JP4674466B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4674466B2
JP4674466B2 JP2004355163A JP2004355163A JP4674466B2 JP 4674466 B2 JP4674466 B2 JP 4674466B2 JP 2004355163 A JP2004355163 A JP 2004355163A JP 2004355163 A JP2004355163 A JP 2004355163A JP 4674466 B2 JP4674466 B2 JP 4674466B2
Authority
JP
Japan
Prior art keywords
main shaft
main bearing
main
compressor
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004355163A
Other languages
Japanese (ja)
Other versions
JP2006161712A (en
Inventor
貴規 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004355163A priority Critical patent/JP4674466B2/en
Publication of JP2006161712A publication Critical patent/JP2006161712A/en
Application granted granted Critical
Publication of JP4674466B2 publication Critical patent/JP4674466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、家庭用冷凍冷蔵庫に使用される圧縮機において、信頼性を向上し得る主軸と主軸受に関するものである。   The present invention relates to a main shaft and a main bearing that can improve reliability in a compressor used in a domestic refrigerator-freezer.

近年、家庭用冷蔵庫については、保鮮性や省エネルギー性、静粛性などの基本性能の向上に加え、その使い勝手や収納性の向上が求められており、家庭用冷蔵庫の外寸法をそのままに内容積を増加させる基調にある。そういった中、家庭用冷蔵庫の機械室寸法を支配するデバイスの一つである圧縮機の小型化が強く望まれている。   In recent years, for home refrigerators, in addition to improving basic performance such as freshness, energy saving, and quietness, it has been required to improve usability and storage. The trend is to increase. Under such circumstances, downsizing of the compressor, which is one of the devices governing the size of the machine room of a home refrigerator, is strongly desired.

従来の圧縮機としては、密閉容器内に固定子および回転子からなる電動要素と、電動要素によって駆動される圧縮要素とを収納したものがある(例えば、特許文献1参照)。   As a conventional compressor, there is one in which an electric element composed of a stator and a rotor and a compression element driven by the electric element are housed in an airtight container (for example, see Patent Document 1).

以下、図面を参照しながら上記従来の圧縮機について説明する。なお、以下の説明において、上下の関係は圧縮機を正規の姿勢に設置した状態を基準とする。   The conventional compressor will be described below with reference to the drawings. In the following description, the upper and lower relationships are based on a state where the compressor is installed in a normal posture.

図13は従来の圧縮機の縦断面図、図14は従来の主軸の挙動を示す特性図である。   FIG. 13 is a longitudinal sectional view of a conventional compressor, and FIG. 14 is a characteristic diagram showing the behavior of a conventional main shaft.

密閉容器1には、冷媒21を充填するとともに、オイル2を貯留している。   The sealed container 1 is filled with the refrigerant 21 and stores the oil 2.

電動要素5は、シリンダブロック10の下方に固定されインバータ駆動回路(図示せず)とつながっている固定子3と、永久磁石を内蔵し主軸7の下方に固定された回転子4から構成される。   The electric element 5 includes a stator 3 fixed below the cylinder block 10 and connected to an inverter drive circuit (not shown), and a rotor 4 containing a permanent magnet and fixed below the main shaft 7. .

圧縮要素6について、以下に説明する。   The compression element 6 will be described below.

クランクシャフト9は、鉛直方向に延在し、主軸7及び偏芯軸8から構成される。シリンダブロック10は、主軸7を回転自在に軸支する主軸受11とともに、圧縮室12を形成するボア孔13を有している。   The crankshaft 9 extends in the vertical direction and includes a main shaft 7 and an eccentric shaft 8. The cylinder block 10 has a bore 13 that forms a compression chamber 12 together with a main bearing 11 that rotatably supports the main shaft 7.

ピストン14は、ボア孔13に往復可動に挿入されている。ピストンピン15は、略円筒形状をなし、偏芯軸8と平行に配置され、ピストン14に形成されたピストンピン孔16に回転不能に係止されている。連結手段17は、ピストンピン15を介して、偏心軸8とピストン14を連結している。   The piston 14 is inserted into the bore hole 13 so as to be reciprocally movable. The piston pin 15 has a substantially cylindrical shape, is disposed in parallel with the eccentric shaft 8, and is locked to a piston pin hole 16 formed in the piston 14 so as not to rotate. The connecting means 17 connects the eccentric shaft 8 and the piston 14 via the piston pin 15.

尚、主軸7は、主軸受11との摺動面に形成されたスパイラル溝18と、スパイラル溝18の下端と連通孔20を介して連結され、オイル2に開口するオイルポンプ孔19を備えている。   The main shaft 7 includes a spiral groove 18 formed on a sliding surface with the main bearing 11, and an oil pump hole 19 that is connected to the lower end of the spiral groove 18 through a communication hole 20 and opens to the oil 2. Yes.

また、クランクシャフト9やシリンダブロック10は、両者ともに、安価で加工が容易な鋳鉄材のねずみ鋳鉄(FC200)で形成されている。   The crankshaft 9 and the cylinder block 10 are both made of gray cast iron (FC200), which is a cast iron material that is inexpensive and easy to process.

以上のように構成された圧縮機について、以下にその動作を説明する。   About the compressor comprised as mentioned above, the operation | movement is demonstrated below.

電動要素5に通電がなされると、回転子4は回転し、これに伴ってクランクシャフト9も回転する。主軸7は、主軸受11内を回転する一方で、偏芯軸8の回転運動が、連結手段17とピストンピン15を通してピストン14に伝えられ、ピストン14はボア孔13内を往復運動する。このピストン14の往復運動により、密閉容器1内の冷媒21は、圧縮室12内に吸入された後に圧縮されて、密閉容器1外へと吐出され、いわゆる吸入行程と圧縮行程を繰り返している。   When the electric element 5 is energized, the rotor 4 rotates and the crankshaft 9 rotates accordingly. The main shaft 7 rotates in the main bearing 11, while the rotational movement of the eccentric shaft 8 is transmitted to the piston 14 through the connecting means 17 and the piston pin 15, and the piston 14 reciprocates in the bore hole 13. Due to the reciprocating motion of the piston 14, the refrigerant 21 in the sealed container 1 is sucked into the compression chamber 12 and then compressed and discharged to the outside of the sealed container 1, and so-called suction stroke and compression stroke are repeated.

また、クランクシャフト9の回転に伴う遠心力によって、オイルポンプ孔19内にオイル2は吸引され、連通孔20を通ってスパイラル溝18から上方へ導かれ、偏芯軸8の上端から噴射されたオイル2が、連結手段17とピストンピン15や、ピストン14とボア孔13等の摺動部を潤滑する。
特開2000−145637号公報
The oil 2 is sucked into the oil pump hole 19 by the centrifugal force accompanying the rotation of the crankshaft 9, guided upward from the spiral groove 18 through the communication hole 20, and injected from the upper end of the eccentric shaft 8. The oil 2 lubricates sliding portions such as the connecting means 17 and the piston pin 15 and the piston 14 and the bore hole 13.
JP 2000-145637 A

しかしながら、上記従来の構成において、主軸7と主軸受11の摺動部に片当りによる摩耗が発生することがある。圧縮行程時に、圧縮荷重Pが連結手段17を介して偏芯軸8に負荷され、主軸7は、主軸受11内にて傾斜し、主軸受11の上方と下方との局所的な領域において接触した状態、いわゆる片当りした状態で摺動する。   However, in the above-described conventional configuration, the sliding portion between the main shaft 7 and the main bearing 11 may be worn due to one piece. During the compression stroke, a compressive load P is applied to the eccentric shaft 8 via the connecting means 17, and the main shaft 7 is inclined in the main bearing 11 and contacts in a local region above and below the main bearing 11. Sliding in a so-called one-sided state.

発明者らの実機試験によれば、特に、ピストン14が上死点近傍に位置して圧縮荷重Pの最大値が作用した時に、主軸受11の上方(図14中、U点)と下方(図14中、M点)と接触する主軸7部位における摩耗が、他の部位に比べ顕著であるとともに、主軸受11の上方(図14中、U点)と接触する主軸7部位よりも、下方(図14中、M点)と接触する主軸7部位における摩耗の方が大きいことを確認している。   According to the inventors' actual machine test, especially when the piston 14 is located near the top dead center and the maximum value of the compression load P is applied, the upper side (point U in FIG. 14) and the lower side (point U in FIG. 14). The wear at the main shaft 7 portion that contacts the point M in FIG. 14 is significant compared to other portions, and is lower than the main shaft 7 portion that contacts the upper portion of the main bearing 11 (point U in FIG. 14). It has been confirmed that the wear at the portion of the main shaft 7 in contact with (point M in FIG. 14) is greater.

加えて、昨今の圧縮機小型化の要望に対応して主軸受11の長さを更に短くすると、圧縮荷重Pは従来と同じであっても、モーメントの関係により主軸7と主軸受11の接触荷重が増加し、特に、主軸受11の下方(図14中、M点)と接触する主軸7の部位での摩耗がより大きくなることも確認している。   In addition, when the length of the main bearing 11 is further shortened in response to the recent demand for compressor downsizing, the contact between the main shaft 7 and the main bearing 11 due to the moment relationship even if the compression load P is the same as the conventional one. It has also been confirmed that the load increases, and in particular, wear at the portion of the main shaft 7 that contacts the lower portion of the main bearing 11 (point M in FIG. 14) becomes larger.

