JP4678736B2 - COMPOUND PARTICLE FOR YELLOW COLORING AND METHOD FOR PRODUCING COMPOSITE PARTICLE FOR YELLOW COLORING - Google Patents

COMPOUND PARTICLE FOR YELLOW COLORING AND METHOD FOR PRODUCING COMPOSITE PARTICLE FOR YELLOW COLORING Download PDF

Info

Publication number
JP4678736B2
JP4678736B2 JP2006146326A JP2006146326A JP4678736B2 JP 4678736 B2 JP4678736 B2 JP 4678736B2 JP 2006146326 A JP2006146326 A JP 2006146326A JP 2006146326 A JP2006146326 A JP 2006146326A JP 4678736 B2 JP4678736 B2 JP 4678736B2
Authority
JP
Japan
Prior art keywords
silver
ceramic
mass
sol
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006146326A
Other languages
Japanese (ja)
Other versions
JP2007063530A (en
Inventor
敦則 白石
宏昭 勝木
悟 納富
弘道 一ノ瀬
秀治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Prefecture
Original Assignee
Saga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Prefecture filed Critical Saga Prefecture
Priority to JP2006146326A priority Critical patent/JP4678736B2/en
Publication of JP2007063530A publication Critical patent/JP2007063530A/en
Application granted granted Critical
Publication of JP4678736B2 publication Critical patent/JP4678736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、陶磁器上絵具用、着色ガラス用、または塗料用の黄色顔料として有用な黄着色用複合微粒子、およびその製造方法に関する。   The present invention relates to a yellow colored composite fine particle useful as a yellow pigment for ceramics paint, colored glass, or paint, and a method for producing the same.

現在、ガラスや陶磁器用上絵具の着色に用いられる無機材料系の黄色色材または顔料としては、例えば(1)カドミウムを用いたカドミウム黄、(2)酸化鉄にアンチモンを配合した鉄・アンチモン黄、(3)ジルコンにプラセオジウムを添加して発色させたジルコン・プラセオ黄、(4)ジルコンにバナジウムを添加して発色させたジルコン・バナジウム黄等が知られているが、それぞれ毒性の問題やコストの問題、発色強度不足等の問題がある。また、透光性色材として用いることができるのは、(2)、(4)の色材および後述する銀系の着色材であり、(1)、(3)の色材は不透明色材である。   At present, examples of inorganic yellow materials or pigments used for coloring glass and ceramic upper paints include (1) cadmium yellow using cadmium, and (2) iron / antimony yellow containing iron oxide and antimony. , (3) Zircon / Praseo Yellow, which is colored by adding praseodymium to zircon, and (4) Zircon / Vanadium yellow, which is colored by adding vanadium to zircon, are known. And problems such as insufficient color intensity. Further, the light-transmitting color materials that can be used are the color materials (2) and (4) and the silver-based color materials described later, and the color materials (1) and (3) are opaque color materials. It is.

また、銀粒子は昔からガラス用の黄発色材として知られ、例えばステンドグラスや薩摩切子等の各種ガラス製品用として用いられている。このような金属銀粒子による黄発色は、銀粒子が数十nm以下の粒径の場合に生じる「自由電子のプラズモン吸収」による黄発色性を利用するものであるが、ガラス中での銀粒子の分散形態として数十nm以下のサイズでの均一分散は困難であり、安定した黄発色性が得られないのが現状である。また、着色ガラスとしても、1mm以下の厚みでは非常に弱い黄発色しか得られず、数mm以上の厚みを必要とするという問題があり、多量の銀を使用することによりコストが上昇するという問題がある。また、ガラス中の銀濃度を上げても発色強度は向上せず、かえって凝集し、次第に灰色の金属銀色に変色してしまうという問題がある。   Silver particles have long been known as a yellow coloring material for glass, and are used for various glass products such as stained glass and Satsuma cutlery. Such yellow coloration by metallic silver particles utilizes yellow coloration due to "plasma absorption of free electrons" that occurs when silver particles have a particle size of several tens of nanometers or less. As a dispersion form, uniform dispersion with a size of several tens of nm or less is difficult, and stable yellow color development cannot be obtained at present. Also, as colored glass, only a very weak yellow color can be obtained at a thickness of 1 mm or less, and there is a problem that a thickness of several mm or more is required, and the cost increases due to the use of a large amount of silver. There is. Further, even if the silver concentration in the glass is increased, there is a problem that the coloring intensity does not improve, but rather aggregates and gradually changes to a gray metallic silver color.

最近、金属銀微粒子のプラズモン発色を可能とするものとして、金属銀ナノ微粒子と高分子量分散剤を含むコロイド溶液(特許文献1)や、金属銀微粒子を表面に坦持した樹脂粒子(特許文献2)とし、いずれも塗料や樹脂成形品への応用が提案されているが、コロイド溶液の形態ではその濃度が制限され、コスト高となり、また、溶媒を除去すると金属銀微粒子が凝集し、ナノ金属銀微粒子の特性であるプラズモン発色(黄発色)が失われるという問題がある。また、樹脂粒子の形態では、付着される銀微粒子量を多くできず、所望する発色強度を得るにはコスト高となるという問題がある。また、コロイド溶液や樹脂粒子の形態では、陶磁器用上絵具や着色ガラス等のガラス基材中への均一分散は困難であり、汎用性に欠けるという問題がある。
特開平11−80647号公報 特開2002−201284
Recently, to enable plasmon coloration of metallic silver fine particles, a colloidal solution containing metallic silver nanoparticles and a high molecular weight dispersing agent (Patent Document 1), or resin particles carrying metallic silver fine particles on the surface (Patent Document 2) However, the concentration of the colloidal solution is limited and the cost is increased, and when the solvent is removed, the metallic silver fine particles are aggregated, and the nanometal. There is a problem that plasmon coloring (yellow coloring) which is a characteristic of silver fine particles is lost. Further, in the form of resin particles, the amount of attached silver fine particles cannot be increased, and there is a problem that the cost is high in order to obtain a desired color intensity. Further, in the form of colloidal solution or resin particles, it is difficult to uniformly disperse in a glass substrate such as ceramic upper paint or colored glass, and there is a problem of lack of versatility.
Japanese Patent Laid-Open No. 11-80647 JP 2002-201284 A

本発明は、カドミウム等の有害物質を含有せず、陶磁器用上絵具や着色ガラス、また、塗料用として汎用性があり、また、金属銀微粒子の濃度を高めることができ、これにより、発色の程度を濃度により調節でき、また、濃度が低くても黄発色強度が強く、低コスト化が可能な黄着色用複合材およびその製造方法の提供を課題とする。   The present invention does not contain toxic substances such as cadmium, and is versatile for ceramic paints and colored glass, and for paints, and can increase the concentration of metallic silver fine particles. It is an object of the present invention to provide a yellow coloring composite material capable of adjusting the degree by the concentration, having a strong yellow coloring intensity even at a low concentration, and capable of reducing the cost, and a method for producing the same.

本発明の黄着色用複合材は、ゾル状セラミックスと硝酸銀、酸化銀、塩化銀または硫酸銀から選ばれる銀化合物水溶液との混合物の状態での水熱反応化物を乾燥・粉末化した後、前記銀化合物の熱分解温度以上で、かつ、前記セラミックスのガラス転移温度以下の温度で乾燥処理して得られ、前記ゾル状セラミックスにおけるセラミックス粒子の粒径が保持され、容易に微粉化されるゲル状セラミックスであって、該ゲル状セラミックス中に、前記乾燥時における温度で熱分解される前記銀化合物由来の金属銀微粒子が0.05質量%〜80質量%の割合で分散されたことを特徴とする。 The yellow coloring composite material of the present invention is obtained by drying and pulverizing a hydrothermal reaction product in the state of a mixture of a sol-like ceramic and a silver compound aqueous solution selected from silver nitrate, silver oxide, silver chloride or silver sulfate, A gel-like material that is obtained by drying at a temperature equal to or higher than the thermal decomposition temperature of the silver compound and lower than the glass transition temperature of the ceramic, maintains the particle size of the ceramic particles in the sol-like ceramic, and is easily pulverized. a ceramic, and characterized in that the said gel-like ceramic, the silver compound-derived metal silver particles to be pyrolyzed at a temperature during the drying is dispersed in a proportion of 0.05 wt% to 80 wt% To do.

本発明の黄着色用複合材は、ゾル状セラミックスと硝酸銀、酸化銀、塩化銀または硫酸銀から選ばれる銀化合物水溶液との混合物の状態でのスプレードライ化物を、前記銀化合物の熱分解温度以上で、かつ、前記セラミックスのガラス転移温度以下の温度で乾燥処理して得られるゲル状セラミックスであって、該ゲル状セラミックス中に、前記乾燥時における温度で熱分解される前記銀化合物由来の金属銀微粒子が0.05質量%〜80質量%の割合で分散されたことを特徴とする。 The yellow coloring composite material of the present invention is a spray-dried product in a mixture of a sol-like ceramic and a silver compound aqueous solution selected from silver nitrate, silver oxide, silver chloride, or silver sulfate, at a temperature equal to or higher than the thermal decomposition temperature of the silver compound. in, and a gel-like ceramic obtained by drying at a temperature below the glass transition temperature of the ceramic, the said gel-like ceramic, the silver compound-derived metal to be pyrolyzed at a temperature during the drying Silver fine particles are dispersed at a ratio of 0.05% by mass to 80% by mass.

前記黄着色用複合材におけるセラミックスがシリカ、アルミナ、ジルコニア、チタニアまたはそれらの混合物であり、銀化合物が硝酸銀、または酸化銀であることを特徴とする。   The ceramic in the yellow coloring composite material is silica, alumina, zirconia, titania or a mixture thereof, and the silver compound is silver nitrate or silver oxide.

金属銀微粒子の粒径範囲が1nm〜10μmであり、黄着色用複合材が陶磁器上絵具用、または着色ガラス用の黄着色用複合材であることを特徴とする。   The particle diameter range of the metal silver fine particles is 1 nm to 10 μm, and the yellow coloring composite material is a yellow coloring composite material for ceramics paint or colored glass.

金属銀微粒子の平均粒径が5nm〜30nmであり、黄着色用複合材が塗料用の黄着色用複合材であることを特徴とする。   The metallic silver fine particles have an average particle diameter of 5 nm to 30 nm, and the yellow coloring composite material is a yellow coloring composite material for paint.

本発明の黄着色用複合材の第1の製造方法は、ゾル状セラミックス硝酸銀、酸化銀、塩化銀または硫酸銀から選ばれる銀化合物溶液との混合物を水熱反応させて前記ゾル状セラミックスをゲル状セラミックスとした後、乾燥・粉砕し、さらに、前記銀化合物の熱分解温度以上で、かつ、前記セラミックスのガラス転移温度未満の温度で乾燥処理して、ゲル状セラミックス中に分散した銀化合物を熱分解して金属銀微粒子とすると共に、前記ゾル状セラミックスにおけるセラミックス粒子の粒径が保持され、容易に微粉化されるゲル状セラミックスとすることを特徴とする。 The first method for producing the yellow coloring composite material of the present invention is to hydrothermally react a mixture of a sol-like ceramic and a silver compound solution selected from silver nitrate, silver oxide, silver chloride or silver sulfate to produce the sol-like ceramic . The silver compound dispersed in the gel-like ceramic after the gel-like ceramic is dried and pulverized, and further dried at a temperature not lower than the thermal decomposition temperature of the silver compound and lower than the glass transition temperature of the ceramic. Is formed into a metal silver fine particle, and a gel-like ceramic that retains the particle size of the ceramic particles in the sol-like ceramic and is easily pulverized .

本発明の黄着色用複合材の第2の製造方法は、ゾル状セラミックス硝酸銀、酸化銀、塩化銀または硫酸銀から選ばれる銀化合物溶液との混合物をスプレードライして前記セラミックスゾルをゲル状セラミックスとすると共に乾燥・粉末化した後、前記銀化合物の熱分解温度以上で、かつ、前記セラミックスのガラス転移温度未満の温度で乾燥処理して、前記ゲル状セラミックス中に分散した銀化合物を熱分解して金属銀微粒子とすることを特徴とする。 The second method for producing the yellow coloring composite material of the present invention is to spray-dry a mixture of a sol-like ceramic and a silver compound solution selected from silver nitrate, silver oxide, silver chloride or silver sulfate to form the ceramic sol in a gel state. After the ceramic is dried and pulverized, the silver compound dispersed in the gel-like ceramic is heated by drying at a temperature not lower than the thermal decomposition temperature of the silver compound and lower than the glass transition temperature of the ceramic. It is characterized by being decomposed into metallic silver fine particles.

前記製造方法におけるゾル状セラミックスがシリカゾル、アルミナゾル、ジルコニアゾル、チタニアゾルまたはそれらの混合物であり、また、銀化合物が硝酸銀、または酸化銀であることを特徴とする。 The sol-like ceramic in the production method is silica sol, alumina sol, zirconia sol, titania sol or a mixture thereof, and the silver compound is silver nitrate or silver oxide.

本発明の黄着色用複合材は、微粉状の黄着色用複合材であり、取り扱い性に優れると共に、セラミックスを母材とするために陶磁器用上絵具原料や着色ガラス原料との混合性、溶融性に優れ、また、塗料原料であるクリアラッカー中への分散も可能で、汎用性に優れる。また、金属銀微粒子がゲル状セラミックス中に均一分散しているので、その均一分散状態を維持したまま、陶磁器上絵具やガラスに分散させることができ、安定したプラズモン発色(黄発色)を得ることができる。   The yellow coloring composite material of the present invention is a fine powdery yellow coloring composite material, which is excellent in handleability and has a mixing property with a ceramic upper paint raw material and a colored glass raw material in order to use ceramics as a base material. Excellent in versatility and can be dispersed in clear lacquer, which is a raw material for paints. In addition, since the metallic silver fine particles are uniformly dispersed in the gel-like ceramics, it can be dispersed in ceramic paints and glass while maintaining the uniform dispersion state, and a stable plasmon coloring (yellow coloring) can be obtained. Can do.

また、本発明の黄着色用複合材における金属銀微粒子の粒径範囲は、1nm〜10μmとされるが、平均粒径が5nm〜30nmとすると、プラズモン発色する粒径に制御される。また、30nm〜10μmの大粒径のものにあっても、陶磁器用上絵具や着色ガラスとする際のガラスフリット等との混合・溶融に際して、金属銀微粒子の溶融により小粒径化させることができ、陶磁器用上絵具や着色ガラスにおけるプラズモン発色に寄与させることができる。そのため、金属銀粒子の含有量が少なくてもその黄発色強度が強く、低コストの着色材とできる。なお、プラズモン発色は黄発色であり、平均粒径30nmを越える金属銀微粒子や凝集物等の金属銀が示す灰色や光沢色とは区別される。   The particle size range of the metallic silver fine particles in the yellow coloring composite material of the present invention is 1 nm to 10 μm, but when the average particle size is 5 nm to 30 nm, the particle size is controlled to a plasmon color. Moreover, even if it is a thing with a large particle diameter of 30 nm-10 micrometers, it can be made small particle size by melting metal silver fine particles at the time of mixing and melting with a glass frit or the like when making a ceramic upper paint or colored glass. It is possible to contribute to plasmon coloration in ceramic upper paint and colored glass. Therefore, even if the content of metallic silver particles is small, the yellow coloring intensity is strong, and a low-cost colorant can be obtained. Plasmon coloration is yellow coloration, and is distinguished from the gray or glossy color exhibited by metal silver such as metal silver fine particles or aggregates having an average particle diameter exceeding 30 nm.

