JP4677122B2 - Carbonized foam and method for producing the same - Google Patents

Carbonized foam and method for producing the same Download PDF

Info

Publication number
JP4677122B2
JP4677122B2 JP2001137758A JP2001137758A JP4677122B2 JP 4677122 B2 JP4677122 B2 JP 4677122B2 JP 2001137758 A JP2001137758 A JP 2001137758A JP 2001137758 A JP2001137758 A JP 2001137758A JP 4677122 B2 JP4677122 B2 JP 4677122B2
Authority
JP
Japan
Prior art keywords
foam
resin
heating
carbonized
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001137758A
Other languages
Japanese (ja)
Other versions
JP2002338372A (en
Inventor
和靖 中根
英郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Inoac Technical Center Co Ltd
Original Assignee
Inoac Corp
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp, Inoac Technical Center Co Ltd filed Critical Inoac Corp
Priority to JP2001137758A priority Critical patent/JP4677122B2/en
Publication of JP2002338372A publication Critical patent/JP2002338372A/en
Application granted granted Critical
Publication of JP4677122B2 publication Critical patent/JP4677122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、メラミン樹脂を材質とする発泡体の内外表面に付与した熱硬化性樹脂を乾燥させる工程に配慮することで、均質な被覆層が形成された炭素化フォームと、該炭素化フォームを製造する方法とに関するものである。
【0002】
【従来の技術】
一般に高い耐熱性または耐薬品性を発現し得るフィルタとして、構成元素が炭素だけである、所謂炭素化フォームが好適に使用されている。
【0003】
前記炭素化フォームは、その使用用途により該フォームの気泡径が制御可能な樹脂発泡体が用いられることが一般的であった。しかし前記樹脂発泡体は、炭化収率、すなわち炭化率が低く、このために加熱により収縮してしまう等の欠点が指摘される。この欠点を解消すべく、特開平6−32677号公報に記載の如く、該樹脂発泡体に所要の樹脂を含浸させることで、該樹脂発泡体炭化時の形状補強を達成し、これにより前記収縮を回避する方法が提案されている。
【0004】
この炭素化フォームの製造は、基材となるべき所要の樹脂発泡体に、ウレタン樹脂、メラミン樹脂、エポキシ樹脂、ポリ塩化ビニル樹脂またはフェノール樹脂等の樹脂を通常の方法で含浸させ、これに加熱処理を加えて該樹脂を乾燥させた後に炭化処理を行なうことで実施される。前記樹脂発泡体に含浸させた各種樹脂を乾燥させる方法としては、例えば熱風炉等を使用した所謂外部加熱や、マイクロ波加熱等を使用した所謂内部加熱といった従来公知の方法が採用可能である。
【0005】
【発明が解決すべき課題】
しかしながら、前記基材の材質として、細かい骨格を形成し得るメラミン樹脂を原料としたメラミン発泡体を用いた場合、前述の乾燥方法を使用すると以下の点が問題として指摘される。すなわち前記外部加熱法を例に取れば、外部加熱により乾燥を行なった場合には、図5に示す如く、所要の樹脂を含浸済みの基材12の外部表面から乾燥が順次開始され、内部に未乾燥状態の含浸された樹脂が時間の経過と共に徐々に乾燥していくことになる。この際、加熱により乾燥する乾燥部位(A)と、加熱の及ばない未乾燥部位(B)との間を加熱境界(図5(b)参照)として、乾燥途中で該未乾燥部位(B)の未乾燥状態の樹脂が、該乾燥部位(A)の乾燥状態となった被覆層14上に移動してしまい、その結果内部と外部とで該被覆層14の被覆厚に差が生じる。この被覆厚の差により、最終的に得られる炭素化フォームに気泡径および骨格太さ、すなわち機械的強度にばらつきが生じて、均質な該炭素化フォームが得られない。
【0006】
また場合によっては前記基材12の骨格間に膜が生成され、該基材12が有する特徴の一つである小さい圧力損失が損なわれると共に、骨格の被覆層が想定した厚さに達せず強度が低下してしまう畏れもある。なおこの現象は内部加熱法を採用した際にも発生し、この場合、内部側から乾燥が進行するため、内部側ほど気泡径が小さく、かつ機械的強度が大きい一方、外部側ほど気泡径が大きく、かつ機械的強度が小さい炭素化フォームとなってしまう。
【0007】
この乾燥方法による外部および内部の被膜厚の偏りは、以下のような機構で生じると推察される。すなわち基材12となるメラミン発泡体は前述の如く、その骨格が非常に細いため、乾燥の完了した部位(A)では該骨格表面が細管の役目を果たし、他の部位(B)の未乾燥状態、言い換えると液状である樹脂が該細管の毛管現象により移動してしまう(図5(c)参照)、というものである。
【0008】
【発明の目的】
この発明は、前述した従来技術に係る炭素化フォームおよびその製造方法に内在していた欠点に鑑み、これを好適に解決すべく提案されたものであって、基材であるメラミン発泡体の内外表面に所要の樹脂を付与し、該所要の樹脂を乾燥させて被覆層を形成する際の乾燥方法として、外部加熱と内部加熱とを併用することで、該所要の樹脂の乾燥を均一に行ない、部位により気泡径および機械的強度のばらつきのない均質な炭素化フォームと、これを製造する方法とを提供することを目的とする。
【0009】
【課題を解決するための手段】
前記課題を克服し、所期の目的を達成するため本願の発明に係る炭素化フォームは、
メラミン樹脂の発泡体を材質とする基材と、該基材の内外表面に全体的に付与し乾燥させた所要の樹脂の被覆層とからなる被覆発泡体を無酸素雰囲気中で加熱して炭化させた炭素化フォームであって、
前記被覆層は、前記所要の樹脂に熱風乾燥による外部加熱と、マイクロ波加熱または高周波加熱による内部加熱が同時に実施されて、全体が均一に乾燥し、かつ均質になっていることを特徴とする。
【0010】
前記課題を克服し、所期の目的を達成するため本願の別の発明に係る炭素化フォームの製造方法は、
メラミン樹脂の発泡体を所要形状に成形した基材を準備し、
前記基材の内外表面に所要の樹脂を全体的に付与し乾燥することで、該内外表面の全体に被覆層が形成された被覆発泡体とし、