このような片当りした状態で摺動していると、接触面が非常に狭い領域であり、加えてその狭い領域に負荷が集中することから、オイル2による潤滑作用が十分に発揮されず、異常摩耗が発生したり、主軸7と主軸受11の摺動面間に生成された摩耗粉が噛み込まれロック(回転不能)が発生する可能性があり、長期的な信頼性確保に支障を来たすという欠点があった。   When sliding in such a state where it comes into contact with each other, the contact surface is a very narrow region, and in addition, the load concentrates in the narrow region, so that the lubricating action by the oil 2 is not sufficiently exhibited, Abnormal wear may occur, or wear powder generated between the sliding surfaces of the main shaft 7 and the main bearing 11 may be caught and lock (unrotatable) may occur, which may hinder long-term reliability. There was a drawback of coming.

また、機構面、及び材質面等の種々の観点から、主軸7と主軸受11の摩耗防止策が検討されているが、構成の複雑化や高コスト化につながったり、あるいは圧縮機の小型化には対応できない等の欠点があった。   Further, measures for preventing wear of the main shaft 7 and the main bearing 11 have been studied from various viewpoints such as a mechanism surface and a material surface, but this leads to a complicated configuration and high cost, or downsizing of the compressor. There were drawbacks such as being unable to cope with.

本発明は、上記従来の課題を解決するもので、主軸7と主軸受11の片当りによる摩耗を防ぎ、信頼性が高く、安価な圧縮機を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a highly reliable and inexpensive compressor that prevents wear due to contact between the main shaft 7 and the main bearing 11.

上記従来の課題を解決するために、本発明の圧縮機は、主軸受の最も肉厚の薄いストレート部における主軸受の曲げ剛性Gbと主軸の曲げ剛性Gcとの剛性比Gb/Gcを1.8以上で4.6以下としたもので、主軸の曲げ剛性を主軸受に対し顕著に下げることで、圧縮行程時に圧縮荷重を受けて、主軸が傾斜して主軸受内と接触した際に、主軸は主軸
受下方と接触する部位を起点に湾曲して主軸受の内径形状に沿うので、主軸と主軸受の接触面積が増え、片当りによる摩耗を減少させる。
In order to solve the above problems, the compressor of the present invention, the rigidity ratio Gb / Gc and flexural rigidity Gb and flexural rigidity Gc of the principal axes of the main bearing in the thickest thin straight portion of the main bearing, 1 .8 or more and 4.6 or less , when the bending rigidity of the main shaft is remarkably lowered with respect to the main bearing, when the main shaft is tilted and comes into contact with the main bearing during the compression stroke Since the main shaft is curved starting from the portion that contacts the lower portion of the main bearing and conforms to the inner diameter of the main bearing, the contact area between the main shaft and the main bearing is increased, and wear caused by one piece is reduced.

本発明の圧縮機は主軸と主軸受の片当りによる摩耗が減少するので、信頼性が高く、安価な圧縮機を提供できるという効果が得られる。   Since the compressor according to the present invention reduces wear due to the contact between the main shaft and the main bearing, it is possible to provide a highly reliable and inexpensive compressor.

請求項1に記載の発明は、密閉容器内にオイルを貯溜するとともに、固定子と回転子からなる電動要素と、電動要素によって駆動される圧縮要素を収容し、圧縮要素は、鉛直方向に延在し主軸を備えたクランクシャフトと、主軸を軸支する主軸受を有するシリンダブロックを備えるとともに、主軸受の最も肉厚の薄いストレート部における主軸受の曲げ剛性Gbと主軸の曲げ剛性Gcとの剛性比Gb/Gcを1.8以上で4.6以下としたもので、主軸の曲げ剛性を主軸受に対し顕著に下げることで、圧縮行程時に圧縮荷重を受けて、主軸が傾斜して主軸受内と接触した際に、主軸は主軸受下方と接触する部位を起点に湾曲して主軸受の内径形状に沿うので、主軸と主軸受の接触面積が増え、片当りによる摩耗が減少し、信頼性が高く、安価な圧縮機を提供することができる。 According to the first aspect of the present invention, oil is stored in a sealed container, and an electric element composed of a stator and a rotor and a compression element driven by the electric element are accommodated, and the compression element extends in the vertical direction. A crankshaft having a main shaft and a cylinder block having a main bearing that supports the main shaft, and the bending rigidity Gb of the main bearing and the bending rigidity Gc of the main shaft in the thinnest straight portion of the main bearing. The rigidity ratio Gb / Gc is set to 1.8 or more and 4.6 or less. By significantly reducing the bending rigidity of the main shaft relative to the main bearing, the main shaft is inclined by receiving a compressive load during the compression stroke. When it comes into contact with the main bearing, the main shaft is curved starting from the part that contacts the lower part of the main bearing and conforms to the inner diameter of the main bearing, increasing the contact area between the main shaft and the main bearing and reducing wear due to contact with the main bearing. Reliable, cheap Inexpensive compressors can be provided.

請求項2に記載の発明は、請求項1の発明において、主軸受長さLと内径Dの比率L/Dを、1.9以上で2.5以下としたもので、主軸の片当りによる摩耗の減少効果が顕著に発揮されるとともに、主軸受、及び主軸の長さを短く構成して圧縮機を小型化することができ、信頼性が高く、安価な圧縮機を提供することができる。 The invention according to claim 2, in which Oite to the invention of claim 1, the ratio L / D of the main bearing length L and internal diameter D, and 2.5 or less 1.9 or more, the main axis of the piece To provide a highly reliable and inexpensive compressor that can reduce the size of the compressor by shortening the length of the main bearing and the main shaft while significantly reducing the wear reduction effect due to hitting. Can do.

請求項3に記載の発明は、請求項1または請求項2の発明において、主軸受の材料を、球状黒鉛鋳鉄またはねずみ鋳鉄とし、主軸の材料をねずみ鋳鉄としたもので、現状の生産ラインを大幅に変更する必要がなく、生産性に優れ、信頼性が高く、安価な圧縮機を提供することができる。 Invention according to claim 3, Oite to the invention of claim 1 or claim 2, the material of the main bearing, a spherical graphite cast iron or gray cast iron, which was a material of the main shaft and the gray cast iron, current production It is not necessary to significantly change the line, and it is possible to provide a compressor that is excellent in productivity, high in reliability, and inexpensive.

請求項4に記載の発明は、請求項1から請求項3のいずれか1項の発明において、オイルポンプ孔の上端に筒状孔を延長穿設したもので、孔加工だけで容易に主軸の曲げ剛性を下げることができ、加えて、圧縮機に求められる圧縮負荷条件に合わせて、筒状孔の直径や長さを変更して対応できるので、極めて汎用性に優れ、信頼性が高く、安価な圧縮機を提供することができる。 The invention according to claim 4, Oite claims 1 to any one of the invention of claim 3, which has an upper end in the cylindrical hole of the oil pump hole extending bored easily just hole processing The bending rigidity of the main shaft can be reduced, and in addition, the diameter and length of the cylindrical hole can be changed according to the compression load conditions required for the compressor, so it is extremely versatile and highly reliable. A high and inexpensive compressor can be provided.

請求項5に記載の発明は、請求項1から請求項4のいずれか1項の発明において、少なくとも商用電源周波数未満の周波数を含む運転周波数にて運転されるもので、圧縮機の入力が小さく抑えられた上で、主軸と主軸受の摩耗が防止でき、信頼性が高く、安価な圧縮機を提供することができる。 The invention according to claim 5, Oite claim 1 the invention of any one of claims 4, intended to be operated at operating frequencies including frequencies below at least utility frequency, the input of the compressor In addition, the wear of the main shaft and the main bearing can be prevented, and a highly reliable and inexpensive compressor can be provided.

(実施の形態1)
図1は本発明の実施の形態1における圧縮機の縦断面図、図2は同実施の形態における主軸と主軸受のA−A’部での断面図(A−A’部の場所は図1に記載)、図3は同実施の形態における主軸の挙動を示す特性図、図4は同実施の形態での主軸摩耗量の計測結果を示す特性図、図5は剛性比Gb/Gcと主軸摩耗量の相関結果を示す特性図、図6は主軸受長さと内径の比率L/Dと主軸摩耗量の相関結果を示す特性図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a compressor according to Embodiment 1 of the present invention, and FIG. 3 is a characteristic diagram showing the behavior of the main shaft in the same embodiment, FIG. 4 is a characteristic diagram showing a measurement result of the main shaft wear amount in the same embodiment, and FIG. 5 is a diagram showing the rigidity ratio Gb / Gc. FIG. 6 is a characteristic diagram showing the correlation result between the main bearing length / inner diameter ratio L / D and the main shaft wear amount.

密閉容器101には、冷媒121としてイソブタン(R600a)を充填するとともに、オイル102として比較的低粘度の鉱油を貯留している。   The hermetic container 101 is filled with isobutane (R600a) as the refrigerant 121 and stores a relatively low viscosity mineral oil as the oil 102.

電動要素105は、シリンダブロック110の下方に固定されインバータ駆動回路(図示せず)とつながっている固定子103と、永久磁石を内蔵し主軸107の下方に固定された回転子104から構成され、インバータ駆動用の電動モータを形成しており、インバータ駆動回路によって、商用電源周波数を下回る運転周波数(例えば、1500r/min)を含む複数の運転周波数で駆動される。   The electric element 105 includes a stator 103 fixed below the cylinder block 110 and connected to an inverter drive circuit (not shown), and a rotor 104 containing a permanent magnet and fixed below the main shaft 107. An electric motor for driving the inverter is formed, and is driven at a plurality of operation frequencies including an operation frequency (for example, 1500 r / min) lower than the commercial power supply frequency by the inverter drive circuit.

固定子103は、突極集中巻型の巻線が用いられている。突極集中巻型の巻線とは、回転子104の中心に向かって放射状に突出した部位(突極)を持つ鉄心を有するものであり、この鉄心の突極に集中的に被覆線を巻きつけたものである。突極集中巻型の巻線は、鉄心からのはみ出しが極めて少ないので、他の巻型(例えば分布巻型)に比べて電動要素105の全高が低い仕様である。   The stator 103 is a salient pole concentrated winding. The salient pole concentrated winding type winding has an iron core having a portion (a salient pole) projecting radially toward the center of the rotor 104, and a covered wire is concentrated around the salient pole of the iron core. It is attached. Since the salient pole concentrated winding has very little protrusion from the iron core, the specification is such that the total height of the electric element 105 is lower than that of other winding types (for example, distributed winding type).

圧縮要素106について、以下に説明する。   The compression element 106 will be described below.

クランクシャフト109は、鉛直方向に延在し、主軸107及び偏芯軸108から構成されている。シリンダブロック110は、主軸107を回転自在に軸支する主軸受111とともに、圧縮室112を形成するボア孔113を有している。   The crankshaft 109 extends in the vertical direction and includes a main shaft 107 and an eccentric shaft 108. The cylinder block 110 has a bore hole 113 that forms a compression chamber 112 together with a main bearing 111 that rotatably supports the main shaft 107.

ピストン114は、ボア孔113に往復可動に挿入されている。ピストンピン115は、略円筒形状をなし、偏芯軸108と平行に配置され、ピストン114に形成されたピストンピン孔116に回転不能に係止されている。連結手段117は、ピストンピン115を介して、偏心軸108とピストン114を連結している。   The piston 114 is reciprocally inserted into the bore hole 113. The piston pin 115 has a substantially cylindrical shape, is disposed in parallel with the eccentric shaft 108, and is non-rotatably locked in a piston pin hole 116 formed in the piston 114. The connecting means 117 connects the eccentric shaft 108 and the piston 114 via the piston pin 115.

尚、主軸受111の内径Dは、低速運転(例えば、運転周波数が1500r/min)でも効果的に遠心力を作用させてオイル102を上方へ吸い上げることが可能な18mmとしている。   The inner diameter D of the main bearing 111 is set to 18 mm which can effectively suck up the oil 102 by effectively applying centrifugal force even at low speed operation (for example, the operation frequency is 1500 r / min).

主軸107の外径と主軸受111の内径Dとの隙間は、加工精度や熱時の径変化によるこじり、あるいは主軸107の回転時のがたつき防止を考慮して、10〜30μmの範囲内である。尚、主軸受111の長さLは40mmである。   The clearance between the outer diameter of the main shaft 107 and the inner diameter D of the main bearing 111 is within a range of 10 to 30 μm in consideration of machining accuracy, twisting due to a change in diameter during heating, or prevention of rattling during rotation of the main shaft 107. It is. The main bearing 111 has a length L of 40 mm.

また、主軸107は、主軸受111との摺動面に形成されたスパイラル溝118と、スパイラル溝118の下端と連通孔120を介して連結され、オイル202に開口した下方から上方に向かって傾斜するように形成されたオイルポンプ孔119を備えている。   The main shaft 107 is connected to the spiral groove 118 formed on the sliding surface with the main bearing 111 and the lower end of the spiral groove 118 through the communication hole 120, and is inclined upward from the bottom opened to the oil 202. An oil pump hole 119 is provided.

主軸107を有するクランクシャフト109は、ヤング率が73.5〜127×10−9N/mであるねずみ鋳鉄(FC200)で形成されている。一方の主軸受111を有するシリンダブロック110はヤング率が140〜170×10−9N/mである球状黒鉛鋳鉄(FCD500)にて形成されている。 The crankshaft 109 having the main shaft 107 is made of gray cast iron (FC200) having a Young's modulus of 73.5 to 127 × 10 −9 N / m 2 . The cylinder block 110 having one main bearing 111 is formed of spheroidal graphite cast iron (FCD500) having a Young's modulus of 140 to 170 × 10 −9 N / m 2 .

圧縮機の構造上、回転子104の上端面に形成された凹部122に囲われた主軸受111のストレート部123が最薄肉となる部位に相当する。主軸受111下方の最小肉厚は、加工、組立公差や、衝撃割れ、長期運転中の金属疲労による脆性割れ等の防止を考慮して、2.5mmとしている。よって、主軸受111のストレート部123の外径は23mmとなっている。   Due to the structure of the compressor, the straight portion 123 of the main bearing 111 surrounded by the recess 122 formed on the upper end surface of the rotor 104 corresponds to the thinnest portion. The minimum thickness below the main bearing 111 is set to 2.5 mm in consideration of processing, assembly tolerances, impact cracking, brittle cracking due to metal fatigue during long-term operation, and the like. Therefore, the outer diameter of the straight portion 123 of the main bearing 111 is 23 mm.

ここで、曲げ剛性とは、曲げに対する変形抵抗の大きさを示すもので、ヤング率と断面二次モーメントの積で表される。   Here, the bending rigidity indicates the magnitude of deformation resistance to bending, and is represented by the product of Young's modulus and cross-sectional second moment.

以上の主軸107と主軸受111を構成する異種材質、及び設計諸元から、本実施の形態では、最薄肉となる主軸受111のストレート部123にて、主軸107と主軸受111の剛性比Gb/Gcが1.85となり、主軸受111の長さ方向で最小値となる。尚、主軸受111の長さLと内径Dの比率L/Dは2.20である。   From the dissimilar materials constituting the main shaft 107 and the main bearing 111 and the design specifications, in the present embodiment, the rigidity ratio Gb between the main shaft 107 and the main bearing 111 in the straight portion 123 of the thinnest main bearing 111. / Gc is 1.85, which is the minimum value in the length direction of the main bearing 111. The ratio L / D between the length L and the inner diameter D of the main bearing 111 is 2.20.

以上のように構成された圧縮機について、以下にその動作を説明する。   About the compressor comprised as mentioned above, the operation | movement is demonstrated below.

電動要素105に通電がなされると、回転子104は回転し、これに伴ってクランクシャフト109も回転する。主軸107は、主軸受111に軸支されて回転する一方で、偏芯軸108の回転運動が、連結手段117とピストンピン115を通してピストン114に伝えられ、ピストン114はボア孔113内を往復運動する。このピストン114の往復運動により、密閉容器101内の冷媒121は、圧縮室112内に吸入された後に圧縮されて、密閉容器101外へと吐出される。いわゆる吸入行程と圧縮行程を繰り返している。   When the electric element 105 is energized, the rotor 104 rotates and the crankshaft 109 rotates accordingly. The main shaft 107 rotates while being supported by the main bearing 111, while the rotational motion of the eccentric shaft 108 is transmitted to the piston 114 through the connecting means 117 and the piston pin 115, and the piston 114 reciprocates in the bore hole 113. To do. Due to the reciprocating motion of the piston 114, the refrigerant 121 in the sealed container 101 is compressed after being sucked into the compression chamber 112 and discharged outside the sealed container 101. The so-called suction stroke and compression stroke are repeated.

クランクシャフト109の回転に伴う遠心力によって、オイルポンプ孔119内にオイル102は吸引され、連通孔120を通ってスパイラル溝118から上方へ導かれ、偏芯軸108の上端から噴射されたオイル102が、連結手段117とピストンピン115や、ピストン114とボア孔113等の摺動部を潤滑する。   The oil 102 is sucked into the oil pump hole 119 by the centrifugal force accompanying the rotation of the crankshaft 109, guided upward from the spiral groove 118 through the communication hole 120, and injected from the upper end of the eccentric shaft 108. However, the sliding means such as the connecting means 117 and the piston pin 115 and the piston 114 and the bore hole 113 are lubricated.

圧縮行程時における主軸107の挙動について、図3を用いて説明する。   The behavior of the main shaft 107 during the compression stroke will be described with reference to FIG.

圧縮荷重Pが、連結手段117を介して偏芯軸108に右横側から作用すると、主軸107は左に傾斜して、主軸受111の上方(図3中、U点)と下方(図3中、M点)にて片当りする。しかしながら、本実施の形態では、主軸受111の中で最薄肉となるストレート部123における主軸受111の曲げ剛性Gbと主軸107の曲げ剛性Gcとの剛性比Gb/Gcを1.8以上としたことで、主軸107の曲げ剛性は主軸受111に比べて顕著に小さくなり、主軸107の方が、主軸受111に比べ弾性変形し易い構成である。   When the compressive load P acts on the eccentric shaft 108 from the right side via the connecting means 117, the main shaft 107 is tilted to the left, above the main bearing 111 (point U in FIG. 3) and below (FIG. 3). Middle, point M). However, in the present embodiment, the rigidity ratio Gb / Gc between the bending rigidity Gb of the main bearing 111 and the bending rigidity Gc of the main shaft 107 in the straight portion 123 that is the thinnest in the main bearing 111 is 1.8 or more. As a result, the bending rigidity of the main shaft 107 is significantly smaller than that of the main bearing 111, and the main shaft 107 is more easily elastically deformed than the main bearing 111.