また、黄着色用複合材における金属銀微粒子は、その粒径がゲル状セラミックス粒子により保護されているので、溶融した陶磁器用上絵具の原料であるガラスフリットや着色ガラス原料である石灰ソーダガラス等のガラス原料、また、塗料原料であるクリアラッカー中において凝集することなく、溶融、または分散させることができ、安定したプラズモン発色を可能とする。   In addition, since the metallic silver fine particles in the yellow coloring composite material are protected by gel-like ceramic particles, glass frit that is a raw material for molten ceramic upper paint, lime soda glass that is a colored glass raw material, etc. It can be melted or dispersed without agglomeration in the glass raw material or clear lacquer which is a raw material for coating, thereby enabling stable plasmon coloring.

以下、本発明の黄着色用複合材について、セラミックスをシリカとし、銀化合物として硝酸銀とする場合を例として説明する。   Hereinafter, the yellow coloring composite material of the present invention will be described by taking as an example the case where the ceramic is silica and the silver compound is silver nitrate.

本発明の黄着色用複合材は、ゲル状セラミックスの乾燥固形物中に、該ゲル状セラミックスにおける乾燥時に前記ゲル状セラミックス中に分散され、かつ、該乾燥時における温度で熱分解される銀化合物由来の金属銀微粒子が0.05質量%〜80質量%の割合で分散されたものであり、金属銀微粒子のゲル状セラミックスの乾燥固形物中への分散に際しては、(1)シリカゾルと硝酸銀水溶液との混合物を水熱反応させた後、乾燥・粉砕し、硝酸銀を熱分解するか、または(2)前記混合物をスプレードライし乾燥・粉末化した後、硝酸銀を熱分解するとよい。   The composite material for yellow coloring according to the present invention is a silver compound that is dispersed in a gel-like ceramic dry solid when the gel-like ceramic is dried and thermally decomposed at the temperature at the time of drying. In the dispersion of metallic silver fine particles in a dry solid of the gel-like ceramics, (1) silica sol and silver nitrate aqueous solution. The mixture is hydrothermally reacted and then dried and pulverized to thermally decompose silver nitrate, or (2) the mixture is spray-dried and dried and powdered, and then the silver nitrate is thermally decomposed.

(1)の方法は、まずシリカゾルと硝酸銀水溶液とを混合し、シリカゾルの水熱反応により硝酸銀が分散したシリカゲルとし、乾燥させ、適宜の粒径に粉砕した後、粉砕ゲルを硝酸銀の熱分解温度である444℃以上で、かつ、シリカのガラス転移温度である約800℃未満の温度で乾燥処理して作製される。シリカ粒子のガラス転移温度以下で加熱されるので、シリカゾルにおけるシリカ粒子の粒径(10nm〜30nm)が保持され、容易に微粉化される。   In the method of (1), silica sol and silver nitrate aqueous solution are first mixed, silica gel in which silver nitrate is dispersed by hydrothermal reaction of silica sol, dried, pulverized to an appropriate particle size, and then the pulverized gel is subjected to the thermal decomposition temperature of silver nitrate. It is produced by drying at a temperature of 444 ° C. or higher and less than about 800 ° C. which is the glass transition temperature of silica. Since it heats below the glass transition temperature of a silica particle, the particle size (10-30 nm) of the silica particle in silica sol is hold | maintained, and it pulverizes easily.

シリカゲルは、乾燥状態における熱的挙動を示差熱分析により測定すると、約150℃にシリカゲルに吸着された水の脱水による吸熱ピークが測定され、5%程度の減量を伴う。次いで、400〜700℃においてシラノール基の脱水による僅かな減量と吸熱ピークが測定される。この温度までは粒子変化は認められない。800℃のガラス転移温度以上でシリカ粒子間の表面融着が生じ、機械的強度の発生が生じる。約1200℃でクリストバライトへの結晶化による発熱ピークが現れ、融点としては約1700℃と推定されるものである。   When the thermal behavior of the silica gel in a dry state is measured by differential thermal analysis, an endothermic peak due to dehydration of water adsorbed on the silica gel at about 150 ° C. is measured, with a weight loss of about 5%. Next, a slight weight loss due to dehydration of silanol groups and an endothermic peak are measured at 400 to 700 ° C. No particle change is observed up to this temperature. Above the glass transition temperature of 800 ° C., surface fusion occurs between the silica particles, and mechanical strength is generated. An exothermic peak due to crystallization to cristobalite appears at about 1200 ° C., and the melting point is estimated to be about 1700 ° C.

また、シリカゾル中に分散された硝酸銀は、その詳細な理由は不明であるが、444℃の熱分解温度以上に加熱されると、粒径範囲が1nmの小粒径の粒子から10μmの大粒子で、平均粒径が5nm〜30nmの金属銀微粒子として析出されることを見出した。平均粒径が5nmより小さいと黄着色力が弱く、また、30nmを越えると彩度が低くなり、金属銀の色合いが強くなり、黄発色性が低下する。本発明において「粒径」は、電子顕微鏡視野における粒子について、その形状を相当する球形とみなし、その粒径とする。また、「平均粒径」は電子顕微鏡視野における各粒子についての「粒径」の平均とする。   The detailed reason for the silver nitrate dispersed in the silica sol is unknown, but when heated to a temperature equal to or higher than the thermal decomposition temperature of 444 ° C., the particle size ranges from a small particle size of 1 nm to a large particle of 10 μm. Thus, it was found that metal silver fine particles having an average particle diameter of 5 nm to 30 nm are precipitated. When the average particle size is smaller than 5 nm, the yellow coloring power is weak, and when it exceeds 30 nm, the saturation is lowered, the tint of metallic silver is increased, and the yellow coloring property is lowered. In the present invention, the “particle diameter” is the particle diameter of the particles in the electron microscope field of view, assuming that the shape is a corresponding spherical shape. The “average particle diameter” is the average of the “particle diameter” for each particle in the electron microscope field of view.

本発明の黄着色用複合材においては、このような金属銀微粒子を0.05質量%〜80質量%、好ましくは0.5質量%〜65質量%、さらに好ましくは1質量%〜35質量%の割合で含有させることができる。本発明の黄着色用複合材の製造方法によると、その金属銀微粒子の粒径がプラズモン吸収領域に制御されるので、金属銀微粒子の含有量が0.05質量%〜1質量%の低含有量であっても着色力の高いものとできる。なお、含有量が0.05質量%より少ないと着色力が低下し、80質量%より多く形成させると、大粒径の金属銀微粒子が多く形成され、黄発色性が低下する。また、本発明の黄着色用複合材においては、金属銀微粒子の濃度を適宜調整することができる。   In the yellow coloring composite material of the present invention, such metal silver fine particles are contained in an amount of 0.05 to 80% by mass, preferably 0.5 to 65% by mass, more preferably 1 to 35% by mass. It can be made to contain in the ratio. According to the method for producing a yellow coloring composite material of the present invention, since the particle size of the metal silver fine particles is controlled in the plasmon absorption region, the content of the metal silver fine particles is as low as 0.05% by mass to 1% by mass. Even if it is an amount, it can be made high in coloring power. When the content is less than 0.05% by mass, the coloring power is lowered. When the content is more than 80% by mass, a large number of metal silver fine particles having a large particle diameter are formed, and the yellow coloring property is lowered. Moreover, in the yellow coloring composite material of the present invention, the concentration of the metal silver fine particles can be appropriately adjusted.

(1)で得られた黄着色用複合材の粉末を、透過型電子顕微鏡(日本電子(株)製「JEM−2010」15万倍)で観察すると、例えば図1に示すように、平均粒径が約19nmで2nm〜30nmの粒径範囲の金属銀微粒子が粒径10nm〜20nmのシリカ粒子中に分散した状態のものであることが確認される。また、X線回折により分析すると、例えば図2に示すように、金属銀のピークと無定型シリカのピークが確認される。   When the powder of the yellow coloring composite material obtained in (1) is observed with a transmission electron microscope (“JEM-2010” 150,000 times manufactured by JEOL Ltd.), for example, as shown in FIG. It is confirmed that the metal silver fine particles having a diameter of about 19 nm and a particle size range of 2 nm to 30 nm are dispersed in silica particles having a particle size of 10 nm to 20 nm. Further, when analyzed by X-ray diffraction, for example, as shown in FIG. 2, the peak of metallic silver and the peak of amorphous silica are confirmed.

また、(2)の方法は、シリカゾルと硝酸銀水溶液との混合物をスプレードライヤーで乾燥・粉末化させ、これを(1)の方法と同様に焼成して黄着色用複合材を製造するものである。上記(1)の方法では、水熱処理および乾燥処理に例えば1日以上と時間がかかること、また、水熱処理や乾燥時に乾燥器等の加熱装置が用いられるが、加熱時の温度分布のムラ等により加熱の均一性を維持するのが困難であり、セラミックス中の銀微粒子の大きさや分布にムラが生じ、発色に影響を与える可能性があること、さらに、黄着色用複合材微粒子は乾燥ゲルを焼成前、または焼成後に粉砕する必要がある等の課題があるが、(2)の方法では、このような課題を容易に解決することができる。   In the method (2), a mixture of silica sol and an aqueous silver nitrate solution is dried and powdered with a spray dryer, and this is fired in the same manner as in the method (1) to produce a yellow coloring composite material. . In the method (1), the hydrothermal treatment and the drying treatment take, for example, one day or more, and a heating device such as a dryer is used during the hydrothermal treatment or drying. It is difficult to maintain the uniformity of heating, and the size and distribution of the silver fine particles in the ceramic may become uneven, which may affect the color development. However, in the method (2), such a problem can be easily solved.

(2)の方法は、シリカゾルと硝酸銀水溶液との混合物をスプレードライヤーで乾燥・粉末化させるものであり、スプレードライヤーを使用することにより、乾燥時の熱処理温度を一定とでき、セラミックスゾル中に銀化合物を均一に分散させることができ、分散性のよい乾燥・粉末化を可能とする。そして、これを(1)の方法と同様に焼成することで、図4に示すように、1μm〜10μmの粒径範囲の黄着色用複合材粒子とするとよく、黄着色用複合材粒子中に分散された銀粒子は、図6の走査型電子顕微鏡の反射電子像写真(5万倍)で白く光った像として示されるように、ドーナツ状の黄着色用複合材粒子中に粒径約20nmの銀粒子が分散されるに至る。すなわち、スプレードライ法によりナノサイズの銀微粒子が分散したセラミックスの黄着色用複合材を容易に得ることができ、ナノサイズの銀微粒子の分散状態が一定になることで発色性をより安定化させることができる。また、スプレードライヤーを使用することで銀化合物を分散したゲル状セラミックス粉末を短時間、かつ大量に製造することができ、生産性に優れるものとできる。また、スプレードライヤーの操作条件により黄着色用複合材粒子の粒子サイズを調整することができるので、(1)の方法のごとき粉砕工程は不要であり、より生産性に優れるものとできる。   In the method (2), a mixture of silica sol and a silver nitrate aqueous solution is dried and powdered with a spray dryer. By using a spray dryer, the heat treatment temperature during drying can be made constant, and silver in the ceramic sol The compound can be uniformly dispersed, and can be dried and powdered with good dispersibility. Then, by firing this in the same manner as in the method (1), as shown in FIG. 4, it is preferable to obtain yellow coloring composite particles having a particle size range of 1 μm to 10 μm. In the yellow coloring composite particles, The dispersed silver particles have a particle size of about 20 nm in the doughnut-shaped yellow coloring composite particles as shown in the reflected electron image photograph (50,000 times) of the scanning electron microscope in FIG. Of silver particles are dispersed. That is, it is possible to easily obtain a yellow coloring composite material of ceramics in which nano-sized silver fine particles are dispersed by a spray drying method, and to stabilize the color developability by making the dispersion state of the nano-sized silver fine particles constant. be able to. Further, by using a spray dryer, a gel-like ceramic powder in which a silver compound is dispersed can be produced in a short time and in a large amount, and the productivity can be improved. Moreover, since the particle size of the yellow coloring composite material particles can be adjusted according to the operating conditions of the spray dryer, the pulverization step as in the method (1) is unnecessary, and the productivity can be further improved.

スプレードライヤーとしては、例えばヤマト科学(株)製「ADL−310」等が使用できる。その操作条件としては、乾燥チャンバー入り口温度160℃〜200℃、出口温度60℃〜99℃とし、スプレー管噴出孔径406μm〜711μm、噴出圧0.1Mpa〜0.15Mpaで乾燥チャンバー中にスプレーし、乾燥させるとよい。   As the spray dryer, for example, “ADL-310” manufactured by Yamato Scientific Co., Ltd. can be used. As the operating conditions, drying chamber inlet temperature 160 ° C. to 200 ° C., outlet temperature 60 ° C. to 99 ° C., spray tube ejection hole diameter 406 μm to 711 μm, ejection pressure 0.1 Mpa to 0.15 Mpa, spraying into the drying chamber, It is good to dry.

シリカゾルとしては、水ガラス水溶液を塩酸等の酸で中和して作製されるもので、酸性ゾル、塩基性ゾルのいずれでもよく、市販品としては例えば日産化学(株)製、粒子径が10nm〜20nmのスノーテックス20(SiO2 含有量20質量%〜21質量%)、同30(同30質量%〜31質量%)、同40(同40質量%〜41質量%)、同C(同20質量%〜21質量%)、同N(同20質量%〜21質量%)、同O(同20質量%〜21質量%)、また、粒子径が7nm〜9nmのスノーテックスS(同30質量%〜31質量%)等が使用できる。 The silica sol is prepared by neutralizing a water glass aqueous solution with an acid such as hydrochloric acid, and may be either an acidic sol or a basic sol. Examples of commercially available products include a product made by Nissan Chemical Co., Ltd., and a particle size of 10 nm. ˜20 nm Snowtex 20 (SiO 2 content 20% to 21% by mass), 30 (same 30% to 31% by mass), 40 (40% to 41% by mass), C (same as above) 20 mass% to 21 mass%), N (20 mass% to 21 mass%), O (20 mass% to 21 mass%), and SNOWTEX S (particle diameter 30 nm). Mass% to 31 mass%) and the like can be used.

