid using an existing bagasse-fired boiler, thereby reducing the cost burden on the product.
(5) The load on the natural environment due to ocean dumping can be prevented.

以下、本発明を実施するための好適な実施形態について詳細に説明する。
「製糖廃蜜」とは、原糖製造工場で発生する1番蜜、2番蜜及び製糖廃蜜、精製糖製造工場で発生する洗糖蜜、1〜7番蜜及び精糖廃蜜、並びに甜菜糖製造工場で発生するビート廃蜜を意味するが、これらに類する廃蜜を含む。
「製糖廃液」とは、砂糖製造工程で生じた着色成分を含む廃液であり、クロマト分離処理してショ糖を回収した残りのクロマト分離廃液など、砂糖製造工程に由来する各種廃液を意味するが、これらに類する廃液も含む。製糖廃液は、その成分としてタンパク質、糖質、アミノ酸、有機酸などの有機物、生物難分解性着色成分、及び無機塩類を含む。
「製糖廃蜜の発酵工程からの廃液」とは、製糖廃蜜を原料とし、これを用いたアルコール発酵、アミノ酸発酵及びパン酵母発酵などの発酵工程からの廃液を意味するが、これらに類する廃液も含む。各種発酵廃液は、その成分としてタンパク質、糖質、アミノ酸、有機酸などの有機物、生物難分解性着色成分、及び無機塩類を含む。
Hereinafter, preferred embodiments for carrying out the present invention will be described in detail.
"Sugar-making waste honey" means 1st honey, 2nd honey and sugar-making honey generated at raw sugar manufacturing factories, molasses honey, 1-7th honey and refined sugar honey generated at refined sugar manufacturing plants, and sugar beet sugar It means beet honey generated in manufacturing plants, but includes honey similar to these.
“Sugar-making waste liquid” is a waste liquid containing colored components produced in the sugar production process, and means various waste liquids derived from the sugar production process, such as the remaining chromatographic separation waste liquid obtained by chromatographic separation and recovering sucrose. In addition, waste liquids similar to these are also included. The sugar-making waste liquid contains, as its components, organic substances such as proteins, sugars, amino acids, and organic acids, biologically difficult-to-decompose coloring components, and inorganic salts.
“Waste liquor from fermentation process of sugar-making waste honey” means waste liquid from fermentation process such as alcoholic fermentation, amino acid fermentation, and baker's yeast fermentation using sugar-making waste honey as a raw material. Including. Various fermentation waste liquids contain proteins, carbohydrates, amino acids, organic acids such as organic acids, biologically difficult-to-decompose coloring components, and inorganic salts as components.

製糖廃蜜のうち、例えば甘蔗原料糖廃蜜の分析値の一例を挙げると、水分21.6重量%、還元糖10.8重量%(グルコース及び果糖)、ショ糖32.1重量%、カリウム1.5 %、ナトリウム560 ppm、カルシウム888 ppm、マグネシウム1,200mg/kg、鉄19 ppm、塩素イオン7,600 mg/kg、硫酸イオン9,300 mg/kgであった。   An example of the analytical value of sugar cane raw sugar is, for example, 21.6 wt% moisture, 10.8 wt% reducing sugar (glucose and fructose), 32.1 wt% sucrose, 1.5% potassium, 560 ppm sodium , Calcium 888 ppm, magnesium 1,200 mg / kg, iron 19 ppm, chloride ion 7,600 mg / kg, sulfate ion 9,300 mg / kg.

製糖廃液のうち、例えばクロマト分離廃液の分析値の一例は、水分56.0重量%、還元糖(グルコース及び果糖)3.1重量%、ショ糖3.9重量%、有機物24.7重量%、ナトリウム1,306 mg/kg、カリウム2,645 mg/kg、カルシウム56.6 mg/kg、マグネシウム44.2 mg/kg、塩素イオン2,841 mg/kg、鉄1,073 mg/kg、硫酸イオン3,261 mg/kg、及び液密度1200 kg/m2であった。 Among the sugar manufacturing waste liquids, for example, the analysis values of the chromatographic separation waste liquid are, for example, 56.0% by weight of water, 3.1% by weight of reducing sugar (glucose and fructose), 3.9% by weight of sucrose, 24.7% by weight of organic substances, 1,306 mg / kg of sodium, potassium They were 2,645 mg / kg, calcium 56.6 mg / kg, magnesium 44.2 mg / kg, chloride ion 2,841 mg / kg, iron 1,073 mg / kg, sulfate ion 3,261 mg / kg, and liquid density 1200 kg / m 2 .

製糖廃蜜の発酵工程からの廃液の分析値の一例を挙げると、原糖廃蜜をアルコール発酵後蒸留して得た廃液は、水分90重量%、有機物8.5重量%、ナトリウム1.3 mg/kg、カリウム41.0 mg/kg、カルシウム13.3 mg/kg、鉄5.3 mg/kg、二酸化珪素5.2 mg/kg、塩素イオン17.9 mg/kg、リン酸イオン3.3 mg/kg、硫酸イオン16.4 mg/kgであった。   As an example of the analysis value of the waste liquid from the fermentation process of sugar beet waste, the waste liquid obtained by distilling raw sugar waste nectar after alcohol fermentation is 90% moisture, 8.5% organic matter, 1.3 mg / kg sodium, They were potassium 41.0 mg / kg, calcium 13.3 mg / kg, iron 5.3 mg / kg, silicon dioxide 5.2 mg / kg, chloride ion 17.9 mg / kg, phosphate ion 3.3 mg / kg, sulfate ion 16.4 mg / kg.

本発明において使用する膜の種類としては、合成高分子複合膜である限外濾過膜(分子量の違いにより高分子着色成分と塩素イオンとを分離する)及び逆浸透膜(分子量及び荷電の違いにより高分子着色成分と塩素イオンとを分離する)を用いることができる。本発明において「合成高分子複合膜」とは、膜本体が機能層(緻密層又はスキン層)及び支持層(多孔層)から成り、その両方が合成高分子でできている有機高分子膜を意味する。なお、糖蜜や製糖由来の廃液の膜処理に、セラミック又は金属などの無機膜を使用する場合、以下の問題があるため好ましくない。すなわち、無機膜は合成高分子複合膜と比較して比重が遙かに高い。従って、有効な膜面積を確保するためには設備が大きく重くなるという問題がある。さらに、無機膜は、有効な膜面積が確保できないと、すぐに目詰まり(ファウリング)が起こる。従って、薬品の洗浄の手間がかかることから、濾過の効率が悪くなるという問題が生じる。   The types of membranes used in the present invention include ultrafiltration membranes (separating polymer coloring components and chloride ions due to differences in molecular weight) and reverse osmosis membranes (depending on differences in molecular weight and charge), which are synthetic polymer composite membranes. Separating the polymer coloring component and the chlorine ion) can be used. In the present invention, “synthetic polymer composite membrane” means an organic polymer membrane in which the membrane body is composed of a functional layer (dense layer or skin layer) and a support layer (porous layer), both of which are made of a synthetic polymer. means. In addition, it is not preferable to use an inorganic membrane such as ceramic or metal for membrane treatment of molasses or sugar-derived waste liquid because of the following problems. That is, the inorganic film has a much higher specific gravity than the synthetic polymer composite film. Therefore, there is a problem that the equipment becomes large and heavy in order to secure an effective film area. Further, when an effective film area cannot be secured, the inorganic film is immediately clogged (fouling). Therefore, it takes time to clean the chemicals, resulting in a problem that the filtration efficiency is deteriorated.

本発明において「限外濾過膜(Ultrafiltration membrane、UF膜)」とは、一般に分子量の大きさに基づいて分離を行う圧力濾過に用いる膜であり、分画分子量により分離レベルが表現される膜である。通常分子量数千から数百万程度の領域で分画し、これは分子の大きさとして数nm〜数百nmの範囲の粒子の大きさに相当する。   In the present invention, an “ultrafiltration membrane (UF membrane)” is a membrane generally used for pressure filtration in which separation is performed based on the size of molecular weight, and is a membrane in which a separation level is expressed by a fractional molecular weight. is there. Usually, the molecular weight is fractionated in the region of several thousand to several million, which corresponds to the size of the particles in the range of several nm to several hundred nm as the molecular size.

本発明において「逆浸透膜(Reverse osmosis membrane、RO膜)」とは、一般に膜を介する溶液間の浸透圧差以上の圧力を高濃度液側に加え溶質の透過を阻止し、溶媒(多くは水)を透過させる液体分離法に用いる膜であり、塩阻止率により分離レベルが表現される膜である。水のみを透過させ純水を製造する際に使用する膜、溶質の濃縮に用いる膜、塩類及び低分子物質を透過させ分離する膜などがあり、限外濾過膜よりも小さい分子を透過させ分離する際に使用される。   In the present invention, a “reverse osmosis membrane (RO membrane)” generally applies a pressure higher than the osmotic pressure difference between solutions passing through the membrane to the high concentration liquid side to prevent the permeation of the solute, ) Is a membrane used in a liquid separation method that permeates, and the separation level is expressed by a salt rejection. There are membranes used to produce pure water by allowing only water to pass through, membranes used for concentration of solutes, membranes that permeate and separate salts and low-molecular substances, and permeate and separate molecules smaller than ultrafiltration membranes. Used when doing.