これにより、主軸107は、主軸受111と片当りした際に、主軸受111下方(図3中、M点)と接触する部位を起点として湾曲する。より具体的には、主軸107摺動表面の右側(図3中、M点に接する側)には引張応力が、一方の左側(図3中、U点に接する側)には圧縮応力が作用するような形で、主軸107は図3に示す如く湾曲する。よって、主軸107の下方は、主軸受111の下方(図3中、M点)の内径形状に比較的広範囲に亘って沿うことになり、主軸107と主軸受111の接触面積が増え、局所的な接触摺動を回避して、片当りによる摩耗が減少する。   As a result, when the main shaft 107 comes into contact with the main bearing 111, the main shaft 107 is bent starting from a portion that contacts the lower portion of the main bearing 111 (point M in FIG. 3). More specifically, tensile stress is applied to the right side (the side in contact with the point M in FIG. 3) of the sliding surface of the main spindle 107, and compressive stress is applied to the left side (the side in contact with the point U in FIG. 3). In this way, the main shaft 107 is curved as shown in FIG. Therefore, the lower portion of the main shaft 107 follows the inner diameter shape of the lower portion of the main bearing 111 (point M in FIG. 3) over a relatively wide range, and the contact area between the main shaft 107 and the main bearing 111 is increased, resulting in locality. Avoids contact sliding and reduces wear by one piece.

ここで、本実施の形態での主軸受111の上方(図3中、U点)、及び下方(図3中、M点)と接触する主軸107部位の摩耗量を、図4を用いて説明する。   Here, with reference to FIG. 4, the amount of wear at the main shaft 107 portion that contacts the upper side (point U in FIG. 3) and the lower side (point M in FIG. 3) of the main bearing 111 in the present embodiment will be described. To do.

尚、本図では、剛性比Gb/Gcが1.85となる本実施の形態と、1.65となる従来例とを比較した。いずれの形態も主軸受111長さLと内径Dの比率L/Dは2.2とした。また、本検討では、ショートサーキットサイクルにて、冷蔵庫実使用圧力範囲で最大となる凝縮・蒸発圧力値で、圧縮機を約20日間連続運転させている。   In this figure, the present embodiment in which the rigidity ratio Gb / Gc is 1.85 is compared with the conventional example in which the rigidity ratio Gb / Gc is 1.65. In any form, the ratio L / D between the length L of the main bearing 111 and the inner diameter D was 2.2. In this study, the compressor is continuously operated for about 20 days at the maximum condensation / evaporation pressure value in the actual working pressure range of the refrigerator in a short circuit cycle.

図4から、主軸受111の下方(図3中、M点)と接触する主軸107部位の摩耗量が、従来例に比べ50%程度低減していることを実機試験にて確認した。   From FIG. 4, it was confirmed by an actual machine test that the amount of wear at the main shaft 107 part contacting the lower part of the main bearing 111 (point M in FIG. 3) was reduced by about 50% compared to the conventional example.

これは、主軸107が湾曲することにより、主軸受111の下方(図3中、M点)の内径形状に比較的広範囲に亘って沿い、主軸107と主軸受111の接触面積が増えることで、局所的な接触摺動の回避に加え、オイル102による潤滑作用も相乗的に発揮されたものと思われる。   This is because, by bending the main shaft 107, the contact area between the main shaft 107 and the main bearing 111 increases along the inner diameter shape below the main bearing 111 (point M in FIG. 3) over a relatively wide range. In addition to avoiding local contact sliding, it is considered that the lubricating action by the oil 102 was also exhibited synergistically.

次に、主軸受111下方の曲げ剛性Gbと主軸107の曲げ剛性Gcとの剛性比Gb/Gcと主軸受(図3中、M点)と接触する主軸の部位で計測された摩耗量との相関関係について、図5を用いて説明する。   Next, the rigidity ratio Gb / Gc between the bending rigidity Gb below the main bearing 111 and the bending rigidity Gc of the main shaft 107 and the amount of wear measured at the main shaft portion in contact with the main bearing (point M in FIG. 3). The correlation will be described with reference to FIG.

本検討では、主軸受111長さLと内径Dの比率L/Dを2.20とした上で、剛性比Gb/Gcをパラメータとして6仕様の圧縮機を作製した。尚、これら圧縮機をショートサーキットサイクルにて、冷蔵庫実使用圧力範囲で最大となる凝縮・蒸発圧力値で、圧縮機を約20日間連続運転させている。   In this examination, the ratio L / D between the length L of the main bearing 111 and the inner diameter D was set to 2.20, and a 6-spec compressor was produced using the rigidity ratio Gb / Gc as a parameter. These compressors are continuously operated for about 20 days in a short circuit cycle at a condensing / evaporation pressure value that is maximum in the actual working pressure range of the refrigerator.

図5から、剛性比Gb/Gcが1.8以上では、主軸107の摩耗量は1μm以下となり、片当りによる摩耗の減少が確認された。一方、剛性比Gb/Gcが1.4から1.8までの間では、主軸107には、片当りによる摩耗の発生が確認された。   From FIG. 5, when the rigidity ratio Gb / Gc is 1.8 or more, the wear amount of the main shaft 107 is 1 μm or less, and it is confirmed that the wear is reduced due to one piece. On the other hand, when the rigidity ratio Gb / Gc was between 1.4 and 1.8, it was confirmed that the main shaft 107 was worn by one piece.

また、剛性比Gb/Gcが1.4では、主軸107の片当りによる摩耗は1μm程度に抑制されるものの、運転中の圧縮機の振動が過剰に大きくなることが確認された。   In addition, when the rigidity ratio Gb / Gc is 1.4, it is confirmed that although the wear due to the contact of the main shaft 107 is suppressed to about 1 μm, the vibration of the compressor during operation becomes excessively large.

これは、主軸受111は、曲げ剛性が主軸107に比べて顕著に小さく、弾性変形し易いことで、主軸107の傾斜による押付け力によって、主軸受111の下方側が主軸107の傾斜角度をより大きくする方向に過大に湾曲した結果であると考える。   This is because the main bearing 111 has a significantly smaller bending rigidity than the main shaft 107 and is easily elastically deformed, so that the lower side of the main bearing 111 has a larger inclination angle of the main shaft 107 due to the pressing force due to the inclination of the main shaft 107. This is considered to be a result of being excessively curved in the direction of the movement.

よって、主軸受111の内径が主軸107に沿うことで、局所的な接触摺動は回避されたものの、主軸107の傾斜角度がより大きくなったために、主軸107の回転中の振れ回りが過剰となり、圧縮機の振動増加につながったと考える。   Therefore, although the local contact sliding is avoided because the inner diameter of the main bearing 111 is along the main shaft 107, the tilt angle of the main shaft 107 becomes larger, so that the swing of the main shaft 107 during rotation becomes excessive. This is thought to have led to an increase in compressor vibration.

このことから、剛性比Gb/Gcが1.8以上であれば、従来に比べて、主軸107と主軸受111との間の片当りによる摩耗を減少させるだけでなく、圧縮機の振動の抑制も可能である。   From this, if the rigidity ratio Gb / Gc is 1.8 or more, it not only reduces wear caused by one-piece contact between the main shaft 107 and the main bearing 111, but also suppresses vibration of the compressor. Is also possible.

次に、主軸受111長さLと内径Dの比率L/Dと、主軸受111の下方(図3中、M点)と接触する主軸107部位での計測された摩耗量の相関関係について、図6を用いて説明する。   Next, regarding the correlation between the ratio L / D of the main bearing 111 length L and the inner diameter D and the measured amount of wear at the main shaft 107 part in contact with the lower side of the main bearing 111 (point M in FIG. 3), This will be described with reference to FIG.

尚、本図では、剛性比Gb/Gcが1.85となる本実施の形態と、1.65となる従来例をベースとした上で、比率L/Dをパラメータとして各6仕様の圧縮機を作製した。尚、これら圧縮機をショートサーキットサイクルにて、冷蔵庫実使用圧力範囲で最大となる凝縮・蒸発圧力値で、圧縮機を約20日間連続運転させている。   In this figure, based on the present embodiment in which the rigidity ratio Gb / Gc is 1.85 and the conventional example in which the rigidity ratio Gb / Gc is 1.65, compressors of 6 specifications each with the ratio L / D as a parameter. Was made. These compressors are continuously operated for about 20 days in a short circuit cycle at a condensing / evaporation pressure value that is maximum in the actual working pressure range of the refrigerator.

図6から、比率L/Dが2.5以下の領域において、剛性比Gb/Gcを1.8以上とすることにより、片当りによる摩耗の減少効果が顕著に確認された。   From FIG. 6, in the region where the ratio L / D is 2.5 or less, it was confirmed that the effect of reducing wear due to one piece was significantly reduced by setting the rigidity ratio Gb / Gc to 1.8 or more.

本実施の形態によって、信頼性を十分確保させた上で、主軸107、及び主軸受111の長さを短小化して、昨今の圧縮機小型化の要望に対応することが可能である。   According to the present embodiment, it is possible to reduce the length of the main shaft 107 and the main bearing 111 while ensuring sufficient reliability, and to meet the recent demand for downsizing of the compressor.

尚、比率L/Dが2.5よりも大きい場合では、次のように考える。   In the case where the ratio L / D is larger than 2.5, the following is considered.