シリカゾルと硝酸銀水溶液とを、SiO2 (コロイダルシリカ)100質量部に対して、銀量が0.05質量部〜80質量部の割合となるように混合・攪拌した後、(1)の方法にあっては、加圧容器中で100℃に加熱するか、または120℃に加熱して水熱合成させ、シリカゾルをゲル化させるとよい。また、(2)の方法にあっては混合物をスプレードライし、シリカゾルをゲル化させるとよい。ついで、(1)の方法においては、得られたシリカゲルは粉砕された後、また、(2)の方法においては粉砕を必要とせずそのまま、銀化合物の熱分解温度以上で、かつ、シリカのガラス転移温度約800℃未満で乾燥処理することにより本発明の黄着色用複合材が得られる。また、銀化合物として酸化銀(熱分解温度160℃〜190℃)を使用してもよく、乾燥温度を低くできる。 After mixing and stirring the silica sol and the silver nitrate aqueous solution so that the amount of silver is 0.05 to 80 parts by mass with respect to 100 parts by mass of SiO 2 (colloidal silica), the method of (1) is performed. In this case, the silica sol may be gelled by heating to 100 ° C. in a pressurized container or hydrothermal synthesis by heating to 120 ° C. In the method (2), the mixture may be spray-dried to gel the silica sol. Next, in the method (1), the obtained silica gel is pulverized, and in the method (2), the pulverization is not necessary, and the temperature is higher than the thermal decomposition temperature of the silver compound and the silica glass. The yellow coloring composite material of the present invention can be obtained by drying at a transition temperature of less than about 800 ° C. Further, silver oxide (thermal decomposition temperature: 160 ° C. to 190 ° C.) may be used as the silver compound, and the drying temperature can be lowered.

上記(1)(2)の方法においては、セラミックスとしてシリカを例示して説明したが、他にもアルミナ、ジルコニア、チタニアが例示され、また、これらのセラミックスの混合物でもよい。   In the above methods (1) and (2), silica has been exemplified as the ceramic, but alumina, zirconia, and titania are also exemplified, and a mixture of these ceramics may be used.

アルミナゾルとしては、例えば市販されるものとして日産化学(株)製の粒子径が10〜100nmのアルミナゾル100(Al2 3 含有量10質量%〜11質量%)、粒子径が10〜20nmのアルミナゾル520(Al2 3 含有量20質量%〜21質量%)が例示され、シリカゾル同様に銀化合物水溶液と同様に混合された後、水熱反応によるかまたはスプレードライにより、ゲル化させるとよい。また、銀化合物の熱分解温度以上で、かつ、アルミナのガラス転移温度(製品によっては1100℃程度)以下の温度で乾燥処理することにより、同様に黄着色用複合材を得ることができる。なお、銀の融点は約960℃であるので、アルミナゾルを使用する場合、乾燥温度の上限としては900℃程度とするとよい。 As the alumina sol, for example, a commercially available alumina sol 100 having a particle size of 10 to 100 nm (Al 2 O 3 content of 10% to 11% by mass) and an alumina sol having a particle size of 10 to 20 nm manufactured by Nissan Chemical Co., Ltd. 520 (Al 2 O 3 content 20 mass% to 21 mass%) is exemplified, and after mixing in the same manner as the silver compound aqueous solution in the same manner as the silica sol, it may be gelled by a hydrothermal reaction or by spray drying. Moreover, the yellow coloring composite material can be similarly obtained by drying at a temperature not lower than the thermal decomposition temperature of the silver compound and not higher than the glass transition temperature of alumina (about 1100 ° C. depending on the product). In addition, since melting | fusing point of silver is about 960 degreeC, when using an alumina sol, it is good to set it as about 900 degreeC as an upper limit of drying temperature.

また、ジルコニアゾルとしては、例えばオキシ塩化ジルコニウム水溶液に銀化合物水溶液を添加することにより形成されるジルコニアゾルが例示され、水熱反応によるかまたはスプレードライによりゲル化させるとよい。また、銀化合物の熱分解温度以上で、かつ、ジルコニアのガラス転移温度(2715℃)未満の温度で乾燥処理することにより、同様に黄着色用複合材を得ることができる。なお、銀の融点は約960℃であるので、ジルコニアゾルを使用する場合、乾燥温度の上限としては900℃程度とするとよい。   Examples of the zirconia sol include a zirconia sol formed by adding a silver compound aqueous solution to a zirconium oxychloride aqueous solution, and may be gelled by a hydrothermal reaction or by spray drying. Moreover, the yellow coloring composite material can be similarly obtained by drying at a temperature not lower than the thermal decomposition temperature of the silver compound and lower than the glass transition temperature (2715 ° C.) of zirconia. In addition, since melting | fusing point of silver is about 960 degreeC, when using a zirconia sol, it is good to set it as about 900 degreeC as an upper limit of drying temperature.

また、チタニアゾルとしては、例えば酸化チタン粉末の水分散物が例示され、水熱反応によるかまたはスプレードライによりゲル化させるとよい。また、銀化合物の熱分解温度以上で、かつ、チタニアのガラス転移温度(1750℃)未満の温度で乾燥処理することにより、同様に黄着色用複合材を得ることができる。なお、銀の融点は約960℃であるので、チタニアゾルを使用する場合、乾燥温度の上限としては900℃程度とするとよい。   Moreover, as titania sol, the aqueous dispersion of a titanium oxide powder is illustrated, for example, It is good to make it gelatinize by a hydrothermal reaction or by spray drying. Moreover, the yellow coloring composite material can be similarly obtained by drying at a temperature not lower than the thermal decomposition temperature of the silver compound and lower than the glass transition temperature (1750 ° C.) of titania. In addition, since melting | fusing point of silver is about 960 degreeC, when using titania sol, it is good to set it as about 900 degreeC as an upper limit of drying temperature.

また、セラミックスゾルとして混合セラミックスゾル、例えばシリカゾルとアルミナゾルを混合して使用することができるが、その場合の乾燥温度としては、セラミックス粒子の融着を防ぐ観点から、融点の低い方のセラミックスにおける融点以下とすればよい。   Also, mixed ceramic sols such as silica sol and alumina sol can be mixed and used as the ceramic sol. In that case, the drying temperature is the melting point of the lower melting ceramic from the viewpoint of preventing fusion of the ceramic particles. What is necessary is as follows.

また、金属銀微粒子は硝酸銀由来のものに限定されない。硝酸銀は、その熱分解過程で酸化銀を経て金属銀微粒子となるものと考えられる。また、水溶液の形態となりうるものであれば、酸化銀(熱分解温度160℃〜190℃)、塩化銀、硫酸銀由来のものとしてもよい。また、銀化合物としては、硝酸銀水溶液が好ましいが、セラミックスゾル中に金属銀微粒子と硝酸とを混合し、反応系中で硝酸銀水溶液とするとコストを下げることができるので好ましい。   Further, the metal silver fine particles are not limited to those derived from silver nitrate. Silver nitrate is considered to become metal silver fine particles through silver oxide in the thermal decomposition process. Moreover, as long as it can be in the form of an aqueous solution, it may be derived from silver oxide (thermal decomposition temperature: 160 ° C. to 190 ° C.), silver chloride, or silver sulfate. As the silver compound, an aqueous silver nitrate solution is preferable. However, it is preferable to mix metallic silver fine particles and nitric acid in a ceramic sol to obtain an aqueous silver nitrate solution in the reaction system because the cost can be reduced.

次に、本発明の黄着色用複合材を陶磁器用上絵具における黄着色用複合材として使用する場合について説明する。   Next, the case where the yellow coloring composite material of the present invention is used as a yellow coloring composite material in a ceramic upper paint will be described.

通常、陶磁器を製造するにあたっては、素材をまず600〜1000℃で素焼きした後、次いでコバルト、マンガン等の顔料で下絵付がされ、その下絵上に釉薬(フリット)が塗布され、1300℃程度で焼成される。その後顔料を混合した上絵具(フリット)が塗布され、800℃程度で再焼成される。   Normally, when manufacturing ceramics, after the raw material is first baked at 600 to 1000 ° C., then a base is attached with a pigment such as cobalt or manganese, and a glaze is applied on the base, and the temperature is about 1300 ° C. Baked. Thereafter, an upper paint (frit) mixed with the pigment is applied and re-baked at about 800 ° C.

陶磁器用上絵具としては、通常、珪石、カオリン等由来の酸化珪素、アルミナ組成に、その溶融性を改善させるためにアルカリ金属酸化物、酸化硼素、また化学的耐久性を向上させるために酸化ジルコニウム、酸化亜鉛を含有するものであり、珪石、カオリン等の天然原料と、添加剤を混合し、調合物を60メッシュ以下の微粉末状とし、フリット溶融坩堝において1000℃〜1400℃、好ましくは1250℃〜1350℃、0.5時間〜2時間で溶融し、熟成させた後、水中に落下させることにより急冷し、数μm径の微粒子に粉砕して陶磁器用上絵具用フリットとされる。陶磁器用上絵具は、水、また有機溶媒、例えばグリセリン等に分散させて塗布用絵具とし、陶磁器素焼上に形成された釉薬層上に塗布され、700℃〜900℃(好ましくは800℃程度)で焼成される。   The top paint for ceramics is usually silicon oxide derived from silica, kaolin, etc., alumina composition, alkali metal oxide to improve its meltability, boron oxide, and zirconium oxide to improve chemical durability , Which contains zinc oxide, is mixed with natural raw materials such as silica and kaolin and additives, and the preparation is made into a fine powder of 60 mesh or less, and is 1000 ° C. to 1400 ° C., preferably 1250 in a frit melting crucible. After being melted and matured at -1300C for 0.5-2 hours, it is rapidly cooled by dropping into water, and pulverized into fine particles having a diameter of several micrometers to form a frit for ceramics. The upper paint for ceramics is dispersed in water or an organic solvent such as glycerin to form a paint for application, which is applied on the glaze layer formed on the ceramic clay, and is 700 ° C to 900 ° C (preferably about 800 ° C). Is fired.

本発明の黄着色用複合材は、金属銀微粒子の含有割合を0.05質量%〜80質量%とできるが、例えば4質量%含有する場合、陶磁器用上絵具中、0.3質量%〜10質量%の割合で含有させるとよく、透光性に優れると共に絵具の発色性が強く、毒性のない陶磁器用上絵具とできる。黄発色濃度を調整するには、上絵具としての物性に影響を与えない範囲で、陶磁器用上絵具中への黄着色用複合材の添加量を調整するか、または、黄着色用複合材における金属銀微粒子の含有量を多くし、黄着色用複合材の添加量を抑制することにより調整するとよい。   The composite material for yellow coloring of the present invention can have a metal silver fine particle content of 0.05% to 80% by mass. For example, when 4% by mass is contained, in the upper paint for ceramics, 0.3% to It may be contained at a ratio of 10% by mass, and it is excellent in translucency and the coloring property of the paint is strong, so that it can be a non-toxic top paint for ceramics. In order to adjust the yellow color density, the amount of the yellow coloring composite added to the ceramic upper paint is adjusted within a range that does not affect the physical properties of the upper paint, or the yellow coloring composite It may be adjusted by increasing the content of the metallic silver fine particles and suppressing the addition amount of the yellow coloring composite material.

また、着色ガラス用の黄着色用複合材とする場合には、陶磁器用上絵具と同様に、黄着色用複合材が、例えば金属銀微粒子を4質量%含有する場合、石灰ソーダガラス、ホウケイ酸ガラス、溶融温度の高いクリスタルガラス用の鉛ガラス等をガラス原料とするガラス中、黄着色用複合材を0.3質量%〜10質量%の割合で含有させるとよく、透光性に優れると共に絵具の発色性が強く、毒性のない着色ガラスとできる。   Further, when the yellow coloring composite material for colored glass is used, as in the case of the upper paint for ceramics, when the yellow coloring composite material contains, for example, 4% by mass of metal silver fine particles, lime soda glass, borosilicate Glass, lead glass for crystal glass having a high melting temperature, etc. in glass raw material, it is better to contain a yellow coloring composite material in a proportion of 0.3 mass% to 10 mass%, and it is excellent in translucency. The coloring of the paint is strong and can be made non-toxic colored glass.

黄発色濃度を調整するには、着色ガラスとしての物性に影響を与えない範囲で、着色ガラス中への黄着色用複合材の添加量を調整するか、または、黄着色用複合材における金属銀微粒子の含有量を多くし、黄着色用複合材の添加量を抑制することにより調整するとよい。本発明の黄着色用複合材は、その母材をガラスと共通とするものであるので、含有量が10質量%を越える量でない限りは、ガラスの物性に悪影響を与えることはない。また、溶融に際しても黄着色用複合材における金属銀微粒子が凝集することなく、着色強度が高く、透光性に優れる着色ガラスとできる。   To adjust the yellow coloring density, adjust the amount of yellow coloring composite added to the colored glass within the range that does not affect the physical properties of the colored glass, or use metallic silver in the yellow coloring composite. It may be adjusted by increasing the content of fine particles and suppressing the addition amount of the yellow coloring composite material. Since the yellow coloring composite material of the present invention has a common base material with glass, the physical properties of the glass are not adversely affected unless the content exceeds 10% by mass. In addition, the metallic silver fine particles in the yellow coloring composite material are not aggregated even when melted, so that a colored glass having high coloring strength and excellent translucency can be obtained.

陶磁器用上絵具および着色ガラス用の黄着色用複合材においては、黄着色用複合材をガラスフリットや溶融ガラス中に溶融分散させる際に、金属銀微粒子自体も溶融し、その粒径がプラズモン吸収の生じる5nm〜30nmに小粒径化させることができる。そのため、金属銀微粒子の粒径範囲が30nmより大きいものであっても、陶磁器用上絵具や着色ガラスの焼成・溶融に際して、プラズモン吸収の生じる5nm〜30nmとなるように小粒径化させるとよい。   In the upper coloring material for ceramics and the yellow coloring composite material for colored glass, when the yellow coloring composite material is melted and dispersed in glass frit or molten glass, the metal silver fine particles themselves are also melted, and the particle size is absorbed by plasmon. The particle size can be reduced to 5 nm to 30 nm. Therefore, even when the particle size range of the metal silver fine particles is larger than 30 nm, it is preferable to reduce the particle size so that the plasmon absorption is caused to 5 nm to 30 nm when firing and melting the upper paint for ceramics and colored glass. .