本発明において、限外濾過膜は、塩素イオンと分子量3,000〜5,000にピークをもつといわれる着色成分を分離することができるものが好ましい。この膜により分離された濃縮液には生物分解性の悪い着色成分を含む高分子有機物が含まれ、一方透過液には塩素イオンを含む塩類などの低分子有機物及び無機物が移行する。   In the present invention, the ultrafiltration membrane is preferably capable of separating a color component which is said to have a peak at a molecular weight of 3,000 to 5,000 from chloride ions. The concentrated liquid separated by this membrane contains high-molecular organic substances containing colored components with poor biodegradability, while low-molecular organic substances such as salts containing chlorine ions and inorganic substances migrate to the permeate.

限外濾過膜として、分画分子量2,000以上4,000以下であり且つ合成高分子系複合膜を用いることができる。合成高分子系複合膜は、膜本体が平膜状であることが好ましい。
本発明において平膜状合成高分子系複合膜の「平膜状」とは、管状膜、中空糸膜と区別して用いられる表現であり、モジュールの型を示すものではない。合成高分子膜には、素材によりセルロース系膜、ポリアクリロニトリル系膜、ポリオレフィン系膜、ポリスルホン系膜、ポリエーテルスルホン系膜、ポリアミド系膜、ポリイミド系膜などがあり、各種有機ポリマーが素材として使用される。
As the ultrafiltration membrane, a synthetic polymer composite membrane having a fractional molecular weight of 2,000 or more and 4,000 or less can be used. In the synthetic polymer composite membrane, the membrane body is preferably a flat membrane.
In the present invention, the “flat membrane” of the flat membrane-like synthetic polymer composite membrane is an expression used to distinguish from a tubular membrane and a hollow fiber membrane, and does not indicate a module type. Synthetic polymer membranes include cellulose-based membranes, polyacrylonitrile-based membranes, polyolefin-based membranes, polysulfone-based membranes, polyethersulfone-based membranes, polyamide-based membranes, polyimide-based membranes, etc., and various organic polymers are used as materials. Is done.

また、限外濾過膜が、ポリアミド系膜であることが好ましい。さらに、限外濾過膜が、スパイラル型モジュールであることが好ましい。ポリアミド系膜とは、膜の機能層を構成するポリマーが主にポリアミドである膜であり、他の素材を併用していても、ポリアミドを主成分として使用しているものはこの範疇に含まれる。ポリアミド系膜と呼ばれるものの例は、テレフタル酸、m−アミノベンズアミド、及びm−フェニレンジアミドから成る芳香族ポリアミド、イソフタル酸及びm−アミノベンゾヒドラジドから成るポリアミドヒドラジド、フマル酸及びジメチルピペラジンから成るポリピペラジンアミド、並びにm−フェニレンイソフタルアミド−テレフタルアミド共重合体から成る膜がある。本発明におけるポリアミド系膜はこれらの膜及び一般にポリアミド系膜として販売されているものを含む。   The ultrafiltration membrane is preferably a polyamide membrane. Furthermore, the ultrafiltration membrane is preferably a spiral module. A polyamide-based film is a film in which the polymer constituting the functional layer of the film is mainly polyamide. Even if other materials are used in combination, those using polyamide as the main component are included in this category. . Examples of what are referred to as polyamide-based membranes are: aromatic polyamides composed of terephthalic acid, m-aminobenzamide, and m-phenylenediamide, polyamide hydrazides composed of isophthalic acid and m-aminobenzohydrazide, polypiperazines composed of fumaric acid and dimethylpiperazine There are membranes composed of amides as well as m-phenylene isophthalamide-terephthalamide copolymers. The polyamide film in the present invention includes these films and those generally sold as polyamide films.

本発明において、限外濾過膜は、濃縮液側に着色成分を濃縮し、透過液側に塩素イオンを濃縮するような膜が望ましい。着色成分を通しにくい限外濾過膜は塩類も通しにくく、透過速度も低い傾向にあるため、これら相対する条件をできるだけ成立できる膜を選択する必要がある。この条件を満たすために、限外濾過膜の420 nm及び520 nmでの透過液側の脱色率が、いずれも好ましくは85%以上であり、さらに好ましくは90%以上である。吸光度420 nmと560 nmは、製糖工程の着色成分の吸収が大きい波長である。限外濾過膜の透過液側での塩素イオン濃縮率は、好ましくは105%以上であり、さらに好ましくは110%以上である。   In the present invention, the ultrafiltration membrane is preferably a membrane that concentrates colored components on the concentrate side and concentrates chloride ions on the permeate side. Ultrafiltration membranes that are difficult to pass colored components are less likely to pass salts and tend to have a low permeation rate, so it is necessary to select a membrane that can satisfy these opposing conditions as much as possible. In order to satisfy this condition, the decolorization rate on the permeate side of the ultrafiltration membrane at 420 nm and 520 nm is preferably 85% or more, and more preferably 90% or more. Absorbances 420 nm and 560 nm are wavelengths at which absorption of colored components in the sugar production process is large. The chloride ion concentration rate on the permeate side of the ultrafiltration membrane is preferably 105% or more, more preferably 110% or more.

具体的には、限外濾過膜として、分画分子量2,500のDESALGH UFエレメント(GEウォーター・テクノロジーズ社製)及び分画分子量3,500のDESAL GK UFエレメント(GEウォーターテクノロジーズ社製)を用いることができる。DESAL GH、DESAL GK膜は平膜状合成高分子系複合膜のポリアミド系膜である。DESAL GH、DESAL GK膜の最高使用温度はいずれも80 ℃であり、耐ファウリング性、耐薬品性を有する。   Specifically, a DESALGH UF element having a molecular weight cut off of 2,500 (manufactured by GE Water Technologies) and a DESAL GK UF element having a molecular weight cut off of 3,500 (manufactured by GE Water Technologies) can be used as the ultrafiltration membrane. DESAL GH and DESAL GK membranes are polyamide membranes of flat membrane-like synthetic polymer composite membranes. The maximum operating temperature of DESAL GH and DESAL GK membranes is 80 ° C, and they have fouling resistance and chemical resistance.

最高使用温度(℃)とは、膜の耐熱温度を示し、膜が使用できる最高の温度である。この温度は、膜をモジュールにしたときに使用できる最高の温度を示す。膜を工業的に使用する場合、広い面積をもつ膜を外装内にコンパクトに納めたモジュールにする必要がある。モジュールはエレメントとも呼ばれ、膜の他に、外装(アウターラップ)、集水管、原液が通るスペーサー、及び透過液が通るスペーサーなどにより構成される。これら構成成分の耐熱性により膜の最高使用温度が規定される。ポリアミド系膜自体の耐熱性は一般に90 ℃といわれているが、通常はモジュールを構成する膜以外の構成成分の耐熱性が膜より低い温度であるため、モジュールとしての膜の耐熱温度はこれより低く示される。特別な場合を除いて、膜の耐熱温度はその膜の一般的なモジュールの最高使用温度である。   The maximum use temperature (° C.) indicates the heat resistant temperature of the film, and is the highest temperature at which the film can be used. This temperature represents the highest temperature that can be used when the membrane is modularized. When a membrane is used industrially, it is necessary to form a module in which a membrane having a large area is compactly housed in an exterior. The module is also called an element, and includes a membrane, an outer package (outer wrap), a water collection pipe, a spacer through which the stock solution passes, and a spacer through which the permeate passes. The maximum use temperature of the membrane is defined by the heat resistance of these components. The heat resistance of the polyamide film itself is generally said to be 90 ° C. However, since the heat resistance of components other than the film constituting the module is usually lower than that of the film, the heat resistance temperature of the film as a module is higher than this. Shown low. Except in special cases, the heat-resistant temperature of a membrane is the maximum operating temperature of a typical module of the membrane.

ファウリングが起きると膜の透過性が悪くなり透過すべき物質が透過しないため膜の分離が悪くなり、液の溶媒も通りにくくなるため透過流速が低下しやすくなり、更に頻繁な洗浄を行うため洗浄液による劣化及び洗浄のための処理の休止が必要とされ、膜の寿命が短く、コストがかさむことになる。   When fouling occurs, the permeability of the membrane deteriorates, and the substance to be permeated does not permeate, so the separation of the membrane worsens, the liquid solvent becomes difficult to pass through, the permeation flow rate tends to decrease, and more frequent washing is performed. Deterioration due to the cleaning liquid and a stop of the processing for cleaning are required, and the lifetime of the film is short and the cost is increased.

限外濾過膜として、分画分子量2,000以上4,000以下の膜を用いることで着色成分と塩素イオンとが分離でき、また合成高分子系複合膜を用いることで膜の耐久性が増す上に膜のコストも抑えられる。また、ポリアミド系膜を用いることにより、ファウリング防止、耐熱性、及び耐薬品性を満足することができる。さらに、限外濾過膜は、平膜状の膜を用いたスパイラル型モジュールにすることができ、それによって広い膜面積でコンパクトな設備にすることができる。   By using a membrane with a molecular weight cut-off of 2,000 or more and 4,000 or less as an ultrafiltration membrane, coloring components and chloride ions can be separated, and using a synthetic polymer composite membrane increases the durability of the membrane. Costs can be reduced. Moreover, by using a polyamide film, antifouling, heat resistance, and chemical resistance can be satisfied. Furthermore, the ultrafiltration membrane can be made into a spiral type module using a flat membrane-like membrane, thereby making it possible to make a compact facility with a wide membrane area.

逆浸透膜として、0.05%(w/v)以上3.5%(w/v)以下の塩化ナトリウム水溶液の塩阻止率が0.3MPa以上5.6MPa以下の圧力及び25 ℃の温度条件下で40%以上60%以下であり且つ合成高分子系複合膜を用いることができる。合成高分子系複合膜は、膜本体が平膜状であることが好ましい。
本発明において塩阻止率とは、塩除去率又は塩排除率と同じであり、0.3 MPa以上5.6 MPa以下の圧力及び25 ℃の温度条件下で0.05%(w/v)以上3.5%(w/v)以下の塩化ナトリウム水溶液を用いたときの塩の透過しにくさを百分率で示したものであり、100%から塩透過比率を引いたものである。すなわち、溶液中の塩の何パーセントが透過したかが塩透過比率であり、透過しなかった塩の比率が塩阻止率である。
As a reverse osmosis membrane, salt rejection of 0.05% (w / v) to 3.5% (w / v) sodium chloride aqueous solution is 40% to 60% at a pressure of 0.3 MPa to 5.6 MPa and a temperature of 25 ° C. %, And a synthetic polymer composite membrane can be used. In the synthetic polymer composite membrane, the membrane body is preferably a flat membrane.
In the present invention, the salt rejection is the same as the salt removal rate or the salt rejection rate, and is 0.05% (w / v) to 3.5% (w / v) at a pressure of 0.3 MPa to 5.6 MPa and a temperature of 25 ° C. v) The salt permeation difficulty is expressed as a percentage when the following aqueous sodium chloride solution is used, and the salt permeation ratio is subtracted from 100%. That is, what percentage of the salt in the solution has permeated is the salt permeation ratio, and the ratio of the salt that has not permeated is the salt rejection.

また、逆浸透膜が、ポリアミド系膜又はスルホン化ポリエーテルスルホン系膜であることが好ましい。ポリアミド系膜とは、前記したとおりである。スルホン化ポリエーテルスルホン膜とは、ポリエーテルスルホン膜をスルホン化することにより得られた荷電膜であり、ポリアミド膜と同様耐熱性、耐ファウリング性、及び耐薬品性を有する膜である。スルホン化ポリエーテルスルホン膜は、膜の機能層を構成するポリマーにスルホン化ポリエーテルスルホンが含まれ、他の素材を併用していても、スルホン化ポリエーテルスルホンを使用し、荷電膜として販売されているものはこの範疇に含まれる。   The reverse osmosis membrane is preferably a polyamide membrane or a sulfonated polyethersulfone membrane. The polyamide film is as described above. The sulfonated polyethersulfone membrane is a charged membrane obtained by sulfonating a polyethersulfone membrane, and is a membrane having heat resistance, fouling resistance, and chemical resistance like a polyamide membrane. Sulfonated polyethersulfone membranes are marketed as charged membranes using sulfonated polyethersulfone, even if other materials are used in combination, even if the polymer constituting the functional layer of the membrane contains sulfonated polyethersulfone. Are included in this category.

本発明において、逆浸透膜は、濃縮液側に着色成分を濃縮し、透過液側に塩素イオンを濃縮するような膜が望ましい。着色成分を通しにくい逆浸透膜は塩類も通しにくく、透過速度も低い傾向にあるため、これら相対する条件をできるだけ成立できる膜を選択する必要がある。この条件を満たすために、逆浸透膜の420 nm及び520 nmでの透過液側の脱色率が、いずれも好ましくは90%以上であり、さらに好ましくは94%以上である。また、逆浸透膜の透過液側での塩素イオン濃縮率は、好ましくは105%以上であり、さらに好ましくは110%以上であり、最も好ましくは120%以上である。   In the present invention, the reverse osmosis membrane is preferably a membrane that concentrates colored components on the concentrate side and concentrates chloride ions on the permeate side. A reverse osmosis membrane that hardly allows coloring components to pass through is less likely to pass salts and tends to have a low permeation rate. Therefore, it is necessary to select a membrane that can satisfy these opposing conditions as much as possible. In order to satisfy this condition, the decolorization rate of the reverse osmosis membrane on the permeate side at 420 nm and 520 nm is preferably 90% or more, and more preferably 94% or more. The chloride ion concentration rate on the permeate side of the reverse osmosis membrane is preferably 105% or more, more preferably 110% or more, and most preferably 120% or more.

具体的には、逆浸透膜として、NTR-7450(日東電工株式会社製)、NF270(ダウ・ケミカル・カンパニー製)、SW04(DRA4510)(ダイセン・メンブレン・システムズ株式会社)を用いることができる。NTR-7450は、平膜状合成高分子系複合膜のスルホン化ポリエーテルスルホン膜であり、塩阻止率は40%、最高使用温度は90 ℃であり、耐ファウリング性を有する。NF270は、平膜状合成高分子系複合膜のポリアミド系膜であり、塩阻止率は40〜60%、最高使用温度は45 ℃である。SW04は、平膜状合成高分子系複合膜のポリアミド系膜であり、塩阻止率は15〜60%、最高使用温度は45℃である。
なお、下記実施例2及び実施例5において、SW04の透過速度は、Brix 5のクロマト分離廃液を65 ℃、約0.5MPaの圧力下で処理した場合、8 ml/30分と、他の膜(NTR-7450、NF-270)の透過速度に比べて低い。しかし、透過速度は、温度、圧力、廃液の性状例えばBrix、粘度等によって異なるものである。従って、温度、圧力を調節することによって、実用的に使用できる可能性はある。
Specifically, NTR-7450 (manufactured by Nitto Denko Corporation), NF270 (manufactured by Dow Chemical Company), SW04 (DRA4510) (Daisen Membrane Systems Co., Ltd.) can be used as the reverse osmosis membrane. NTR-7450 is a sulfonated polyethersulfone membrane that is a flat membrane-like synthetic polymer composite membrane, has a salt rejection of 40%, a maximum operating temperature of 90 ° C., and has fouling resistance. NF270 is a polyamide membrane of a flat membrane-like synthetic polymer composite membrane, having a salt rejection of 40 to 60% and a maximum use temperature of 45 ° C. SW04 is a polyamide membrane of a flat membrane-like synthetic polymer composite membrane, having a salt rejection of 15 to 60% and a maximum use temperature of 45 ° C.
In Examples 2 and 5 below, the permeation rate of SW04 was 8 ml / 30 minutes when the chromatographic separation waste solution of Brix 5 was treated at 65 ° C. under a pressure of about 0.5 MPa, and other membranes ( NTR-7450, NF-270) is lower than the transmission speed. However, the permeation rate varies depending on temperature, pressure, waste liquid properties such as Brix and viscosity. Therefore, there is a possibility of practical use by adjusting the temperature and pressure.

本発明において、0.05%(w/v)以上3.5%(w/v)以下の塩化ナトリウム水溶液の塩阻止率が0.3 MPa以上5.6 MPa以下の圧力及び25 ℃の温度条件下で40%以上60%以下である逆浸透膜を用いることで着色成分と塩素イオンを好適に分離することができ、合成高分子系複合膜を用いることで膜の耐久性が増す上にコストも抑えられ、平膜状の膜を用いることでスパイラル型モジュールにすることができ広い面積でコンパクトな設備にすることができる。さらに、ポリアミド系膜又はスルホン化ポリエーテルスルホン系膜のいずれかを用いることによりファウリング防止、耐熱性、及び耐薬品性を満足することができる。   In the present invention, the salt rejection of an aqueous sodium chloride solution of 0.05% (w / v) to 3.5% (w / v) is 40% to 60% under a pressure of 0.3 MPa to 5.6 MPa and a temperature of 25 ° C. By using a reverse osmosis membrane, the color components and chloride ions can be suitably separated. By using a synthetic polymer composite membrane, the durability of the membrane is increased and the cost is reduced. By using this film, a spiral type module can be obtained, and a large area and compact equipment can be obtained. Furthermore, prevention of fouling, heat resistance, and chemical resistance can be satisfied by using either a polyamide film or a sulfonated polyethersulfone film.

本発明において「焼却処分」として、噴霧焼却法、液中燃焼法、触媒湿式酸化プロセス、ロータリーキルン焼却、有機廃液・水エマルジョン焼却、流動層焼却法及び通常のボイラー焼却などの当業者にとって公知の方法を使用することができる。また、膜処理により得られた濃縮液と製糖工場で排出されるバガスとを一緒にすなわちバガスに濃縮液を噴霧して焼却してもよい。本発明の膜処理により得られた着色成分を含む濃縮液は殆ど塩素イオンを含まない。従って、通常のボイラーで燃焼焼却しても、ボイラーの腐食、運転障害は心配なく、特別な仕様である必要性がない。通常のボイラーとは、石炭、重油、都市ガス、プロパンガスなどを燃料として、通常1,000〜1,200 ℃で燃焼が行われる。   In the present invention, as "incineration disposal", methods known to those skilled in the art such as spray incineration method, submerged combustion method, catalytic wet oxidation process, rotary kiln incineration, organic waste liquid / water emulsion incineration, fluidized bed incineration method and ordinary boiler incineration Can be used. Further, the concentrate obtained by the membrane treatment and bagasse discharged from the sugar factory may be burned together, that is, by spraying the concentrate on bagasse. The concentrate containing the coloring component obtained by the membrane treatment of the present invention contains almost no chloride ions. Therefore, even if combustion is performed with a normal boiler, there is no need to worry about boiler corrosion and operational problems, and there is no need for special specifications. Ordinary boilers are usually burned at 1,000 to 1,200 ° C. using coal, heavy oil, city gas, propane gas or the like as fuel.

本発明において「排水処理」として、活性汚泥法、メタン発酵法など一般の生物処理、オゾン酸化法などの、既知の排水処理を用いることができる。本発明の膜処理により得られた塩素イオンの濃縮された透過液は、難分解性の着色物質を含まない。従って、透過液は、前記既知の排水処理で処理されることができる。   In the present invention, as the “waste water treatment”, a known waste water treatment such as a general biological treatment such as an activated sludge method or a methane fermentation method or an ozone oxidation method can be used. The permeate concentrated with chloride ions obtained by the membrane treatment of the present invention does not contain a hardly decomposable coloring substance. Thus, the permeate can be treated with the known waste water treatment.

[実施例]
以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。なお、実施例中の%は特に断りのない限り重量%を意味する。灰分(塩分)は、強熱残分(550 ℃、3時間)測定法を使用し測定した。塩素イオン量は、陰イオンクロマトグラフィーにより測定した。具体的には、DIONEX製イオンクロマト装置(型番QICアナライザー)、DIONEX製ガードカラム(IonPacAG4A-SC 4mm×50mm、10-32)、DIONEX製カラム(IonPacAS4A-SC 4mm×50mm、10-32)、及びDIONEX製サプレッサー(AMMS III 4mm)を用い、室温下、流速1.6 ml/分で測定した。ナトリウムイオン及びカリウムイオンの量は、陽イオンクロマトグラフィーにより測定した。具体的には、DIONEX製イオンクロマト装置(型番QICアナライザー)、DIONEX製ガードカラム(IonPac CG12 4mm×50mm、10-32)、DIONEX製カラム(IonPac CS12 4mm×50mm、10-32)、及びDIONEX製サプレッサー(CMMS II)を用い、室温下、流速1.1 ml/分で測定した。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these. In the examples, “%” means “% by weight” unless otherwise specified. Ash (salt) was measured using an ignition residue (550 ° C., 3 hours) measurement method. The amount of chloride ions was measured by anion chromatography. Specifically, DIONEX ion chromatograph (model number QIC analyzer), DIONEX guard column (IonPacAG4A-SC 4mm x 50mm, 10-32), DIONEX column (IonPacAS4A-SC 4mm x 50mm, 10-32), and Using a suppressor (AMMS III 4 mm) manufactured by DIONEX, measurement was performed at room temperature at a flow rate of 1.6 ml / min. The amount of sodium ion and potassium ion was measured by cation chromatography. Specifically, DIONEX ion chromatograph (model number QIC analyzer), DIONEX guard column (IonPac CG12 4mm x 50mm, 10-32), DIONEX column (IonPac CS12 4mm x 50mm, 10-32), and DIONEX Measurement was performed using a suppressor (CMMS II) at room temperature and a flow rate of 1.1 ml / min.

撹拌型ウルトラホルダーUHP−76K(アドバンテック東洋株式会社製)に下記表1に示すUF膜(直径76 mm)を夫々取付けた。甘蔗糖製造工程の二番蜜をイオン交換クロマトグラフィーで分離したクロマト分離廃液(下記表2参照)300 ml(65℃)を原液として撹拌型ウルトラホルダーに供し、撹拌子を一定の速度で攪拌しながら、ヘリウムにより約0.5MPaの圧力をかけて濾過を行い、濃縮液と透過液を得た。濾過時には攪拌型ウルトラホルダーを65 ℃の水に浸漬し、濾過時の液温を65 ℃に保った。各膜における初期透過速度を30分間当たりの透過量として測定した。また、透過液の色を目視で評価した。対照は、膜処理しないクロマト分離廃液である。透過液の色の評価は、濃褐色、褐色、淡黄色、無色の4段階で評価した。結果を下記表3に示す。   The UF membranes (diameter 76 mm) shown in Table 1 below were attached to the stirring type ultra holder UHP-76K (manufactured by Advantech Toyo Co., Ltd.). Use 300 ml (65 ° C) of the chromatographic separation waste solution (see Table 2 below) from the second honey of the sugarcane production process by ion exchange chromatography as a stock solution and stir the stirring bar at a constant speed. Then, filtration was performed by applying a pressure of about 0.5 MPa with helium to obtain a concentrate and a permeate. During filtration, the stirring ultra holder was immersed in water at 65 ° C., and the liquid temperature during filtration was kept at 65 ° C. The initial permeation rate in each membrane was measured as the permeation amount per 30 minutes. Moreover, the color of the permeate was visually evaluated. The control is a chromatographic separation effluent without membrane treatment. The color of the permeated liquid was evaluated in four stages of dark brown, brown, light yellow, and colorless. The results are shown in Table 3 below.

Figure 0004678831
DESAL GK、DESAL GH(GEウォーター・テクノロジーズ社製)
Figure 0004678831
DESAL GK, DESAL GH (manufactured by GE Water Technologies)

Figure 0004678831
Figure 0004678831

Figure 0004678831
Figure 0004678831

実施例1のUF膜はいずれも透過速度が20 ml/30分以上であり、透過色の色が淡黄色であった(表3)。なお、膜の耐熱性が低いと、工程から得られた直後の高温(60 ℃以上)の糖蜜又は廃液を処理することができない。また、耐ファウリング性が低いと、膜が詰まりやすく透過速度が低くなるため単位時間当たりの廃液処理量が低下し、且つ洗浄を繰り返すためランニングコストがかかる。さらに、耐薬品性が低いと膜の洗浄に用いる薬剤、例えば次亜塩素酸ナトリウムなどにより劣化しやすく、膜寿命が短くなる。実施例1のUF膜は、これら特性の面でも問題がない(表1)。   All of the UF membranes of Example 1 had a permeation rate of 20 ml / 30 min or more, and the transmitted color was pale yellow (Table 3). If the heat resistance of the membrane is low, the high-temperature (60 ° C. or higher) molasses or waste liquid immediately after being obtained from the process cannot be treated. In addition, when the fouling resistance is low, the membrane is easily clogged and the permeation rate is low, so that the amount of waste liquid treated per unit time is reduced, and the washing is repeated, so that a running cost is required. Furthermore, if the chemical resistance is low, the film is likely to be deteriorated by a chemical used for cleaning the film, such as sodium hypochlorite, and the film life is shortened. The UF membrane of Example 1 has no problem in terms of these characteristics (Table 1).

下記表4に示すRO膜(直径76 mm)を使用して、実施例1と同様の方法により、初期透過速度の測定、及び透過液の評価を行った。原液は、実施例1と同じである。結果を表5に示す。   Using the RO membrane (diameter 76 mm) shown in Table 4 below, the initial permeation rate was measured and the permeate was evaluated by the same method as in Example 1. The stock solution is the same as in Example 1. The results are shown in Table 5.

Figure 0004678831
NTR-7450(日東電工株式会社製)
NF270(ダウ・ケミカル・カンパニー製)
SW04(ダイセン・メンブレン・システムズ株式会社)
Figure 0004678831
NTR-7450 (Nitto Denko Corporation)
NF270 (manufactured by Dow Chemical Company)
SW04 (Daisen Membrane Systems Co., Ltd.)

Figure 0004678831
Figure 0004678831

実施例2のRO膜は、透過液が淡黄色であった(表5)。また、NTR-7450は、上記特性の面でも問題がない(表4)。   The RO membrane of Example 2 had a pale yellow permeate (Table 5). NTR-7450 has no problem in terms of the above characteristics (Table 4).

[比較例1]
下記表6に示すRO膜(直径76 mm)を使用して、実施例1と同様の方法により、初期透過速度の測定、及び透過液の色の評価を行った。原液は、実施例1と同じである。結果を表7に示す。
[Comparative Example 1]
Using the RO membrane (diameter 76 mm) shown in Table 6 below, the initial permeation rate was measured and the color of the permeate was evaluated in the same manner as in Example 1. The stock solution is the same as in Example 1. The results are shown in Table 7.

Figure 0004678831
NTR-7410(日東電工株式会社製)
DESAL DK(GEウォーター・テクノロジーズ社製)
DRC3000(ダイセン・メンブレン・システムズ株式会社)
NF90(ダウ・ケミカル・カンパニー製)
PES10(ナディアフィルトレーション社製)
Figure 0004678831
NTR-7410 (Nitto Denko Corporation)
DESAL DK (manufactured by GE Water Technologies)
DRC3000 (Daisen Membrane Systems Co., Ltd.)
NF90 (manufactured by Dow Chemical Company)
PES10 (manufactured by Nadia Filtration)

Figure 0004678831
Figure 0004678831

[考察]
非特許文献11で酵母発酵廃液の脱色にNTR-7410を用いることが検討されている。しかし、比較例に記載のとおり透過性が高すぎて、着色成分もかなり透過してしまい、本発明の目的にとって満足のいく結果を得ることができなかった。
[Discussion]
Non-Patent Document 11 discusses the use of NTR-7410 for decolorization of yeast fermentation wastewater. However, as described in the comparative example, the permeability was too high, and the coloring component was considerably transmitted, so that a satisfactory result could not be obtained for the purpose of the present invention.

撹拌型ウルトラホルダーUHP−76K(アドバンテック東洋株式会社製)に実施例1と同じDESAL GK膜(直径76 mm)を取付けた。甘蔗糖製造工程の廃糖蜜(Brix 81.4)をBrix 5に希釈した液300 ml(65 ℃)を撹拌型ウルトラホルダーに供し、撹拌子を一定の速度で攪拌しながら、ヘリウムにより約0.5MPaの圧力をかけて濾過を行った。濾過時には攪拌型ウルトラホルダーを65 ℃の水に浸漬し、濾過時の液温を65℃に保った。濃縮液量が100 mlになったところで、濃縮液側に蒸留水200 mlを加えて再度濾過を行い、この操作を2回繰り返し濃縮液と透過液を得た。
得られた濃縮液の灰分、塩素イオン量を測定するために、濃縮液100 mlを凍結乾燥し、褐色の粉末1.1 gを得た。結果を表8に示す。
The same DESAL GK membrane (diameter 76 mm) as in Example 1 was attached to a stirring type ultra holder UHP-76K (manufactured by Advantech Toyo Co., Ltd.). A 300 ml (65 ° C) solution of molasses (Brix 81.4) from the sugarcane production process diluted to Brix 5 is placed in a stirring type ultra holder and the pressure is about 0.5 MPa with helium while stirring the stirring bar at a constant speed. And filtered. During filtration, the stirring type ultra holder was immersed in water at 65 ° C., and the liquid temperature during filtration was kept at 65 ° C. When the amount of the concentrated liquid reached 100 ml, 200 ml of distilled water was added to the concentrated liquid side and filtration was performed again. This operation was repeated twice to obtain a concentrated liquid and a permeated liquid.
In order to measure the ash content and chloride ion amount of the obtained concentrated liquid, 100 ml of the concentrated liquid was lyophilized to obtain 1.1 g of a brown powder. The results are shown in Table 8.

Figure 0004678831
Figure 0004678831

この結果、濃縮液の灰分、塩素イオンの量は、原料である廃糖蜜に比べて減少した。
このことにより、ボイラーで焼却する場合のボイラー水管の腐食および減耗を軽減することができる。
As a result, the amount of ash and chloride ions in the concentrate decreased compared to the molasses as the raw material.
This can reduce the corrosion and wear of the boiler water pipe when incinerated with the boiler.

下記表9に示すUF膜(直径76 mm)を用いて、実施例1と同様の方法により、クロマト分離廃液(実施例1のクロマト分離廃液とロットは異なる)を原液として実験室レベルの膜透過試験を行い、脱色率、塩素イオン濃縮率、透過速度を夫々求めた。原液の420 nm、560 nmでの吸光度は夫々1.373、0.300であり、塩素イオン濃度は2,628(ppm)であった。
(脱色率)
脱色率は、420 nmと560 nmの吸光度での原液の吸光度と透過液の吸光度を夫々測定し、次式に従い算出した。吸光度420 nmmと560 nmは、製糖工程の着色成分の吸収が大きい波長である。
脱色率(%)=(原液の吸光度−透過液の吸光度)÷原液の吸光度×100
原液の吸光度は、原液を蒸留水で10倍希釈して測定した。透過液の吸光度は、透過液を蒸留水で10倍希釈して測定した。
脱色率の評価基準は、以下の通りである。
○:420 nmでの脱色率が、90%以上且つ520 nmでの脱色率が90%以上である
×:420 nmでの脱色率が、90%未満又は520 nmでの脱色率が90%未満である
(塩素イオン濃縮率)
塩素イオン濃縮率は、透過液80 mlが得られるまでの透過液をよく撹拌して均一化して、塩素イオン濃度を測定し、原液の塩素イオン濃度を100%とした値を算出した。
塩素イオン濃縮率の評価基準は、以下の通りである。
○:105%以上
×:105%未満
(透過速度)
初期透過速度は、透過開始から30分間に得られた透過液量を示した。
透過速度の評価基準は、以下の通りである。
○:5ml以上
×:5ml未満
結果を表9に示す。
Using the UF membrane (diameter 76 mm) shown in Table 9 below, in the same manner as in Example 1, the chromatographic separation waste solution (different from the chromatographic separation waste solution of Example 1 in a lot) is used as a stock solution for laboratory membrane permeation. Tests were conducted to determine the decolorization rate, chloride ion concentration rate, and permeation rate. The absorbance at 420 nm and 560 nm of the stock solution was 1.373 and 0.300, respectively, and the chloride ion concentration was 2,628 (ppm).
(Decolorization rate)
The decolorization rate was calculated according to the following equation by measuring the absorbance of the stock solution and the absorbance of the permeate at 420 nm and 560 nm, respectively. The absorbances of 420 nmm and 560 nm are wavelengths at which absorption of colored components in the sugar production process is large.
Decolorization rate (%) = (absorbance of stock solution−absorbance of permeate) ÷ absorbance of stock solution × 100
The absorbance of the stock solution was measured by diluting the stock solution 10 times with distilled water. The absorbance of the permeate was measured by diluting the permeate 10 times with distilled water.
The evaluation criteria for the decolorization rate are as follows.
○: Decolorization rate at 420 nm is 90% or more and decoloration rate at 520 nm is 90% or more ×: Decoloration rate at 420 nm is less than 90% or decoloration rate at 520 nm is less than 90% (Cl ion concentration rate)
The chloride ion concentration ratio was calculated by taking the permeate solution until 80 ml of permeate solution was obtained and thoroughly homogenizing it, measuring the chloride ion concentration, and setting the chlorine ion concentration of the stock solution as 100%.
The evaluation criteria of the chloride ion concentration rate are as follows.
○: 105% or more ×: Less than 105% (transmission speed)
The initial permeation rate indicates the amount of permeate obtained in 30 minutes from the start of permeation.
The evaluation criteria for the transmission speed are as follows.
○: 5 ml or more ×: Less than 5 ml The results are shown in Table 9.

Figure 0004678831
Figure 0004678831

DESAL GK及びDESAL GHのいずれも脱色率(420 nm、560 nm)が90 %以上であり、特に560 nmでの脱色率は97 %以上であった。また、塩素イオン濃縮率が上昇していることから、透過液側に塩が濃縮された。これら結果より、濃縮液側と透過液側とで、着色成分と塩素イオンとが夫々分離されている(すなわち濃縮されている)。さらに、初期透過速度は、19 ml、34 mlという高い値であった。   Both DESAL GK and DESAL GH had a decolorization rate (420 nm, 560 nm) of 90% or more, and in particular, the decolorization rate at 560 nm was 97% or more. Further, since the chloride ion concentration rate was increased, the salt was concentrated on the permeate side. From these results, the coloring component and the chlorine ion are separated (ie, concentrated) on the concentrated liquid side and the permeated liquid side, respectively. Furthermore, the initial permeation rate was as high as 19 ml and 34 ml.

[比較例2]
下記表10に示すUF膜(直径76 mm)を使用して、実施例1と同様の方法により、クロマト分離廃液を原液として実験室レベルの膜透過試験を行い、脱色率、塩素イオン濃縮率、透過速度を夫々求めた。脱色率、塩素イオン濃縮率、透過速度の評価基準は、実施例4と同じである。原液は、実施例4と同じである。
結果を表10に示す。
[Comparative Example 2]
Using a UF membrane (diameter: 76 mm) shown in Table 10 below, a membrane permeation test at the laboratory level was conducted using the chromatographic separation waste solution as a stock solution by the same method as in Example 1, and the decolorization rate, chloride ion concentration rate, The transmission speed was determined for each. The evaluation criteria for the decolorization rate, chloride ion concentration rate, and permeation rate are the same as in Example 4. The stock solution is the same as in Example 4.
The results are shown in Table 10.

Figure 0004678831
DESAL GE、DESAL GM、DESAL PW(GEウォーター・テクノロジーズ社製)
UK-10(アドバンテック東洋株式会社製)
NTU-3150(日東電工株式会社製)
Figure 0004678831
DESAL GE, DESAL GM, DESAL PW (manufactured by GE Water Technologies)
UK-10 (manufactured by Advantech Toyo Corporation)
NTU-3150 (manufactured by Nitto Denko Corporation)

DESAL GEは、初期透過速度が15とそれ程よくなく、且つ420nmでの脱色率が90%未満であった。DESAL GE以外の膜は、初期透過速度は40を超えている点で優れている。しかし、420nm及び560nmのいずれの脱色率においても90%以下であった。また、塩素イオン濃縮率は、DESAL PW、NTU-3150において、濃縮されていなかった。従って、表10に示す膜では、塩素イオンと着色成分を分離することが難しい。   DESAL GE had an initial transmission rate as low as 15, and a decolorization rate at 420 nm of less than 90%. Membranes other than DESAL GE are excellent in that the initial permeation rate exceeds 40. However, the decolorization rate at 420 nm and 560 nm was 90% or less. Further, the concentration rate of chloride ions was not concentrated in DESAL PW and NTU-3150. Therefore, in the membrane shown in Table 10, it is difficult to separate chlorine ions and colored components.

下記表11に示すRO膜(直径76 mm)を用いて、実施例1と同様の方法により、クロマト分離廃液を原液として実験室レベルの膜透過試験を行い、脱色率、塩素イオン濃縮率、透過速度を夫々求めた。脱色率、塩素イオン濃縮率、透過速度の評価基準は、実施例4と同じである。原液は、実施例4と同じである。
結果を表11に示す。
Using a RO membrane (diameter: 76 mm) shown in Table 11 below, a membrane permeation test at the laboratory level was conducted using the chromatographic separation waste solution as a stock solution in the same manner as in Example 1, and the decolorization rate, chloride ion concentration rate, permeation rate were measured. I asked for speed. The evaluation criteria for the decolorization rate, chloride ion concentration rate, and permeation rate are the same as in Example 4. The stock solution is the same as in Example 4.
The results are shown in Table 11.

Figure 0004678831
Figure 0004678831

NTR-7450、NF270及びSW04のいずれの膜においても脱色率(420 nm、560 nm)が94%以上であり、特に560nmでの脱色率は99%以上であった。また、塩素イオン濃縮率が115%以上であることから、透過液側に塩素イオンが濃縮されている。このことにより、濃縮液側と透過液側とで、着色成分と塩素イオンとが夫々分離される(すなわち濃縮される)。さらに、初期透過速度は、8〜33 mlであった。   In any of the NTR-7450, NF270, and SW04 films, the decolorization rate (420 nm, 560 nm) was 94% or more, and in particular, the decoloration rate at 560 nm was 99% or more. Moreover, since the chloride ion concentration rate is 115% or more, chloride ions are concentrated on the permeate side. This separates (that is, concentrates) the coloring components and chloride ions on the concentrate side and the permeate side, respectively. Furthermore, the initial permeation rate was 8 to 33 ml.

[比較例3]
下記表12に示すRO膜(直径76 mm)を使用して、実施例1と同様の方法により、クロマト分離廃液を原液として実験室レベルの膜透過試験を行い、脱色率、塩素イオン濃縮率、透過速度を夫々求めた。脱色率、塩素イオン濃縮率、透過速度の評価基準は、実施例4と同じである。原液は、実施例4と同じである。
結果を表12に示す。
[Comparative Example 3]
Using a RO membrane (diameter 76 mm) shown in Table 12 below, a membrane permeation test at the laboratory level was conducted using the chromatographic separation waste solution as a stock solution by the same method as in Example 1, and the decolorization rate, chloride ion concentration rate, The transmission speed was determined for each. The evaluation criteria for the decolorization rate, chloride ion concentration rate, and permeation rate are the same as in Example 4. The stock solution is the same as in Example 4.
The results are shown in Table 12.

Figure 0004678831
DRC-1000S(ダイセン・メンブレン・システムズ株式会社)
Figure 0004678831
DRC-1000S (Daisen Membrane Systems Co., Ltd.)

NTR-7410、DRC-1000S及びPES10の初期透過速度は20を超えている点で優れているが、DESAL DKの初期透過速度は4であり、十分な初期透過速度ではなかった。DESAL DK及びNTR-7410を除き、脱色率は90%未満であった。また、塩素イオン濃縮率は、DRC-1000Sにおいて、濃縮されていなかった。従って、これらの膜は、脱色率、塩素イオン濃縮率、透過速度のいずれか一つ以上の点で劣っていた。   NTR-7410, DRC-1000S, and PES10 were excellent in that the initial transmission rate exceeded 20, but DESL DK had an initial transmission rate of 4, which was not a sufficient initial transmission rate. Except for DESAL DK and NTR-7410, the decolorization rate was less than 90%. Further, the chloride ion concentration rate was not concentrated in DRC-1000S. Accordingly, these membranes are inferior in any one or more of decolorization rate, chloride ion concentration rate, and permeation rate.

(実機による脱塩率テスト)
製糖工場から得た廃糖蜜(Brix 86.2)18kgを蒸留水にてBrix 20に希釈し、パン酵母(サッカロミセス・セルビシエ;Saccharomyces cerevisiae IFO3040)を接種した後、好気条件下において37℃、24時間培養した。得られた培養液を8,000×gで15分間遠心分離し、その上清を東洋濾紙No.2で吸引濾過した。本濾液を凍結乾燥した結果、8.0 kgの褐色粉末(発酵工程からの廃液)を得た。この粉末に純水200 Lを加え、60 ℃でスパイラル型限外濾過モジュールDESAL GK8040(GEウォーター・テクノロジーズ社製)により限外濾過し、濃縮液50Lを得た。この濃縮液に純水を150 L加えた後、再びスパイラル型限外濾過モジュールDESAL GK8040により限外濾過し、濃縮液50 Lと透過液を得た。
なお、スパイラル型限外濾過モジュールDESAL GK8040は、実施例1、3で使用したDESAL GK膜と同じ膜を使用しモジュール型にしたものである。
得られた濃縮液の灰分、塩素イオン量を測定するために、得られた濃縮液全量(50L)を凍結乾燥し、褐色の粉末2.7 kgを得た。結果を表13に示す。
(Desalination rate test using actual machine)
Diluted 18 kg of molasses (Brix 86.2) obtained from a sugar factory to Brix 20 with distilled water, inoculated with baker's yeast (Saccharomyces cerevisiae IFO3040), and then cultured at 37 ° C for 24 hours under aerobic conditions did. The obtained culture broth was centrifuged at 8,000 × g for 15 minutes, and the supernatant was suction filtered with Toyo filter paper No.2. As a result of freeze-drying this filtrate, 8.0 kg of brown powder (waste liquid from the fermentation process) was obtained. 200 L of pure water was added to this powder, and ultrafiltration was performed at 60 ° C. with a spiral ultrafiltration module DESAL GK8040 (manufactured by GE Water Technologies) to obtain 50 L of a concentrated solution. After adding 150 L of pure water to this concentrate, ultrafiltration was again performed using a spiral ultrafiltration module DESAL GK8040 to obtain 50 L of concentrate and permeate.
The spiral ultrafiltration module DESAL GK8040 is a module type using the same membrane as the DESAL GK membrane used in Examples 1 and 3.
In order to measure the ash content and chloride ion content of the obtained concentrated liquid, the total amount (50 L) of the obtained concentrated liquid was freeze-dried to obtain 2.7 kg of a brown powder. The results are shown in Table 13.

Figure 0004678831
Figure 0004678831

この結果、濃縮液の灰分、塩素イオンの量は、発酵工程の廃液に比べて減少した。
このことにより、ボイラーで焼却する場合のボイラー水管の腐食および減耗を軽減することができる。
As a result, the amount of ash and chloride ions in the concentrated liquid decreased compared to the waste liquid in the fermentation process.
This can reduce the corrosion and wear of the boiler water pipe when incinerated with the boiler.

(実機による脱塩率テスト)
甘蔗糖製造工程の二番蜜をイオン交換クロマトグラフィーにより砂糖を回収した後の廃液であるクロマト分離廃液(Brix5、75 ℃)10 m3をスパイラル型限外濾過モジュールDESAL GK8040(膜面積22.3 m2、膜入口圧力1MPa)(GEウォーター・テクノロジーズ社製)により濾過した。濾過条件は、通液初期の膜への通液流量を6.3m3/hr、透過液回収流量を0.6 m3/hr、濃縮液回収流量を0.3 m3/hr に設定した。その結果、濃縮液3 m3と透過液6m3を回収した(工程1)。回収した濃縮液3 m3に、水3 m3を添加して混合した後、上記と同様にスパイラル型限外濾過モジュールDESAL GK8040(膜面積22.3 m2)(膜入口圧力1 MPa)により濾過した。濾過条件は、通液初期の膜への通液流量を5.3m3/hr、透過液回収流量を0.6 m3/hr、濃縮液回収流量を0.4 m3/hrに設定した。その結果、濃縮液3 m3と透過液2 m3を回収した(工程2)。
得られた濃縮液のナトリウムイオン、カリウムイオン及び塩素イオンの量を測定するために、工程1、工程2で回収した濃縮液のうち1kgを凍結乾燥し、褐色粉末64.46 g、51.56gを夫々得た。結果を表14に示す。
(Desalination rate test using actual machine)
10 m 3 of chromatographic separation waste solution (Brix5, 75 ℃), the waste solution after collecting sugar by ion-exchange chromatography from the second honey in the sugarcane sugar production process, is used for spiral ultrafiltration module DESAL GK8040 (membrane area 22.3 m 2 , Membrane inlet pressure 1 MPa) (manufactured by GE Water Technologies). Filtration conditions were set such that the flow rate through the membrane at the beginning of the flow was 6.3 m 3 / hr, the permeate recovery flow rate was 0.6 m 3 / hr, and the concentrate recovery flow rate was 0.3 m 3 / hr. As a result, to recover the permeate 6 m 3 and concentrate 3 m 3 (Step 1). After adding 3 m 3 of water to the collected concentrated liquid 3 m 3 and mixing, it was filtered with a spiral ultrafiltration module DESAL GK8040 (membrane area 22.3 m 2 ) (membrane inlet pressure 1 MPa) in the same manner as above. . Filtration conditions were set such that the flow rate through the membrane at the beginning of the flow was 5.3 m 3 / hr, the permeate recovery flow rate was 0.6 m 3 / hr, and the concentrate recovery flow rate was 0.4 m 3 / hr. As a result, 3 m 3 of concentrated liquid and 2 m 3 of permeate were recovered (step 2).
In order to measure the amount of sodium ion, potassium ion and chlorine ion in the obtained concentrated liquid, 1 kg of the concentrated liquid recovered in Step 1 and Step 2 was freeze-dried to obtain 64.46 g and 51.56 g of brown powder, respectively. It was. The results are shown in Table 14.

Figure 0004678831
Figure 0004678831

この結果、工程1で回収した濃縮液のナトリウムイオン、カリウムイオン、塩素イオンの含量はクロマト分離廃液に比べて減少し、且つ工程2で回収した濃縮液のナトリウムイオン、カリウムイオン、塩素イオンの含量は工程1で回収した濃縮液に比べて減少した。
このことにより、ボイラーで焼却する場合のボイラー水管の腐食および減耗を軽減することができる。
As a result, the content of sodium ion, potassium ion and chloride ion in the concentrate recovered in step 1 is reduced compared to the chromatographic separation waste solution, and the content of sodium ion, potassium ion and chloride ion in the concentrate recovered in step 2 Decreased compared to the concentrate recovered in step 1.
This can reduce the corrosion and wear of the boiler water pipe when incinerated with the boiler.

(膜脱塩廃液の焼却試験)
実施例7と同様の膜処理をおこない、工程2の濃縮液を回収した。該濃縮液を約Brix 50に減圧濃縮した。該液を150 L/hrで、8.3 t/hrで発生するバガスに噴霧してストーカー型バガス焚ボイラー(商品名:N-900型自然循環式ボイラー、タクマ社製)にて燃焼した(圧搾能力約900 t/日の製糖工場)。廃液投入前と燃焼時とを比較して、水管へのスラグ付着が多少見られる他、ボイラー運転上の大きな変化は見られなかった。14日間連続で燃焼した後、ボイラーを停止し、内部を観察した。その結果、スーパーヒーターの腐食は見られず、ストーカー上にも大きなクリンカーが発生することも無かった。本結果より、膜処理した廃液は燃焼に支障のないことが確認された。
(Incineration test of membrane desalination waste liquid)
The same membrane treatment as in Example 7 was performed, and the concentrated liquid in Step 2 was recovered. The concentrate was concentrated under reduced pressure to about Brix 50. The liquid was sprayed onto bagasse generated at 8.3 t / hr at 150 L / hr and burned in a stalker-type bagasse-fired boiler (trade name: N-900 natural circulation boiler, manufactured by Takuma) Approximately 900 t / day sugar factory). Compared to before and after combustion of the waste liquid, there was some slag adhesion to the water pipe, and no significant change in boiler operation was observed. After burning continuously for 14 days, the boiler was stopped and the inside was observed. As a result, no corrosion of the super heater was observed, and no large clinker was generated on the stalker. From this result, it was confirmed that the waste liquid subjected to membrane treatment has no trouble in combustion.

(実機による長期連続処理試験)
甘蔗糖製造工程から連続的に排出されるクロマト分離廃液(Brix 3.5〜5.5、約75℃)を使用して、長期連続膜処理試験を行った。スパイラル型限外濾過モジュールDESAL GK8040を16本内蔵したUF装置を使用して、該クロマト分離廃液を膜処理した。同型のUF装置2機(No.1及びNo.2)を設置し、一方のUF装置が運転中に他方のUF装置が洗浄されるように、6時間ごとに運転・洗浄を互いに切り替えた。膜透過後の透過液と一部の濃縮液は装置外へ排出され、残りの濃縮液は循環液として再度UF装置に処理液として透過された。残りの濃縮液を循環液として再度処理するのは、濾過処理の線速度を速くするためである。透過液と排出される濃縮液の合計量と同量になるように、新たなクロマト分離廃液を循環液通液に追加した(すなわち、追加するクロマト分離廃液=透過液の量+排出される濃縮液の量)。UF装置におけるクロマト分離廃液、濃縮液、透過液、循環液の流れの概念図を図3に示す。
(Long-term continuous treatment test with actual machine)
A long-term continuous membrane treatment test was conducted using chromatographic separation waste liquid (Brix 3.5 to 5.5, about 75 ° C.) continuously discharged from the sugar cane sugar production process. The chromatographic separation waste solution was subjected to membrane treatment using an UF apparatus incorporating 16 spiral ultrafiltration modules DESAR GK8040. Two UF devices of the same type (No. 1 and No. 2) were installed, and the operation and washing were switched every 6 hours so that one UF device was washed while the other UF device was washed. After passing through the membrane, the permeated liquid and a part of the concentrated liquid were discharged out of the apparatus, and the remaining concentrated liquid was permeated again as a processing liquid into the UF apparatus as a circulating liquid. The remaining concentrated liquid is processed again as a circulating liquid in order to increase the linear velocity of the filtration process. A new chromatographic separation waste liquid was added to the circulating liquid flow so that the total amount of the permeated liquid and the discharged concentrated liquid was the same (that is, additional chromatographic waste liquid = amount of permeated liquid + concentrated concentration to be discharged). Liquid volume). FIG. 3 shows a conceptual diagram of the flow of chromatographic separation waste liquid, concentrated liquid, permeate and circulating liquid in the UF apparatus.

UF装置No.1及びNo.2の液温(℃)、UF装置入口圧力(MPa)、濃縮(出)液圧力(MPa)、透過(出)液流量(m3/h)、濃縮(出)液流量(m3/h)、循環液(供給液追加前)流量(m3/h)を夫々1日おきに測定し、その変化を図1及び図2に夫々示した。UF装置の洗浄は、水洗後、0.1%苛性ソーダ入り100 ppm次亜塩素酸ナトリウム溶液で洗浄し、最後に水洗するという手順で行った。 Liquid temperature (° C) of UF device No. 1 and No. 2, UF device inlet pressure (MPa), concentration (out) liquid pressure (MPa), permeate (out) liquid flow rate (m 3 / h), concentration (out ) The liquid flow rate (m 3 / h) and the circulating fluid (before supply liquid addition) flow rate (m 3 / h) were measured every other day, and the changes are shown in FIGS. 1 and 2, respectively. The UF apparatus was washed with water, washed with 100 ppm sodium hypochlorite solution containing 0.1% sodium hydroxide, and finally washed with water.

また、長期処理の前後において、膜の処理能力がどのように変化したかを確認するために、420nmでの吸光度、560nmでの吸光度、塩素イオン濃度、硫酸イオン濃度、ナトリウムイオン濃度、カリウムイオン濃度、導電率、及び全溶存固形物質(TDS)を測定した。吸光度は、蒸留水で50倍希釈した液の測定値を示した。
その結果を表15に示す。
In addition, in order to confirm how the membrane processing capacity changed before and after long-term treatment, absorbance at 420 nm, absorbance at 560 nm, chloride ion concentration, sulfate ion concentration, sodium ion concentration, potassium ion concentration , Conductivity, and total dissolved solids (TDS) were measured. Absorbance showed the measured value of the liquid diluted 50 times with distilled water.
The results are shown in Table 15.

Figure 0004678831
Figure 0004678831

その結果、UF装置2機とも、液温、UF入口圧力、濃縮液圧力、透過液流量、濃縮液流量、循環液流量は、試験期間中(68日間)安定していた。また、膜の脱色能力及び塩素イオン濃縮能力は、長期処理によって低下しなかった。   As a result, the liquid temperature, UF inlet pressure, concentrate pressure, permeate flow rate, concentrate flow rate, and circulating fluid flow rate were stable during the test period (68 days) in both UF devices. Moreover, the decolorization ability and chloride ion concentration ability of the membrane were not reduced by the long-term treatment.

本発明は、製糖廃蜜、製糖廃液、又は製糖廃蜜の発酵工程からの廃液を膜処理することによって着色成分を含む濃縮液と塩素イオンを含む透過液とに分離することを含む廃液の処理方法を提供する。従って、本発明は、産業上の利用可能性を有する。   The present invention relates to a waste liquid treatment comprising separating a sugar liquid waste, a sugar liquid waste liquid, or a waste liquid from a fermentation process of the sugar liquid waste liquid into a concentrated liquid containing coloring components and a permeate containing chloride ions by membrane treatment. Provide a method. Therefore, the present invention has industrial applicability.

UF装置No.1の透過液量、濃縮流量、循環流量、液温を示す図である。It is a figure which shows the amount of permeated liquid of UF apparatus No. 1, a concentrated flow volume, a circulating flow volume, and a liquid temperature. UF装置No.1のUF入口圧、濃縮液圧、液音を示す図である。It is a figure which shows UF inlet pressure, concentrated liquid pressure, and liquid sound of UF apparatus No.1. UF装置No.2の透過液量、濃縮流量、循環流量、液温を示す図である。It is a figure which shows the amount of permeated liquid of UF apparatus No. 2, a concentrated flow volume, a circulating flow volume, and a liquid temperature. UF装置No.2のUF入口圧、濃縮液圧、液音を示す図である。It is a figure which shows UF inlet pressure, concentrated liquid pressure, and liquid sound of UF apparatus No.2. UF装置No.1及びNo.2におけるクロマト分離廃液、濃縮液、透過液、循環液の流れの概念図である。It is a conceptual diagram of the flow of chromatographic separation waste liquid, concentrated liquid, permeated liquid, and circulating liquid in UF apparatuses No. 1 and No. 2.

符号の説明Explanation of symbols

1 UF装置
2 UF膜モジュール
1 UF equipment 2 UF membrane module

Claims (9)

製糖廃蜜、製糖廃液、又は製糖廃蜜の発酵工程からの廃液を、分画分子量2,000以上4,000以下であり、ポリアミド系膜である限外濾過膜を用いて着色成分を含む濃縮液と塩素イオンを含む透過液とに分離することを含む、廃液の処理方法。 Sugar waste honey, sugar waste, or waste from the fermentation process of sugar waste honey, Ri fractional molecular weight of 2,000 or more 4,000 or less der, concentrate and chlorine containing coloring components using an ultrafiltration membrane is a polyamide-based film A method for treating a waste liquid, comprising separating into a permeate containing ions. 限外濾過膜が、スパイラル型モジュールである、請求項に記載の廃液の処理方法。 Ultrafiltration membrane is a spiral module, the processing method of the waste liquid of claim 1. 製糖廃蜜、製糖廃液、又は製糖廃蜜の発酵工程からの廃液を、0.05%(w/v)以上3.5%(w/v)以下の塩化ナトリウム水溶液の塩阻止率が0.3 MPa以上5.6 MPa以下の圧力及び25 ℃の温度条件下で40%以上60%以下であり、ポリアミド系膜である逆浸透膜を用いて着色成分を含む濃縮液と塩素イオンを含む透過液とに分離することを含む、廃液の処理方法。 The salt rejection of 0.05% (w / v) to 3.5% (w / v) sodium chloride aqueous solution is 0.3 MPa or more and 5.6 MPa or less for sugar making waste, sugar making waste liquid, or waste liquid from fermentation process of sugar making waste. of Ri der 40% to 60% or less at a temperature of pressure and 25 ° C., that is separated into a permeate containing concentrate and chlorine ions containing a coloring component using a reverse osmosis membrane is a polyamide-based film Including waste liquid treatment methods. 逆浸透膜が、ナノフィルトレーション膜である、請求項に記載の廃液の処理方法。 The waste liquid treatment method according to claim 3 , wherein the reverse osmosis membrane is a nanofiltration membrane. 前記ポリアミド系膜が平膜状複合膜である、請求項1又は2に記載の廃液の処理方法。 The waste liquid treatment method according to claim 1 or 2 , wherein the polyamide-based membrane is a flat membrane-like composite membrane . 前記ポリアミド系膜が平膜状複合膜である、請求項3又は4に記載の廃液の処理方法。The waste liquid treatment method according to claim 3 or 4, wherein the polyamide-based membrane is a flat membrane-like composite membrane. 濃縮液を焼却処分することを含む、請求項1〜6のいずれか一項に記載の廃液の処理方法。 The processing method of the waste liquid as described in any one of Claims 1-6 including incinerating a concentrate. 透過液を排水処理することを含む、請求項1〜7のいずれか一項に記載の廃液の処理方法。 The processing method of the waste liquid as described in any one of Claims 1-7 including draining a permeate. 焼却処分が、濃縮液とバガスとを一緒に焼却する、請求項に記載の廃液の処理方法。 The waste liquid treatment method according to claim 7 , wherein the incineration disposes the concentrated liquid and bagasse together.
JP2005037563A 2004-03-30 2005-02-15 Process for treating waste liquid from sugarmaking waste, sugar production liquid, or fermentation process of sugar production Active JP4678831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037563A JP4678831B2 (en) 2004-03-30 2005-02-15 Process for treating waste liquid from sugarmaking waste, sugar production liquid, or fermentation process of sugar production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004100484 2004-03-30
JP2005037563A JP4678831B2 (en) 2004-03-30 2005-02-15 Process for treating waste liquid from sugarmaking waste, sugar production liquid, or fermentation process of sugar production

Publications (2)

Publication Number Publication Date
JP2005313148A JP2005313148A (en) 2005-11-10
JP4678831B2 true JP4678831B2 (en) 2011-04-27

Family

ID=35441133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037563A Active JP4678831B2 (en) 2004-03-30 2005-02-15 Process for treating waste liquid from sugarmaking waste, sugar production liquid, or fermentation process of sugar production

Country Status (1)

Country Link
JP (1) JP4678831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198702B2 (en) 2016-02-04 2021-12-14 Industrial Technology Research Institute Method for separating hydrolyzed product of biomass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105293785A (en) * 2015-12-04 2016-02-03 天津海钢板材有限公司 Sewage recycling device
JP6152193B2 (en) * 2016-05-13 2017-06-21 ユニチカ株式会社 Polyamide ultrafiltration membrane having organic solvent resistance and method for producing the same
JP7288318B6 (en) * 2019-03-13 2023-06-19 Dm三井製糖株式会社 Method for producing decomposition extract of bagasse, method for decolorizing decomposition extract of bagasse, and decomposition extract of bagasse

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103380A (en) * 1976-02-27 1977-08-30 Mitsui Seitou Kk Method of treating waste liquid of anion exchange regeneration
JPS6084108A (en) * 1983-06-03 1985-05-13 Japan Organo Co Ltd Separation of high-molecular organic substance by reverse osmosis membrane
JPH01139187A (en) * 1987-11-27 1989-05-31 Shokuhin Sangyo Maku Riyou Gijutsu Kenkyu Kumiai Treatment of fermentation waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198702B2 (en) 2016-02-04 2021-12-14 Industrial Technology Research Institute Method for separating hydrolyzed product of biomass

Also Published As

Publication number Publication date
JP2005313148A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
Brehant et al. Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination
US7186344B2 (en) Membrane based fluid treatment systems
KR920003099B1 (en) Process for purifying crude glycerol
ES2536493T3 (en) Freshwater generation procedure and seawater desalination procedure
Shivajirao Treatment of distillery wastewater using membrane technologies
Benítez et al. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater
Koo et al. Recycling of oleochemical wastewater for boiler feed water using reverse osmosis membranes—A case study
CN103787552B (en) A kind of high COD zero discharge of industrial waste water processing system and method
Qu et al. Tertiary treatment of secondary effluent using ultrafiltration for wastewater reuse: correlating membrane fouling with rejection of effluent organic matter and hydrophobic pharmaceuticals
Chen et al. Membrane separation: basics and applications
Alonso et al. On the feasibility of urban wastewater tertiary treatment by membranes: a comparative assessment
CN107857438B (en) Zero-emission process for wastewater treatment of chemical enterprises and parks
JP4678831B2 (en) Process for treating waste liquid from sugarmaking waste, sugar production liquid, or fermentation process of sugar production
Shao et al. Effects of water temperature and light intensity on the performance of gravity-driven membrane system
Moneer The potential of hybrid electrocoagulation-membrane separation processes for performance enhancement and membrane fouling mitigation: a review
Lee et al. Effect of residual ozone on membrane fouling reduction in ozone resisting microfiltration (MF) membrane system
Zainith et al. Membrane-based hybrid processes in industrial waste effluent treatment
Ericsson et al. Membrane applications in raw water treatment with and without reverse osmosis desalination
Mansourian et al. Process intensification in integrated membrane systems
Kerkulah et al. A mini review on treatment of wastewater with membrane technology
Łaskawiec et al. Treatment of pool water installation washings in a flocculation/ultrafiltration integrated system
Aziz et al. A comprehensive review of membrane-based water filtration techniques
Benítez et al. Elimination of organic matter present in wastewaters from the cork industry by membrane filtration
Hashino et al. Advanced water treatment system using ozone and ozone resistant microfiltration module
CN116282689B (en) Method and device for desalting high-salt high-concentration organic wastewater by coupling three membrane separation technologies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4678831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250