主軸受111長さLが長いほど、モーメントの関係により主軸107と主軸受111の接触荷重は小さくなり、例え局所的な接触摺動であっても摩耗が進行する面圧レベルには達しないものと考えられる。また、主軸受111の内径D、つまり主軸107の外径が小さいほど、主軸107は、曲げ剛性が小さくなり湾曲し易く、主軸受111の内径形状に沿い易いので、接触摺動状態が緩和されるものと考えられる。   The longer the length L of the main bearing 111, the smaller the contact load between the main shaft 107 and the main bearing 111 due to the moment relationship. it is conceivable that. In addition, the smaller the inner diameter D of the main bearing 111, that is, the outer diameter of the main shaft 107, the smaller the bending rigidity and the more easily the main shaft 107 bends. It is thought that.

以上のことから、本実施の形態のように、主軸受111の曲げ剛性Gbと主軸107下方の曲げ剛性Gcとの剛性比Gb/Gcを1.8以上とすることにより、主軸107の曲げ剛性を主軸受111に対し顕著に下げることで、圧縮行程時に圧縮荷重Pを受けて、主軸107が傾斜して主軸受111内と接触した際に、主軸107は主軸受111下方と接触する部位を起点に湾曲して主軸受111の内径形状に沿うので、主軸107と主軸受111の接触面積が増え、片当りによる摩耗が減少し、信頼性が高く、安価な圧縮機を提供することができる。   From the above, by setting the rigidity ratio Gb / Gc between the bending rigidity Gb of the main bearing 111 and the bending rigidity Gc below the main shaft 107 to 1.8 or more as in the present embodiment, the bending rigidity of the main shaft 107 is increased. Is significantly lowered with respect to the main bearing 111 so that when the main shaft 107 is inclined and comes into contact with the inside of the main bearing 111 during the compression stroke, the main shaft 107 contacts a portion below the main bearing 111. Since it curves to the starting point and follows the inner diameter shape of the main bearing 111, the contact area between the main shaft 107 and the main bearing 111 increases, wear due to one piece decreases, and a highly reliable and inexpensive compressor can be provided. .

加えて、主軸受111長さLと内径Dの比率L/Dを2.5以下の領域では、剛性比の範囲内を指定することで、主軸107の片当りによる摩耗の減少効果が顕著に発揮されるとともに、主軸受111、及び主軸107の長さを短く構成して圧縮機を小型化することが可能となる。   In addition, in the region where the ratio L / D between the length L of the main bearing 111 and the inner diameter D is 2.5 or less, the effect of reducing wear due to the contact of the main shaft 107 is noticeable by designating the range of the rigidity ratio. In addition, the length of the main bearing 111 and the main shaft 107 can be shortened to reduce the size of the compressor.

また、本実施の形態では、主軸受111を主軸107の材料のヤング率よりも高い材料にて形成しており、現状の生産ラインを大幅に変更することなく、生産性に優れている。   In the present embodiment, the main bearing 111 is formed of a material higher than the Young's modulus of the material of the main shaft 107, and the productivity is excellent without significantly changing the current production line.

(実施の形態2)
図7は本発明の実施の形態2における圧縮機の縦断面図、図8は同実施の形態における主軸と主軸受のB−B’部での断面図(B−B’部の場所は図2に記載)、図9は同実施の形態における主軸の挙動を示す特性図、図10は同実施の形態での主軸摩耗量の計測結果を示す特性図、図11は剛性比Gb/Gcと主軸摩耗量の相関結果を示す特性図、図12は主軸受長さと内径の比率L/Dと主軸摩耗量の相関結果を示す特性図である。
(Embodiment 2)
FIG. 7 is a longitudinal sectional view of a compressor according to Embodiment 2 of the present invention, and FIG. 9 is a characteristic diagram showing the behavior of the main shaft in the same embodiment, FIG. 10 is a characteristic diagram showing a measurement result of the main shaft wear amount in the same embodiment, and FIG. 11 is a diagram showing the rigidity ratio Gb / Gc. FIG. 12 is a characteristic diagram showing the correlation result between the main bearing length / inner diameter ratio L / D and the main shaft wear amount.

密閉容器201には、冷媒221としてイソブタン(R600a)を充填するとともに、オイル202として比較的低粘度の鉱油を貯留している。   The hermetic container 201 is filled with isobutane (R600a) as the refrigerant 221 and stores mineral oil having a relatively low viscosity as the oil 202.

電動要素205は、シリンダブロック210の下方に固定されインバータ駆動回路(図示せず)とつながっている固定子203と、永久磁石を内蔵し主軸207の下方に固定された回転子204から構成され、インバータ駆動用の電動モータを形成しており、インバータ駆動回路によって、商用電源周波数を下回る運転周波数(例えば、1500r/min)を含む複数の運転周波数で駆動される。   The electric element 205 includes a stator 203 fixed below the cylinder block 210 and connected to an inverter drive circuit (not shown), and a rotor 204 containing a permanent magnet and fixed below the main shaft 207. An electric motor for driving the inverter is formed, and is driven at a plurality of operation frequencies including an operation frequency (for example, 1500 r / min) lower than the commercial power supply frequency by the inverter drive circuit.

固定子203は、突極集中巻型の巻線が用いられている。突極集中巻型の巻線とは、回転子204の中心に向かって放射状に突出した部位(突極)を持つ鉄心を有するものであり、この鉄心の突極に集中的に被覆線を巻きつけたものである。突極集中巻型の巻線は、鉄心からのはみ出しが極めて少ないので、他の巻型(例えば分布巻型)に比べて電動要素205の全高が低い仕様である。   The stator 203 is a salient pole concentrated winding type winding. The salient pole concentrated winding type winding has an iron core having a portion (a salient pole) projecting radially toward the center of the rotor 204, and a covered wire is concentrated around the salient pole of the iron core. It is attached. Since the salient pole concentrated winding has very little protrusion from the iron core, the electric element 205 has a lower overall height than other winding types (for example, distributed winding type).

圧縮要素206について、以下に説明する。   The compression element 206 will be described below.

クランクシャフト209は、鉛直方向に延在し、主軸207及び偏芯軸208から構成されている。シリンダブロック210は、主軸207を回転自在に軸支する主軸受211とともに、圧縮室212を形成するボア孔213を有している。   The crankshaft 209 extends in the vertical direction and includes a main shaft 207 and an eccentric shaft 208. The cylinder block 210 has a bore 213 that forms a compression chamber 212 together with a main bearing 211 that rotatably supports the main shaft 207.

ピストン214は、ボア孔213に往復可動に挿入されている。ピストンピン215は、略円筒形状をなし、偏芯軸208と平行に配置され、ピストン214に形成されたピストンピン孔216に回転不能に係止されている。連結手段217は、ピストンピン215を介して、偏心軸208とピストン214を連結している。   The piston 214 is reciprocally inserted into the bore hole 213. The piston pin 215 has a substantially cylindrical shape, is disposed in parallel with the eccentric shaft 208, and is non-rotatably locked in a piston pin hole 216 formed in the piston 214. The connecting means 217 connects the eccentric shaft 208 and the piston 214 via the piston pin 215.

尚、主軸受211の内径Dは、低速運転(例えば、運転周波数が1500r/min)でも効果的に遠心力を作用させてオイル202を上方へ吸い上げることが可能な18mmとしている。   The inner diameter D of the main bearing 211 is set to 18 mm, which can effectively suck up the oil 202 by applying centrifugal force effectively even at low speed operation (for example, the operation frequency is 1500 r / min).

主軸207の外径と主軸受211の内径Dとの隙間は、加工精度や熱時の径変化によるこじり、あるいは主軸207の回転時のがたつき防止を考慮して、10〜30μmの範囲内である。尚、主軸受211の長さLは40mmである。   The clearance between the outer diameter of the main shaft 207 and the inner diameter D of the main bearing 211 is within a range of 10 to 30 μm in consideration of machining accuracy, twisting due to a change in diameter during heat, or prevention of rattling during rotation of the main shaft 207. It is. The length L of the main bearing 211 is 40 mm.

また、主軸207は、主軸受211との摺動面に形成されたスパイラル溝218と、スパイラル溝218の下端と連通孔220を介して連結され、オイル202に開口するオイルポンプ孔219と、オイルポンプ孔219の上端に延長穿設された筒状孔230を備えている。   The main shaft 207 is connected to the spiral groove 218 formed on the sliding surface with the main bearing 211, the lower end of the spiral groove 218 through the communication hole 220, and the oil pump hole 219 that opens to the oil 202. A cylindrical hole 230 extending at the upper end of the pump hole 219 is provided.

オイルポンプ孔219は、オイル202に開口した下端から上方に向かって傾斜するように形成されている。オイルポンプ孔219の内径は11.5mmである。筒状孔230は、オイルポンプ孔219と同一の傾斜角度で傾斜しており、主軸207と主軸受211の摺動部分の中ほどよりやや上方の辺りまで穿設されている。尚、筒状孔230の孔径は10mmとしている。   The oil pump hole 219 is formed so as to incline upward from the lower end opened to the oil 202. The inner diameter of the oil pump hole 219 is 11.5 mm. The cylindrical hole 230 is inclined at the same inclination angle as that of the oil pump hole 219, and is drilled to a position slightly above the middle of the sliding portion of the main shaft 207 and the main bearing 211. The hole diameter of the cylindrical hole 230 is 10 mm.

クランクシャフト209、シリンダブロック210は、両方ともに、安価で加工が容易な鋳鉄材のねずみ鋳鉄(FC200)で形成されている。   Both the crankshaft 209 and the cylinder block 210 are made of gray cast iron (FC200), which is an inexpensive and easy to process cast iron material.

圧縮機の構造上、回転子204の上端面に形成された凹部222に囲われた主軸受211のストレート部223が最薄肉となる部位に相当する。主軸受211下方の最小肉厚は、加工、組立公差や、衝撃割れ、長期運転中の金属疲労による脆性割れ等の防止を考慮して、2.5mmとしている。よって、主軸受211のストレート部223の外径は23mmとなっている。   Due to the structure of the compressor, the straight portion 223 of the main bearing 211 surrounded by the recess 222 formed on the upper end surface of the rotor 204 corresponds to the thinnest portion. The minimum thickness below the main bearing 211 is 2.5 mm in consideration of processing, assembly tolerance, impact cracking, brittle cracking due to metal fatigue during long-term operation, and the like. Therefore, the outer diameter of the straight portion 223 of the main bearing 211 is 23 mm.

ここで、曲げ剛性とは、曲げに対する変形抵抗の大きさを示すもので、ヤング率と断面二次モーメントの積で表される。   Here, the bending rigidity indicates the magnitude of deformation resistance to bending, and is represented by the product of Young's modulus and cross-sectional second moment.

以上の主軸207と主軸受211を構成する設計、組立諸元から、本実施の形態では、最薄肉となる主軸受211のストレート部223と、筒状孔230が穿設された主軸207部位において、主軸207と主軸受211の剛性比Gb/Gcが1.85となり、主軸受211の長さ方向で最小値となる。尚、主軸受211の長さLと内径Dの比率L/Dは2.20である。   In the present embodiment, from the design and assembly specifications that constitute the main shaft 207 and the main bearing 211, in the present embodiment, the straight portion 223 of the main bearing 211 that is the thinnest and the main shaft 207 portion in which the cylindrical hole 230 is formed. The rigidity ratio Gb / Gc between the main shaft 207 and the main bearing 211 is 1.85, which is the minimum value in the length direction of the main bearing 211. The ratio L / D between the length L and the inner diameter D of the main bearing 211 is 2.20.

以上のように構成された圧縮機について、以下にその動作を説明する。   About the compressor comprised as mentioned above, the operation | movement is demonstrated below.

電動要素205に通電がなされると、回転子204は回転し、これに伴ってクランクシャフト209も回転する。主軸207は、主軸受211に軸支されて回転する一方で、偏芯軸208の回転運動が、連結手段217とピストンピン215を通してピストン214に伝えられ、ピストン214はボア孔213内を往復運動する。このピストン214の往復運動により、密閉容器201内の冷媒221は、圧縮室212内に吸入された後に圧縮されて、密閉容器201外へと吐出される。いわゆる吸入行程と圧縮行程を繰り返している。   When the electric element 205 is energized, the rotor 204 rotates and the crankshaft 209 also rotates accordingly. The main shaft 207 rotates while being supported by the main bearing 211, while the rotational motion of the eccentric shaft 208 is transmitted to the piston 214 through the connecting means 217 and the piston pin 215, and the piston 214 reciprocates in the bore hole 213. To do. Due to the reciprocating motion of the piston 214, the refrigerant 221 in the sealed container 201 is sucked into the compression chamber 212 and then compressed and discharged outside the sealed container 201. The so-called suction stroke and compression stroke are repeated.

クランクシャフト209の回転に伴う遠心力によって、オイルポンプ孔219内にオイル202は吸引され、連通孔220を通ってスパイラル溝218から上方へ導かれ、偏芯軸208の上端から噴射されたオイル202が、連結手段217とピストンピン215や、ピストン214とボア孔213等の摺動部を潤滑する。   The oil 202 is sucked into the oil pump hole 219 by the centrifugal force accompanying the rotation of the crankshaft 209, guided upward from the spiral groove 218 through the communication hole 220, and injected from the upper end of the eccentric shaft 208. However, the sliding means such as the connecting means 217 and the piston pin 215 and the piston 214 and the bore hole 213 are lubricated.

圧縮行程時における主軸207の挙動について、図9を用いて説明する。   The behavior of the main shaft 207 during the compression stroke will be described with reference to FIG.

圧縮荷重Pが、連結手段217を介して偏芯軸208に右横側から作用すると、主軸207は左に傾斜して、主軸受211の上方(図9中、U点)と下方(図9中、M点)にて片当りする。しかしながら、本実施の形態では、主軸受211の中で最薄肉となるストレート部223における主軸受211の曲げ剛性Gbと主軸207の曲げ剛性Gcとの剛性比Gb/Gcを1.8以上としたことで、主軸207の曲げ剛性は主軸受211に比べて顕著に小さくなり、主軸207が、主軸受211に比べ弾性変形し易い構成である。   When the compressive load P acts on the eccentric shaft 208 from the right side via the connecting means 217, the main shaft 207 tilts to the left, above the main bearing 211 (point U in FIG. 9) and below (FIG. 9). Middle, point M). However, in the present embodiment, the rigidity ratio Gb / Gc between the bending rigidity Gb of the main bearing 211 and the bending rigidity Gc of the main shaft 207 in the straight portion 223 that is the thinnest in the main bearing 211 is 1.8 or more. Thus, the bending rigidity of the main shaft 207 is significantly smaller than that of the main bearing 211, and the main shaft 207 is more easily elastically deformed than the main bearing 211.

これにより、主軸207は、主軸受211と片当りした際に、主軸受211下方(図9中、M点)と接触する部位を起点として湾曲する。より具体的には、主軸107摺動表面の右側(図9中、M点に接する側)には引張応力が、一方の左側(図9中、U点に接する側)には圧縮応力が作用するような形で、主軸207は図9に示す如く湾曲する。よって、主軸207の下方は、主軸受211の下方(図9中、M点)の内径形状に比較的広範囲に亘って沿うことになり、主軸207と主軸受211の接触面積が増え、局所的な接触摺動を回避して、片当りによる摩耗が減少する。   As a result, when the main shaft 207 comes into contact with the main bearing 211, the main shaft 207 is curved starting from a portion that contacts the lower portion of the main bearing 211 (point M in FIG. 9). More specifically, tensile stress is applied to the right side (the side in contact with the point M in FIG. 9) of the sliding surface of the main spindle 107, and compressive stress is applied to the left side (the side in contact with the point U in FIG. 9). In this way, the main shaft 207 is curved as shown in FIG. Therefore, the lower part of the main shaft 207 follows the inner diameter shape of the lower part of the main bearing 211 (point M in FIG. 9) over a relatively wide range, the contact area between the main shaft 207 and the main bearing 211 increases, Avoids contact sliding and reduces wear by one piece.

ここで、本実施の形態での主軸受211の上方(図9中、U点)、及び下方(図9中、M点)と接触する主軸207部位の摩耗量を、図10を用いて説明する。   Here, the amount of wear at the main shaft 207 portion contacting the upper side (point U in FIG. 9) and the lower side (point M in FIG. 9) of the main bearing 211 in the present embodiment will be described with reference to FIG. To do.

尚、本図では、剛性比Gb/Gcが1.85となる本実施の形態と、1.65となる従来例とを比較した。いずれの形態も主軸受211長さLと内径Dの比率L/Dは2.2とした。また、本検討では、ショートサーキットサイクルにて、冷蔵庫実使用圧力範囲で最大となる凝縮・蒸発圧力値で、圧縮機を約20日間連続運転させている。   In this figure, the present embodiment in which the rigidity ratio Gb / Gc is 1.85 is compared with the conventional example in which the rigidity ratio Gb / Gc is 1.65. In any form, the ratio L / D between the length L of the main bearing 211 and the inner diameter D was 2.2. In this study, the compressor is continuously operated for about 20 days at the maximum condensation / evaporation pressure value in the actual working pressure range of the refrigerator in a short circuit cycle.

図10から、主軸受211の下方(図9中、M点)と接触する主軸207部位の摩耗量が、従来例に比べ60%程度低減していることを実機試験にて確認した。   From FIG. 10, it was confirmed by an actual machine test that the amount of wear at the main shaft 207 portion in contact with the lower part of the main bearing 211 (point M in FIG. 9) was reduced by about 60% compared to the conventional example.

これは、主軸207が湾曲することにより、主軸受211の下方(図9中、M点)の内径形状に比較的広範囲に亘って沿い、主軸207と主軸受211の接触面積が増えることで、局所的な接触摺動の回避に加え、オイル202による潤滑作用も相乗的に発揮されたものと思われる。   This is because the main shaft 207 is curved, so that the contact area between the main shaft 207 and the main bearing 211 increases along a relatively wide inner diameter shape below the main bearing 211 (point M in FIG. 9). In addition to avoiding local contact sliding, it is considered that the lubricating action by the oil 202 was also synergistically exhibited.

次に、主軸受211下方の曲げ剛性Gbと主軸207の曲げ剛性Gcとの剛性比Gb/Gcと主軸受(図9中、M点)と接触する主軸の部位で計測された摩耗量との相関関係について、図11を用いて説明する。   Next, the rigidity ratio Gb / Gc between the bending rigidity Gb below the main bearing 211 and the bending rigidity Gc of the main shaft 207 and the amount of wear measured at the main shaft portion in contact with the main bearing (point M in FIG. 9). The correlation will be described with reference to FIG.

本検討では、主軸受211長さLと内径Dの比率L/Dを2.20とした上で、剛性比Gb/Gcをパラメータとして6仕様の圧縮機を作製した。尚、これら圧縮機をショートサーキットサイクルにて、冷蔵庫実使用圧力範囲で最大となる凝縮・蒸発圧力値で、圧縮機を約20日間連続運転させている。   In this examination, the ratio L / D between the length L of the main bearing 211 and the inner diameter D was set to 2.20, and a 6-spec compressor was produced using the rigidity ratio Gb / Gc as a parameter. These compressors are continuously operated for about 20 days in a short circuit cycle at a condensing / evaporation pressure value that is maximum in the actual working pressure range of the refrigerator.

図11から、剛性比Gb/Gcが1.8以上では、主軸207の摩耗量は1μm以下となり、片当りによる摩耗の減少が確認された。一方、剛性比Gb/Gcが1.4から1.8までの間では、主軸207には、片当りによる摩耗の発生が確認された。   From FIG. 11, when the rigidity ratio Gb / Gc is 1.8 or more, the wear amount of the main shaft 207 is 1 μm or less, and it is confirmed that the wear is reduced due to one piece. On the other hand, when the rigidity ratio Gb / Gc was between 1.4 and 1.8, it was confirmed that the main shaft 207 was worn by one piece.

また、剛性比Gb/Gcが1.4では、主軸207の片当りによる摩耗は1μm程度に抑制されるものの、運転中の圧縮機の振動が過剰に大きくなることが確認された。   Further, when the rigidity ratio Gb / Gc is 1.4, it is confirmed that the vibration due to the contact of the main shaft 207 with one piece is suppressed to about 1 μm, but the vibration of the compressor during operation becomes excessively large.

これは、主軸受211は、曲げ剛性が主軸207に比べて顕著に小さく、弾性変形し易いことで、主軸207の傾斜による押付け力によって、主軸受211の下方側が主軸207の傾斜角度をより大きくする方向に過大に湾曲した結果であると考える。   This is because the main bearing 211 has a significantly smaller bending rigidity than the main shaft 207 and is easily elastically deformed. The pressing force caused by the inclination of the main shaft 207 causes the lower side of the main bearing 211 to increase the inclination angle of the main shaft 207. This is considered to be a result of being excessively curved in the direction of the movement.

よって、主軸受211の内径が主軸207に沿うことで、局所的な接触摺動は回避されたものの、主軸207の傾斜角度がより大きくなったために、主軸207の回転中の振れ回りが過剰となり、圧縮機の振動増加につながったと考える。   Therefore, although the local contact sliding is avoided by having the inner diameter of the main bearing 211 along the main shaft 207, the tilt angle of the main shaft 207 becomes larger, so that the whirling during rotation of the main shaft 207 becomes excessive. This is thought to have led to an increase in compressor vibration.

このことから、剛性比Gb/Gcが1.8以上であれば、従来に比べて、主軸207と主軸受211との間の片当りによる摩耗を減少させるだけでなく、圧縮機の振動の抑制も可能である。   From this, if the rigidity ratio Gb / Gc is 1.8 or more, it not only reduces wear caused by one-piece contact between the main shaft 207 and the main bearing 211, but also suppresses vibration of the compressor. Is also possible.

次に、主軸受211長さLと内径Dの比率L/Dと、主軸受211の下方(図9中、M点)と接触する主軸207部位での計測された摩耗量の相関関係について、図12を用いて説明する。   Next, regarding the correlation between the ratio L / D of the main bearing 211 length L and the inner diameter D and the measured amount of wear at the main shaft 207 portion in contact with the lower side of the main bearing 211 (point M in FIG. 9), This will be described with reference to FIG.

尚、本図では、剛性比Gb/Gcが1.85となる本実施の形態と、1.65となる従来例をベースとした上で、比率L/Dをパラメータとして各6仕様の圧縮機を作製した。尚、これら圧縮機をショートサーキットサイクルにて、冷蔵庫実使用圧力範囲で最大となる凝縮・蒸発圧力値で、圧縮機を約20日間連続運転させている。   In this figure, based on the present embodiment in which the rigidity ratio Gb / Gc is 1.85 and the conventional example in which the rigidity ratio Gb / Gc is 1.65, compressors of 6 specifications each with the ratio L / D as a parameter. Was made. These compressors are continuously operated for about 20 days in a short circuit cycle at a condensing / evaporation pressure value that is maximum in the actual working pressure range of the refrigerator.

図12から、比率L/Dが2.5以下の領域において、剛性比Gb/Gcを1.8以上とすることにより、片当りによる摩耗の減少効果が顕著に確認された。   From FIG. 12, in the region where the ratio L / D is 2.5 or less, it was confirmed that the effect of reducing wear due to one piece was significantly reduced by setting the rigidity ratio Gb / Gc to 1.8 or more.

本実施の形態によって、信頼性を十分確保させた上で、主軸207、及び主軸受211の長さを短小化して、昨今の圧縮機小型化の要望に対応することが可能である。   According to the present embodiment, it is possible to reduce the lengths of the main shaft 207 and the main bearing 211 while ensuring sufficient reliability and meet the recent demand for downsizing of the compressor.

尚、比率L/Dが2.5よりも大きい場合では、次のように考える。   In the case where the ratio L / D is larger than 2.5, the following is considered.

主軸受211長さLが長いほど、モーメントの関係により主軸207と主軸受211の接触荷重は小さくなり、例え局所的な接触摺動であっても摩耗が進行する面圧レベルには達しないものと考えられる。また、主軸受211の内径D、つまり主軸207の外径が小さいほど、主軸207は、曲げ剛性が小さくなり湾曲し易く、主軸受211の内径形状に沿い易いので、接触摺動状態が緩和されるものと考えられる。   The longer the length L of the main bearing 211, the smaller the contact load between the main shaft 207 and the main bearing 211 due to the moment relationship. For example, even the local contact sliding does not reach the surface pressure level at which wear proceeds. it is conceivable that. Further, the smaller the inner diameter D of the main bearing 211, that is, the outer diameter of the main shaft 207, the smaller the bending rigidity and the more easily the main shaft 207 bends. It is thought that.

以上のことから、本実施の形態のように、主軸受211の曲げ剛性Gbと主軸207下方の曲げ剛性Gcとの剛性比Gb/Gcを1.8以上とすることにより、主軸207の曲げ剛性を主軸受211に対し顕著に下げることで、圧縮行程時に圧縮荷重Pを受けて、主軸207が傾斜して主軸受211内と接触した際に、主軸207は主軸受211下方と接触する部位を起点に湾曲して主軸受211の内径形状に沿うので、主軸207と主軸受211の接触面積が増え、片当りによる摩耗が減少し、信頼性が高く、安価な圧縮機を提供することができる。   From the above, by setting the rigidity ratio Gb / Gc between the bending rigidity Gb of the main bearing 211 and the bending rigidity Gc below the main shaft 207 to 1.8 or more as in the present embodiment, the bending rigidity of the main shaft 207 is increased. Is significantly lowered with respect to the main bearing 211, so that when the main shaft 207 is inclined and contacts the inside of the main bearing 211 when receiving the compressive load P during the compression stroke, the main shaft 207 makes a contact with the lower portion of the main bearing 211. Since it curves to the starting point and follows the inner diameter shape of the main bearing 211, the contact area between the main shaft 207 and the main bearing 211 increases, wear due to one piece decreases, and a highly reliable and inexpensive compressor can be provided. .

また、本実施の形態のように、オイルポンプ孔219の上端に筒状孔230を延長穿設することにより、孔加工だけで容易に主軸の曲げ剛性を下げることができ、生産性に優れている。尚、圧縮機に求められる圧縮負荷条件に合わせて、オイルポンプ孔219の上端に延長穿設した筒状孔230の孔径と長さを変更して対応するので、極めて汎用性にも優れている。   Further, as in the present embodiment, by extending the cylindrical hole 230 at the upper end of the oil pump hole 219, the bending rigidity of the spindle can be easily reduced only by drilling, and the productivity is excellent. Yes. In addition, since it corresponds by changing the hole diameter and length of the cylindrical hole 230 extended at the upper end of the oil pump hole 219 according to the compression load condition required for the compressor, it is extremely excellent in versatility. .

また、本実施の形態では、主軸受211と主軸207の材料を共に同種の鋳鉄材料としたが、剛性比Gb/Gcを1.8以下とするために、筒状孔の加工に加え、主軸受211を主軸207の材料のヤング率よりも高い材料にて形成しても良い。   In this embodiment, both the main bearing 211 and the main shaft 207 are made of the same type of cast iron material. However, in order to set the rigidity ratio Gb / Gc to 1.8 or less, in addition to processing the cylindrical hole, The bearing 211 may be formed of a material higher than the Young's modulus of the material of the main shaft 207.

以上のように、本発明にかかる圧縮機は信頼性が高いため、家庭用冷蔵庫を初めとして、除湿機やショーケース、自販機等の冷凍サイクルを用いたあらゆる用途にも適用できる。   As described above, since the compressor according to the present invention has high reliability, it can be applied to all uses using a refrigeration cycle such as a dehumidifier, a showcase, and a vending machine, including a refrigerator for home use.

本発明の実施の形態1における圧縮機の縦断面図The longitudinal cross-sectional view of the compressor in Embodiment 1 of this invention 本発明の実施の形態1における主軸と主軸受のA−A’部での断面図Sectional drawing in the A-A 'part of the main axis | shaft and main bearing in Embodiment 1 of this invention 本発明の実施の形態1の主軸の挙動を示す特性図FIG. 3 is a characteristic diagram showing the behavior of the main shaft according to the first embodiment of the present invention. 本発明の実施の形態1の主軸摩耗量の計測結果を示す特性図The characteristic view which shows the measurement result of the spindle wear amount of Embodiment 1 of this invention 本発明の実施の形態1の剛性比Gb/Gcと主軸摩耗量の相関結果を示す特性図The characteristic view which shows the correlation result of rigidity ratio Gb / Gc and spindle wear amount of Embodiment 1 of this invention 本発明の実施の形態1の比率L/Dと主軸摩耗量の相関結果を示す特性図The characteristic view which shows the correlation result of ratio L / D of Embodiment 1 of this invention, and spindle wear amount 本発明の実施の形態2における圧縮機の縦断面図The longitudinal cross-sectional view of the compressor in Embodiment 2 of this invention 本発明の実施の形態2における主軸と主軸受のB−B’部での断面図Sectional drawing in the B-B 'part of the main axis | shaft and main bearing in Embodiment 2 of this invention 本発明の実施の形態2の主軸の挙動を示す特性図The characteristic figure which shows the behavior of the main axis | shaft of Embodiment 2 of this invention 本発明の実施の形態2の主軸摩耗量の計測結果を示す特性図The characteristic view which shows the measurement result of the spindle wear amount of Embodiment 2 of this invention 本発明の実施の形態2の剛性比Gb/Gcと主軸摩耗量の相関結果を示す特性図The characteristic view which shows the correlation result of rigidity ratio Gb / Gc and spindle wear amount of Embodiment 2 of this invention 本発明の実施の形態2の比率L/Dと主軸摩耗量の相関結果を示す特性図The characteristic view which shows the correlation result of ratio L / D and spindle wear amount of Embodiment 2 of this invention 従来の圧縮機の縦断面図Vertical section of a conventional compressor 従来の圧縮機の主軸の挙動を示す特性図Characteristic diagram showing the behavior of the main shaft of a conventional compressor

符号の説明Explanation of symbols

101,201 密閉容器
102,202 オイル
103,203 固定子
104,204 回転子
105,205 電動要素
106,206 圧縮要素
107,207 主軸
109,209 クランクシャフト
110,210 シリンダブロック
111,211 主軸受
118,218 スパイラル溝
119,219 オイルポンプ孔
123,223 ストレート部
230 筒状孔
101, 201 Airtight container 102, 202 Oil 103, 203 Stator 104, 204 Rotor 105, 205 Electric element 106, 206 Compression element 107, 207 Main shaft 109, 209 Crankshaft 110, 210 Cylinder block 111, 211 Main bearing 118, 218 Spiral groove 119, 219 Oil pump hole 123, 223 Straight part 230 Cylindrical hole

Claims (5)

密閉容器内にオイルを貯溜するとともに、固定子と回転子からなる電動要素と、前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は、鉛直方向に延在し主軸を備えたクランクシャフトと、前記主軸を軸支する主軸受を有するシリンダブロックを備えるとともに、前記主軸受の最も肉厚の薄いストレート部における前記主軸受の曲げ剛性Gbと前記主軸の曲げ剛性Gcとの剛性比Gb/Gcを1.8以上で4.6以下とした圧縮機。 Oil is stored in a sealed container, and an electric element composed of a stator and a rotor, and a compression element driven by the electric element are accommodated. The compression element extends in a vertical direction and has a main shaft. A cylinder block having a shaft and a main bearing that supports the main shaft, and a rigidity ratio Gb between the bending rigidity Gb of the main bearing and the bending rigidity Gc of the main shaft in the thinnest straight portion of the main bearing; / the Gc, compressor was 4.6 or less 1.8 or more. 主軸受長さLと主軸受内径Dの比率L/Dを、1.9以上で2.5以下とした請求項1に記載の圧縮機。 The compressor according to claim 1, wherein a ratio L / D between the main bearing length L and the main bearing inner diameter D is 1.9 or more and 2.5 or less . 主軸受の材料を、球状黒鉛鋳鉄またはねずみ鋳鉄とし、主軸の材料をねずみ鋳鉄とした請求項1または請求項2に記載の圧縮機 The compressor according to claim 1 or 2, wherein the material of the main bearing is spheroidal graphite cast iron or gray cast iron, and the material of the main shaft is gray cast iron . 主軸は、主軸受との摺動面に形成されたスパイラル溝と、前記スパイラル溝の下端と連通し、オイルに開口するオイルポンプ孔を備えるとともに、前記オイルポンプ孔の上端に筒状孔を延長穿設した請求項1から3のいずれか1項に記載の圧縮機。 The main shaft includes a spiral groove formed on a sliding surface with the main bearing, an oil pump hole that communicates with a lower end of the spiral groove and opens to oil, and a cylindrical hole extends to the upper end of the oil pump hole. The compressor according to any one of claims 1 to 3, wherein the compressor is drilled. 少なくとも商用電源周波数未満の周波数を含む運転周波数にて運転される請求項1から4のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the compressor is operated at an operation frequency including at least a frequency lower than a commercial power supply frequency.
JP2004355163A 2004-12-08 2004-12-08 Compressor Expired - Fee Related JP4674466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355163A JP4674466B2 (en) 2004-12-08 2004-12-08 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355163A JP4674466B2 (en) 2004-12-08 2004-12-08 Compressor

Publications (2)

Publication Number Publication Date
JP2006161712A JP2006161712A (en) 2006-06-22
JP4674466B2 true JP4674466B2 (en) 2011-04-20

Family

ID=36664000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355163A Expired - Fee Related JP4674466B2 (en) 2004-12-08 2004-12-08 Compressor

Country Status (1)

Country Link
JP (1) JP4674466B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006041480B4 (en) * 2006-09-05 2016-06-16 Robert Bosch Gmbh Motor-pump unit with a pump drive shaft high elasticity and an eccentric at the drive shaft end
KR102227089B1 (en) 2014-12-18 2021-03-12 엘지전자 주식회사 Compressor
JP2018003639A (en) * 2016-06-29 2018-01-11 日立アプライアンス株式会社 Hermetic type compressor
EP3816441A4 (en) * 2018-06-27 2021-08-11 Panasonic Appliances Refrigeration Devices Singapore Hermetic refrigerant compressor and freezing/refrigerating apparatus using the same
WO2021106903A1 (en) * 2019-11-25 2021-06-03 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Hermetic refrigerant compressor and freezing/refrigerating apparatus in which same is used

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110719A (en) * 1998-10-05 2000-04-18 Matsushita Electric Ind Co Ltd Closed type compressor and open type compressor
JP2000145637A (en) * 1998-11-12 2000-05-26 Matsushita Refrig Co Ltd Sealed electric compressor
JP2003028065A (en) * 2001-07-16 2003-01-29 Matsushita Refrig Co Ltd Hermetically closed electric compressor
JP2004132250A (en) * 2002-10-10 2004-04-30 Matsushita Electric Ind Co Ltd Bearing for compressor, and compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157022U (en) * 1982-04-16 1983-10-20 三菱重工業株式会社 compressor
JPH029960A (en) * 1988-06-28 1990-01-12 Matsushita Refrig Co Ltd Compressor
JPH09112429A (en) * 1995-10-20 1997-05-02 Matsushita Refrig Co Ltd Closed compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110719A (en) * 1998-10-05 2000-04-18 Matsushita Electric Ind Co Ltd Closed type compressor and open type compressor
JP2000145637A (en) * 1998-11-12 2000-05-26 Matsushita Refrig Co Ltd Sealed electric compressor
JP2003028065A (en) * 2001-07-16 2003-01-29 Matsushita Refrig Co Ltd Hermetically closed electric compressor
JP2004132250A (en) * 2002-10-10 2004-04-30 Matsushita Electric Ind Co Ltd Bearing for compressor, and compressor

Also Published As

Publication number Publication date
JP2006161712A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR100687983B1 (en) Compressor
KR20040008196A (en) Sealed type electrically driven compressor
JP4211351B2 (en) Reciprocating type electric compressor
US10344749B2 (en) Hermetic compressor and refrigeration device
JP4674466B2 (en) Compressor
US10859076B2 (en) Compressor
JP5136639B2 (en) Hermetic compressor
JP5170111B2 (en) Hermetic compressor and refrigeration apparatus using the same
US20090116985A1 (en) Hermetic compressor
JP2016205134A (en) Hermetic type compressor
JP5612628B2 (en) Hermetic compressor
JP3488676B2 (en) Hermetic compressor
KR20060065471A (en) Enclosed type compressor
JP4950138B2 (en) Reciprocating hermetic compressor and manufacturing method thereof
JP4844092B2 (en) Compressor
JP6138625B2 (en) Hermetic compressor and refrigerator using the same
JP2009085191A (en) Sealed compressor
JP2012087711A (en) Hermetic compressor
US8601933B2 (en) Hermetic compressor and fridge-freezer
JP5126007B2 (en) Hermetic compressor
KR200184101Y1 (en) Frame structure for hermetic compressor
JP2012167629A (en) Hermetic type compressor
WO2009027435A1 (en) A compressor
KR101093405B1 (en) A Structure Of Frame And Cylinder For Hermatic Compressor
JP6131795B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4674466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees