JP4676771B2 - Method for producing compound semiconductor solar cell - Google Patents

Method for producing compound semiconductor solar cell Download PDF

Info

Publication number
JP4676771B2
JP4676771B2 JP2005014252A JP2005014252A JP4676771B2 JP 4676771 B2 JP4676771 B2 JP 4676771B2 JP 2005014252 A JP2005014252 A JP 2005014252A JP 2005014252 A JP2005014252 A JP 2005014252A JP 4676771 B2 JP4676771 B2 JP 4676771B2
Authority
JP
Japan
Prior art keywords
layer
treatment
hydrogen
type semiconductor
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005014252A
Other languages
Japanese (ja)
Other versions
JP2006005326A (en
Inventor
弘次 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2005014252A priority Critical patent/JP4676771B2/en
Publication of JP2006005326A publication Critical patent/JP2006005326A/en
Application granted granted Critical
Publication of JP4676771B2 publication Critical patent/JP4676771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、化合物半導体太陽電池の製造方法及び製造装置に関し、詳しくはp型半導体層を形成するにあたってセレン化処理或いは硫化処理をする際の方法及び装置に関する。   The present invention relates to a method and an apparatus for manufacturing a compound semiconductor solar cell, and more particularly to a method and an apparatus for performing a selenization process or a sulfidation process in forming a p-type semiconductor layer.

太陽電池には、下記特許文献1に記載されているpn接合の光吸収層を有する化合物半導体太陽電池がある。化合物半導体太陽電池の一般的な構成を図2に示す。図2(a)は、化合物半導体太陽電池の正面図であり、図2(b)はその縦断面図である。この化合物半導体太陽電池(以下、単に太陽電池と称することがある)は、ガラス基板100上に電極層であるモリブデン層102が形成され、さらにモリブデン層102上には、p型半導体層104、n型半導体層106及び透明電極層108がこの順に積層されて形成されている。また、110は、透明電極層108上に形成されたアルミニウムからなる櫛形電極110である。
n型半導体層106は、ZnS又はCdS等からなり、透明電極層108は、ZnO:Al又はIn等からなっている。そして、p型半導体層104として、エネルギー変換効率が高く、低コストであるという利点から、CuInS等のカルコパイライト系の化合物半導体層が用いられている。
As the solar cell, there is a compound semiconductor solar cell having a pn junction light absorption layer described in Patent Document 1 below. A general configuration of a compound semiconductor solar cell is shown in FIG. Fig.2 (a) is a front view of a compound semiconductor solar cell, and FIG.2 (b) is the longitudinal cross-sectional view. In this compound semiconductor solar cell (hereinafter sometimes simply referred to as a solar cell), a molybdenum layer 102 as an electrode layer is formed on a glass substrate 100, and a p-type semiconductor layer 104, n is formed on the molybdenum layer 102. A type semiconductor layer 106 and a transparent electrode layer 108 are laminated in this order. Reference numeral 110 denotes a comb-shaped electrode 110 made of aluminum and formed on the transparent electrode layer 108.
The n-type semiconductor layer 106 is made of ZnS or CdS, and the transparent electrode layer 108 is made of ZnO: Al or In 2 O 3 or the like. As the p-type semiconductor layer 104, a chalcopyrite compound semiconductor layer such as CuInS 2 is used because of its advantages of high energy conversion efficiency and low cost.

上記構成の太陽電池におけるp型半導体層104の製造方法は、まず、ガラス基板102の一面側に、蒸着或いはスパッタリングによってモリブデン層102を形成し、その上にインジウム層と銅層を順に蒸着やメッキによって積層して形成する。その後、インジウム層と銅層が積層されて成るプリカーサを、硫化水素雰囲気中で加熱処理をする方法によって硫化処理し、CuInSのp型半導体層104を形成する。 In the method of manufacturing the p-type semiconductor layer 104 in the solar cell having the above structure, first, the molybdenum layer 102 is formed on one surface side of the glass substrate 102 by vapor deposition or sputtering, and then an indium layer and a copper layer are sequentially vapor deposited or plated thereon. Are laminated. Thereafter, a precursor formed by laminating an indium layer and a copper layer is subjected to a sulfidation process by a method of performing a heat treatment in a hydrogen sulfide atmosphere to form a p-type semiconductor layer 104 of CuInS 2 .

ところで、高性能の太陽電池を製造するにあたって、p型半導体層が均一な組成の良好な結晶であることは不可欠であり、均一な組成のp型半導体層を形成するためには、プリカーサ全体が硫化水素と反応して、硫化処理が完了していることが必要である。   By the way, in manufacturing a high-performance solar cell, it is indispensable that the p-type semiconductor layer is a good crystal having a uniform composition. In order to form a p-type semiconductor layer having a uniform composition, the entire precursor is It is necessary that the sulfurization process is completed by reacting with hydrogen sulfide.

硫化処理の完了時間は、プリカーサの形成方法や、硫化処理の温度等の条件によっても大きく異なるので、これらの条件を変える度に硫化処理の完了時間を確認する必要がある。しかしながら、硫化処理の進行状況は、p型半導体層の外観等によって簡単に認識できないので、従来は、硫化処理の途中で所定時間おき(例えば5分おき)に試料を取り出し、その切断面を電子顕微鏡で観察し判断する、或いはp型半導体層の成分を分析し分析結果から判断する等の作業を行って硫化処理条件を事前に確認していた。このように、従来の硫化処理の進行状況を確認する方法は、多大な労力と時間のかかる煩わしい作業となっている。
この煩雑さは、p型半導体層としてCuInSeを形成するために、インジウム層と銅層とからなるプリカーサを、セレン化水素雰囲気中で加熱処理をするセレン化処理の場合も同様に当てはまる。
The completion time of the sulfiding treatment varies greatly depending on conditions such as the precursor formation method and the temperature of the sulfiding treatment, and therefore it is necessary to check the completion time of the sulfiding treatment every time these conditions are changed. However, since the progress of the sulfidation process cannot be easily recognized by the appearance of the p-type semiconductor layer or the like, conventionally, a sample is taken out every predetermined time (for example, every 5 minutes) during the sulfidation process, and the cut surface is taken as an electron. Sulfurization conditions were confirmed in advance by performing operations such as observing and judging with a microscope, or analyzing components of the p-type semiconductor layer and judging from analysis results. As described above, the conventional method for confirming the progress of the sulfidation process is a troublesome work requiring a lot of labor and time.
This complexity also applies to the selenization process in which a precursor composed of an indium layer and a copper layer is heated in a hydrogen selenide atmosphere in order to form CuInSe 2 as a p-type semiconductor layer.

特開2001−148490号公報JP 2001-148490 A

この様に、従来の化合物半導体太陽電池の製造方法における硫化処理又はセレン化処理の際に、多大な労力を必要とするのは、その硫化処理又はセレン化処理の進行状況を簡単に把握できないことにある。
そこで、本発明の課題は、硫化処理又はセレン化処理を施してp型半導体層を形成する際に、硫化処理又はセレン化処理の進行状況を簡単に把握し得る化合物半導体太陽電池の製造方法を提供することにある。
As described above, when the sulfurization treatment or selenization treatment in the conventional method for manufacturing a compound semiconductor solar cell is performed, it is difficult to easily grasp the progress of the sulfurization treatment or selenization treatment. It is in.
An object of the present invention, when forming the p-type semiconductor layer is subjected to sulfurization treatment or selenization process, producing how a compound semiconductor solar cell can easily understand the progress of the sulfidation or selenium treatment Is to provide.

本発明者は、基板の一面側に形成された電極層上のインジウム層と銅層とから成るプリカーサをセレン化水素雰囲気中、或いは硫化水素雰囲気中で加熱処理する際には、質量が比較的軽く、拡散しやすい水素ガスが副生成物として生成されることに着目し、本願発明に到達した。
すなわち、本発明による化合物半導体太陽電池の製造方法は、基板の一面側に形成された電極層上に、銅(Cu)層とインジウム(In)層とが積層されて成るプリカーサを、硫化水素雰囲気又はセレン化水素雰囲気中で加熱処理して形成した、CuInS2又はCuInSe2から成るp型半導体層と、前記p型半導体層の一面側に密着して形成したn型半導体層とを具備する化合物半導体太陽電池を製造する際に、前記加熱処理を、硫化水素又はセレン化水素とCu及びInとの反応の進行状況をモニターしつつ施すべく、前記反応によって発生する水素ガスの分圧を測定し、水素ガスの分圧の測定を加熱処理の開始から終了まで連続して行い、水素ガスの分圧が、ピークとなりバックグランドレベルに戻ったときを、前記p型半導体層の形成反応完了時と判断することを特徴とする。これにより、効率良く硫化処理又はセレン化処理の進行状況を知ることができる。
The inventor of the present invention has a relatively low mass when a precursor composed of an indium layer and a copper layer on an electrode layer formed on one side of a substrate is heat-treated in a hydrogen selenide atmosphere or a hydrogen sulfide atmosphere. Focusing on the fact that light and easily diffusing hydrogen gas is produced as a by-product, the present invention has been reached.
That is, in the method for manufacturing a compound semiconductor solar battery according to the present invention, a precursor formed by laminating a copper (Cu) layer and an indium (In) layer on an electrode layer formed on one side of a substrate is provided with a hydrogen sulfide atmosphere. Alternatively, a compound comprising a p-type semiconductor layer made of CuInS 2 or CuInSe 2 formed by heat treatment in a hydrogen selenide atmosphere and an n-type semiconductor layer formed in close contact with one surface side of the p-type semiconductor layer when manufacturing a semiconductor solar cell, said heat treatment, to apply while monitoring the progress of the reaction with hydrogen sulfide or hydrogen selenide and Cu and in, and measure the partial pressure of hydrogen gas generated by the reaction The hydrogen gas partial pressure is continuously measured from the start to the end of the heat treatment, and when the hydrogen gas partial pressure peaks and returns to the background level, the p-type semiconductor layer It is determined that the formation reaction is completed . Thereby, it is possible to know the progress of the sulfurization treatment or selenization treatment efficiently.

かる本発明において、水素ガスの分圧の測定を加熱処理の開始から終了まで連続して行うことによって、硫化処理又はセレン化処理の進行状況を連続して把握できる。
また、水素ガスの分圧の測定を質量分析計で行うことによって、簡単に水素ガスの分圧を測定できる。
In either mow the present invention, by performing in succession from the beginning to the end of the heating process the measurement of the partial pressures of hydrogen gas, can be grasped in succession the progress of sulfidation or selenium treatment.
Moreover, the partial pressure of hydrogen gas can be easily measured by measuring the partial pressure of hydrogen gas with a mass spectrometer.

本発明によれば、硫化処理又はセレン化処理の際に、硫化水素又はセレン化水素と銅及びインジウムとの反応によって水素が発生する。この水素の分圧を測定することによって、その時点における硫化処理又はセレン化処理の処理速度を把握できる。
すなわち、水素分圧が高い場合には、硫化水素又はセレン化水素と銅及びインジウムとの反応が急速に進行している状態を示す。かかる反応速度が速過ぎると、形成されたp型半導体層内に空孔が形成され易く、良好な効率の太陽電池を得ることができない。
一方、水素分圧が低い場合には、硫化水素又はセレン化水素と銅及びインジウムとの反応の進行が遅い状態を示す。かかる反応速度が遅過ぎると、硫化処理又はセレン化処理が長時間となり、太陽電池の生産性が低下する。
このため、硫化処理又はセレン化処理の際に、その水素分圧が適度の範囲となる様に、硫化水素又はセレン化水素の濃度や温度等を調整できる。
その結果、形成されたp型半導体層内に空孔が形成されず且つ硫化処理又はセレン化処理を適度の時間で行うことができ、生産性を低下させることなく良好な効率の太陽電池を製造できる。
According to the present invention, hydrogen is generated by the reaction of hydrogen sulfide or hydrogen selenide with copper and indium during the sulfurization treatment or selenization treatment. By measuring the partial pressure of hydrogen, it is possible to grasp the treatment speed of the sulfurization treatment or selenization treatment at that time.
That is, when the hydrogen partial pressure is high, the reaction of hydrogen sulfide or hydrogen selenide with copper and indium is rapidly progressing. When the reaction rate is too high, vacancies are easily formed in the formed p-type semiconductor layer, and a solar cell with good efficiency cannot be obtained.
On the other hand, when the hydrogen partial pressure is low, the reaction of hydrogen sulfide or hydrogen selenide with copper and indium is slow. If the reaction rate is too slow, the sulfurization treatment or selenization treatment takes a long time, and the productivity of the solar cell decreases.
For this reason, the concentration, temperature, and the like of hydrogen sulfide or hydrogen selenide can be adjusted so that the hydrogen partial pressure falls within an appropriate range during the sulfurization treatment or selenization treatment.
As a result, vacancies are not formed in the formed p-type semiconductor layer, and sulfidation or selenization can be performed in an appropriate time, and a solar cell with good efficiency is manufactured without reducing productivity. it can.

本発明に係る化合物半導体太陽電池(以下、単に太陽電池と称することがある)の製造方法の一例を図3に示す。
図3に示す製造方法では、まず、基板(ガラス基板)100の一面側に、電極層としてのモリブデン層102をスパッタリングによって形成した後、モリブデン層102上にインジウム層103を室温下での蒸着によって形成する。次いで、インジウム層103上に室温下での蒸着によって銅層105を形成し(図3(a)の工程)、インジウム層103及び銅層105から成るプリカーサに、硫化水素雰囲気中で加熱処理をする硫化処理を施すことによって、CuInSのp型半導体層104を形成する(図3(b)の工程)。
An example of a method for producing a compound semiconductor solar cell according to the present invention (hereinafter sometimes simply referred to as a solar cell) is shown in FIG.
In the manufacturing method shown in FIG. 3, first, a molybdenum layer 102 as an electrode layer is formed on one surface side of a substrate (glass substrate) 100 by sputtering, and then an indium layer 103 is deposited on the molybdenum layer 102 by deposition at room temperature. Form. Next, a copper layer 105 is formed on the indium layer 103 by vapor deposition at room temperature (step of FIG. 3A), and the precursor composed of the indium layer 103 and the copper layer 105 is heat-treated in a hydrogen sulfide atmosphere. By performing a sulfidation treatment, a p-type semiconductor layer 104 of CuInS 2 is formed (step of FIG. 3B).

銅層とインジウム層から成るプリカーサを形成するにあたっては、インジウム層を形成した後に銅層を形成しても、銅層を形成した後にインジウム層を形成してもどちらでもよい。さらに、インジウム層と銅層は、蒸着による形成に限らず、スパッタリングやメッキによって形成してもよいし、蒸着、スパッタリング、及びメッキの併用であってもよい。   In forming a precursor composed of a copper layer and an indium layer, the copper layer may be formed after the indium layer is formed, or the indium layer may be formed after the copper layer is formed. Furthermore, the indium layer and the copper layer are not limited to being formed by vapor deposition, but may be formed by sputtering or plating, or may be a combination of vapor deposition, sputtering, and plating.

p型半導体層を形成した後、最適なpn接合の太陽電池が得られるように、p型半導体層に生成された硫化物(Cu)等の不純物を取り除きp型半導体層の特性を適性化して安定した特性とすべく、KCNが5〜10重量%含有された室温(常温)程度のKCN溶液中に、p型半導体層の表面を1〜5分間程度浸漬する。
こうして形成されたp型半導体層上に、化学的溶液析出法によってZnS、或いはCdSから成るn型半導体層106を密着して形成する(図3(c)の工程)。さらに、n型半導体層106上にAlがドープされたZnOから成る透明電極層108を形成する(図3(d)の工程)。その後、透明電極層108上にアルミニウムから成る櫛形電極を形成した後、モリブデン層上に電極端子を形成して太陽電池を得ることができる。
After the p-type semiconductor layer is formed, impurities such as sulfides (Cu X S Y ) generated in the p-type semiconductor layer are removed so that the optimum pn junction solar cell can be obtained. In order to obtain suitable and stable characteristics, the surface of the p-type semiconductor layer is immersed in a KCN solution containing about 5 to 10% by weight of KCN at room temperature (room temperature) for about 1 to 5 minutes.
On the p-type semiconductor layer thus formed, an n-type semiconductor layer 106 made of ZnS or CdS is formed in close contact by a chemical solution deposition method (step of FIG. 3C). Further, a transparent electrode layer 108 made of ZnO doped with Al is formed on the n-type semiconductor layer 106 (step of FIG. 3D). Then, after forming the comb-shaped electrode which consists of aluminum on the transparent electrode layer 108, an electrode terminal can be formed on a molybdenum layer, and a solar cell can be obtained.

図3(b)に示す硫化処理においては、図1に示す処理装置10を用いる。
図1に示す処理装置10では、加熱処理を行うための電気炉(処理室)11に、ガス導入口12とガス排出口13が電気炉11の長手方向に対向して設けられている。ガス導入口12には、硫化水素がアルゴンガス等の不活性ガスと共に電気炉11内へ導入可能に、導入管14が接続されている。また、電気炉11内のガスが、ガス処理設備15へ排出されるように、排出管16を介して電気炉11のガス排出口13とガス処理設備15が接続されている。
そして、排出管16の中途には配管17が接続されており、配管17を介して電気炉11から排出される排気ガスが質量分析計18に導入され、硫化処理と並行して排気ガスの成分を分析可能に設けられている。質量分析計18としては、特に四重極質量分析計が好適である。
In the sulfurization treatment shown in FIG. 3B, the treatment apparatus 10 shown in FIG. 1 is used.
In the processing apparatus 10 shown in FIG. 1, a gas inlet 12 and a gas outlet 13 are provided in an electric furnace (processing chamber) 11 for performing a heat treatment so as to face each other in the longitudinal direction of the electric furnace 11. An inlet pipe 14 is connected to the gas inlet 12 so that hydrogen sulfide can be introduced into the electric furnace 11 together with an inert gas such as argon gas. Further, the gas discharge port 13 of the electric furnace 11 and the gas processing facility 15 are connected via a discharge pipe 16 so that the gas in the electric furnace 11 is discharged to the gas processing facility 15.
A pipe 17 is connected in the middle of the discharge pipe 16. Exhaust gas discharged from the electric furnace 11 is introduced into the mass spectrometer 18 through the pipe 17, and the exhaust gas components are parallel to the sulfidation treatment. Is provided for analysis. As the mass spectrometer 18, a quadrupole mass spectrometer is particularly suitable.

処理装置10を用いて硫化処理を行うには、一面側にモリブデン層とプリカーサを形成した基板200(図3(a)参照)を、電気炉11内に収容して所定の温度(例えば、550℃)に加熱しながら、アルゴンガス等の不活性ガス中に硫化水素(HS)が所定濃度(例えば、5vol%)加えられた気体を電気炉11内へ流すことで行なわれる。この際の硫化処理の化学反応式は次の式で表される。 In order to perform the sulfidation using the processing apparatus 10, a substrate 200 (see FIG. 3A) on which a molybdenum layer and a precursor are formed on one side is accommodated in an electric furnace 11 and a predetermined temperature (for example, 550). This is performed by flowing a gas in which hydrogen sulfide (H 2 S) is added at a predetermined concentration (for example, 5 vol%) into an inert gas such as an argon gas while being heated to 0 ° C.). In this case, the chemical reaction formula of the sulfiding treatment is expressed by the following formula.

上記化学式からわかるように、硫化処理の際には副生成物として水素ガス(H)が生成されるので、硫化処理を行いながら並行して質量分析計18によって電気炉11から排出される水素ガスの分圧を連続して測定する。
水素ガスは比較的軽いガスで、拡散性が良いので、電気炉11から速やかに質量分析計18へと導入される。従って水素ガスは、電気炉11内での生成と時間的な差を生じることなく質量分析計18に到達するので、水素ガスの分圧の変化は、Cu層とIn層とから成るプリカーサと、硫化水素との反応の進行具合による変化としてとらえることができる。そして、水素ガス分圧を観察することで、硫化処理と並行して同時期に、硫化処理の進行状況をモニターし、p型半導体層の形成状態を予想することができる。
また、水素ガス分圧がバックグラウンドレベルに戻った時を、プリカーサ全体が硫化水素と反応した、硫化処理の完了時、つまりp型半導体層の形成反応完了時と判断できる。
As can be seen from the above chemical formula, hydrogen gas (H 2 ) is generated as a by-product during the sulfidation treatment, so that hydrogen discharged from the electric furnace 11 by the mass spectrometer 18 in parallel with the sulfidation treatment. The partial pressure of the gas is measured continuously.
Since hydrogen gas is a relatively light gas and has good diffusivity, it is quickly introduced into the mass spectrometer 18 from the electric furnace 11. Accordingly, since the hydrogen gas reaches the mass spectrometer 18 without causing a time difference from the generation in the electric furnace 11, the change in the partial pressure of the hydrogen gas is caused by the precursor composed of the Cu layer and the In layer, It can be understood as a change due to the progress of the reaction with hydrogen sulfide. By observing the hydrogen gas partial pressure, the progress of the sulfidation process can be monitored and the formation state of the p-type semiconductor layer can be predicted at the same time as the sulfidation process.
Further, when the hydrogen gas partial pressure returns to the background level, it can be determined that the entire precursor has reacted with hydrogen sulfide when the sulfidation process is completed, that is, when the formation reaction of the p-type semiconductor layer is completed.

これまで、プリカーサに硫化処理を施す方法について説明したが、プリカーサにセレン化処理を施す場合も、図1に示す処理装置10を適用できる。つまり、基板上に形成された電極層上の、インジウム層と銅層から成るプリカーサに、セレン化水素雰囲気中で加熱処理をするセレン化処理を施し、CuInSe等のp型半導体層を形成する場合も、図1に示す処理装置10を用いて施すことができる。この場合のセレン化処理の化学反応式は、次の式で表される。 So far, the method of performing the sulfuration treatment on the precursor has been described, but the processing apparatus 10 shown in FIG. 1 can also be applied to the case where the precursor is subjected to the selenization treatment. In other words, a precursor composed of an indium layer and a copper layer on the electrode layer formed on the substrate is subjected to a selenization treatment in which a heat treatment is performed in a hydrogen selenide atmosphere to form a p-type semiconductor layer such as CuInSe 2. In this case, it can be applied using the processing apparatus 10 shown in FIG. The chemical reaction formula of the selenization process in this case is represented by the following formula.

上記化学式から分かるように、セレン化処理の際にも、硫化処理と同様、副生成物として水素ガスが生成される。
従って、硫化処理の場合と同様の図1に示す処理装置10を用い、同様の操作によって、電気炉内にモリブデン層と、インジウム層と銅層から成るプリカーサを形成した基板を収容し、これを所定温度に加熱しながら、アルゴン等の不活性ガスと共にセレン化水素を電気炉内に導入することで、プリカーサにセレン化処理を施すことができる。そして、セレン化処理と並行して、質量分析計により電気炉から排出される水素ガスの分圧を測定することで、セレン化処理の進行状況をモニターすることができる。
この場合も水素ガス分圧がバックグラウンドレベルに戻った時を、セレン化処理の完了時、つまりp型半導体層の形成反応完了時と判断できる。
As can be seen from the above chemical formula, hydrogen gas is also generated as a by-product during the selenization process, as in the sulfurization process.
Therefore, by using the processing apparatus 10 shown in FIG. 1 similar to the case of the sulfidation treatment, a substrate on which a precursor made of a molybdenum layer, an indium layer and a copper layer is formed is accommodated in an electric furnace by the same operation. By introducing hydrogen selenide into the electric furnace together with an inert gas such as argon while heating to a predetermined temperature, the precursor can be subjected to selenization. In parallel with the selenization process, the progress of the selenization process can be monitored by measuring the partial pressure of the hydrogen gas discharged from the electric furnace by the mass spectrometer.
Also in this case, the time when the hydrogen gas partial pressure returns to the background level can be determined as the completion of the selenization process, that is, the completion of the formation reaction of the p-type semiconductor layer.

さらに、p型半導体層であるCuInS或いはCuInSe中に、微量のガリウム(Ga)が含有される場合にも本発明は適用できる。つまり、基板上に形成されたモリブデン層上に、ガリウム層をガリウム(Ga)又は硫化ガリウム(GaS)のスパッタリング又は蒸着によって形成した後、インジウム層と銅層を形成する。或いは、モリブデン層上にインジウム層と銅層を形成した後、上記同様にガリウム層を形成する。このような方法により、インジウム及び銅を主とし、微量のガリウムを含むプリカーサを形成し、次いで硫化処理、あるいはセレン化処理を施すことによって、微量のガリウム(Ga)を含有するp型半導体層が形成できる。このときの硫化処理或いはセレン化処理の際にも、本発明による製造方法及び製造装置が適用できる。
このように、プリカーサの種類や形成方法に限定されず、プリカーサを硫化水素雰囲気中或いはセレン化水素雰囲気中で加熱処理することで、硫化処理或いはセレン化処理を施す際に、副生成物として水素ガスが生成される場合に本発明が適用できる。
Furthermore, the present invention can also be applied to a case where a small amount of gallium (Ga) is contained in CuInS 2 or CuInSe 2 that is a p-type semiconductor layer. That is, after a gallium layer is formed on a molybdenum layer formed on a substrate by sputtering or vapor deposition of gallium (Ga) or gallium sulfide (GaS), an indium layer and a copper layer are formed. Alternatively, after forming an indium layer and a copper layer on the molybdenum layer, a gallium layer is formed in the same manner as described above. By such a method, a precursor containing mainly indium and copper and containing a trace amount of gallium is formed, and then a sulfidation treatment or a selenization treatment is performed, whereby a p-type semiconductor layer containing a trace amount of gallium (Ga) is obtained. Can be formed. The production method and production apparatus according to the present invention can also be applied to the sulfurization treatment or selenization treatment at this time.
As described above, the precursor is not limited to the type or formation method, and the precursor is heated in a hydrogen sulfide atmosphere or a hydrogen selenide atmosphere, so that when the sulfur treatment or the selenization treatment is performed, hydrogen is used as a by-product. The present invention can be applied when gas is generated.

本発明によれば、硫化処理或いはセレン化処理と並行して水素ガスの分圧を計測し、計測結果を観察することで、処理と並行して処理の進行状況をモニターすることができ、効率良くp型半導体層の形成状態を予想できる。
また、水素分圧がピークとなるまでの処理時間を知ることで、硫化処理或いはセレン化処理が完了し、均一な結晶に形成されたp型半導体層を効率良く簡単に得ることができる。さらに、ピーク時前に硫化処理或いはセレン化処理を停止すれば、プリカーサが完全に硫化或いはセレン化処理されずに残存しているものも必要に応じて作成できる。
According to the present invention, the progress of the process can be monitored in parallel with the process by measuring the partial pressure of the hydrogen gas in parallel with the sulfurization process or the selenization process and observing the measurement result. The formation state of the p-type semiconductor layer can be predicted well.
In addition, by knowing the processing time until the hydrogen partial pressure reaches a peak, the sulfurization treatment or selenization treatment is completed, and a p-type semiconductor layer formed into a uniform crystal can be obtained efficiently and easily. Further, if the sulfidation or selenization process is stopped before the peak time, a precursor remaining without being completely sulfidized or selenized can be produced as needed.

ガラス基板の一面側に形成したモリブデン層上に、インジウム層と銅層をこの順に、別々に蒸着によって積層し、膜厚760nmのインジウム層と、膜厚540nmの銅層とから成るプリカーサが形成された基板を作成した。この基板を前記処理装置10の電気炉11内に収容して550℃に加熱しながら、アルゴンガス中に硫化水素が5vol%加えられた気体を電気炉内に導入して硫化処理を行った。
図4は、この硫化処理と並行して、四重極質量分析計18で測定した硫化水素ガス(HS)と水素ガス(図ではH(蒸着)で示す)、それぞれの分圧の経時変化を示したグラフである。尚、60分を過ぎたところでHSの電気炉への供給を停止した。
ところで、図4のグラフの縦軸は、質量分析計の検出電流であるイオン電流値で、単位はアンペア(A)であるが、感度係数を乗算することで分圧に換算できる。後述する図5、図6についても同様である。
グラフにおいてHSの分圧の立ち上がりが遅いのは、HSの質量が比較的重く拡散性が悪いため、四重極質量分析計に到達するまでに時間がかかるからと考えられる。
水素ガス分圧の上昇が約30分間にわたり観察されるので、硫化処理の完了までに要する処理時間は約30分であることが分かる。
このことを実証するため、硫化処理と並行して5分おきに試料を取り出し、その試料をICP分析によって組成分析するという確認を行った。その結果を表1に示す。
On the molybdenum layer formed on one surface of the glass substrate, an indium layer and a copper layer are separately deposited in this order by vapor deposition to form a precursor composed of a 760 nm thick indium layer and a 540 nm thick copper layer. A substrate was made. While this substrate was housed in the electric furnace 11 of the processing apparatus 10 and heated to 550 ° C., a gas in which 5 vol% of hydrogen sulfide was added to argon gas was introduced into the electric furnace to carry out the sulfiding treatment.
FIG. 4 shows the hydrogen sulfide gas (H 2 S) and hydrogen gas (indicated by H 2 (deposition) in the figure) measured by the quadrupole mass spectrometer 18 in parallel with the sulfidation treatment. It is the graph which showed change with time. Note that the supply of H 2 S to the electric furnace was stopped after 60 minutes.
By the way, the vertical axis of the graph of FIG. 4 is the ion current value that is the detection current of the mass spectrometer, and the unit is ampere (A), but it can be converted to partial pressure by multiplying by the sensitivity coefficient. The same applies to FIGS. 5 and 6 described later.
The rise in the partial pressure of H 2 S in the graph is thought to be because it takes a long time to reach the quadrupole mass spectrometer because the mass of H 2 S is relatively heavy and its diffusivity is poor.
Since an increase in the hydrogen gas partial pressure is observed over about 30 minutes, it can be seen that the processing time required to complete the sulfiding process is about 30 minutes.
In order to demonstrate this, a sample was taken every 5 minutes in parallel with the sulfidation treatment, and it was confirmed that the sample was subjected to composition analysis by ICP analysis. The results are shown in Table 1.

表1から、確かに処理時間30分で硫黄の組成比が2となって、CuInSが形成され、硫化処理が完了していることがわかる。
また、No.6(処理時間30分)の試料をFIB装置によって加工し、その断面を電子顕微鏡で観察したところ、プリカーサは認められず、モリブデン層上に均一な結晶のCuInS層が形成されていることが確認できた。
From Table 1, it can be seen that the composition ratio of sulfur is 2 in the treatment time of 30 minutes, CuInS 2 is formed, and the sulfurization treatment is completed.
No. When a sample of 6 (treatment time 30 minutes) was processed with an FIB apparatus and the cross section was observed with an electron microscope, no precursor was observed, and a uniform crystalline CuInS 2 layer was formed on the molybdenum layer. It could be confirmed.

ガラス基板の一面側に形成したモリブデン層上に、インジウム層と銅層をこの順に別々に、メッキによって形成して、実施例1と同じ膜厚(インジウム層の膜厚760nm、銅層の膜厚540nm)のプリカーサを形成した基板を、前記処理装置10の電気炉11内に収容して硫化処理を行った。このとき、その他の条件については、実施例1と同様にして行った。
図4に、このときの硫化処理と並行して、四重極質量分析計18で測定した水素ガス(図ではH(メッキ)で示す)の分圧の経時変化を示す。
On the molybdenum layer formed on one surface of the glass substrate, an indium layer and a copper layer are separately formed in this order by plating, and the same film thickness as in Example 1 (the film thickness of the indium layer is 760 nm, the film thickness of the copper layer) The substrate on which the precursor of 540 nm) was formed was housed in the electric furnace 11 of the processing apparatus 10 and subjected to sulfurization treatment. At this time, other conditions were the same as in Example 1.
FIG. 4 shows the change over time in the partial pressure of hydrogen gas (indicated by H 2 (plating) in the figure) measured by the quadrupole mass spectrometer 18 in parallel with the sulfurization treatment at this time.

実施例2で用いたものと同様の基板、つまり一面側に形成したモリブデン層上に、インジウム層(膜厚760nm)と銅層(膜厚540nm)がこの順に別々に、メッキによって形成された基板を、処理装置10によって硫化処理を施してp型半導体層を形成した。この際、電気炉内に導入する硫化水素の濃度を2.5vol%とし、その他の硫化処理の条件は実施例2と同様にして行った。
図5は、硫化処理と並行して四重極質量分析計で測定した硫化水素ガスと水素ガス、それぞれの分圧の経時変化を示したグラフである。尚、80分を過ぎたところでHSの電気炉への導入を停止した。
A substrate similar to that used in Example 2, that is, a substrate in which an indium layer (film thickness of 760 nm) and a copper layer (film thickness of 540 nm) are separately formed in this order on a molybdenum layer formed on one side by plating. Was subjected to sulfurization treatment by the processing apparatus 10 to form a p-type semiconductor layer. At this time, the concentration of hydrogen sulfide introduced into the electric furnace was set to 2.5 vol%, and other sulfiding conditions were the same as in Example 2.
FIG. 5 is a graph showing changes over time in hydrogen sulfide gas and hydrogen gas, and the partial pressures of each measured by a quadrupole mass spectrometer in parallel with the sulfidation treatment. Note that the introduction of H 2 S into the electric furnace was stopped after 80 minutes.

実施例2で用いたものと同様の基板、つまり一面側に形成したモリブデン層上に、インジウム層(膜厚760nm)と銅層(膜厚540nm)がこの順に別々に、メッキによって形成された基板を、処理装置10を用いて硫化処理を施してp型半導体層を形成した。この際、電気炉内に導入する硫化水素の濃度を1.0vol%とし、その他の硫化処理の条件は実施例2と同様にして行った。
図6は、硫化処理と並行して四重極質量分析計18で測定した硫化水素ガスと水素ガス、それぞれの分圧の経時変化を示したグラフである。尚、80分を過ぎたところでHSの電気炉内への導入を停止した。
A substrate similar to that used in Example 2, that is, a substrate in which an indium layer (film thickness of 760 nm) and a copper layer (film thickness of 540 nm) are separately formed by plating in this order on a molybdenum layer formed on one side. Was subjected to sulfurization treatment using the processing apparatus 10 to form a p-type semiconductor layer. At this time, the concentration of hydrogen sulfide introduced into the electric furnace was set to 1.0 vol%, and the other sulfiding treatment conditions were the same as in Example 2.
FIG. 6 is a graph showing changes over time in hydrogen sulfide gas and hydrogen gas, and the partial pressures of each measured by the quadrupole mass spectrometer 18 in parallel with the sulfidation treatment. When 80 minutes had passed, the introduction of H 2 S into the electric furnace was stopped.

図4から、蒸着によって形成したプリカーサについては、水素ガス分圧の上昇が約30分間にわたってみられ、メッキによるプリカーサはそれが約15分間であるので、プリカーサの膜厚は同じでも形成方法の違い(蒸着とメッキ)によって硫化処理完了までに要する時間が異なることがわかる。そして、メッキによって形成したプリカーサの方が、硫化の速度が速いことがわかる。
さらに、同じメッキによるプリカーサであっても、硫化水素濃度が5%のときは水素ガス分圧は硫化処理時間が約15分でピークとなり(図4参照)、硫化水素濃度2.5%では約30分(図5参照)で、硫化水素濃度1%では約50分(図6参照)でピークとなっていることから、硫化水素濃度を低くすることで、硫化速度が遅くなることがわかる。
From FIG. 4, the precursor formed by vapor deposition shows an increase in hydrogen gas partial pressure over about 30 minutes, and the precursor by plating takes about 15 minutes. It can be seen that the time required to complete the sulfidation treatment varies depending on (deposition and plating). It can be seen that the precursor formed by plating has a higher sulfiding speed.
Furthermore, even with the same plating precursor, when the hydrogen sulfide concentration is 5%, the hydrogen gas partial pressure peaks when the sulfurization treatment time is about 15 minutes (see FIG. 4), and when the hydrogen sulfide concentration is 2.5%, At 30 minutes (see FIG. 5), when the hydrogen sulfide concentration is 1%, a peak is obtained at about 50 minutes (see FIG. 6), so that it is understood that the sulfidation rate is slowed by lowering the hydrogen sulfide concentration.

図7は、実施例2(硫化水素濃度5%)の硫化処理における、処理途中の基板(硫化処理時間約5分)の断面の電子顕微鏡写真である。基板34の上層にCuInSの層30が形成され、モリブデン層32とCuInS層30との間に、硫化水素と反応していないプリカーサ31が存在している。そして、CuInS層30の厚さは位置によるバラツキが大きい上に、CuInS層30には、複数の空孔33が形成されているのが認められる。
図8は、実施例4(硫化水素濃度1.0%)の硫化処理における、処理途中の基板(硫化処理時間約10分)の断面の電子顕微鏡写真である。基板34の上層にCuInSの層30が形成され、モリブデン層32とCuInS層30との間には、硫化水素と反応していないプリカーサ31が存在している。そして、図7で見られた空孔33は認められず、プリカーサ31とCuInS層30はそれぞれ均一な厚さの層になっている。
空孔33は、太陽電池において均一な厚さの膜形成の障害となり、ショート(電気的短絡)の原因となるので硫化処理は、空孔が発生しない条件で行わなくてはならない。上記の結果から、硫化水素の濃度を高くして急速に硫化処理を行うと空孔が発生しやすく、硫化水素の濃度を低くして硫化速度を遅くすると、空孔の無い良好なp型半導体層を形成できることがわかる。
FIG. 7 is an electron micrograph of the cross section of the substrate in the middle of the treatment (sulfurization treatment time: about 5 minutes) in the sulfidation treatment of Example 2 (hydrogen sulfide concentration 5%). A CuInS 2 layer 30 is formed on the substrate 34, and a precursor 31 that does not react with hydrogen sulfide exists between the molybdenum layer 32 and the CuInS 2 layer 30. The thickness of the CuInS 2 layer 30 varies greatly depending on the position, and a plurality of holes 33 are formed in the CuInS 2 layer 30.
FIG. 8 is an electron micrograph of a cross section of a substrate in the middle of the treatment (sulfurization treatment time: about 10 minutes) in the sulfidation treatment of Example 4 (hydrogen sulfide concentration: 1.0%). A CuInS 2 layer 30 is formed on the substrate 34, and a precursor 31 that does not react with hydrogen sulfide exists between the molybdenum layer 32 and the CuInS 2 layer 30. The holes 33 seen in FIG. 7 are not recognized, and the precursor 31 and the CuInS 2 layer 30 are layers of uniform thickness.
The vacancies 33 obstruct the formation of a film with a uniform thickness in the solar cell and cause a short circuit (electrical short circuit). Therefore, the sulfidation treatment must be performed under the condition that no vacancies are generated. From the above results, it is easy to generate vacancies when the concentration of hydrogen sulfide is increased and rapid sulfidation is performed. When the concentration of hydrogen sulfide is decreased and the sulfidation rate is decreased, a good p-type semiconductor without vacancies is obtained. It can be seen that a layer can be formed.

本発明による化合物半導体太陽電池の処理装置の概略図である。It is the schematic of the processing apparatus of the compound semiconductor solar cell by this invention. 化合物半導体太陽電池の構成を示す正面図及び縦断面図である。It is the front view and longitudinal cross-sectional view which show the structure of a compound semiconductor solar cell. 化合物半導体太陽電池の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of a compound semiconductor solar cell. 実施例1、2における水素ガス分圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the hydrogen gas partial pressure in Example 1,2. 実施例3における水素ガス分圧の経時変化を示すグラフである。6 is a graph showing a change with time in hydrogen gas partial pressure in Example 3. 実施例4における水素ガス分圧の経時変化を示すグラフである。6 is a graph showing changes with time in hydrogen gas partial pressure in Example 4; 実施例2における処理途中の基板の断面の電子顕微鏡写真である。4 is an electron micrograph of a cross section of a substrate in the middle of processing in Example 2. FIG. 実施例4における処理途中の基板の断面の電子顕微鏡写真である。4 is an electron micrograph of a cross section of a substrate in the middle of processing in Example 4. FIG.

符号の説明Explanation of symbols

10 処理装置
11 電気炉
12 ガス導入口
13 ガス排出口
14 導入管
15 ガス処理設備
16 排出管
17 配管
18 質量分析計
DESCRIPTION OF SYMBOLS 10 Processing apparatus 11 Electric furnace 12 Gas inlet 13 Gas outlet 14 Introducing pipe 15 Gas processing equipment 16 Exhaust pipe 17 Piping 18 Mass spectrometer

Claims (2)

基板の一面側に形成された電極層上に、銅(Cu)層とインジウム(In)層とが積層されて成るプリカーサを、硫化水素雰囲気又はセレン化水素雰囲気中で加熱処理して形成した、CuInS2又はCuInSe2から成るp型半導体層と、前記p型半導体層の一面側に密着して形成したn型半導体層とを具備する化合物半導体太陽電池を製造する際に、
前記加熱処理を、硫化水素又はセレン化水素とCu及びInとの反応の進行状況をモニターしつつ施すべく、前記反応によって発生する水素ガスの分圧を測定し、
水素ガスの分圧の測定を加熱処理の開始から終了まで連続して行い、
水素ガスの分圧が、ピークとなりバックグランドレベルに戻ったときを、前記p型半導体層の形成反応完了時と判断することを特徴とする化合物半導体太陽電池の製造方法。
A precursor formed by laminating a copper (Cu) layer and an indium (In) layer on an electrode layer formed on one side of the substrate was formed by heat treatment in a hydrogen sulfide atmosphere or a hydrogen selenide atmosphere. When manufacturing a compound semiconductor solar cell comprising a p-type semiconductor layer made of CuInS 2 or CuInSe 2 and an n-type semiconductor layer formed in close contact with one surface of the p-type semiconductor layer,
In order to perform the heat treatment while monitoring the progress of the reaction between hydrogen sulfide or hydrogen selenide and Cu and In, the partial pressure of hydrogen gas generated by the reaction is measured ,
Measure the hydrogen gas partial pressure continuously from the start to the end of the heat treatment,
A method for producing a compound semiconductor solar cell, characterized in that when the partial pressure of hydrogen gas reaches a peak and returns to a background level, the formation reaction of the p-type semiconductor layer is completed .
水素ガスの分圧の測定を、質量分析計で行うことを特徴とする請求項1記載の化合物半導体太陽電池の製造方法。 2. The method for producing a compound semiconductor solar cell according to claim 1, wherein the partial pressure of hydrogen gas is measured with a mass spectrometer.
JP2005014252A 2004-05-20 2005-01-21 Method for producing compound semiconductor solar cell Active JP4676771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014252A JP4676771B2 (en) 2004-05-20 2005-01-21 Method for producing compound semiconductor solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004150066 2004-05-20
JP2005014252A JP4676771B2 (en) 2004-05-20 2005-01-21 Method for producing compound semiconductor solar cell

Publications (2)

Publication Number Publication Date
JP2006005326A JP2006005326A (en) 2006-01-05
JP4676771B2 true JP4676771B2 (en) 2011-04-27

Family

ID=35773401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014252A Active JP4676771B2 (en) 2004-05-20 2005-01-21 Method for producing compound semiconductor solar cell

Country Status (1)

Country Link
JP (1) JP4676771B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106160B2 (en) * 2007-06-11 2012-12-26 キヤノン株式会社 Light emitting device and method for manufacturing light emitting device
JP5518404B2 (en) * 2009-09-04 2014-06-11 大陽日酸株式会社 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
CN102471061B (en) * 2009-09-04 2014-09-24 大阳日酸株式会社 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
JP5378122B2 (en) * 2009-09-04 2013-12-25 大陽日酸株式会社 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
JP5464984B2 (en) * 2009-11-26 2014-04-09 京セラ株式会社 Manufacturing method of semiconductor layer and manufacturing method of photoelectric conversion device
EP2469580A1 (en) * 2010-12-27 2012-06-27 Nexcis Improved interface between a I-III-VI2 material layer and a molybdenum substrate
CN112853264B (en) * 2020-12-25 2022-09-13 河北大学 Method for preparing copper indium gallium selenide thin-film solar cell in selenium-free atmosphere

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221028A (en) * 1994-01-31 1995-08-18 Hitachi Ltd Cvd apparatus
JP2001148490A (en) * 1999-03-29 2001-05-29 Shinko Electric Ind Co Ltd Compound semiconductor solar battery and its manufacturing method
JP2003077782A (en) * 2001-08-31 2003-03-14 Toshiba Corp Manufacturing method for semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221028A (en) * 1994-01-31 1995-08-18 Hitachi Ltd Cvd apparatus
JP2001148490A (en) * 1999-03-29 2001-05-29 Shinko Electric Ind Co Ltd Compound semiconductor solar battery and its manufacturing method
JP2003077782A (en) * 2001-08-31 2003-03-14 Toshiba Corp Manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JP2006005326A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
Kaur et al. Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review
JP3876440B2 (en) Method for producing light absorption layer
Tao et al. Synthesis and characterization of Cu 2 ZnSnS 4 thin films by the sulfurization of co-electrodeposited Cu–Zn–Sn–S precursor layers for solar cell applications
JP4676771B2 (en) Method for producing compound semiconductor solar cell
US8586457B1 (en) Method of fabricating high efficiency CIGS solar cells
Dong et al. Effect of sulfurization temperature on properties of Cu2SnS3 thin films and solar cells prepared by sulfurization of stacked metallic precursors
US20140113403A1 (en) High efficiency CZTSe by a two-step approach
US9178097B2 (en) Absorbers for high efficiency thin-film PV
Lakhe et al. Characterization of electrochemically deposited CuInTe2 thin films for solar cell applications
US8921151B2 (en) Back-contact for thin film solar cells optimized for light trapping for ultrathin absorbers
US9722111B2 (en) Surface passivation for CdTe devices
US8900664B2 (en) Method of fabricating high efficiency CIGS solar cells
TWI722078B (en) Manufacturing method of photoelectric conversion device
JP2008235794A (en) Photoelectric conversion material and method of manufacturing the same, semiconductor device, and solar battery
Wang et al. Chemical etching induced surface modification and gentle gradient bandgap for highly efficient Sb2 (S, Se) 3 solar cell
Li et al. CZTSSe solar cells: insights into interface engineering
Park et al. Amorphous TiO2 Passivating Contacts for Cu (In, Ga)(S, Se) 2 Ultrathin Solar Cells: Defect‐State‐Mediated Hole Conduction
US9231148B2 (en) Method for cleaning and passivating chalcogenide layers
JP2004140307A (en) Manufacturing method for thin-film solar cell
CN115274404A (en) Modified tunneling oxide layer and preparation method thereof, TOPCon structure and preparation method thereof, and solar cell
Almache-Hernandez et al. Hole Transport Layer based on atomic layer deposited V2Ox films: Paving the road to semi-transparent CZTSe solar cells
Zhang et al. Remarkable enhancement of photovoltaic performance of ZnO/CdTe core–shell nanorod array solar cells through interface passivation with a TiO 2 layer
JPH05145100A (en) Method and device for manufacturing thin film solar cell
Hung et al. Characteristics of CuInSe2 nanowire arrays electrodeposited into anodic alumina templates with dimethyl sulfoxide (DMSO) additive
Li et al. Improvement of Cu2ZnSnS4 thin film performance by using oxygen-containing Cu-Zn-Sn precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150