前記被覆発泡体を無酸素雰囲気中で加熱して炭化させる炭素化フォームの製造方法であって、
熱風乾燥による外部加熱と、マイクロ波加熱または高周波加熱による内部加熱を同時に実施することで前記所要の樹脂を乾燥させ、これにより前記被覆層の均一な乾燥と均質性とを確保するようにしたことを特徴とする。
【0011】
【発明の実施の形態】
次に、本発明に係る炭素化フォームおよびその製造方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。本願の発明者は、メラミン樹脂を原料とする発泡体(以下、メラミン発泡体と云う)を材質とする基材に対して、所定の樹脂を付与・乾燥させる際の乾燥の際、外部加熱および内部加熱を併用する方法を採用することで、最終的に無酸素雰囲気(後述)下で熱処理を施して炭化することで得られる炭素化フォームの骨格が均一になり、気孔径および機械的強度等の諸物性が均質となることを知見したものである。なお本発明で云う「無酸素雰囲気」とは、例えばアルゴンガス、窒素ガス等の不活性ガス雰囲気、還元雰囲気または酸素が存在しても、加熱により燃焼が促進されず炭化体が得られる程度の雰囲気を云う。
【0012】
本発明の好適な実施例に係る炭素化フォーム10の基となる被覆発泡体16は、図1に示す如く、メラミン発泡体の基材12と、この基材12の所要の内外表面、すなわち該発泡体を形成する骨格の内表面および外表面を被覆する所要の樹脂からなる被覆層14から構成される。そして前記炭素化フォーム10は、被覆発泡体16を無酸素雰囲気下で熱処理を施すことで炭化されて得られる。
【0013】
また実施例に係る炭素化フォーム10の製造方法は、図2に示す如く、基材作製工程S1、被覆層形成工程S2、被覆層乾燥工程S3、炭化工程S4および仕上工程S5からなる。また前記被覆層乾燥工程S3および炭化工程S4の間に、加熱状態化で所定倍率で熱プレスを施す熱プレス工程S6を行なうことで、最終的に得られる炭素化フォームの気泡径を、前記基材12の気泡径以下の任意径に制御し得る。
【0014】
前記基材作製工程S1で作製される基材12の原料としてはメラミン樹脂が採用されているが、該メラミン樹脂を採用することで得られる基材12には、▲1▼非常に細い骨格故の小さい圧力損失、▲2▼加熱した際に骨格表面に造膜がなされず気泡の連通状態を維持したまま炭化が可能、すなわち連通度が低下しない、といった特徴がある。
【0015】
前記基材製造工程S1における発泡・硬化は、具体的には、フリーライズ、所謂スラブ成形や、所要型に従来公知のメラミン発泡体の原料を注入し、クランプ等により密閉させて加熱またはマイクロ波の照射等、従来公知の適宜手段により該原料を発熱・発泡成形し、硬化させる方法が採用される。
【0016】
前記基材12としては、メラミン樹脂を原料として発泡させた多孔質のメラミン発泡体が使用される。前記メラミン発泡体は、主原料であるメラミンに対して、ホルムアルデヒドと、発泡剤、触媒および乳化剤等の添加剤とを配合・充分に混合し、所要形状に発泡成形後に硬化させることで得られる。また気泡率等の物性において、使用されるに充分な数値を満足しているものであれば、市販のメラミン発泡体であっても基材12として採用し得る。この場合、前記基材製造工程S1は省略される。
【0017】
次いで実施される被覆層形成工程S2は、前記基材作製工程S1で作製された基材12の内外表面、すなわち骨格に対して被覆層14を形成する段階である。具体的には所要の樹脂を所定の方法により付与することで形成される。
【0018】
前記所要の樹脂を付与する具体的な方法としては、含浸、スプレーコーティング、ロールコーティングまたはフローコーティング等の従来公知の何れの方法であっても採用可能である。なお付与に先立ち、前記樹脂を希釈化する等の前処理を施して付与性を高めてもよい。殊に前記基材12の内外表面に対して均一に付与が可能で、かつ目付量が容易に制御可能な含浸が好適である。
【0019】
前記被覆層14は、前記基材12の内外表面を被覆することで、以下の作用を発現して物性を改善・変化させるものである。▲1▼および▲2▼については熱による炭化前の被覆発泡体16に係る内容であり、▲3▼および▲4▼については最終的に得られる炭素化フォームに係る内容となっている。
▲1▼前記被覆発泡体16に後述する熱プレスを施すことで所望の気泡径とし得るが、この際、メラミン発泡体からなる基材12だけでは該熱プレス後に元の大きさ・形状に復元してしまう。そこで前記被覆層14を付与し、熱プレスを施す際の処理温度を該被覆層14を形成する熱硬化性樹脂(後述)の熱硬化温度以上として、該熱プレス後の形状を保持し得るようにする。なおこの際の復元の度合いを示す復元率は小さいほどよいが、3%前後以下であれば大きな影響を及ぼさないことが経験的に知られている。
▲2▼前記基材12はメラミン樹脂を原料としたメラミン発泡体であるが、該発泡体は炭化を行なう際の加熱で大きく収縮する、すなわち熱収縮率が大きく、前記被覆発泡体16から炭素化フォーム10を作製した際の形状設計が非常に困難である。そこで前記被覆層14を付与し、炭化の際の加熱による熱収縮を抑制させる。なおこの熱収縮の度合いを示す収縮率は、大きすぎると前述の如く形状設計が困難となり、小さすぎると本来収縮すべき基材12に機械的な歪みが生じてしまうので、30〜50%程度の範囲に設定することが好ましい。
▲3▼前記基材12を内部構造は非常に細い骨格から構成されており、機械的強度が乏しく欠損し易い。そこで前記被覆層14を付与することで、骨格を補強して機械的強度を向上させる。
▲4▼前記被覆層14は基材12の骨格表面に付与されるため、該基材12の気泡径をより小さくする。
すなわち、▲1▼〜▲3▼については前述した基材12の材質であるメラミン発泡体の長所の裏返しである欠点をなくす作用を果たしている。
【0020】
前記被覆層14を形成する物質としては、前述の作用を果たす必要があるため、
(A)前記基材12が熱収縮等を起こさない温度域で、該基材12の内外表面に付与し得るよう液状とし得るものであること。
(B)前記基材12の材質であるメラミン発泡体よりも熱収縮率が小さいのたは同等であること。
(C)後述する熱レスを施すことで気泡径を任意に制御する場合、前記基材12が熱収縮を起こさない温度域で熱硬化を起こす、すなわち熱硬化温度を有する樹脂であること。
といった条件を達成する必要がある。このような条件を併有する樹脂としては、フェノール樹脂またはメラミン樹脂等の熱硬化性樹脂が好適である。
【0021】
そして次の被覆層乾燥工程S3で前記基材12上に付与された所定の樹脂は、該樹脂の乾燥可能温度の温度で乾燥される。この乾燥を行なわないと、後述する炭化工程S4での炭化が均一に行なわれなかったり、熱プレス工程S6が行なわれる際、樹脂から形成される被覆層14が該熱プレスを行なうプレス機等のプレス面に付着してしまうことがあるので注意が必要である。
【0022】
本被覆層乾燥工程S3を実施する手段としては、これまでの工程を経て得られた被覆発泡体16を、部位による温度差を一定以下に抑えるように均一に加熱する、例えば熱風乾燥機等による外部加熱と、マイクロ波加熱または高周波加熱等による内部加熱とを同時に行なう方法が挙げられる。
【0023】
前述した部位による温度差は、10℃以内であれば該温度差による樹脂の毛管現象による移動を抑制し得る。温度差が10℃を越えてしまう場合には、加熱の進行が大きい方の、すなわち温度の高い部位の樹脂の相変化(流動体から固体へ)に伴う温度の一定化により、加熱進行の小さい方、すなわち温度の低い部位における樹脂の相変化が開始されず、該両部位によって流動体状態および固体状態の樹脂が共存してしまうことになる。この状態下においては、毛管現象による樹脂の移動が発生してしまい、その結果内部構造が不均質となってしまう。
【0024】
ここまでに施された基材作製工程S1、被覆層形成工程S2および被覆層乾燥工程S3により、前記基材12から、炭素化フォーム10を製造する基となる被覆発泡体16を得ることができる。
【0025】
前記炭化工程S4は、所定倍率でプレスの完了した被覆発泡体16をアルゴンガス等の無酸素雰囲気下で1,000℃程度に加熱し、炭化させる工程である。加熱温度については殊に制限はないが、炭素の昇華抑制と製造コスト等との点から3,000℃を下回る温度域での実施が好適である。またこの温度域内であれば、温度が高いほど前記炭素の結晶化が促進され、その結果より高い機械的強度の達成が期待できる。
【0026】
最終的に施される仕上工程S5では、前記炭素化フォーム10に対して、所定形状への研磨および所定の検査が施される工程であり、この工程S5を経ることで最終製品たる炭素化フォーム10が完成する。
【0027】
本発明の炭素化フォームは、そのままフォームとして利用も可能であるが、この他、例えば所定の機能を付与するフィルタ基材や、所定の触媒を付与する高温耐熱性および耐薬品性を有する触媒担体等としても好適に利用し得る。
【0028】
また最終的に得られる炭素化フォームの気泡径を、前記基材12の気泡径以下の任意径に制御することを目的として、前記被覆層乾燥工程S3および炭化工程S4の間に、加熱状態化で所定倍率で熱プレスを施す熱プレス工程S6を行なうようにしてもよい。この熱プレス工程S6は、前記被覆発泡体16に掛けながら所定倍率にプレスする工程である。この気泡径は前記プレス倍率に伴って変化するものであり、基本的に該プレス倍率が2倍の時には該気泡径は半分に、10倍の時には1/10程度に圧縮される。なお前述のプレスは、製造工程によるが基本的にフォームの高さ方向を縮める向きに施されるので、前記気泡径の収縮も該方向で顕著に表れ、該プレス方向に関係のない方向では大きな収縮が見られない。
【0029】
本熱プレス工程S6を実施する場合、前記樹脂としては、基材12のプレス後の復元率を抑える必要があるが、前述のフェノール樹脂またはメラミン樹脂等の熱硬化性樹脂であれば問題ない。
【0030】
また本熱プレス工程S6を実施する場合、前記被覆層乾燥工程S3における乾燥温度は、前記樹脂として使用される熱硬化性樹脂が硬化しないように前記被覆層14を形成する該熱硬化性樹脂の熱硬化温度未満に設定する必要がある。この温度以上で乾燥を行なうと、前記熱硬化性樹脂から形成された被覆層14が完全に硬化してしまい、本熱プレス工程S6のプレス時に破壊されてしまうためである。
【0031】
【実験例】
以下に実施例に係る炭素化フォームの製造方法と、この方法により得られた炭素化フォームの骨格の太さに起因する物性、すなわち弾性および機械的強度等の評価についての実験例を示すが、本発明に係る炭素化フォームおよびその製造方法は、この実験例に限定されるものではない。
【0032】
基本的に基材として市販メラミン発泡体(汎用のメラミン発泡体(BASF製;寸法15×15×2cm))を使用して、これに熱硬化性樹脂としてのフェノール樹脂(商品名 PE-201-L;大日本インキ化学工業製)を乾燥時目付量0.012g/cm3となるように付与した。そして実験例、比較例1および比較例2について、表1に記載の方法に従って乾燥を行ない、実験例については10倍プレス、各比較例については2倍プレスを施した後にアルゴン雰囲気下で、温度1,000℃、2時間の条件で炭化を行なって炭素化フォームを夫々得た。そして前記実験例並びに比較例1および比較例2について、上表面、下表面および内部の温度と、乾燥に要した時間と、取り扱い等の直接接触による強度とを測定または確認した。更に得られた夫々の被覆発泡体および炭素化フォームの骨格の状態を、略中心線で切断し、該切断断面を目視(付与されるフェノール樹脂の色調)および走査型電子顕微鏡(以下SEMと云う)(実施例については、全体が均質であるので典型的な構造を有する部分を、比較例については、樹脂の毛管現象による移動により色調の薄くなった部位を夫々撮影)により確認した。なお乾燥手段として用いた各方法の内容は以下の通りである。
・実験例(外部加熱および内部加熱:温度100℃の条件の熱風乾燥機と、出力1kwの条件でマイクロ波の照射とを同時に4分間の乾燥を実施する。
・比較例1(外部加熱):温度100℃、30分間の条件で、熱風乾燥機の使用により実施する。
・比較例2(内部加熱):出力1kw、4分間の条件でマイクロ波を照射して実施する。
【0033】
【表1】

Figure 0004677122
【0034】
(結果)
外部加熱または内部加熱だけにより乾燥を施した場合、前記被覆発泡体の段階で、図3に示す如く、被覆層を形成するフェノール樹脂の黄色の濃淡がはっきりと確認され、全体に均一な黄色となっている実験例(図3(a)参照)に較べ、該外部加熱の場合、外側の黄色が濃く(図3(b)参照)、また該内部加熱の場合、反対に内側の黄色が濃く(図3(c)参照)、すなわち加熱により先に乾燥がなされる側にフェノール樹脂が移動していることが確認された。また炭化を施して得られる炭素化フォームのついても、図4に示す如く、実験例に係る炭素化フォームでは均一な骨格が形成されている(図4(a)参照)ことが確認されているのに対して、比較例に係る炭素化フォームでは骨格間に膜の生成が確認された(図4(b)参照)。図4(b)に係るSEM写真は比較例1に係る炭素化フォームのものであるが、比較例1および比較例2では大きな差が確認されなかったため、比較例1に係るSEM写真だけを採用した。なお図4に係るSEM写真において、夫々の骨格間隙間の大きさの差違は前述したプレス倍率の違いにより生じたものである。
【0035】
また強度についても、前述の骨格の太さを反映し、比較例1および比較例2に係る炭素化フォームが接触するだけで欠損が生じたり、触感が不良であったりするのに対して、実験例に係る炭素化フォームは問題を生じなかった。更に加熱時間についても、実験例に係る炭素化フォームは、比較例1および比較例2に係る炭素化フォームが夫々30分間および4分間の乾燥時間で充分な乾燥を達成し得なかったのに対して、4分間の乾燥時間で充分な乾燥を達成した。
【0036】
【発明の効果】
以上説明した如く、本発明に係る炭素化フォームおよびその製造方法によれば、メラミン発泡体の基材上に付与される所要の樹脂の乾燥を、熱風乾燥による外部加熱およびマイクロ波加熱または高周波加熱による内部加熱で同時に実施することで、該所要の樹脂の不均一な乾燥を回避し、これにより均質な被膜層を形成し、これにより気泡径が均一かつ強い機械的強度を有すると共に、圧力損失を損なうことがない炭素化フォームを製造し得る。また乾燥に必要とされる時間を短縮し、製造コストを低減する効果も期待できる。
【図面の簡単な説明】
【図1】本発明の好適な実施例に係る炭素化フォームを示す内部の構造図である。
【図2】実施例に係る炭素化フォームを製造する工程を示すフローチャート図である。
【図3】実験に係る実験例と、比較例とから得られる被覆発泡体を切断して内部の色の状態(基材に付与されたフェノール樹脂の厚さ)を表す概略断面図である。
【図4】実験に係る実験例と、比較例1とから得られる炭素化フォームの骨格の様子および構造を夫々示す走査型電子顕微鏡写真である。
【図5】基材上に樹脂を付与した後、不均一な加熱を施して該加熱による温度差が大きく、加熱境界を挟んで乾燥して被膜層となった部位Aと、乾燥が完了せず樹脂が存在する部位Bとが併存する際の該樹脂の動きを示す概略図である。
【符号の説明】
12 基材
14 被覆層
16 被覆発泡体[0001]
BACKGROUND OF THE INVENTION
The present invention considers a process of drying a thermosetting resin applied to the inner and outer surfaces of a foam made of melamine resin, so that a carbonized foam having a uniform coating layer formed thereon, And a method of manufacturing.
[0002]
[Prior art]
In general, a so-called carbonized foam in which the constituent element is only carbon is suitably used as a filter that can exhibit high heat resistance or chemical resistance.
[0003]
As the carbonized foam, a resin foam in which the foam diameter of the foam can be controlled depending on the intended use is generally used. However, the resin foam has a low carbonization yield, that is, a carbonization rate, and thus has disadvantages such as shrinkage due to heating. In order to eliminate this defect, as described in JP-A-6-32677, the resin foam is impregnated with a required resin, thereby achieving shape reinforcement during carbonization of the resin foam, and thereby the shrinkage. A method for avoiding this has been proposed.
[0004]
This carbonized foam is produced by impregnating a resin foam such as a urethane resin, a melamine resin, an epoxy resin, a polyvinyl chloride resin, or a phenol resin by a usual method in a required resin foam to be a base material and heating it. After the treatment is applied and the resin is dried, the carbonization treatment is performed. As a method for drying various resins impregnated in the resin foam, a conventionally known method such as so-called external heating using a hot air furnace or so-called internal heating using microwave heating or the like can be employed.
[0005]
[Problems to be Solved by the Invention]
However, when a melamine foam made from a melamine resin capable of forming a fine skeleton is used as a material of the base material, the following points are pointed out as problems when the above-described drying method is used. That is, taking the external heating method as an example, when drying is performed by external heating, drying is sequentially started from the outer surface of the base material 12 impregnated with the required resin, as shown in FIG. The impregnated resin in an undried state is gradually dried over time. At this time, the portion between the dry portion (A) that is dried by heating and the undried portion (B) that is not heated is used as a heating boundary (see FIG. 5B), and the undried portion (B) is being dried. The undried resin moves onto the coating layer 14 in the dry state (A), and as a result, the coating thickness of the coating layer 14 is different between the inside and the outside. Due to the difference in coating thickness, the carbonized foam finally obtained varies in cell diameter and skeleton thickness, that is, mechanical strength, so that the uniform carbonized foam cannot be obtained.
[0006]
Further, in some cases, a film is formed between the skeletons of the base material 12, and the small pressure loss that is one of the characteristics of the base material 12 is impaired, and the strength of the skeleton coating layer does not reach the assumed thickness. There is also a fear that will decrease. This phenomenon also occurs when the internal heating method is employed. In this case, since the drying proceeds from the inside, the bubble diameter is smaller and the mechanical strength is larger on the inner side, whereas the bubble diameter is larger on the outer side. The carbonized foam is large and has low mechanical strength.
[0007]
It is inferred that the unevenness of the film thickness inside and outside due to this drying method is caused by the following mechanism. That is, as described above, the melamine foam used as the base material 12 has a very thin skeleton, so that the surface of the skeleton serves as a capillary in the dried portion (A), and the other portion (B) is not dried. The state, in other words, the liquid resin moves due to the capillary action of the capillaries (see FIG. 5C).
[0008]
OBJECT OF THE INVENTION
In view of the disadvantages inherent in the above-described prior art carbonized foam and the method for producing the same, the present invention has been proposed to suitably solve this problem, and the inside and outside of the melamine foam as a base material is proposed. As a drying method for forming a coating layer by applying the required resin to the surface and drying the required resin, the required resin is uniformly dried by using both external heating and internal heating. An object of the present invention is to provide a homogeneous carbonized foam having no variation in cell diameter and mechanical strength depending on the part, and a method for producing the same.
[0009]
[Means for Solving the Problems]
In order to overcome the above problems and achieve the intended purpose, the carbonized foam according to the present invention is:
A coated foam consisting of a base material made of a melamine resin foam and a desired resin coating layer applied to the inner and outer surfaces of the base material and dried is heated and carbonized by heating in an oxygen-free atmosphere. Carbonized foam,
The coating layer includes an external heating by hot air Drying the desired resin, it is carried out inside the heating and at the same time by microwave heating or radio frequency heating, that the whole is dried uniformly, and became homogeneous Features.
[0010]
In order to overcome the above-mentioned problems and achieve the intended purpose, a method for producing a carbonized foam according to another invention of the present application,
Prepare a base material in which the foam of melamine resin is molded into the required shape,
By providing and drying the required resin on the inner and outer surfaces of the base material as a whole, a coated foam in which a coating layer is formed on the entire inner and outer surfaces,
A method for producing a carbonized foam in which the coated foam is heated and carbonized in an oxygen-free atmosphere,
And external heating by Neppuinui 燥, drying the desired resin by simultaneously implementing the internal heating by microwave heating or radio frequency heating, thereby to ensure the uniform drying and homogeneity of the coating layer It is characterized by that.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the carbonized foam and the method for producing the same according to the present invention will be described below with reference to the accompanying drawings by way of preferred examples. The inventor of the present application provides a base material made of a foam made from a melamine resin (hereinafter referred to as a melamine foam), external heating and heating when applying and drying a predetermined resin. By adopting a method that uses internal heating together, the carbonized foam skeleton obtained by carbonizing by heat treatment under an oxygen-free atmosphere (described later) becomes uniform, pore diameter, mechanical strength, etc. It has been found that the physical properties of are uniform. The “oxygen-free atmosphere” as used in the present invention is, for example, an atmosphere in which an inert gas atmosphere such as argon gas or nitrogen gas, a reducing atmosphere, or oxygen is present, and combustion is not accelerated by heating and a carbide is obtained. Say the atmosphere.
[0012]
As shown in FIG. 1, a coated foam 16 on which a carbonized foam 10 according to a preferred embodiment of the present invention is based includes a melamine foam base 12 and a required inner and outer surface of the base 12, that is, the It is comprised from the coating layer 14 which consists of required resin which coat | covers the inner surface and outer surface of the frame | skeleton which forms a foam. The carbonized foam 10 is obtained by carbonizing the coated foam 16 by performing a heat treatment in an oxygen-free atmosphere.
[0013]
Moreover, the manufacturing method of the carbonized foam 10 which concerns on an Example consists of base material preparation process S1, coating layer formation process S2, coating layer drying process S3, carbonization process S4, and finishing process S5, as shown in FIG. Further, by performing a hot pressing step S6 in which a hot pressing is performed at a predetermined magnification in a heated state between the coating layer drying step S3 and the carbonization step S4, the cell diameter of the carbonized foam finally obtained is set to It can be controlled to an arbitrary diameter equal to or smaller than the bubble diameter of the material 12.
[0014]
Melamine resin is adopted as a raw material of the base material 12 produced in the base material production step S1, but the base material 12 obtained by adopting the melamine resin has (1) a very thin skeleton. There is a feature that the pressure loss is small, and (2) the film is not formed on the surface of the skeleton when heated, and carbonization is possible while maintaining the communication state of bubbles, that is, the degree of communication is not lowered.
[0015]
Specifically, the foaming / curing in the substrate manufacturing step S1 is performed by free rise, so-called slab molding, or by injecting a known melamine foam raw material into a required mold, and sealing or heating with a clamp or the like. A method of exothermic, foaming and curing the raw material by a conventionally known appropriate means such as irradiation of the above is employed.
[0016]
As the substrate 12, a porous melamine foam obtained by foaming melamine resin as a raw material is used. The melamine foam is obtained by blending and sufficiently mixing formaldehyde and additives such as a foaming agent, a catalyst and an emulsifier with melamine as a main raw material, and curing the foamed product after foam molding. In addition, a commercially available melamine foam can be adopted as the base material 12 as long as it satisfies a numerical value sufficient to be used in physical properties such as a bubble ratio. In this case, the base material manufacturing step S1 is omitted.
[0017]
Next, the coating layer forming step S2 to be performed is a step of forming the coating layer 14 on the inner and outer surfaces of the base material 12 produced in the base material production step S1, that is, the skeleton. Specifically, it is formed by applying a required resin by a predetermined method.
[0018]
As a specific method for applying the required resin, any conventionally known method such as impregnation, spray coating, roll coating or flow coating can be employed. Prior to application, pre-treatment such as diluting the resin may be applied to improve the application. In particular, impregnation that can be uniformly applied to the inner and outer surfaces of the substrate 12 and whose basis weight can be easily controlled is preferable.
[0019]
The coating layer 14 covers the inner and outer surfaces of the base material 12 to express the following actions and improve / change physical properties. (1) and (2) are contents related to the coated foam 16 before carbonization by heat, and (3) and (4) are contents related to the finally obtained carbonized foam.
(1) The coated foam 16 can be formed into a desired cell diameter by subjecting the coated foam 16 to a later-described hot press. At this time, the substrate 12 made of melamine foam alone is restored to its original size and shape after the hot press. Resulting in. Therefore, it is possible to maintain the shape after the heat pressing by applying the coating layer 14 and setting the processing temperature at the time of hot pressing to be equal to or higher than the thermosetting temperature of a thermosetting resin (described later) forming the coating layer 14. To. It should be noted that the smaller the restoration rate indicating the degree of restoration at this time, the better. However, it is empirically known that there is no significant effect if it is about 3% or less.
(2) The substrate 12 is a melamine foam made of melamine resin as a raw material, and the foam is greatly shrunk by heating at the time of carbonization, that is, has a large thermal shrinkage rate. It is very difficult to design the shape when the molded foam 10 is produced. Therefore, the coating layer 14 is provided to suppress thermal shrinkage due to heating during carbonization. If the shrinkage rate indicating the degree of heat shrinkage is too large, the shape design becomes difficult as described above, and if it is too small, mechanical distortion occurs in the base material 12 that should be shrunk, so about 30 to 50%. It is preferable to set in the range.
(3) The internal structure of the substrate 12 is composed of a very thin skeleton, and the mechanical strength is poor and the substrate 12 is easily damaged. Therefore, the coating layer 14 is applied to reinforce the skeleton and improve the mechanical strength.
(4) Since the coating layer 14 is applied to the skeleton surface of the substrate 12, the bubble diameter of the substrate 12 is further reduced.
That is, (1) to (3) have the effect of eliminating the disadvantages that are the reverse of the advantages of the melamine foam, which is the material of the substrate 12 described above.
[0020]
As the material forming the coating layer 14, it is necessary to fulfill the above-described action.
(A) The base material 12 can be in a liquid state so that it can be applied to the inner and outer surfaces of the base material 12 in a temperature range where heat shrinkage or the like does not occur.
(B) It is equivalent that the thermal contraction rate is smaller than that of the melamine foam which is the material of the substrate 12.
(C) When to arbitrarily control the bubble size by performing heat up less which will be described later, said base 12 causes the thermally cured at a temperature range that does not cause thermal shrinkage, i.e. a resin having a thermosetting temperature.
It is necessary to achieve such a condition. As the resin having both of these conditions, a thermosetting resin such as a phenol resin or a melamine resin is suitable.
[0021]
Then, the predetermined resin applied on the substrate 12 in the next coating layer drying step S3 is dried at a temperature at which the resin can be dried. If this drying is not performed, carbonization in the carbonization step S4, which will be described later, is not performed uniformly, or when the hot press step S6 is performed, the coating layer 14 formed from a resin is used in a press machine or the like that performs the hot press. Care must be taken because it may adhere to the press surface.
[0022]
As a means for carrying out the present coating layer drying step S3, the coated foam 16 obtained through the previous steps is uniformly heated so as to keep the temperature difference depending on the region below a certain level, for example, by a hot air dryer or the like. Examples include a method in which external heating and internal heating by microwave heating or high-frequency heating are performed simultaneously.
[0023]
If the temperature difference by the site | part mentioned above is less than 10 degreeC, the movement by the capillary phenomenon of resin by this temperature difference can be suppressed. When the temperature difference exceeds 10 ° C., the heating progress is small due to the higher temperature, that is, the temperature is constant due to the phase change (from fluid to solid) of the resin at the higher temperature. On the other hand, the phase change of the resin at the low temperature portion is not started, and the fluid state resin and the solid state resin coexist through the two portions. Under this condition, resin movement occurs due to capillary action, resulting in inhomogeneous internal structure.
[0024]
By the base material production step S1, the coating layer forming step S2, and the coating layer drying step S3 applied so far, the coated foam 16 that is a base for producing the carbonized foam 10 can be obtained from the base material 12. .
[0025]
The carbonization step S4 is a step in which the coated foam 16 that has been pressed at a predetermined magnification is heated to about 1,000 ° C. in an oxygen-free atmosphere such as argon gas to be carbonized. Although there is no restriction | limiting in particular about heating temperature, The implementation in the temperature range below 3,000 degreeC is suitable from the point of sublimation suppression of carbon, manufacturing cost, etc. Moreover, if it is in this temperature range, crystallization of the said carbon will be accelerated | stimulated, so that higher mechanical strength can be anticipated as a result.
[0026]
In the finishing step S5 to be finally performed, the carbonized foam 10 is subjected to polishing into a predetermined shape and a predetermined inspection, and the carbonized foam as a final product is obtained through this step S5. 10 is completed.
[0027]
The carbonized foam of the present invention can be used as a foam as it is. In addition to this, for example, a filter base material that imparts a predetermined function, and a catalyst carrier that has high-temperature heat resistance and chemical resistance that imparts a predetermined catalyst. Etc. can also be suitably used.
[0028]
Further, for the purpose of controlling the cell diameter of the finally obtained carbonized foam to an arbitrary diameter equal to or less than the cell diameter of the base material 12, the heating state is changed between the coating layer drying step S3 and the carbonization step S4. In step S6, the hot pressing step S6 may be performed in which the hot pressing is performed at a predetermined magnification. This hot pressing step S6 is a step of pressing at a predetermined magnification while being applied to the coated foam 16. The bubble diameter changes with the press magnification. Basically, the bubble diameter is reduced to half when the press magnification is 2 times, and is compressed to about 1/10 when the press magnification is 10. The above-mentioned press is basically applied in a direction that shrinks the height direction of the foam, although depending on the manufacturing process, the shrinkage of the bubble diameter also appears remarkably in that direction, and is large in a direction unrelated to the press direction. There is no contraction.