次に、塗料用とする場合について説明する。塗料としては、水系でも溶剤系でもよく、水系塗料としては、例えば水溶性アクリル/メラミン樹脂塗料、水溶性アルキド/メラミン樹脂塗料、アクリルエマルジョン塗料、ウレタンエマルジョン塗料等が例示され、また、溶剤系塗料としては、例えばアクリルメラミン樹脂塗料、アルキドメラミン樹脂塗料、ウレタン樹脂塗料、エポキシ樹脂塗料等が例示される。塗料用としては、黄着色用複合材における金属銀微粒子の平均粒径が5nm〜30nmにある状態で使用するとよく、透明塗料(クリアラッカー)中に、黄着色用複合材の含有量が0.1質量%〜30質量%、好ましくは1質量%〜25質量%となるように分散させるとよい。本発明の黄着色用複合材は、黄発色性が強いので、0.1質量%〜3質量%の少量でも透明感のある塗料とすることができる。   Next, the case where it is used for paint will be described. The paint may be water-based or solvent-based. Examples of water-based paints include water-soluble acrylic / melamine resin paints, water-soluble alkyd / melamine resin paints, acrylic emulsion paints, urethane emulsion paints, and the like. Examples thereof include acrylic melamine resin paint, alkyd melamine resin paint, urethane resin paint, and epoxy resin paint. For coating materials, it is preferable to use the metallic silver fine particles in the yellow coloring composite material in an average particle size of 5 nm to 30 nm. The transparent coloring material (clear lacquer) has a yellow coloring composite material content of 0. It is good to disperse | distribute so that it may become 1 mass%-30 mass%, Preferably it is 1 mass%-25 mass%. Since the yellow coloring composite material of the present invention has a strong yellow color developing property, even a small amount of 0.1% by mass to 3% by mass can provide a transparent paint.

また、金属銀微粒子の酸化防止を目的として、還元剤として塩化錫や酸化錫等の錫化合物やアルカリ金属水素化ホウ素塩類、ヒドラジン化合物、ヒドロキシルアミン化合物、アミン類、グリコール類、亜二チオン酸塩、スルホキシル酸塩誘導体類、ホルムアルデヒド、蟻酸またその塩類、酒石酸またその塩、L−アスコルビン酸またはその塩類を塗料中0.1質量%〜10質量%の割合で添加してもよい。   For the purpose of preventing oxidation of metallic silver fine particles, tin compounds such as tin chloride and tin oxide, alkali metal borohydride salts, hydrazine compounds, hydroxylamine compounds, amines, glycols, dithionites as reducing agents , Sulfoxylate derivatives, formaldehyde, formic acid or a salt thereof, tartaric acid or a salt thereof, L-ascorbic acid or a salt thereof may be added to the paint in a proportion of 0.1% by mass to 10% by mass.

また、分散性を良くするために、黄着色用複合材を10μm以下に微粉砕しておくとよく、また、分散剤を含有させてもよい。   In order to improve the dispersibility, the yellow coloring composite material may be finely pulverized to 10 μm or less, and a dispersant may be contained.

以下、本発明を実施例により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

加圧容器を使用し、シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}50g(SiO2 量10g)に、0.2mol/lの硝酸銀水溶液を20ml(銀量に換算して0.43gに相当)添加し、混合攪拌した後、120℃で水熱反応させ、ゲル化させた。得られたゲル状物質を120℃、18時間、乾燥し、含有水分を除去した後、粉砕し、さらに、700℃、10分間、乾燥させた。乾燥物における金属銀微粒子の含有量は4.1質量%であった。 Using a pressurized container, silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass) particle diameter 10 to 20 nm} to 50 g (SiO 2 content 10 g), 0.2 mol / 20 ml (corresponding to 0.43 g in terms of silver amount) of 1 silver nitrate aqueous solution was added, mixed and stirred, and then hydrothermally reacted at 120 ° C. to gelate. The obtained gel-like substance was dried at 120 ° C. for 18 hours to remove the contained water, pulverized, and further dried at 700 ° C. for 10 minutes. The content of metallic silver fine particles in the dried product was 4.1% by mass.

図1に、得られた粉末を透過型電子顕微鏡(日本電子(株)製「JEM2010」、15万倍)を使用して撮影した粒子像写真を示す。図1において、金属銀微粒子は黒色の濃く撮影され、その形状は略円形状であり、シリカ粒子中に分散されていることが看取される。また、金属銀微粒子の粒径範囲は、10nm〜30nmであり、また、平均粒径は19nmであることがわかる。   FIG. 1 shows a particle image photograph of the obtained powder taken using a transmission electron microscope (“JEM2010” manufactured by JEOL Ltd., 150,000 times). In FIG. 1, it can be seen that the metal silver fine particles are photographed with a dark black color, the shape thereof is substantially circular, and is dispersed in the silica particles. In addition, it can be seen that the metal silver fine particles have a particle size range of 10 nm to 30 nm and an average particle size of 19 nm.

図2に、得られた粉末をX線回折装置(パナリティカル(株)製「X′Pert PRO」により分析した結果を示す。図2に示すように、38°(2θ)、44.5°(2θ)に金属銀のピークが示され、また、22°(2θ)付近に非結晶シリカによる吸収がクリストバライトの吸収位置に現れている。   Fig. 2 shows the result of analyzing the obtained powder by an X-ray diffractometer ("X'Pert PRO" manufactured by Panaritical Co., Ltd.) As shown in Fig. 2, 38 ° (2θ), 44.5 ° (2θ) shows a peak of metallic silver, and absorption by amorphous silica appears in the cristobalite absorption position in the vicinity of 22 ° (2θ).

(陶磁器用上絵具への応用)
ガラスフリットは、日の岡珪石とニュージーランドカオリンに珪酸ジルコニウム(和光純薬工業■製)、硼酸(同製)、炭酸バリウム(同製)、酸化亜鉛(同製)、炭酸ナトリ
ウム(同製)、炭酸カリウム(同製)を、焼成時組成がSiO2 47質量%、Al2 3 3質量%、ZrO2 5質量%、B2 3 26質量%、BaO2 5質量%、ZnO 5質量%、Na2 O 3質量%、K2 O 6質量%となるように添加し、1バッチ200gとし、プラスチックポットで混合した。次に、混合物を60メッシュの篩いを通してからフリット溶融坩堝に移し、20KWのシリコニット発熱体を有する溶融炉により、1300℃、1時間溶融熟成した後、水中にその溶融物を落下させ、急冷させ、次いで振動ミルにより10μm〜500μm程度に粉砕し、更にポットミルで48時間湿式粉砕して、数μm程度のフリット粉末に調製した。
(Application to top paint for ceramics)
Glass frit is made of Hinooka silica and New Zealand kaolin, zirconium silicate (made by Wako Pure Chemical Industries, Ltd.), boric acid (made by the same), barium carbonate (made by the same), zinc oxide (made by the same), sodium carbonate (made by the same), Potassium carbonate (same product) is calcined with a composition of 47% by mass of SiO 2, 3% by mass of Al 2 O 3 , 5% by mass of ZrO 2 , 26% by mass of B 2 O 3 , 5% by mass of BaO 2, 5% by mass of ZnO. Then, Na 2 O 3 mass% and K 2 O 6 mass% were added to make 200 g per batch and mixed in a plastic pot. Next, the mixture is passed through a 60-mesh sieve and then transferred to a frit melting crucible. After melting and aging at 1300 ° C. for 1 hour in a melting furnace having a 20 KW siliconite heating element, the melt is dropped into water and rapidly cooled. Next, the mixture was pulverized to about 10 μm to 500 μm with a vibration mill, and further wet pulverized with a pot mill for 48 hours to prepare a frit powder of about several μm.

上記で得た微粒末を1gをフリット100gと混合(微粒末含有量1質量%)し、水に分散させ、陶磁器の釉薬層上に塗布し、800℃で焼成したところ、膜厚約500μmの透明で彩度の高い黄発色の上絵具層が得られた。   1 g of the fine powder obtained above was mixed with 100 g of frit (content of fine powder 1 mass%), dispersed in water, applied onto a glaze layer of a ceramic, and baked at 800 ° C. to obtain a film thickness of about 500 μm. A transparent and highly saturated yellow paint upper paint layer was obtained.

微粒末の濃度を0.3質量%、1質量%、10質量%と濃度を濃くした上絵具としたところ、微粒末の濃度に応じて濃度の濃い黄発色の上絵具とできた。   When an upper paint having a concentration of 0.3% by weight, 1% by weight, and 10% by weight of the fine powder powder was used, an upper paint with a deep yellow color depending on the density of the fine powder powder was obtained.

(着色ガラスへの応用)
得られた微粒末1gを石灰ソーダガラス(マツナミ(株)製スライドガラス粉砕粉)100gと混合(微粒末含有量1質量%)した後、800℃で溶融し、厚さ2mmの着色ガラスを作製した。得られた着色ガラスは、透明で彩度の高い黄色ガラスであった。
(Application to colored glass)
1 g of the obtained fine powder was mixed with 100 g of lime soda glass (crushed glass powder manufactured by Matsunami Co., Ltd.) (fine powder content 1% by mass) and then melted at 800 ° C. to produce a colored glass having a thickness of 2 mm. did. The obtained colored glass was a transparent and highly saturated yellow glass.

また、微粒末の濃度を0.3質量%、3質量%、10質量%と濃度を濃くした着色ガラスとしたところ、微粒末の濃度に応じて濃度の濃い黄色ガラスとできた。   Moreover, when it was set as the colored glass which made the density | concentration of a fine particle the density | concentration as 0.3 mass%, 3 mass%, and 10 mass%, it was able to be made into the deep yellow glass with a density | concentration according to the density | concentration of a fine particle.

(塗料への応用)
上記で得た微粒末を自動乳鉢を使用して平均粒径約10μmに微粉砕した後、その1gを、水系のアクリル系クリアラッカー(アレスコ関西ペイント(株)製、カンペクリアラッカー)100gに加え(微粒末含有量1質量%)、塗料化し、ガラス板上に塗布(乾燥膜厚20μm)し、室温で60分間乾燥させたところ、透明で彩度の高い黄色塗料とできた。
(Application to paint)
After the fine powder obtained above is finely pulverized to an average particle size of about 10 μm using an automatic mortar, 1 g of the fine powder is added to 100 g of an aqueous acrylic clear lacquer (Alesco Kansai Paint Co., Ltd., Campe Clear Lacquer). (A fine particle content of 1% by mass) was converted into a paint, applied onto a glass plate (dry film thickness 20 μm), and dried at room temperature for 60 minutes to obtain a transparent and highly saturated yellow paint.

また、微粒末の濃度を0.5質量%、3質量%、30質量%と濃度を濃くした着色ガラスとしたところ、微粒末の濃度に応じて濃度の濃い塗料とできた。   Moreover, when the density of the fine powder was 0.5% by mass, 3% by mass, and 30% by mass, a colored glass having a high concentration was obtained. As a result, a paint having a high concentration was obtained according to the concentration of the fine powder.

加圧容器を使用し、シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}50g(SiO2 量に換算すると10gに相当)に、0.5mol/lの硝酸銀水溶液を50ml(銀量に換算して2.7gに相当)添加し、混合攪拌した後、120℃で水熱反応させ、ゲル化させた。得られたゲル状物質を120℃、18時間、乾燥し、含有水分を除去した後、粉砕し、さらに700℃、10分間、乾燥させた。乾燥物における金属銀微粒子の含有量は21.2質量%であった。 Using a pressurized container, silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass) particle size 10 to 20 nm} 50 g (corresponding to 10 g when converted to SiO 2 amount) Then, 50 ml of 0.5 mol / l silver nitrate aqueous solution (equivalent to 2.7 g in terms of silver amount) was added, mixed and stirred, and then hydrothermally reacted at 120 ° C. to gelate. The obtained gel-like substance was dried at 120 ° C. for 18 hours to remove the contained water, then pulverized, and further dried at 700 ° C. for 10 minutes. The content of metallic silver fine particles in the dried product was 21.2% by mass.

得られた粉末を、実施例1同様に透過型電子顕微鏡を使用して撮影(10万倍)したところ、図3に示す粒子像が得られ、金属銀微粒子の粒径範囲は、6nm〜60nmであり、また、平均粒径は16nmであった。   When the obtained powder was photographed (100,000 times) using a transmission electron microscope in the same manner as in Example 1, the particle image shown in FIG. 3 was obtained, and the particle size range of the metal silver fine particles was 6 nm to 60 nm. The average particle size was 16 nm.

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、38°(2θ)、44.5°(2θ)に金属銀のピークが示され、また、22°(2θ)付近に非晶質シリカと思われるブロードなピークが現れた。   Further, when the obtained powder was analyzed by an X-ray diffractometer in the same manner as in Example 1, a peak of metallic silver was shown at 38 ° (2θ) and 44.5 ° (2θ), and 22 ° ( A broad peak that appeared to be amorphous silica appeared in the vicinity of 2θ).

(陶磁器用上絵具への応用)
上記で得た微粒末を1gを実施例1で作製したフリット粉末100gと混合(微粒末含有量1質量%)し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1で得られた上絵具に比して濃度の濃い、透明で黄発色の上絵具であった。
(Application to top paint for ceramics)
1 g of the fine powder obtained above was mixed with 100 g of the frit powder prepared in Example 1 (fine powder content 1 mass%), dispersed in water, similarly applied onto a glaze layer of ceramic, and baked. This was a transparent, yellow-colored upper paint having a higher density than the upper paint obtained in Example 1.

微粒末の濃度を0.3質量%、3質量%、10質量%と濃度を濃くした上絵具としたところ、微粒末の濃度に応じて濃度の濃い陶磁器用上絵具とできた。   An upper paint having a concentration of 0.3% by mass, 3% by mass, and 10% by mass of the fine powder powder was used, and an upper paint for ceramics having a high concentration according to the concentration of the fine powder powder was obtained.

(着色ガラスへの応用)
得られた微粒末を使用し、実施例1同様に、石灰ソーダガラスと混合(微粒末含有量1質量%)した後、同様にして、着色ガラスを作製した。得られた着色ガラスは、実施例1で得られた着色ガラスに比して濃度の濃い、透明で彩度の高い黄色ガラスが得られた。
(Application to colored glass)
The obtained fine powder was used and mixed with lime soda glass in the same manner as in Example 1 (fine powder content: 1% by mass), and then colored glass was produced in the same manner. The obtained colored glass had a higher concentration than the colored glass obtained in Example 1, and a transparent and highly saturated yellow glass was obtained.

また、微粒末の濃度を0.1質量%、3質量%、10質量%と濃度を濃くした着色ガラスとしたところ、微粒末の濃度に応じて濃度の濃い黄色ガラスとできた。   Moreover, when it was set as the colored glass which made the density | concentration of a fine particle the density | concentration as 0.1 mass%, 3 mass%, and 10 mass%, it became dark yellow glass with a density | concentration according to the density | concentration of a fine particle.

(塗料への応用)
上記で得た微粒末を自動乳鉢で平均粒径10μmに微粉砕した後、その1gを、実施例1と同様に塗料化(微粒末含有量1質量%)し、ガラス板上に同様に塗布し、同様に乾燥・焼付けたところ、実施例1で得られた塗料に比して濃度の濃い、透明で彩度の高い黄色塗料とできた。
(Application to paint)
After the fine powder obtained above was finely pulverized to an average particle size of 10 μm with an automatic mortar, 1 g of the fine powder was formed into a paint (a fine powder content of 1% by mass) in the same manner as in Example 1 and coated on a glass plate in the same manner. Then, when dried and baked in the same manner, it was possible to obtain a transparent and highly saturated yellow paint having a higher concentration than the paint obtained in Example 1.

また、微粒末の濃度を0.1質量%、3質量%、30質量%と濃度を濃くした塗料としたところ、微粒末の濃度に応じて濃度の濃い塗料とできた。   In addition, when the coating material was concentrated to a concentration of 0.1% by mass, 3% by mass, and 30% by mass, the concentration of the fine powder was made to be a coating having a high concentration according to the concentration of the fine powder.

加圧容器を使用し、シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}50g(SiO2 量に換算すると10gに相当)に、3mol/lの硝酸銀水溶液を50ml(銀量に換算して16.2gに相当)添加し、混合攪拌した後、100℃で水熱反応させ、ゲル化させた。得られたゲル状物質を100℃、24時間、乾燥し、含有水分を除去した後、粉砕し、さらに700℃、10分間、乾燥させた。乾燥物における金属銀微粒子の含有量は61.8質量%であった。 Using a pressurized container, silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass) particle size 10 to 20 nm} 50 g (corresponding to 10 g when converted to SiO 2 amount) 50 ml of a 3 mol / l silver nitrate aqueous solution (corresponding to 16.2 g in terms of silver amount) was added, mixed and stirred, and then hydrothermally reacted at 100 ° C. to cause gelation. The obtained gel-like substance was dried at 100 ° C. for 24 hours to remove the contained water, then pulverized, and further dried at 700 ° C. for 10 minutes. The content of metallic silver fine particles in the dried product was 61.8% by mass.

得られた粉末を、実施例1同様に透過型電子顕微鏡を使用して撮影したところ、金属銀微粒子の粒径範囲は、5nm〜10μmであり、また、平均粒径は20nmであった。   When the obtained powder was photographed using a transmission electron microscope in the same manner as in Example 1, the particle size range of the metal silver fine particles was 5 nm to 10 μm, and the average particle size was 20 nm.

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、38°(2θ)、44.5°(2θ)に金属銀のピークが示され、また、22°(2θ)付近にクリストバライトによるピークが現れた。   Further, when the obtained powder was analyzed by an X-ray diffractometer in the same manner as in Example 1, a peak of metallic silver was shown at 38 ° (2θ) and 44.5 ° (2θ), and 22 ° ( A peak due to cristobalite appeared in the vicinity of 2θ).

(陶磁器用上絵具への応用)
上記で得た微粒末を1gを実施例1で作製したフリット粉末100gと混合(微粒末含有量1質量%)し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例2で得られた上絵具に比して濃度の濃い、透明で黄発色の上絵具であった。
(Application to top paint for ceramics)
1 g of the fine powder obtained above was mixed with 100 g of the frit powder prepared in Example 1 (fine powder content 1 mass%), dispersed in water, similarly applied onto a glaze layer of ceramic, and baked. The upper paint obtained in Example 2 was darker and more transparent than the upper paint obtained in Example 2.

微粒末の濃度を0.05質量%、3質量%、10質量%と濃度を濃くした上絵具としたところ、微粒末の濃度に応じて濃度の濃い陶磁器用上絵具とできた。   When an upper paint having a concentration of fine particles of 0.05% by mass, 3% by mass, and 10% by mass was used, an upper paint for ceramics having a high concentration according to the concentration of the fine particles was obtained.

(着色ガラスへの応用)
得られた微粒末を使用し、実施例1同様に、石灰ソーダガラスと混合(微粒末含有量1質量%)した後、同様にして、着色ガラスを作製した。得られた着色ガラスは、実施例2で得られた着色ガラスに比して濃度の濃い、透明で黄発色ガラスが得られた。
(Application to colored glass)
The obtained fine powder was used and mixed with lime soda glass in the same manner as in Example 1 (fine powder content: 1% by mass), and then colored glass was produced in the same manner. The obtained colored glass had a higher concentration than the colored glass obtained in Example 2, and a transparent, yellow-colored glass was obtained.

また、微粒末の濃度を0.05質量%、3質量%、10質量%と濃度を濃くした着色ガラスとしたところ、微粒末の濃度に応じて濃度の濃い黄発色ガラスとできた。   Further, when colored glass having a concentration of fine particles of 0.05% by mass, 3% by mass, and 10% by mass was used, a yellow colored glass having a high concentration according to the concentration of the fine particles was obtained.

加圧容器を使用し、シリカゾル液{日産化学(株)製、スノーテックスN(SiO2 含有量20〜21質量%、粒子径10〜20nm)}100g(SiO2 量に換算すると20gに相当)に、0.2mol/lの硝酸銀水溶液を30ml(銀量に換算して0.65gに相当)添加し、混合攪拌した後、100℃で水熱反応させ、ゲル化させた。得られたゲル状物質を100℃、18時間、乾燥し、含有水分を除去した後、粉砕し、さらに、750℃、30分間、乾燥させた。乾燥物における金属銀微粒子の含有量は3.1質量%であった。 Using a pressurized container, silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex N (SiO 2 content 20 to 21% by mass, particle size 10 to 20 nm)} 100 g (equivalent to 20 g when converted to SiO 2 amount) Then, 30 ml of a 0.2 mol / l aqueous silver nitrate solution (corresponding to 0.65 g in terms of silver amount) was added, mixed and stirred, and then hydrothermally reacted at 100 ° C. for gelation. The obtained gel-like substance was dried at 100 ° C. for 18 hours to remove the contained water, then pulverized, and further dried at 750 ° C. for 30 minutes. The content of metallic silver fine particles in the dried product was 3.1% by mass.

得られた粉末を、実施例1同様に透過型電子顕微鏡を使用して撮影したところ、金属銀微粒子の粒径範囲は、5nm〜30nmであり、また、平均粒径は18nmであった。   When the obtained powder was photographed using a transmission electron microscope in the same manner as in Example 1, the particle size range of the metal silver fine particles was 5 nm to 30 nm, and the average particle size was 18 nm.

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、38°(2θ)、44.5°(2θ)に金属銀のピークが示され、また、22°(2θ)付近に非晶質シリカと思われるブロードなピークが現れた。   Further, when the obtained powder was analyzed by an X-ray diffractometer in the same manner as in Example 1, a peak of metallic silver was shown at 38 ° (2θ) and 44.5 ° (2θ), and 22 ° ( A broad peak that appeared to be amorphous silica appeared in the vicinity of 2θ).

(陶磁器用上絵具への応用)
上記で得た微粒末を1gを実施例1で作製したフリット粉末100gと混合(微粒末含有量1質量%)し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1と同様に透明で、黄発色の上絵具であった。
(Application to top paint for ceramics)
1 g of the fine powder obtained above was mixed with 100 g of the frit powder prepared in Example 1 (fine powder content 1 mass%), dispersed in water, similarly applied onto a glaze layer of ceramic, and baked. As in Example 1, it was a transparent and yellow-colored upper paint.

また、微粒末の濃度を0.5質量%、3質量%、10質量%と濃度を濃くした上絵具としたところ、微粒末の濃度に応じて濃度の濃い陶磁器用上絵具とできた。   Further, when the upper paint was made to have a concentration of 0.5% by mass, 3% by mass, and 10% by mass as the concentration of the fine particles, an upper paint for ceramics having a high concentration according to the concentration of the fine particles was obtained.

(着色ガラスへの応用)
得られた微粒末を使用し、実施例1同様に、石灰ソーダガラスと混合した後、同様にして、着色ガラスを作製した。実施例1と同様に透明な黄発色ガラスが得られた。
(Application to colored glass)
The obtained fine powder was used and mixed with lime soda glass in the same manner as in Example 1, and then colored glass was produced in the same manner. A transparent yellow colored glass was obtained in the same manner as in Example 1.

また、微粒末の濃度を0.5質量%、3質量%、10質量%と濃度を濃くした着色ガラスとしたところ、微粒末の濃度に応じて濃度の濃い黄色ガラスとできた。   Moreover, when it was set as the colored glass which concentrated the density | concentration of the fine particle powder as 0.5 mass%, 3 mass%, and 10 mass%, it was able to be made into yellow glass with a high density | concentration according to the density | concentration of the fine particle powder.

(塗料への応用)
上記で得た微粒末を自動乳鉢で平均粒径10μmに微粉砕した後、その1gを、実施例1と同様に塗料化(微粒末含有量1質量%)し、ガラス板上に同様に塗布し、同様に乾燥・焼付けたところ、実施例1で得られた塗料に比して濃度の濃い、透明で彩度の高い黄色塗料とできた。
(Application to paint)
After the fine powder obtained above was finely pulverized to an average particle size of 10 μm with an automatic mortar, 1 g of the fine powder was formed into a paint (a fine powder content of 1% by mass) in the same manner as in Example 1 and coated on a glass plate in the same manner. Then, when dried and baked in the same manner, it was possible to obtain a transparent and highly saturated yellow paint having a higher concentration than the paint obtained in Example 1.

また、微粒末の濃度を0.5質量%、3質量%、30質量%と濃度を濃くした塗料としたところ、微粒末の濃度に応じて濃度の濃い塗料とできた。   In addition, when the concentration of the fine powder was 0.5% by mass, 3% by mass, and 30% by mass, the coating was made to have a high concentration.

加圧容器を使用し、アルミナゾル液{日産化学(株)製、アルミナゾル520、Al2 3 含有量20〜21質量%、粒子径10〜20nm}50g(Al2 3 量に換算すると10gに相当)に、0.2mol/lの硝酸銀水溶液を20ml(銀量に換算して0.432gに相当)添加し、混合攪拌した後、100℃で水熱反応させ、ゲル化させた。得られたゲル状物質を120℃、18時間、乾燥し、含有水分を除去した後、粉砕し、さらに700℃、30分間、乾燥させた。乾燥物における金属銀微粒子の含有量は4.1質量%であった。 Using a pressurized container, alumina sol solution {Nissan Chemical Co., Ltd., alumina sol 520, Al 2 O 3 content 20 to 21% by mass, particle size 10 to 20 nm} 50 g (when converted to Al 2 O 3 content, 10 g 20 ml (corresponding to 0.432 g in terms of silver amount) of 0.2 mol / l aqueous silver nitrate solution was added to the solution, and the mixture was stirred and then hydrothermally reacted at 100 ° C. for gelation. The obtained gel-like substance was dried at 120 ° C. for 18 hours to remove the contained water, then pulverized, and further dried at 700 ° C. for 30 minutes. The content of metallic silver fine particles in the dried product was 4.1% by mass.

得られた粉末を、実施例1同様に透過型電子顕微鏡を使用して撮影したところ、金属銀微粒子の粒径範囲は、8nm〜30nmであり、また、平均粒径は20nmであった。   When the obtained powder was photographed using a transmission electron microscope in the same manner as in Example 1, the particle size range of the metal silver fine particles was 8 nm to 30 nm, and the average particle size was 20 nm.

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、38°(2θ)、44.5°(2θ)に金属銀のピークが示され、また、47°(2θ)付近にAl2 3 の弱いピークが現れた。 Further, when the obtained powder was analyzed by an X-ray diffractometer in the same manner as in Example 1, a metal silver peak was observed at 38 ° (2θ) and 44.5 ° (2θ), and 47 ° ( A weak peak of Al 2 O 3 appeared in the vicinity of 2θ).

(陶磁器用上絵具への応用)
上記で得た微粒末を1gを実施例1で作製したフリット粉末100gと混合(微粒末含有量1質量%)し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1と同様に透明で、黄発色の上絵具であった。
(Application to top paint for ceramics)
When 1 g of the fine powder obtained above is mixed with 100 g of the frit powder prepared in Example 1 (fine powder content 1 mass%), dispersed in water, similarly applied onto a glaze layer of ceramic, and baked. As in Example 1, it was a transparent and yellow-colored upper paint.

また、微粒末の濃度を0.5質量%、3質量%、10質量%と濃度を濃くした上絵具としたところ、微粒末の濃度に応じて濃度の濃い陶磁器用上絵具とできた。   Further, when the upper paint was made to have a concentration of 0.5% by mass, 3% by mass, and 10% by mass as the concentration of the fine particles, an upper paint for ceramics having a high concentration according to the concentration of the fine particles was obtained.

(着色ガラスへの応用)
得られた微粒末を使用し、実施例1同様に、石灰ソーダガラスと混合した後、同様にして、着色ガラスを作製した。実施例1と同様に透明な黄発色ガラスが得られた。
(Application to colored glass)
The obtained fine powder was used and mixed with lime soda glass in the same manner as in Example 1, and then colored glass was produced in the same manner. A transparent yellow colored glass was obtained in the same manner as in Example 1.

また、微粒末の濃度を0.5質量%、3質量%、10質量%と濃度を濃くした着色ガラスとしたところ、微粒末の濃度に応じて濃度の濃い黄色ガラスとできた。   Moreover, when it was set as the colored glass which concentrated the density | concentration of the fine particle powder as 0.5 mass%, 3 mass%, and 10 mass%, it was able to be made into yellow glass with a high density | concentration according to the density | concentration of the fine particle powder.

加圧容器を使用し、シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%、粒子径10〜20nm)}100g(SiO2 量に換算すると20gに相当)と、アルミナゾル液{日産化学(株)製、アルミナゾル100、Al2 3 含有量10〜11質量%、粒子径10〜100nm}50g(Al2 3 量に換算すると5gに相当)とを混合した後、0.2mol/lの硝酸銀水溶液を60ml(銀量に換算して1.3gに相当)添加し、混合攪拌した後、100℃で水熱反応させ、ゲル化させた。得られたゲル状物質を100℃、18時間、乾燥し、含有水分を除去した後、粉砕し、さらに750℃、30分間、乾燥させた。乾燥物における金属銀微粒子の含有量は4.9質量%であった。 Using a pressurized container, silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass, particle size 10 to 20 nm)} 100 g (equivalent to 20 g in terms of SiO 2 amount) And 50 g (corresponding to 5 g when converted to the amount of Al 2 O 3 ) of alumina sol solution {Nissan Chemical Co., Ltd., alumina sol 100, Al 2 O 3 content of 10 to 11% by mass, particle size of 10 to 100 nm} After that, 60 ml of 0.2 mol / l silver nitrate aqueous solution (corresponding to 1.3 g in terms of silver amount) was added, mixed and stirred, and then hydrothermally reacted at 100 ° C. for gelation. The obtained gel-like substance was dried at 100 ° C. for 18 hours to remove the contained water, then pulverized, and further dried at 750 ° C. for 30 minutes. The content of metal silver fine particles in the dried product was 4.9% by mass.

得られた粉末を実施例1同様に透過型電子顕微鏡を使用して撮影したところ、金属銀微粒子の粒径範囲は、10nm〜30nmであり、また、平均粒径は20nmであった。   When the obtained powder was photographed using a transmission electron microscope in the same manner as in Example 1, the particle size range of the metal silver fine particles was 10 nm to 30 nm, and the average particle size was 20 nm.

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、38°(2θ)、44.5°(2θ)に金属銀のピークが示され、また、47°(2θ)付近に弱いAl2 3 のピークと22°(2θ)付近にSiO2 のピークが現れた。 Further, when the obtained powder was analyzed by an X-ray diffractometer in the same manner as in Example 1, a metal silver peak was observed at 38 ° (2θ) and 44.5 ° (2θ), and 47 ° ( A weak Al 2 O 3 peak in the vicinity of 2θ) and a SiO 2 peak in the vicinity of 22 ° (2θ) appeared.

(陶磁器用上絵具への応用)
上記で得た微粒末を1gを実施例1で作製したフリット粉末100gと混合(微粒末含有量1質量%)し、水に分散させ、実施例1と同様に陶磁器の釉薬層上に塗布し、焼成したところ、実施例1と同様に透明で、黄発色の上絵具であった。
(Application to top paint for ceramics)
1 g of the fine powder obtained above was mixed with 100 g of the frit powder prepared in Example 1 (fine powder content 1% by mass), dispersed in water, and applied onto the glaze layer of the ceramic as in Example 1. When fired, it was transparent as in Example 1 and was a yellow colored upper paint.

また、微粒末の濃度を0.5質量%、3質量%、10質量%と濃度を濃くした上絵具としたところ、微粒末の濃度に応じて濃度の濃い陶磁器用上絵具とできた。   Further, when the upper paint was made to have a concentration of 0.5% by mass, 3% by mass, and 10% by mass as the concentration of the fine particles, an upper paint for ceramics having a high concentration according to the concentration of the fine particles was obtained.

(着色ガラスへの応用)
得られた微粒末を使用し、実施例1同様に、石灰ソーダガラスと混合した後、同様にして、着色ガラスを作製した。実施例1と同様に透明な黄発色ガラスが得られた。
(Application to colored glass)
The obtained fine powder was used and mixed with lime soda glass in the same manner as in Example 1, and then colored glass was produced in the same manner. A transparent yellow colored glass was obtained in the same manner as in Example 1.

また、微粒末の濃度を0.5質量%、3質量%、10質量%と濃度を濃くした着色ガラスとしたところ、微粒末の濃度に応じて濃度の濃い黄色ガラスとできた。   Moreover, when it was set as the colored glass which concentrated the density | concentration of the fine particle powder as 0.5 mass%, 3 mass%, and 10 mass%, it was able to be made into yellow glass with a high density | concentration according to the density | concentration of the fine particle powder.

(塗料への応用)
上記で得た微粒末を自動乳鉢を使用し平均粒径10μmに微粉砕した後、その1gを、実施例1と同様に塗料化(微粒末含有量1質量%)し、ガラス板上に同様に塗布し、同様に乾燥・焼付けたところ、実施例1で得られた塗料に比して濃度の濃い、透明で彩度の高い黄色塗料とできた。
(Application to paint)
After the fine powder obtained above was finely pulverized to an average particle size of 10 μm using an automatic mortar, 1 g of the fine powder was made into a paint (a fine powder content of 1% by mass) in the same manner as in Example 1 and the same on a glass plate. When it was applied in the same manner and dried and baked in the same manner, it was possible to obtain a transparent and highly saturated yellow paint having a higher concentration than the paint obtained in Example 1.

また、微粒末の濃度を0.5質量%、3質量%、30質量%と濃度を濃くした塗料としたところ、微粒末の濃度に応じて濃度の濃い塗料とできた。   In addition, when the concentration of the fine powder was 0.5% by mass, 3% by mass, and 30% by mass, the coating was made to have a high concentration.

加圧容器を使用し、1mol/lのオキシ塩化ジルコニウム水溶液80mlに、0.2mol/lの硝酸銀水溶液を20ml(銀量に換算して0.43gに相当)添加し、ゾル化させ、混合攪拌した後、100℃で水熱反応させ、ゲル化させた。得られたゲル状物質を120℃、18時間、乾燥し、含有水分を除去した後、粉砕し、さらに700℃、30分間、乾燥させた。乾燥物における金属銀微粒子の含有量は4.2質量%であった。   Using a pressurized container, add 20 ml of 0.2 mol / l silver nitrate aqueous solution (equivalent to 0.43 g in terms of silver amount) to 80 ml of 1 mol / l zirconium oxychloride aqueous solution, make it into sol, mix and stir Then, it was hydrothermally reacted at 100 ° C. to cause gelation. The obtained gel-like substance was dried at 120 ° C. for 18 hours to remove the contained water, then pulverized, and further dried at 700 ° C. for 30 minutes. The content of metallic silver fine particles in the dried product was 4.2% by mass.

得られた粉末を、実施例1同様に透過型電子顕微鏡を使用して撮影したところ、金属銀微粒子の粒径範囲は、5nm〜30nmであり、また、平均粒径は20nmであった。   When the obtained powder was photographed using a transmission electron microscope in the same manner as in Example 1, the particle diameter range of the metal silver fine particles was 5 nm to 30 nm, and the average particle diameter was 20 nm.

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、38°(2θ)、44.5°(2θ)に金属銀のピークが示され、また、31°(2θ)付近にZrO2 のピークが現れた。 The obtained powder was analyzed by an X-ray diffractometer in the same manner as in Example 1. As a result, a metal silver peak was observed at 38 ° (2θ) and 44.5 ° (2θ), and 31 ° ( A ZrO 2 peak appeared in the vicinity of 2θ).

(陶磁器用上絵具への応用)
上記で得た微粒末1gを実施例1で作製したフリット粉末100gと混合(微粒末含有量1質量%)し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1と同様に透明で、黄発色の上絵具であった。
(Application to top paint for ceramics)
When 1 g of the fine powder obtained above was mixed with 100 g of the frit powder produced in Example 1 (fine powder content 1 mass%), dispersed in water, similarly applied onto the glaze layer of the ceramic, and fired, As in Example 1, it was transparent and was a yellow colored upper paint.

また、微粒末の濃度を0.5質量%、3質量%、10質量%と濃度を濃くした上絵具としたところ、微粒末の濃度に応じて濃度の濃い陶磁器用上絵具とできた。   Further, when the upper paint was made to have a concentration of 0.5% by mass, 3% by mass, and 10% by mass as the concentration of the fine particles, an upper paint for ceramics having a high concentration according to the concentration of the fine particles was obtained.

(着色ガラスへの応用)
得られた微粒末を使用し、実施例1同様に、石灰ソーダガラスと混合した後、同様にして、着色ガラスを作製した。実施例1と同様に透明な黄発色ガラスが得られた。
(Application to colored glass)
The obtained fine powder was used and mixed with lime soda glass in the same manner as in Example 1, and then colored glass was produced in the same manner. A transparent yellow colored glass was obtained in the same manner as in Example 1.

また、微粒末の濃度を0.5質量%、3質量%、10質量%と濃度を濃くした着色ガラスとしたところ、微粒末の濃度に応じて濃度の濃い黄色ガラスとできた。   Moreover, when it was set as the colored glass which concentrated the density | concentration of the fine particle powder as 0.5 mass%, 3 mass%, and 10 mass%, it was able to be made into yellow glass with a high density | concentration according to the density | concentration of the fine particle powder.

シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}50g(SiO2 量に換算すると10gに相当)に、0.2mol/lの硝酸銀水溶液を20ml(銀量に換算して0.43gに相当)添加し、混合攪拌した後、スプレードライヤー(ヤマト科学(株)製「ADL−310」)を用いて、乾燥チャンバー入り口温度160℃、出口温度80℃、噴出孔径406μm、噴出圧0.1Mpaで乾燥チャンバー中にスプレーし、乾燥粉末化した。次いで、得られたゲル状微粉末を700℃、10分間焼成した。焼成物における金属銀微粒子の含有量は4.1質量%であった。 Silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass) particle diameter 10 to 20 nm} is 50 g (corresponding to 10 g when converted to SiO 2 amount), 0.2 mol / l 20 ml of silver nitrate aqueous solution (corresponding to 0.43 g in terms of silver amount) was added, mixed and stirred, and then using a spray dryer (“ADL-310” manufactured by Yamato Scientific Co., Ltd.), the inlet temperature of the drying chamber was 160 ° C. The mixture was sprayed into a drying chamber at an outlet temperature of 80 ° C., an ejection hole diameter of 406 μm, and an ejection pressure of 0.1 Mpa to form a dry powder. Subsequently, the obtained gel-like fine powder was baked at 700 ° C. for 10 minutes. The content of metallic silver fine particles in the fired product was 4.1% by mass.

この焼成物の2次粒子像について、そのFE−SEM像(1000倍)写真を図4に示す。図4から、粒径は1μm〜10μmの黄着色用複合材粒子が得られることがわかる。また、そのFE−SEM像(5万倍)写真を図5に示すと共に、その反射電子像(5万倍)写真を図6に示す。図6から回りのシリカに比べて粒径が約20nmの重い銀粒子が均一に分散され、白くなっていることがわかる。   About the secondary particle image of this baked product, the FE-SEM image (1000 times) photograph is shown in FIG. FIG. 4 shows that yellow colored composite particles having a particle diameter of 1 μm to 10 μm can be obtained. Moreover, while showing the FE-SEM image (50,000 times) photograph in FIG. 5, the reflected electron image (50,000 times) photograph is shown in FIG. From FIG. 6, it can be seen that heavy silver particles having a particle diameter of about 20 nm are uniformly dispersed and whitened compared to the surrounding silica.

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、金属銀のピークと少量の結晶シリカ(クリストバライト)のピークが確認された。   Moreover, when the obtained powder was analyzed with the X-ray-diffraction apparatus similarly to Example 1, the peak of metallic silver and the peak of a small amount of crystalline silica (cristobalite) were confirmed.

(陶磁器用上絵具への応用)
上記で得た微粒末を実施例1で作製したフリット粉末に2質量%混合し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1同様に透明な黄色上絵具であった。
(Application to top paint for ceramics)
The fine powder obtained above was mixed with 2% by mass of the frit powder prepared in Example 1, dispersed in water, applied onto the glaze layer of the ceramic and fired in the same manner. It was the top paint.

(塗料への応用)
上記で得た微粒末を実施例1と同様に水系のアクリル系クリアラッカー(アレスコ関西ペイント(株)製、カンペクリアラッカー)に2質量%混合して、塗料化したところ、透明で彩度の高い黄色塗料とできた。
(Application to paint)
The fine powder obtained above was mixed with water-based acrylic clear lacquer (Alesco Kansai Paint Co., Ltd., Campe Clear Lacquer) in the same manner as in Example 1 to make a paint. Made with high yellow paint.

シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}50g(SiO2 量に換算すると10gに相当)に、0.5mol/lの硝酸銀水溶液を50ml(銀量に換算して2.7gに相当)添加し、混合攪拌した後、スプレードライヤー(ヤマト科学(株)製「ADL−310」)を用いて、乾燥チャンバー入り口温度180℃、出口温度80℃、噴出孔径406μm、噴出圧0.1Mpaで乾燥チャンバー中にスプレーし、乾燥粉末化した。次いで、得られたゲル状微粉末を700℃、10分間焼成させた。焼成物における金属銀微粒子の含有量は21.2質量%であった。 Silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass) particle diameter 10 to 20 nm} in 50 g (corresponding to 10 g in terms of SiO 2 amount), 0.5 mol / l 50 ml of silver nitrate aqueous solution (corresponding to 2.7 g in terms of silver amount) was added, mixed and stirred, and then the drying chamber inlet temperature 180 ° C. using a spray dryer (“ADL-310” manufactured by Yamato Scientific Co., Ltd.). The mixture was sprayed into a drying chamber at an outlet temperature of 80 ° C., an ejection hole diameter of 406 μm, and an ejection pressure of 0.1 Mpa to form a dry powder. Next, the obtained gel-like fine powder was baked at 700 ° C. for 10 minutes. The content of metallic silver fine particles in the fired product was 21.2% by mass.

この焼成物の2次粒子像について、そのFE−SEM像(1000倍)写真を図7に示す。図7から、粒径は1μm〜10μmの黄着色用複合材粒子が得られることがわかる。また、そのFE−SEM像(1万倍)写真を図8に示すと共に、その反射電子像(1万倍)写真を図9に示す。図9から回りのシリカに比べて粒径が約20nmの重い銀粒子が均一に分散され、白くなっていることがわかる。   About the secondary particle image of this baked product, the FE-SEM image (1000 times) photograph is shown in FIG. From FIG. 7, it can be seen that yellow colored composite particles having a particle size of 1 μm to 10 μm can be obtained. Moreover, while showing the FE-SEM image (10,000 times) photograph in FIG. 8, the reflected electron image (10,000 times) photograph is shown in FIG. From FIG. 9, it can be seen that heavy silver particles having a particle diameter of about 20 nm are uniformly dispersed and whitened compared to the surrounding silica.

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、金属銀のピークと少量の結晶シリカ(クリストバライト)のピークが確認された。   Moreover, when the obtained powder was analyzed with the X-ray-diffraction apparatus similarly to Example 1, the peak of metallic silver and the peak of a small amount of crystalline silica (cristobalite) were confirmed.

(陶磁器用上絵具への応用)
上記で得た微粒末を実施例1で作製したフリット粉末に1質量%混合し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1同様に透明な黄色上絵具であった。
(Application to top paint for ceramics)
The fine powder obtained above was mixed with 1% by mass of the frit powder prepared in Example 1, dispersed in water, applied onto the glaze layer of the ceramic in the same manner, and baked. It was the top paint.

(塗料への応用)
上記で得た微粒末を実施例1と同様に水系のアクリル系クリアラッカー(アレスコ関西ペイント(株)製、カンペクリアラッカー)に2質量%混合して、塗料化したところ、透明で彩度の高い黄色塗料とできた。
(Application to paint)
The fine powder obtained above was mixed with 2% by mass of water-based acrylic clear lacquer (Alesco Kansai Paint Co., Ltd., Campe Clear Lacquer) in the same manner as in Example 1 to form a paint. Made with high yellow paint.

シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}50g(SiO2 量に換算すると10gに相当)に、0.2mol/lの硝酸銀水溶液を30ml(銀量に換算して0.65gに相当)添加し、混合攪拌した後、スプレードライヤー(ヤマト科学(株)製「ADL−310」)を用いて、乾燥チャンバー入り口温度180℃、出口温度95℃、噴出孔径406μm、噴出圧0.15Mpaで乾燥チャンバー中にスプレーし、乾燥粉末化した。次いで、得られたゲル状微粉末を700℃、30分間焼成させた。焼成物における金属銀微粒子の含有量は6.1質量%であった。 Silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass) particle diameter 10 to 20 nm} is 50 g (corresponding to 10 g when converted to SiO 2 amount), 0.2 mol / l 30 ml of an aqueous silver nitrate solution (corresponding to 0.65 g in terms of silver) was added, mixed and stirred, and then the drying chamber inlet temperature 180 ° C. using a spray dryer (“ADL-310” manufactured by Yamato Scientific Co., Ltd.). The mixture was sprayed into a drying chamber at an outlet temperature of 95 ° C., an ejection hole diameter of 406 μm, and an ejection pressure of 0.15 Mpa to form a dry powder. Subsequently, the obtained gel-like fine powder was baked at 700 ° C. for 30 minutes. The content of metallic silver fine particles in the fired product was 6.1% by mass.

この焼成物の2次粒子像について、そのFE−SEM像(1000倍)写真から、粒径1μm〜10μmの黄着色用複合材粒子が得られることがわかった。また、反射電子像(1万倍)写真から、粒径が約20nmの銀粒子がシリカ(二酸化珪素)中に均一に分散されていることがわかった。   About the secondary particle image of this baked product, it was found from the FE-SEM image (1000 times) that yellow colored composite particles having a particle size of 1 μm to 10 μm were obtained. Moreover, it was found from the reflected electron image (10,000 times) photograph that silver particles having a particle size of about 20 nm were uniformly dispersed in silica (silicon dioxide).

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、金属銀のピークと少量の結晶シリカ(クリストバライト)のピークが確認された。   Moreover, when the obtained powder was analyzed with the X-ray-diffraction apparatus similarly to Example 1, the peak of metallic silver and the peak of a small amount of crystalline silica (cristobalite) were confirmed.

(陶磁器用上絵具への応用)
上記で得た微粒末を実施例1で作製したフリット粉末に2質量%混合し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1同様に透明な黄色上絵具であった。
(Application to top paint for ceramics)
The fine powder obtained above was mixed with 2% by mass of the frit powder prepared in Example 1, dispersed in water, applied onto the glaze layer of the ceramic and fired in the same manner. It was the top paint.

(塗料への応用)
上記で得た微粒末を実施例1と同様に水系のアクリル系クリアラッカー(アレスコ関西ペイント(株)製、カンペクリアラッカー)に2質量%混合して、塗料化したところ、透明で彩度の高い黄色塗料とできた。
(Application to paint)
The fine powder obtained above was mixed with water-based acrylic clear lacquer (Alesco Kansai Paint Co., Ltd., Campe Clear Lacquer) in the same manner as in Example 1 to make a paint. Made with high yellow paint.

シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}50g(SiO2 量に換算すると10gに相当)に、0.2mol/lの硝酸銀水溶液を40ml(銀量に換算して0.86gに相当)添加し、混合攪拌した後、スプレードライヤー(ヤマト科学(株)製「ADL−310」)を用いて、乾燥チャンバー入り口温度160℃、出口温度80℃、噴出孔径406μm、噴出圧0.15Mpaで乾燥チャンバー中にスプレーし、乾燥粉末化した。次いで、得られたゲル状微粉末を700℃、30分間焼成させた。焼成物における金属銀微粒子の含有量は8.0質量%であった。 Silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass) particle diameter 10 to 20 nm} is 50 g (corresponding to 10 g when converted to SiO 2 amount), 0.2 mol / l After adding 40 ml of silver nitrate aqueous solution (corresponding to 0.86 g in terms of silver amount), mixing and stirring, using a spray dryer (“ADL-310” manufactured by Yamato Scientific Co., Ltd.), the inlet temperature of the drying chamber was 160 ° C. The mixture was sprayed into a drying chamber at an outlet temperature of 80 ° C., an ejection hole diameter of 406 μm, and an ejection pressure of 0.15 Mpa to form a dry powder. Subsequently, the obtained gel-like fine powder was baked at 700 ° C. for 30 minutes. The content of metal silver fine particles in the fired product was 8.0% by mass.

この焼成物の2次粒子像について、そのFE−SEM像(1000倍)写真から、粒径1μm〜10μmの黄着色用複合材粒子が得られることがわかった。また、反射電子像(1万倍)写真から、粒径が約20nmの銀粒子がシリカ(二酸化珪素)中に均一に分散されていることがわかった。   About the secondary particle image of this baked product, it was found from the FE-SEM image (1000 times) that yellow colored composite particles having a particle size of 1 μm to 10 μm were obtained. Moreover, it was found from the reflected electron image (10,000 times) photograph that silver particles having a particle size of about 20 nm were uniformly dispersed in silica (silicon dioxide).

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、金属銀のピークと少量の結晶シリカ(クリストバライト)のピークが確認された。   Moreover, when the obtained powder was analyzed with the X-ray-diffraction apparatus similarly to Example 1, the peak of metallic silver and the peak of a small amount of crystalline silica (cristobalite) were confirmed.

(陶磁器用上絵具への応用)
上記で得た微粒末を実施例1で作製したフリット粉末に1質量%混合し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1同様に透明な黄色上絵具であった。
(Application to top paint for ceramics)
The fine powder obtained above was mixed with 1% by mass of the frit powder prepared in Example 1, dispersed in water, applied onto the glaze layer of the ceramic in the same manner, and baked. It was the top paint.

(塗料への応用)
上記で得た微粒末を実施例1と同様に水系のアクリル系クリアラッカー(アレスコ関西ペイント(株)製、カンペクリアラッカー)に1質量%混合して、塗料化したところ、透明で彩度の高い黄色塗料とできた。
(Application to paint)
The fine powder obtained above was mixed with water-based acrylic clear lacquer (Alesco Kansai Paint Co., Ltd., Campe Clear Lacquer) in an amount of 1% by mass in the same manner as in Example 1 to form a paint. Made with high yellow paint.

シリカゾル液{日産化学(株)製、スノーテックスN(SiO2 含有量20〜21質量%)粒子径10〜20nm}50g(SiO2 量に換算すると10gに相当)に、0.2mol/lの硝酸銀水溶液を20ml(銀量に換算して0.43gに相当)添加し、混合攪拌した後、スプレードライヤー(ヤマト科学(株)製「ADL−310」)を用いて、乾燥チャンバー入り口温度160℃、出口温度80℃、噴出孔径406μm、噴出圧0.1Mpaで乾燥チャンバー中にスプレーし、乾燥粉末化した。次いで、得られたゲル状微粉末を700℃、30分間焼成させた。焼成物における金属銀微粒子の含有量は4.1質量%であった。 Silica sol solution {manufactured by Nissan Chemical Co., Ltd., Snowtex N (SiO 2 content 20 to 21% by mass) particle diameter 10 to 20 nm} is 50 g (corresponding to 10 g in terms of SiO 2 amount), 0.2 mol / l. 20 ml of silver nitrate aqueous solution (corresponding to 0.43 g in terms of silver amount) was added, mixed and stirred, and then using a spray dryer (“ADL-310” manufactured by Yamato Scientific Co., Ltd.), the inlet temperature of the drying chamber was 160 ° C. The mixture was sprayed into a drying chamber at an outlet temperature of 80 ° C., an ejection hole diameter of 406 μm, and an ejection pressure of 0.1 Mpa to form a dry powder. Subsequently, the obtained gel-like fine powder was baked at 700 ° C. for 30 minutes. The content of metallic silver fine particles in the fired product was 4.1% by mass.

この焼成物の2次粒子像について、そのFE−SEM像(1000倍)写真から、粒径1μm〜10μmの黄着色用複合材粒子が得られることがわかった。また、反射電子像(1万倍)写真から、粒径が約20nmの銀粒子がシリカ(二酸化珪素)中に均一に分散されていることがわかった。   About the secondary particle image of this baked product, it was found from the FE-SEM image (1000 times) that yellow colored composite particles having a particle size of 1 μm to 10 μm were obtained. Moreover, it was found from the reflected electron image (10,000 times) photograph that silver particles having a particle size of about 20 nm were uniformly dispersed in silica (silicon dioxide).

また、得られた粉末を、実施例1と同様にX線回折装置により分析したところ、金属銀のピークと少量の結晶シリカ(クリストバライト)のピークが確認された。   Moreover, when the obtained powder was analyzed with the X-ray-diffraction apparatus similarly to Example 1, the peak of metallic silver and the peak of a small amount of crystalline silica (cristobalite) were confirmed.

(陶磁器用上絵具への応用)
上記で得た微粒末を実施例1で作製したフリット粉末に2質量%混合し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1同様に透明な黄色上絵具であった。
(Application to top paint for ceramics)
The fine powder obtained above was mixed with 2% by mass of the frit powder prepared in Example 1, dispersed in water, applied onto the glaze layer of the ceramic and fired in the same manner. It was the top paint.

(塗料への応用)
上記で得た微粒末を実施例1と同様に水系のアクリル系クリアラッカー(アレスコ関西ペイント(株)製、カンペクリアラッカー)に2質量%混合して塗料化したところ、透明で彩度の高い黄色塗料とできた。
(Application to paint)
The fine powder obtained above was mixed with 2% by mass of water-based acrylic clear lacquer (Alesco Kansai Paint Co., Ltd., Campe Clear Lacquer) in the same manner as in Example 1, and it was transparent and highly saturated. Made with yellow paint.

シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}40gとアルミナゾル液{日産化学(株)製、アルミナゾル100(アルミナ含有量10〜11質量%)}10gの混合ゾルに0.2mol/lの硝酸銀水溶液を20ml(銀量に換算して0.43gに相当)添加し、混合攪拌した後、スプレードライヤー(ヤマト科学(株)製「ADL−310」)を用いて、乾燥チャンバー入り口温度160℃、出口温度80℃、噴出孔径406μm、噴出圧0.1Mpaで乾燥チャンバー中にスプレーし、乾燥粉末化した。次いで、得られたゲル状微粉末を700℃、10分間焼成させた。焼成物における金属銀微粒子の含有量は4.2質量%であった。 Silica sol solution {Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21 mass%) particle size 10 to 20 nm} 40 g and alumina sol solution {Nissan Chemical Co., Ltd., alumina sol 100 (alumina content 10 to 10%) 11 mass%)} Add 20 ml of a 0.2 mol / l silver nitrate aqueous solution to 10 g of the mixed sol (corresponding to 0.43 g in terms of silver amount), and after mixing and stirring, spray dryer (manufactured by Yamato Scientific Co., Ltd.) “ADL-310”) was sprayed into a drying chamber at a drying chamber inlet temperature of 160 ° C., an outlet temperature of 80 ° C., an ejection hole diameter of 406 μm, and an ejection pressure of 0.1 Mpa to form a dry powder. Next, the obtained gel-like fine powder was baked at 700 ° C. for 10 minutes. The content of metal silver fine particles in the fired product was 4.2% by mass.

(陶磁器用上絵具への応用)
上記で得た微粒末を実施例1で作製したフリット粉末に2質量%混合し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1同様に透明な黄色上絵具であった。
(Application to top paint for ceramics)
The fine powder obtained above was mixed with 2% by mass of the frit powder prepared in Example 1, dispersed in water, applied onto the glaze layer of the ceramic and fired in the same manner. It was the top paint.

酸化チタン粉末{石原産業(株)製、ST−01、一次粒子径7nm}10gを水90gに分散させ、0.2mol/lの硝酸銀水溶液を30ml(銀量に換算して0.65gに相当)添加し、混合攪拌した後、スプレードライヤー(ヤマト科学(株)製「ADL−310」)を用いて、乾燥チャンバー入り口温度160℃、出口温度80℃、噴出孔径711μm、噴出圧0.1Mpaで乾燥チャンバー中にスプレーし、乾燥粉末化した。次いで、得られたゲル状微粉末を700℃、10分間焼成させた。焼成物における金属銀微粒子の含有量は4.5質量%であった。   10 g of titanium oxide powder {Ishihara Sangyo Co., Ltd., ST-01, primary particle size 7 nm} is dispersed in 90 g of water, and 30 ml of 0.2 mol / l silver nitrate aqueous solution (corresponding to 0.65 g in terms of silver amount) ) After adding, mixing and stirring, using a spray dryer (“ADL-310” manufactured by Yamato Scientific Co., Ltd.), the drying chamber inlet temperature was 160 ° C., the outlet temperature was 80 ° C., the ejection hole diameter was 711 μm, and the ejection pressure was 0.1 Mpa. Sprayed into a drying chamber to dry powder. Next, the obtained gel-like fine powder was baked at 700 ° C. for 10 minutes. The content of the metal silver fine particles in the fired product was 4.5% by mass.

(陶磁器用上絵具への応用)
上記で得た微粒末を実施例1で作製したフリット粉末に2質量%混合し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1同様に透明な黄色上絵具であった。
(Application to top paint for ceramics)
The fine powder obtained above was mixed with 2% by mass of the frit powder prepared in Example 1, dispersed in water, applied onto the glaze layer of the ceramic and fired in the same manner. It was the top paint.

シリカゾル液{日産化学(株)製、スノーテックスO(SiO2 含有量20〜21質量%)粒子径10〜20nm}40gと0.2mol/lのオキシ塩化ジルコニウム水溶液80mlの混合ゾルに、0.2mol/lの硝酸銀水溶液を20ml(銀量に換算して0.43gに相当)添加し、混合攪拌した後、スプレードライヤー(ヤマト科学(株)製「ADL−310」)を用いて、乾燥チャンバー入り口温度160℃、出口温度80℃、噴出孔径406μm、噴出圧0.1Mpaで乾燥チャンバー中にスプレーし、乾燥粉末化した。次いで、得られたゲル状微粉末を700℃、10分間焼成させた。焼成物における金属銀微粒子の含有量は4.2質量%であった。 In a mixed sol of 40 g of silica sol solution {Nissan Chemical Co., Ltd., Snowtex O (SiO 2 content 20 to 21% by mass) particle size 10 to 20 nm} and 80 ml of 0.2 mol / l zirconium oxychloride aqueous solution, 0. 20 ml of a 2 mol / l silver nitrate aqueous solution (corresponding to 0.43 g in terms of silver amount) was added, mixed and stirred, and then dried using a spray dryer (“ADL-310” manufactured by Yamato Scientific Co., Ltd.). The powder was sprayed into a dry chamber at an inlet temperature of 160 ° C., an outlet temperature of 80 ° C., an ejection hole diameter of 406 μm, and an ejection pressure of 0.1 Mpa to form a dry powder. Next, the obtained gel-like fine powder was baked at 700 ° C. for 10 minutes. The content of metal silver fine particles in the fired product was 4.2% by mass.

(陶磁器用上絵具への応用)
上記で得た微粒末を実施例1で作製したフリット粉末に2質量%混合し、水に分散させ、陶磁器の釉薬層上に同様に塗布し、焼成したところ、実施例1同様に透明な黄色上絵具であった。
(Application to top paint for ceramics)
The fine powder obtained above was mixed with 2% by mass of the frit powder prepared in Example 1, dispersed in water, applied onto the glaze layer of the ceramic and fired in the same manner. It was the top paint.

図1は、実施例1で得られた黄着色用複合材の粒子構造を、透過型電子顕微鏡(日本電子(株)製「JEM2010」15万倍)を使用して撮影した写真である。FIG. 1 is a photograph of the particle structure of the yellow coloring composite material obtained in Example 1 taken using a transmission electron microscope (“JEM2010” 150,000 times manufactured by JEOL Ltd.). 図2は、実施例1で得られた黄着色用複合材のX線回折図である。FIG. 2 is an X-ray diffraction pattern of the yellow coloring composite material obtained in Example 1. 図3は、実施例2で得られた黄着色用複合材の粒子構造を、透過型電子顕微鏡(日本電子(株)製「JEM2010」10万倍)を使用して撮影した写真である。FIG. 3 is a photograph of the particle structure of the yellow coloring composite material obtained in Example 2 taken using a transmission electron microscope (“JEM 2010” manufactured by JEOL Ltd., 100,000 times). 図4は、実施例8で得られた黄着色用複合材の粒子構造について、その電界放射走査型電子顕微鏡(日本電子(株)製「JSM−6700F」1000倍)を使用して撮影した写真である。FIG. 4 is a photograph taken of the particle structure of the yellow coloring composite material obtained in Example 8 using its field emission scanning electron microscope (“JSM-6700F” manufactured by JEOL Ltd., 1000 ×). It is. 図5は、実施例8で得られた黄着色用複合材の粒子構造について、その電界放射走査型電子顕微鏡(日本電子(株)製「JSM−6700F」5万倍)を使用して撮影した写真である。FIG. 5: photographed about the particle structure of the yellow coloring composite material obtained in Example 8 using the field emission scanning electron microscope (“JSM-6700F” manufactured by JEOL Ltd., 50,000 times) It is a photograph. 図6は、実施例8で得られた黄着色用複合材の粒子構造について、その電界放射走査型電子顕微鏡(日本電子(株)製「JSM−6700F」5万倍)を使用して撮影した反射電子像である。FIG. 6 was taken using the field emission scanning electron microscope (“JSM-6700F” manufactured by JEOL Ltd., 50,000 times) of the particle structure of the yellow coloring composite material obtained in Example 8. It is a reflected electron image. 図7は、実施例9で得られた黄着色用複合材の粒子構造について、その電界放射走査型電子顕微鏡(日本電子(株)製「JSM−6700F」1000倍)を使用して撮影した写真である。FIG. 7 is a photograph taken of the particle structure of the yellow coloring composite material obtained in Example 9 using a field emission scanning electron microscope (“JSM-6700F” manufactured by JEOL Ltd., 1000 ×). It is. 図8は、実施例9で得られた黄着色用複合材の粒子構造について、その電界放射走査型電子顕微鏡(日本電子(株)製「JSM−6700F」5万倍)を使用して撮影した写真である。FIG. 8: photographed about the particle structure of the yellow coloring composite material obtained in Example 9 using the field emission scanning electron microscope (“JSM-6700F” manufactured by JEOL Ltd., 50,000 times) It is a photograph. 図9は、実施例9で得られた黄着色用複合材の粒子構造について、その電界放射走査型電子顕微鏡(日本電子(株)製「JSM−6700F」5万倍)を使用して撮影した反射電子像である。FIG. 9 was taken using the field emission scanning electron microscope (“JSM-6700F” manufactured by JEOL Ltd., 50,000 times) of the particle structure of the yellow coloring composite material obtained in Example 9. It is a reflected electron image.

Claims (8)

ゾル状セラミックスと硝酸銀、酸化銀、塩化銀または硫酸銀から選ばれる銀化合物水溶液との混合物の状態での水熱反応化物を乾燥・粉末化した後、前記銀化合物の熱分解温度以上で、かつ、前記セラミックスのガラス転移温度以下の温度で乾燥処理して得られ、前記ゾル状セラミックスにおけるセラミックス粒子の粒径が保持され、容易に微粉化されるゲル状セラミックスであって、該ゲル状セラミックス中に、前記乾燥時における温度で熱分解される前記銀化合物由来の金属銀微粒子が0.05質量%〜80質量%の割合で分散されたことを特徴とする黄着色用複合材。 After drying and pulverizing the hydrothermal reaction product in a mixture of a sol-like ceramic and a silver compound aqueous solution selected from silver nitrate, silver oxide, silver chloride or silver sulfate, the pyrolysis temperature of the silver compound is exceeded, and , obtained by drying at a temperature below the glass transition temperature of the ceramic, the particle size of the ceramic particles in the sol ceramic is held, a readily gelled ceramic to be micronized, the gel-like ceramic in the yellow colored composite material, wherein the silver compound derived from metallic silver particles to be pyrolyzed at a temperature during the drying is dispersed in a proportion of 0.05 wt% to 80 wt%. ゾル状セラミックスと硝酸銀、酸化銀、塩化銀または硫酸銀から選ばれる銀化合物水溶液との混合物の状態でのスプレードライ化物を、前記銀化合物の熱分解温度以上で、かつ、前記セラミックスのガラス転移温度以下の温度で乾燥処理して得られるゲル状セラミックスであって、該ゲル状セラミックス中に、前記乾燥時における温度で熱分解される前記銀化合物由来の金属銀微粒子が0.05質量%〜80質量%の割合で分散されたことを特徴とする黄着色用複合材。 A spray-dried product in a state of a mixture of a sol-like ceramic and a silver compound aqueous solution selected from silver nitrate, silver oxide, silver chloride or silver sulfate is not less than the thermal decomposition temperature of the silver compound and the glass transition temperature of the ceramic. a gel-like ceramic obtained by drying at a temperature below the gel-like in the ceramic, the metal silver particles from the silver compound to be pyrolyzed at a temperature during the drying is 0.05 wt% to 80 A yellow coloring composite material dispersed at a mass percentage. セラミックスがシリカ、アルミナ、ジルコニア、チタニアまたはそれらの混合物であり、銀化合物が硝酸銀、または酸化銀であることを特徴とする請求項1、または請求項2記載の黄着色用複合材。 3. The yellow coloring composite material according to claim 1 , wherein the ceramic is silica, alumina, zirconia, titania or a mixture thereof, and the silver compound is silver nitrate or silver oxide. 金属銀微粒子の粒径範囲が1nm〜10μmであり、黄着色用複合材が陶磁器上絵具用、または着色ガラス用の黄着色用複合材であることを特徴とする請求項1、または請求項2記載の黄着色用複合材。 Size range of metallic silver particles is 1Nm~10myuemu, claim 1, characterized in that for yellowing composites for ceramics on paint, or for yellowing composite material for colored glass or claim 2, The yellow coloring composite material described. 金属銀微粒子の平均粒径が5nm〜30nmであり、黄着色用複合材が塗料用の黄着色用複合材であることを特徴とする請求項1、または請求項2記載の黄着色用複合材。 3. The yellow coloring composite material according to claim 1 , wherein the metal silver fine particles have an average particle diameter of 5 nm to 30 nm, and the yellow coloring composite material is a yellow coloring composite material for paint. . ゾル状セラミックス硝酸銀、酸化銀、塩化銀または硫酸銀から選ばれる銀化合物溶液との混合物を水熱反応させて前記ゾル状セラミックスをゲル状セラミックスとした後、乾燥・粉砕し、さらに、前記銀化合物の熱分解温度以上で、かつ、前記セラミックスのガラス転移温度未満の温度で乾燥処理して、ゲル状セラミックス中に分散した銀化合物を熱分解して金属銀微粒子とすると共に、前記ゾル状セラミックスにおけるセラミックス粒子の粒径が保持され、容易に微粉化されるゲル状セラミックスとすることを特徴とする黄着色用複合材の製造方法。 A mixture of a sol-like ceramic and a silver compound solution selected from silver nitrate, silver oxide, silver chloride or silver sulfate is subjected to a hydrothermal reaction to make the sol-like ceramic into a gel-like ceramic, and then dried and pulverized. The silver compound dispersed in the gel-like ceramic is thermally decomposed into metal silver fine particles by drying at a temperature not lower than the thermal decomposition temperature of the compound and lower than the glass transition temperature of the ceramic. A method for producing a yellow-colored composite material, characterized in that the ceramic particle size is maintained as a gel-like ceramic that is easily pulverized . ゾル状セラミックス硝酸銀、酸化銀、塩化銀または硫酸銀から選ばれる銀化合物溶液との混合物をスプレードライして前記セラミックスゾルをゲル状セラミックスとすると共に乾燥・粉末化した後、前記銀化合物の熱分解温度以上で、かつ、前記セラミックスのガラス転移温度未満の温度で乾燥処理して、前記ゲル状セラミックス中に分散した銀化合物を熱分解して金属銀微粒子とすることを特徴とする黄着色用複合材の製造方法。 A mixture of a sol-like ceramic and a silver compound solution selected from silver nitrate, silver oxide, silver chloride or silver sulfate is spray-dried to form the ceramic sol as a gel-like ceramic, and after drying and powdering, the heat of the silver compound For yellow coloring, wherein the silver compound dispersed in the gel-like ceramic is thermally decomposed into metallic silver fine particles by drying at a temperature not lower than the decomposition temperature and lower than the glass transition temperature of the ceramic. A method of manufacturing a composite material. ゾル状セラミックスがシリカゾル、アルミナゾル、ジルコニアゾル、チタニアゾルまたはそれらの混合物であり、また、銀化合物が硝酸銀、または酸化銀であることを特徴とする請求項6、または請求項7記載の黄着色用複合材の製造方法。 8. The yellow colored composite according to claim 6, wherein the sol-like ceramic is silica sol, alumina sol, zirconia sol, titania sol or a mixture thereof, and the silver compound is silver nitrate or silver oxide. A method of manufacturing the material.
JP2006146326A 2005-08-01 2006-05-26 COMPOUND PARTICLE FOR YELLOW COLORING AND METHOD FOR PRODUCING COMPOSITE PARTICLE FOR YELLOW COLORING Active JP4678736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146326A JP4678736B2 (en) 2005-08-01 2006-05-26 COMPOUND PARTICLE FOR YELLOW COLORING AND METHOD FOR PRODUCING COMPOSITE PARTICLE FOR YELLOW COLORING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005222614 2005-08-01
JP2006146326A JP4678736B2 (en) 2005-08-01 2006-05-26 COMPOUND PARTICLE FOR YELLOW COLORING AND METHOD FOR PRODUCING COMPOSITE PARTICLE FOR YELLOW COLORING

Publications (2)

Publication Number Publication Date
JP2007063530A JP2007063530A (en) 2007-03-15
JP4678736B2 true JP4678736B2 (en) 2011-04-27

Family

ID=37926079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146326A Active JP4678736B2 (en) 2005-08-01 2006-05-26 COMPOUND PARTICLE FOR YELLOW COLORING AND METHOD FOR PRODUCING COMPOSITE PARTICLE FOR YELLOW COLORING

Country Status (1)

Country Link
JP (1) JP4678736B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2698260B2 (en) 2016-03-30 2019-11-21 Noritake Co Ltd RED PAINT FOR CERAMIC DECORATION
JP6636844B2 (en) * 2016-04-04 2020-01-29 株式会社ノリタケカンパニーリミテド Paints for ceramic decoration
WO2024080382A1 (en) * 2022-10-14 2024-04-18 国立大学法人 鹿児島大学 Zirconia ceramic, in vivo implant, firing powder, and method for producing zirconia ceramic

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199741A (en) * 2000-01-11 2001-07-24 Mitsuboshi Belting Ltd Colorant composition and method for producing colored glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017431B2 (en) * 1980-05-26 1985-05-02 三菱マテリアル株式会社 Manufacturing method of ultrafine silver-silica composite powder
JPH01179732A (en) * 1988-01-12 1989-07-17 Seiko Epson Corp Production of glass
JPH03243665A (en) * 1990-02-20 1991-10-30 Toda Kogyo Corp Coloring blending material
JPH0656459A (en) * 1991-08-20 1994-03-01 Ishizuka Glass Co Ltd Frit for yellow or orange glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199741A (en) * 2000-01-11 2001-07-24 Mitsuboshi Belting Ltd Colorant composition and method for producing colored glass

Also Published As

Publication number Publication date
JP2007063530A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5210140B2 (en) Method for producing coated inorganic pigment
TWI765016B (en) Method for manufacturing iron-containing rutile type titanium oxide fine particle dispersion, iron-containing rutile type titanium oxide fine particle and uses thereof
DE10326815A1 (en) Anti-adhesive high-temperature coatings
WO2010001818A1 (en) Tin oxide particles and process for production thereof
JP2011190164A (en) Composite containing tin oxide and tin compound with oxygen deficiency and production method thereof
JP6468457B2 (en) Titanium oxide particles and method for producing the same
JP4678736B2 (en) COMPOUND PARTICLE FOR YELLOW COLORING AND METHOD FOR PRODUCING COMPOSITE PARTICLE FOR YELLOW COLORING
AU729959B2 (en) Sulphide of beta form and its use as a colouring pigment
Hashimoto et al. Bright yellowish-red pigment based on hematite/alumina composites with a unique porous disk-like structure
Yang et al. Low temperature synthesis of green submicro Cr‐ZrSiO4 ceramic pigments by solid‐state method
Fatah et al. Multifunctional superhydrophobic and cool coating surfaces of the blue ceramic nanopigments based on the heulandite zeolite
Hafez et al. Synthesis, characterization and color performance of novel Co2+-doped alumina/titania nanoceramic pigments
EP3277633A1 (en) Uv-absorbing nanocrystal containing composite
Zhao et al. Reactive formation of zircon inclusion pigments by deposition and subsequent annealing of a zirconia and silica double shell
KR101326226B1 (en) Silica hollow particles using spray drier and producing method thereof and Silica-titania composite hollow particles and producing method thereof
Acharjee et al. A review of various ceramic pigment preparation and characterization methodologies for applications
KR20010022709A (en) Composition Based On a Samarium Sesquisulphide, Process of Preparation and Use as Colouring Pigment
EP1866382B1 (en) Process for the inclusion of heat-labile ceramic pigments and the inclusion pigments thus obtained
Heydari et al. Effect of solvents and dispersants on polyol synthesis of V–ZrSiO 4 nanopigment stable suspension for ink application
JP5622140B2 (en) Powder containing composite particles and method for producing the same
Montoya et al. Microstructural Evolution from Praseodymium‐Containing Zircon Gels to Pr x‐ZrSiO4 Solid Solutions
JP4057835B2 (en) Method for producing inorganic pigment
JPH04170323A (en) Superfine particle yellow pigment and its production
JPH0428031B2 (en)
KR101346036B1 (en) Producing method of Silicate glass bubble composite particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

R150 Certificate of patent or registration of utility model

Ref document number: 4678736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250