[0029]
When performing this heat press process S6, it is necessary to suppress the restoration rate after the press of the base material 12 as the resin, but there is no problem as long as it is a thermosetting resin such as the above-described phenol resin or melamine resin.
[0030]
Moreover, when implementing this heat press process S6, the drying temperature in the said coating layer drying process S3 is the thermosetting resin of the said thermosetting resin which forms the said coating layer 14 so that the thermosetting resin used as the said resin may not harden | cure. It is necessary to set it below the thermosetting temperature. This is because if the drying is performed at a temperature higher than this temperature, the coating layer 14 formed from the thermosetting resin is completely cured and destroyed during the pressing in the hot pressing step S6.
[0031]
[Experimental example]
Although the manufacturing method of the carbonized foam according to the example and the physical properties resulting from the thickness of the skeleton of the carbonized foam obtained by this method, that is, an experimental example for evaluation of elasticity, mechanical strength, etc. are shown, The carbonized foam and the manufacturing method thereof according to the present invention are not limited to this experimental example.
[0032]
Basically, a commercially available melamine foam (general-purpose melamine foam (made by BASF; dimensions 15 × 15 × 2 cm)) is used as a base material, and a phenol resin (trade name PE-201-) as a thermosetting resin is used for this. L; manufactured by Dainippon Ink & Chemicals, Inc.) was applied so that the dry weight per unit area was 0.012 g / cm 3 . And about an experimental example, the comparative example 1, and the comparative example 2, it dried according to the method of Table 1, performed about 10 times press about an experimental example, and performed 2 times press about each comparative example, and after temperature in argon atmosphere, Carbonized foams were obtained by carbonization at 1,000 ° C. for 2 hours. And about the said experimental example and the comparative example 1 and the comparative example 2, the temperature of the upper surface, the lower surface, and an inside, the time required for drying, and the intensity | strength by direct contacts, such as handling, were measured or confirmed. Further, the skeleton of each of the obtained coated foam and carbonized foam was cut at a substantially center line, and the cut cross section was visually observed (color tone of the phenol resin provided) and a scanning electron microscope (hereinafter referred to as SEM). (For the example, the part having a typical structure because the whole is homogeneous, and for the comparative example, the portions where the color tone is lightened by the movement of the resin due to capillary action were respectively taken). The contents of each method used as the drying means are as follows.
Experimental Example (External Heating and Internal Heating: Drying is performed simultaneously for 4 minutes by a hot air dryer under the condition of a temperature of 100 ° C. and microwave irradiation under the condition of an output of 1 kw.
Comparative Example 1 (external heating): Performed by using a hot air dryer under conditions of a temperature of 100 ° C. for 30 minutes.
Comparative Example 2 (Internal heating): Performed by irradiating microwaves under conditions of an output of 1 kw for 4 minutes.
[0033]
[Table 1]
Figure 0004677122
[0034]
(result)
When drying is performed only by external heating or internal heating, the shade of yellow color of the phenol resin forming the coating layer is clearly confirmed at the stage of the coated foam, as shown in FIG. Compared to the experimental example (see FIG. 3 (a)), in the case of the external heating, the outside yellow is dark (see FIG. 3 (b)), and in the case of the internal heating, the inside yellow is dark. (See FIG. 3 (c)), that is, it was confirmed that the phenol resin had moved to the side that was previously dried by heating. Further, as for the carbonized foam obtained by carbonization, as shown in FIG. 4, it is confirmed that a uniform skeleton is formed in the carbonized foam according to the experimental example (see FIG. 4 (a)). On the other hand, in the carbonized foam according to the comparative example, formation of a film between the skeletons was confirmed (see FIG. 4B). Although the SEM photograph concerning FIG.4 (b) is a thing of the carbonization foam concerning the comparative example 1, since the big difference was not confirmed by the comparative example 1 and the comparative example 2, only the SEM photograph concerning the comparative example 1 is employ | adopted. did. In the SEM photograph according to FIG. 4, the difference in size between the skeletal gaps is caused by the difference in the press magnification described above.
[0035]
The strength also reflects the thickness of the skeleton, and the carbonized foams according to Comparative Example 1 and Comparative Example 2 are contacted with each other to cause defects or have poor tactile sensations. The carbonized foam according to the example did not cause a problem. Further, regarding the heating time, the carbonized foam according to the experimental example could not achieve sufficient drying with the drying times of 30 minutes and 4 minutes, respectively, according to the comparative examples 1 and 2. Thus, sufficient drying was achieved with a drying time of 4 minutes.
[0036]
【The invention's effect】
As mentioned above has been described, according to the carbonization foams and a manufacturing method thereof according to the present invention, the drying of the required resin applied on the substrate of the melamine foam, or external heating and microwave heating by Neppuinui By simultaneously carrying out internal heating by high frequency heating , avoiding uneven drying of the required resin, thereby forming a uniform coating layer, thereby having a uniform and strong mechanical strength of the bubble diameter, Carbonized foam can be produced without compromising pressure loss. Moreover, the time required for drying can be shortened, and the effect of reducing the manufacturing cost can also be expected.
[Brief description of the drawings]
FIG. 1 is an internal structural view showing a carbonized foam according to a preferred embodiment of the present invention.
FIG. 2 is a flowchart showing a process for producing a carbonized foam according to an embodiment.
FIG. 3 is a schematic cross-sectional view showing an internal color state (thickness of a phenolic resin applied to a base material) by cutting a coated foam obtained from an experimental example according to an experiment and a comparative example.
4 is a scanning electron micrograph showing the skeleton and the structure of the carbonized foam obtained from an experimental example related to the experiment and Comparative Example 1. FIG.
FIG. 5 shows that after application of the resin on the base material, uneven heating is performed, the temperature difference due to the heating is large, and the portion A where the coating layer is dried by sandwiching the heating boundary and drying is completed. It is the schematic which shows the motion of this resin when the site | part B where resin exists without coexisting.
[Explanation of symbols]
12 Substrate 14 Covering layer 16 Covered foam

Claims (6)

メラミン樹脂の発泡体を材質とする基材(12)と、該基材(12)の内外表面に全体的に付与し乾燥させた所要の樹脂の被覆層(14)とからなる被覆発泡体(16)を無酸素雰囲気中で加熱して炭化させた炭素化フォームであって、
前記被覆層(14)は、前記所要の樹脂に熱風乾燥による外部加熱と、マイクロ波加熱または高周波加熱による内部加熱が同時に実施されて、全体が均一に乾燥し、かつ均質になっている
ことを特徴とする炭素化フォーム。
A coated foam comprising a base material (12) made of a melamine resin foam, and a required resin coating layer (14) which is applied to the inner and outer surfaces of the base material (12) and dried. 16) a carbonized foam obtained by heating and carbonizing in an oxygen-free atmosphere,
The covering layer (14) includes an external heating by hot air Drying the desired resin, is carried out inside the heating and at the same time by microwave heating or radio frequency heating, the whole is dried uniformly, and becomes homogeneous Carbonized foam characterized by
前記所要の樹脂は、熱硬化性樹脂である請求項1記載の炭素化フォーム。The carbonized foam according to claim 1 , wherein the required resin is a thermosetting resin. 前記外部加熱がなされる部位の温度と、内部加熱がなされる加熱される部位の温度との差が10℃以内に設定される請求項1または2記載の炭素化フォーム。  The carbonized foam according to claim 1 or 2, wherein a difference between a temperature at a site where the external heating is performed and a temperature at a site where the internal heating is performed is set within 10 ° C. メラミン樹脂の発泡体を所要形状に成形した基材(12)を準備し、
前記基材(12)の内外表面に所要の樹脂を全体的に付与し乾燥することで、該内外表面の全体に被覆層(14)が形成された被覆発泡体(16)とし、
前記被覆発泡体(16)を無酸素雰囲気中で加熱して炭化させる炭素化フォームの製造方法であって、
熱風乾燥による外部加熱と、マイクロ波加熱または高周波加熱による内部加熱を同時に実施することで前記所要の樹脂を乾燥させ、これにより前記被覆層(14)の均一な乾燥と均質性とを確保するようにした
ことを特徴とする炭素化フォームの製造方法。
Prepare a base material (12) in which the foam of melamine resin is molded into the required shape,
By applying the required resin to the inner and outer surfaces of the base material (12) as a whole and drying, a coated foam (16) having a coating layer (14) formed on the entire inner and outer surfaces,
A method for producing a carbonized foam in which the coated foam (16) is carbonized by heating in an oxygen-free atmosphere,
And external heating by Neppuinui 燥, drying the desired resin by simultaneously implementing the internal heating by microwave heating or radio frequency heating, thereby a uniform drying and homogeneity of the coating layer (14) A method for producing a carbonized foam, characterized in that it is secured.
前記所要の樹脂として、熱硬化性樹脂が使用される請求項4記載の炭素化フォームの製造方法。The method for producing a carbonized foam according to claim 4 , wherein a thermosetting resin is used as the required resin. 前記外部加熱がなされる部位および内部加熱がなされる部位の温度差が10℃以内になるよう制御される請求項4または5記載の炭素化フォームの製造方法。  The method for producing a carbonized foam according to claim 4 or 5, wherein the temperature difference between the portion where the external heating is performed and the portion where the internal heating is performed is controlled to be within 10 ° C.
JP2001137758A 2001-05-08 2001-05-08 Carbonized foam and method for producing the same Expired - Fee Related JP4677122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137758A JP4677122B2 (en) 2001-05-08 2001-05-08 Carbonized foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137758A JP4677122B2 (en) 2001-05-08 2001-05-08 Carbonized foam and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002338372A JP2002338372A (en) 2002-11-27
JP4677122B2 true JP4677122B2 (en) 2011-04-27

Family

ID=18984810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137758A Expired - Fee Related JP4677122B2 (en) 2001-05-08 2001-05-08 Carbonized foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP4677122B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051266B (en) 2017-10-05 2022-07-19 旭化成株式会社 Carbon foam, laminated carbon foam, and method for producing laminated carbon foam

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132716A (en) * 1985-12-05 1987-06-16 Mitsui Petrochem Ind Ltd Production of porous carbon material
JPH04349178A (en) * 1991-05-24 1992-12-03 Nisshinbo Ind Inc Low density porous carbon body and production thereof
JP3237003B2 (en) * 1992-07-14 2001-12-10 日清紡績株式会社 Porous carbon material and method for producing the same

Also Published As

Publication number Publication date
JP2002338372A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
US11021402B2 (en) Method of preparing carbon fiber reinforced carbon-silicon carbide composite part
JP4409834B2 (en) Method for producing carbon foam induced by process vacuum
US8057880B2 (en) Non-oxide selectively porous materials
CN104446656A (en) Method for preparing oxidation resistant coating of porous carbon material
JP2004018322A (en) Silicon/silicon carbide composite material and method of producing the same
KR100491022B1 (en) Microporous Ceramics materials and The producing method the same
JP4677122B2 (en) Carbonized foam and method for producing the same
EP0370799B1 (en) Method for sealing carbon and graphite surfaces
CN110980686B (en) Impregnation method of porous carbon material
JP4805474B2 (en) Carbonized foam manufacturing method
KR101859948B1 (en) Manufacturing method of porous ceramic film
CA1221388A (en) Composite refractory foams
KR100444360B1 (en) A Ceramic Article Having Interconnected Pores and Method of Making the Same
KR20020074851A (en) manufacture method of open-cell type matal preform
NL2033277B1 (en) Method for preparing porous ceramic
JPH0383875A (en) Production of porous ceramic structure
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
KR101138440B1 (en) Porous body with silicon carbide enhancement layer and fabrication method thereof
JPS6384614A (en) Filter
JP2003095763A (en) Porous glass and method of manufacturing the same
JPH07118067A (en) Production of expanded graphite formed body
JPH11314968A (en) Glassy carbon board and its production
JP3485716B2 (en) Method for producing sintered negative electrode plate for alkaline storage battery
JPH0624865A (en) Production of porous active carbon molding
JPH0567595B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4677122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees