JP4674342B2 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
JP4674342B2
JP4674342B2 JP2004516693A JP2004516693A JP4674342B2 JP 4674342 B2 JP4674342 B2 JP 4674342B2 JP 2004516693 A JP2004516693 A JP 2004516693A JP 2004516693 A JP2004516693 A JP 2004516693A JP 4674342 B2 JP4674342 B2 JP 4674342B2
Authority
JP
Japan
Prior art keywords
viscosity
lubricating oil
oil composition
base oil
fischer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004516693A
Other languages
Japanese (ja)
Other versions
JP2005530902A (en
Inventor
デビッド・ジョン・ウエドロック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Publication of JP2005530902A publication Critical patent/JP2005530902A/en
Application granted granted Critical
Publication of JP4674342B2 publication Critical patent/JP4674342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index

Description

本発明は、フィッシャー・トロプシュ誘導基油及び1種以上の添加物を含む潤滑油組成物に向けたものである。本発明は、特に、いわゆるSAE J300分類の潤滑油組成物に向けたものである。   The present invention is directed to a lubricating oil composition comprising a Fischer-Tropsch derived base oil and one or more additives. The present invention is particularly directed to so-called SAE J300 class lubricating oil compositions.

この種の潤滑油組成物は、SAE xW−y組成物とも言われている。SAEは、米国のSociety of Automotive Engineersを表わす。このような表示で“x”数は、通常、低温クランク回転シミュレーター(VdCCS)により高せん断下で測定した時の、潤滑油組成物についての低温での最大粘度要件と関連する。第二の数“y”は、下記のように、100℃での動粘度要件と関連する。   This type of lubricating oil composition is also referred to as a SAE xW-y composition. SAE stands for US Society of Automotive Engineers. In such a representation, the “x” number is usually associated with the maximum viscosity requirement at low temperature for the lubricating oil composition as measured under high shear by a low temperature crank rotation simulator (VdCCS). The second number “y” is related to the kinematic viscosity requirement at 100 ° C. as follows.

フィッシャー・トロプシュ誘導基油及び1種以上の添加物を含む潤滑油組成物は、例えばWO−A−0157166に記載されている。この刊行物によれば、潤滑油は、いわゆる粘度調整剤ポリマーを含有してよい。このような添加物は、通常、比較的高分子量の成分で、他の成分や基油とブレンドすると、顕著な増粘性を示す。このような高分子量材料は、一般に粘度調整剤ポリマー、高分子増粘剤又は粘度指数向上剤としても知られる高分子材料である。   Lubricating oil compositions comprising a Fischer-Tropsch derived base oil and one or more additives are described, for example, in WO-A-0157166. According to this publication, the lubricating oil may contain a so-called viscosity modifier polymer. Such additives are usually relatively high molecular weight components that exhibit significant thickening when blended with other components and base oils. Such high molecular weight materials are generally polymeric materials also known as viscosity modifier polymers, polymeric thickeners or viscosity index improvers.

WO−A−0157166は、粘度調整剤ポリマーを含有しない潤滑油配合物を開示している。特に粘度調整剤ポリマーを含有しない潤滑油配合物は、SAE“xW−y”(但し、x=0、5、10又は15で、=10、20、30又は40で、(y−x)は25以下である)粘度等級と一致するかも知れない。
同刊行物によれば、多くの場合、低粘度基油原料(basestock)と組合せた粘度調整剤ポリマーは、特に多等級の潤滑油により、所望の粘度法目標を達成するのに非常に有利であることが見い出されたと述べている。更に、0W−40、5W−50及び10W−60のオイルのように広範な交差等級の潤滑油配合物は、これより狭い交差等級の潤滑油配合物、例えば0W−20及び10W−30のオイル(高分子量ポリマー増粘剤を殆ど又は全く必要としない)よりも多くの高分子量ポリマー増粘剤を必要とする。
WO-A-0157166 discloses a lubricating oil formulation that does not contain a viscosity modifier polymer. In particular, lubricating oil formulations that do not contain a viscosity modifier polymer are SAE “xW-y” (where x = 0, 5, 10, or 15, = 10, 20, 30 or 40, (y−x) is May be consistent with the viscosity rating (which is 25 or less).
According to the publication, in many cases, viscosity modifier polymers in combination with low viscosity basestocks are very advantageous in achieving the desired viscosity method targets, especially with multi-grade lubricants. It states that something has been found. In addition, a wide range of cross-grade lubricant formulations, such as 0W-40, 5W-50 and 10W-60 oils, can be used with narrower cross-grade lubricant formulations, such as 0W-20 and 10W-30 oils. More high molecular weight polymer thickeners are required (less or no high molecular weight polymer thickeners are required).

WO−A−0157166の例11〜14は、SAE 0W−20、SAE 5W−20及びSAE 10W−30による粘度未調整の潤滑油配合物が、ポリ−α−オレフィンとフィッシャー・トロプシュ誘導基油とのブレンドにより得られることを示している。このフィッシャー・トロプシュ誘導基油の100℃での動粘度は、それぞれ3.7、4.0、4.1及び6.0cStである。この明細書によれば、粘度調整剤を含まない潤滑油配合物は、ポリ−α−オレフィンも含有する配合物だけでしか得られていない。   Examples 11-14 of WO-A-0157166 include a non-viscosity lubricating oil formulation according to SAE 0W-20, SAE 5W-20 and SAE 10W-30 wherein a poly-α-olefin and a Fischer-Tropsch derived base oil It is shown that it can be obtained by blending. The Fischer-Tropsch derived base oil has a kinematic viscosity at 100 ° C. of 3.7, 4.0, 4.1, and 6.0 cSt, respectively. According to this specification, lubricating oil formulations without viscosity modifiers have been obtained only with formulations that also contain poly-α-olefins.

出願人は、前述のような粘度調整剤よりなる潤滑油を、ガソリン直接噴射エンジン(GDI)の自動車エンジン潤滑油として使用すると、入口バルブ縁部の後ろに残留物が蓄積しやすいことを見い出した。これらの残留物は、硬化して表面から脱離しやすく、自動車エンジンのシリンダーに入って、エンジンを損傷させる恐れがあるので、非常に不利である。
WO−A−0157166 EP−A−776959 EP−A−668342 WO−A−9721788 WO−0015736 WO−0014188 WO−0014187 WO−0014183 WO−0014179又はWO−A−0014179 WO−0008115 WO−9941332 EP−1029029 WO−0118156 WO−0157166 WO−A−9934917 AU−A−698392 EP−A−532118 EP−A−666894 US−A−4859311 WO−A−9718278 US−A−5053373 US−A−5252527 US−A−4574043 US−A−5157191 WO−A−0029511 EP−A−832171 Lubricant Base Oil and Wax Processing,Avilino Sequeia,Jr,Marcel Dekker Inc.,New York,1994,Chapter 7 Micropores and mesopores materials,第22巻(1998),644−645頁“Verified synthesis of zeolitic materials”
Applicants have found that when a lubricant consisting of a viscosity modifier as described above is used as an automotive engine lubricant for a gasoline direct injection engine (GDI), residue tends to accumulate behind the inlet valve edge. . These residues are very disadvantageous because they tend to harden and detach from the surface and can enter the cylinder of an automobile engine and damage the engine.
WO-A-0157166 EP-A-776959 EP-A-668342 WO-A-9721788 WO-0015736 WO-0014188 WO-0014187 WO-0014183 WO-0014179 or WO-A-0014179 WO-0008115 WO-9941332 EP-1029029 WO-0118156 WO-0157166 WO-A-9934917 AU-A-698392 EP-A-532118 EP-A-666894 US-A-4859311 WO-A-9718278 US-A-5053373 US-A-5252527 US-A-45744033 US-A-5157191 WO-A-0029511 EP-A-832171 Lubricant Base Oil and Wax Processing, Abilino Sequeia, Jr., Marcel Decker Inc. , New York, 1994, Chapter 7 Micropores and mesopores materials, Vol. 22 (1998), pp. 644-645 “Verified synthesis of zeolitic materials”

本発明の目的は、GDIエンジンに使用しても、残留物の蓄積が起こらない潤滑油配合物を提供することである。   It is an object of the present invention to provide a lubricating oil formulation that does not cause residue accumulation when used in a GDI engine.

この目的は、以下の潤滑油組成物により達成される。一方のフィッシャー・トロプシュ誘導基油は、100℃での動粘度が7cSt未満の低粘度成分であり、他方のフィッシャー・トロプシュ誘導基油は、100℃での動粘度が18cStを超える高粘度成分である少なくとも2種のフィッシャー・トロプシュ誘導基油と、1種以上の添加物との混合物を含む潤滑油組成物。   This object is achieved by the following lubricating oil composition. One Fischer-Tropsch derived base oil is a low viscosity component having a kinematic viscosity at 100 ° C. of less than 7 cSt, and the other Fischer-Tropsch derived base oil is a high viscosity component having a kinematic viscosity at 100 ° C. of more than 18 cSt. A lubricating oil composition comprising a mixture of at least two Fischer-Tropsch derived base oils and one or more additives.

出願人は、比較的高粘度のフィッシャー・トロプシュ誘導基油と低粘度のフィッシャー・トロプシュ誘導基油とをブレンドすることにより、粘度調整剤を添加する必要なく、SAE“xW−y”粘度潤滑油配合物の特性に達成できることを見い出した。出願人は、更にこのような粘度調整剤を含まない潤滑油は、WO−A−0157166に示されるようなポリ−α−オレフィン共(co−)基油の添加を必要とすることなく、得られることを見い出した。したがって、フィッシャー・トロプシュ誘導基油を完全に基材とする粘度調整剤を含まない潤滑油が有利に配合できる。出願人は、更に粘度調整剤を含まない潤滑油をガソリン直接噴射エンジン(GDI)の自動車エンジン潤滑油として使用すると、入口バルブ縁部の後ろに残留物の蓄積が起こらないことを見い出した。
特にy−xが25以上のSAE“xW−y”粘度の潤滑油配合物は、粘度調整剤を添加する必要なく、製造できることが更に見い出された。WO−A−0157166の教示に従うと、このような配合物は、粘度調整剤の添加を必要とする場合のみ、製造できることが予測されていた。
Applicants have blended a relatively high viscosity Fischer-Tropsch derived base oil with a low viscosity Fischer-Tropsch derived base oil to eliminate the need for the addition of a viscosity modifier and SAE “xW-y” viscosity lubricants. We have found that the properties of the formulation can be achieved. Applicants have further obtained lubricants that do not contain such viscosity modifiers without the need for the addition of a poly-α-olefin co-base oil as shown in WO-A-0157166. I found out that Therefore, a lubricating oil containing no Fischer-Tropsch derived base oil and containing a viscosity modifier completely can be advantageously blended. Applicants have also found that no residue build-up behind the inlet valve edge occurs when a lubricant containing no viscosity modifier is used as an automotive engine lubricant in a gasoline direct injection engine (GDI).
In particular, it has been found that lubricating oil formulations with SAE “xW-y” viscosities with y-x of 25 or more can be produced without the need to add viscosity modifiers. In accordance with the teachings of WO-A-0157166, it was expected that such formulations could only be produced if it required the addition of viscosity modifiers.

100℃での動粘度が7cSt未満のフィッシャー・トロプシュ誘導基油(“低粘度成分”とも言う)の流動点は、好ましくは−18℃未満、更に好ましくは−30℃未満である。100℃での動粘度は、好ましくは3.5cStを超え、更に好ましくは3.5〜6cStの範囲である。粘度指数(VI)は、好ましくは120を超え、更に好ましくは130を超える。VIは、通常、160未満である。Noack揮発減量(CEC L40 T87による)は、好ましくは14重量%未満である。この低粘度成分は、例えばEP−A−776959、EP−A−668342、WO−A−9721788、WO−0015736、WO−0014188、WO−0014187、WO−0014183、WO−0014179、WO−0008115、WO−9941332、EP−1029029、WO−0118156及びWO−0157166に開示されるような、いずれのフィッシャー・トロプシュ誘導基油でもよい。   The pour point of a Fischer-Tropsch derived base oil (also referred to as “low viscosity component”) having a kinematic viscosity at 100 ° C. of less than 7 cSt is preferably less than −18 ° C., more preferably less than −30 ° C. The kinematic viscosity at 100 ° C. is preferably more than 3.5 cSt, more preferably in the range of 3.5 to 6 cSt. The viscosity index (VI) is preferably greater than 120, more preferably greater than 130. VI is typically less than 160. The Noack volatilization loss (according to CEC L40 T87) is preferably less than 14% by weight. This low viscosity component is, for example, EP-A-776959, EP-A-668342, WO-A-9721788, WO-0015736, WO-0014188, WO-0014187, WO-0014183, WO-0014179, WO-0008115, WO Any Fischer-Tropsch derived base oil, as disclosed in -9941332, EP-1029029, WO-0118156 and WO-0157166.

100℃での動粘度が18cStを超える他方の(第二の)フィッシャー・トロプシュ誘導基油は、“高粘度成分”とも言う。高粘度成分の100℃での動粘度は、好ましくは20〜40cSt、更に好ましくは20〜30cStの範囲である。流動点は、好適には−50〜+20℃の範囲であってよい。この重質基油の流動点は、臨界的には一層低く、流動点が0℃を超える基油でさえ、最終潤滑油配合物の温度特性に悪影響を与えないことが見い出された。粘度指数は、好ましくは150を超え、更に好ましくは160〜190の範囲である。このクラスのフィッシャー・トロプシュ誘導基油は、新規であると考えられる。   The other (second) Fischer-Tropsch derived base oil having a kinematic viscosity at 100 ° C. exceeding 18 cSt is also referred to as a “high viscosity component”. The kinematic viscosity at 100 ° C. of the high viscosity component is preferably in the range of 20 to 40 cSt, more preferably 20 to 30 cSt. The pour point may suitably be in the range of −50 to + 20 ° C. It has been found that the pour point of this heavy base oil is critically lower, and even base oils with a pour point above 0 ° C. do not adversely affect the temperature characteristics of the final lubricating oil formulation. The viscosity index is preferably above 150, more preferably in the range of 160-190. This class of Fischer-Tropsch derived base oil is considered novel.

最終基油中の低粘度成分と高粘度成分との容量比は、出発成分の特性及び意図する所望のSAE xW−y潤滑油配合物に基づく周知のブレンド規則を利用することにより決定できる。好適には潤滑油組成物は、フィッシャー・トロプシュ誘導基油を65〜95重量%含有する。組成物の残部は、1種以上の、ただし粘度調整剤を含有しない、添加物よりなる The volume ratio of low viscosity component to high viscosity component in the final base oil can be determined by utilizing well-known blending rules based on the properties of the starting components and the intended desired SAE xW-y lubricating oil formulation. Preferably, the lubricating oil composition contains 65 to 95 weight percent Fischer-Tropsch derived base oil. The balance of the composition consists of one or more additives that do not contain a viscosity modifier .

本発明は、前述のような重質等級の基油を、粘度調整剤を必要としない自動車オイル配合物に一般的に使用する方法にも向けたものである。この重質基油は、前記潤滑油配合物に配合するため、他のフィッシャー・トロプシュ誘導基油と組合せてよい
本発明の潤滑油組成物は粘度調整剤を含有しない。潤滑油組成物は、例えばWO−A−0157166に記載されるような1種以上の他の添加物を含有してよい。この組成物の一部を形成する添加物の種類は、例えば分散剤、洗剤、極圧/摩耗防止剤、酸化防止剤、流動点降下剤、乳化剤、乳化破壊剤、腐食防止剤、錆防止剤、汚染防止剤及び摩擦改質剤である。これら添加物の具体例は、例えばKirk−Othmer Encyclopedia of Chemical Technology,第3編、第14巻、477〜526頁に記載されている。
The present invention is also directed to a method of generally using heavy grade base oils as described above in automotive oil formulations that do not require viscosity modifiers. The heavy base oil, because the you incorporated into the lubricating oil formulation may be combined with other Fischer-Tropsch derived base oil.
The lubricating oil composition of the present invention contains no viscosity adjusting agent. The lubricating oil composition may contain one or more other additives as described, for example, in WO-A-0157166. Types of additives that form part of the composition, such as dispersants, detergents, extreme pressure / antiwear agents, antioxidants, pour point depressants, emulsifiers, demulsifiers, corrosion inhibitors, rust inhibitors Agents, antifouling agents and friction modifiers. Specific examples of these additives are described, for example, in Kirk-Othmer Encyclopedia of Chemical Technology, Volume 3, Volume 14, pages 477-526.

好適な摩耗防止添加物は、ジアルキルジチオ燐酸亜鉛である。好適な分散剤は、灰分のない分散剤、例えばポリブチレンスクシンイミドポリアミン類又はMannic塩基型分散剤である。好適な洗剤は、塩基過剰の(over−based)金属洗剤、例えば上記一般的な教本に記載されるようなホスホネート、スルホネート、フェノレート又はサリチレート型である。好適な酸化防止剤は、ヒンダードフェノール又はアミン化合物、例えばアルキル化又はスチレン化ジフェニルアミン類、又はイオノール(ionol)誘導したヒンダードフェノール類である。好適な消泡剤は、ポリジメチルシロキサン、及びポリエチレングリコールエーテル及びエステルである。   A preferred antiwear additive is zinc dialkyldithiophosphate. Suitable dispersants are ashless dispersants such as polybutylene succinimide polyamines or Mannic base type dispersants. Suitable detergents are over-based metal detergents, for example phosphonate, sulfonate, phenolate or salicylate types as described in the above general textbooks. Suitable antioxidants are hindered phenols or amine compounds, such as alkylated or styrenated diphenylamines, or ionol-derived hindered phenols. Suitable antifoaming agents are polydimethylsiloxane, and polyethylene glycol ethers and esters.

低粘度基油成分及び高粘度基油成分の両方を製造できる好ましい方法を以下に説明する。
この方法は、フィッシャー・トロプシュ合成工程で得られた比較的重質の原料に対する水素化分解/水素化異性化工程を含む。基油の沸点範囲にある沸点を有する基油前駆体フラクションを含む、前記水素化処理工程からの流出流のフラクションに対し、引き続き脱蝋工程を行う。次に、脱蝋した流出流から、低質及び重質の基油成分を単離する。
A preferred method capable of producing both a low viscosity base oil component and a high viscosity base oil component is described below.
This method includes a hydrocracking / hydroisomerization step on a relatively heavy feed obtained in a Fischer-Tropsch synthesis step. A dewaxing step is subsequently performed on the fraction of the effluent from the hydrotreating step that includes a base oil precursor fraction having a boiling point in the boiling range of the base oil. The low and heavy base oil components are then isolated from the dewaxed effluent stream.

水素化分解/水素化異性化工程への比較的重質の原料は、好適には、炭素原子数60以上の化合物と炭素原子数30以上の化合物との重量比が、少なくとも0.2、好ましくは少なくとも0.4、更に好ましくは少なくとも0.55のものである。更にこの原料は、炭素原子数30以上の化合物を少なくとも30重量%、好ましくは少なくとも50重量%、更に好ましくは少なくとも55重量%含有する。このような原料は、好ましくはフィッシャー・トロプシュ生成物を含有する。更に、このフィッシャー・トロプシュ生成物は、ASF−α値(Anderson−Schulz−Flory連鎖成長ファクター)が少なくとも0.925、好ましくは少なくとも0.935、更に好ましくは少なくとも0.945、なお更に好ましくは少なくとも0.955のC20+フラクションを含有する。炭素原子数4以下の化合物及びその沸点範囲の沸点を有する化合物は、いずれも前記原料中に存在しないことが好ましい。原料は、プロセス再循環物及び/又は脱蝋後に得られるような規格外の基油フラクションも含有してよい。 The relatively heavy raw material for the hydrocracking / hydroisomerization step preferably has a weight ratio of a compound having 60 or more carbon atoms to a compound having 30 or more carbon atoms, preferably at least 0.2. Is at least 0.4, more preferably at least 0.55. Further, this raw material contains at least 30% by weight, preferably at least 50% by weight, more preferably at least 55% by weight, of a compound having 30 or more carbon atoms. Such a feed preferably contains a Fischer-Tropsch product. Furthermore, the Fischer-Tropsch product has an ASF-α value (Anderson-Schulz-Flory chain growth factor) of at least 0.925, preferably at least 0.935, more preferably at least 0.945, even more preferably at least Contains 0.955 C 20 + fraction. It is preferable that neither a compound having 4 or less carbon atoms nor a compound having a boiling point in the range of the boiling point is present in the raw material. The feed may also contain non-standard base oil fractions such as obtained after process recycle and / or dewaxing.

比較的重質のフィッシャー・トロプシュ生成物が得られる好適なフィッシャー・トロプシュ合成法は、例えばWO−A−9934917及びAU−A−698392に記載されている。
水素化分解/水素化異性化工程は、好適には、水素、及び該反応に好適であるとして当業者に知られている触媒の存在下で行われる。これら方法の例は、WO−A−0014179、EP−A−532118、EP−A−666894及びEP−A−776959に記載されている。この工程に有用な通常の触媒は、例えば表面積が392m/gで、水銀ポロシメーターで測定した細孔容積が0.59ml/gの白金(Pt)0.8重量%荷重非晶質シリカ−アルミナ触媒である。この水素化処理工程に有用な他の触媒は、ニッケル(Ni)を2.5〜3.5重量%、銅(Cu)を0.25〜0.35重量%、非晶質シリカ−アルミナを65〜75重量%、アルミナバインダーを25〜35重量%含有し、最終触媒の表面積が290〜325m/gで、全細孔容積(Hg)が0.35〜0.45ml/gで、圧縮かさ密度が0.58〜0.68g/mlの非晶質シリカアルミナ触媒である。
Suitable Fischer-Tropsch synthesis methods that result in relatively heavy Fischer-Tropsch products are described, for example, in WO-A-9934917 and AU-A-698392.
The hydrocracking / hydroisomerization step is preferably performed in the presence of hydrogen and a catalyst known to those skilled in the art as being suitable for the reaction. Examples of these methods are described in WO-A-0014179, EP-A-532118, EP-A-666894 and EP-A-776959. A typical catalyst useful in this process is platinum (Pt) 0.8 wt% amorphous silica-alumina with a surface area of 392 m 2 / g and a pore volume measured with a mercury porosimeter of 0.59 ml / g. It is a catalyst. Other catalysts useful for this hydrotreating step include nickel (Ni) 2.5-3.5 wt%, copper (Cu) 0.25-0.35 wt%, amorphous silica-alumina 65-75% by weight, an alumina binder contains 25 to 35 wt%, the surface area of the final catalyst is in 290~325m 2 / g, total pore volume (Hg) is at 0.35-0.45 ml / g, compression An amorphous silica-alumina catalyst having a bulk density of 0.58 to 0.68 g / ml.

水素化分解/水素化異性化工程は、好ましくは反応温度175〜380℃の範囲、好ましくは250℃より高く、更に好ましくは300〜370℃の範囲で行われる。圧力は通常、10〜250バラ、好ましくは20〜80バラの範囲である。水素は100〜10000Nl/l/hr、好ましくは500〜5000Nl/l/hrの、ガスの1時間当り空間速度で供給してよい。炭化水素原料は、0.1〜5kg/l/hr、好ましくは0.5kg/l/hrよりも高い、更に好ましくは2kg/l/hrよりも低い、重量の1時間当り空間速度で供給してよい。水素と炭化水素原料との比は、100〜5000Nl/kgであってよく、好ましくは250〜2500Nl/kgである。   The hydrocracking / hydroisomerization step is preferably performed at a reaction temperature in the range of 175 to 380 ° C, preferably higher than 250 ° C, more preferably in the range of 300 to 370 ° C. The pressure is usually in the range of 10 to 250 roses, preferably 20 to 80 roses. Hydrogen may be supplied at a gas hourly space velocity of 100 to 10,000 Nl / l / hr, preferably 500 to 5000 Nl / l / hr. The hydrocarbon feed is fed at an hourly space velocity of weight of 0.1-5 kg / l / hr, preferably higher than 0.5 kg / l / hr, more preferably lower than 2 kg / l / hr. It's okay. The ratio of hydrogen to hydrocarbon feedstock may be 100-5000 Nl / kg, preferably 250-2500 Nl / kg.

水素化分解/水素化異性化工程における転化率は、1パス当り、370℃より高い沸点の原料が、370℃未満の沸点を有するフラクションまで反応する重量割合(%)として定義される。この転化率は、20重量%以上、好ましくは25重量%以上であるが、好ましくは80重量%以下、更に好ましくは70重量%以下である。前記定義で使用した原料とは、例えば全ての再循環流を含む合計の炭化水素原料である。
水素化分解/水素化異性化工程の流出流から、蒸留により、基油の範囲の沸点を有する高沸点フラクションを単離する。
The conversion in the hydrocracking / hydroisomerization step is defined as the weight percentage (%) at which a feed having a boiling point higher than 370 ° C. reacts to a fraction having a boiling point lower than 370 ° C. per pass. This conversion rate is 20% by weight or more, preferably 25% by weight or more, preferably 80% by weight or less, more preferably 70% by weight or less. The feed used in the above definition is, for example, the total hydrocarbon feed including all recycle streams.
From the hydrocracking / hydroisomerization process effluent, a high-boiling fraction having a boiling point in the base oil range is isolated by distillation.

好適には低粘度成分及び高粘度成分に相当する沸点範囲にある2種の基油前駆体フラクションを単離する。これらの前駆体フラクションは、前記高沸点フラクションの真空蒸留で得られる。この基油前駆体フラクションの初期沸点は、好適には330〜400℃の範囲である。分離は、ほぼ大気圧条件、好ましくは1.2〜2バラの範囲の圧力で行われ、前記基油前駆体フラクションに続いて、好適にはガス油、ナフサ及び/又はケロシンフラクションを単離する。   Preferably, two base oil precursor fractions in the boiling range corresponding to the low viscosity component and the high viscosity component are isolated. These precursor fractions are obtained by vacuum distillation of the high boiling fraction. The initial boiling point of this base oil precursor fraction is preferably in the range of 330-400 ° C. The separation is carried out at about atmospheric conditions, preferably at a pressure in the range of 1.2 to 2 roses, preferably following the base oil precursor fraction, preferably isolating gas oil, naphtha and / or kerosene fraction. .

次に、基油前駆体フラクションに対し、脱蝋工程(流動点低下処理とも言われる)を行う。脱蝋工程は、例えばLubricant Base Oil and Wax Processing,Avilino Sequeia,Jr,Marcel Dekker Inc.,New York,1994,Chapter 7に記載されるような、いわゆる溶剤脱蝋法水素化分解/水素化異性化工程で行うことができる。しかし、脱蝋工程は、接触脱蝋工程で行うことが好ましい。接触脱蝋は当業者に周知で、好適には水素及び好適な不均質触媒の存在下に行われる。この不均質触媒は、モレキュラーシーブ及び任意に第VIII族金属のような水素化機能を有する金属との組合せを有する触媒である。モレキュラーシーブ、更に好適には中間細孔サイズのゼオライトは、接触脱蝋条件下で基油前駆体フラクションの流動点を低下させる良好な触媒能力を示した。好ましい中間細孔サイズのゼオライトは、0.35〜0.8nmの範囲の細孔直径を有する。好適な中間細孔サイズのゼオライトは、モルデナイト、ZSM−5、ZSM−12、ZSM−22、ZSM−23、SSZ−32、ZSM−35及びZSM−48である。他の好ましいモレキュラーシーブ群は、シリカ−アルミナホスフェート(SAPO)材料である。これら材料のうち、SAPO−11は、例えばUS−A−4859311に記載されるように、最も好ましい。ZSM−5は、いかなる第VIII族金属も存在しない場合、そのHSMZ−5の形態で任意に使用できる。その他のモレキュラーシーブは、添加した第VIII族金属と組合せて使用することが好ましい。好適な第VIII族金属は、ニッケル、コバルト、白金及びパラジウムである。可能な組合せの例は、Ni/ZSM−5、Pt/ZSM−23、Pd/ZSM−23、Pt/ZSM−48及びPt/SAPO−11である。好適なモレキュラーシーブ及び脱蝋条件の更なる詳細及び例は、WO−A−9718278、US−A−5053373、US−A−5252527、US−A−4574043、US−A−5157191、WO−A−0029511及びEP−A−832171に記載されている。   Next, a dewaxing step (also referred to as a pour point lowering process) is performed on the base oil precursor fraction. The dewaxing process is described, for example, in Lubricant Base Oil and Wax Processing, Avilino Sequeia, Jr., Marcel Decker Inc. , New York, 1994, Chapter 7, so-called solvent dewaxing hydrocracking / hydroisomerization step. However, the dewaxing step is preferably performed by a catalytic dewaxing step. Catalytic dewaxing is well known to those skilled in the art and is preferably performed in the presence of hydrogen and a suitable heterogeneous catalyst. This heterogeneous catalyst is a catalyst having a combination of molecular sieves and optionally a metal having a hydrogenation function such as a Group VIII metal. Molecular sieves, and more preferably intermediate pore size zeolites, showed good catalytic ability to lower the pour point of the base oil precursor fraction under catalytic dewaxing conditions. Preferred intermediate pore size zeolites have a pore diameter in the range of 0.35 to 0.8 nm. Suitable intermediate pore size zeolites are mordenite, ZSM-5, ZSM-12, ZSM-22, ZSM-23, SSZ-32, ZSM-35 and ZSM-48. Another preferred molecular sieve group is silica-alumina phosphate (SAPO) material. Of these materials, SAPO-11 is most preferred, for example, as described in US-A-4859311. ZSM-5 can optionally be used in its HSMZ-5 form if no Group VIII metal is present. Other molecular sieves are preferably used in combination with the added Group VIII metal. Preferred Group VIII metals are nickel, cobalt, platinum and palladium. Examples of possible combinations are Ni / ZSM-5, Pt / ZSM-23, Pd / ZSM-23, Pt / ZSM-48 and Pt / SAPO-11. Further details and examples of suitable molecular sieve and dewaxing conditions are given in WO-A-9718278, US-A-5053373, US-A-5252527, US-A-45744043, US-A-5157191, WO-A-. 0029511 and EP-A-832171.

接触脱蝋条件は、当該技術分野で公知であり、通常、通常、操作温度は200〜500℃、好適には250〜400℃の範囲であり、水素圧は10〜200バール、好ましくは40〜70バールの範囲であり、重量の1時間当り空間速度(WHSV)は1時間当り触媒1リットル当りオイル0.1〜10kg(kg/l/hr)、好適には0.2〜5kg/l/hr、更に好適には0.5〜3kg/l/hrの範囲であり、また水素対オイル比はオイル1リットル当り水素100〜2,000リットルの範囲である。接触脱蝋工程では、40〜70バールの範囲で温度を275℃、更に好ましくは315℃から375℃までの範囲で変化させることにより、好適には−60℃未満から−10℃まで変化する流動点値を有する低粘度基油成分を製造することが可能である。   Catalytic dewaxing conditions are known in the art, and usually the operating temperature is usually in the range of 200-500 ° C, preferably 250-400 ° C, and the hydrogen pressure is 10-200 bar, preferably 40- The hourly space velocity (WHSV) in the range of 70 bar is 0.1 to 10 kg (kg / l / hr) of oil per liter of catalyst per hour, preferably 0.2 to 5 kg / l / hr. hr, more preferably in the range of 0.5 to 3 kg / l / hr, and the hydrogen to oil ratio is in the range of 100 to 2,000 liters of hydrogen per liter of oil. In the catalytic dewaxing step, the flow varies preferably from less than −60 ° C. to −10 ° C. by changing the temperature in the range of 40-70 bar, 275 ° C., more preferably in the range of 315 ° C. to 375 ° C. It is possible to produce a low viscosity base oil component having a point value.

脱蝋工程の流出流からは、好適にはまず低沸点非基油フラクションを、好ましくは蒸留により、任意に初期フラッシュ工程と組合せて、除去する。これらの低沸点化合物を除去後、脱蝋生成物は、好適には蒸留により、少なくとも低粘度基油成分と高粘度基油成分とに分離する。高粘度基油成分は、好適にはこのような蒸留の塔底生成物(換言すれば最高沸点フラクション)である。
本発明を以下の非限定的実施例により説明する。
The low boiling non-base oil fraction is preferably first removed from the dewaxing step effluent, preferably by distillation, optionally in combination with an initial flush step. After removal of these low boiling compounds, the dewaxed product is separated into at least a low viscosity base oil component and a high viscosity base oil component, preferably by distillation. The high viscosity base oil component is preferably such a distillation bottom product (in other words, the highest boiling fraction).
The invention is illustrated by the following non-limiting examples.

実施例1
WO−A−9934917の実施例IIIに記載の触媒を用いた実施例VIIで得られたフィッシャー・トロプシュ生成物のC〜C750℃フラクションを水素化分解工程に連続的に供給した。この原料は、C30+生成物を約60重量%含有していた。C60+/C30+比は、約0.55であった。水素化分解工程では、このフラクションは、EP−A−532118の実施例1に記載の水素化分解触媒と接触させた。工程(a)の流出流を真空下で連続的に蒸留し、軽質物、燃料及び沸点370℃以上の残留物“R”を得た。水素化分解工程への新鮮な原料に対するガス油フラクションの収率は43重量%であった。こうして得られたガス油フラクションの特性を第3表に示す。
Example 1
The C 5 to C 750 ° C. + fraction of the Fischer-Tropsch product obtained in Example VII with the catalyst described in Example III of WO-A-9934917 was continuously fed to the hydrocracking process. This feed contained about 60% by weight of C 30 + product. The C 60 + / C 30 + ratio was about 0.55. In the hydrocracking step, this fraction was contacted with the hydrocracking catalyst described in Example 1 of EP-A-532118. The effluent of step (a) was continuously distilled under vacuum to obtain a light product, fuel and residue “R” having a boiling point of 370 ° C. or higher. The yield of gas oil fraction relative to fresh feed to the hydrocracking process was 43% by weight. Table 3 shows the characteristics of the gas oil fraction thus obtained.

残留物“R”の大部分を工程に再循環し、残部は、接触脱蝋工程に送った。接触分解工程の条件は、新鮮原料の重量の1時間当り空間速度(WHSV)=0.8kg/l.h、再循環原料のWHSV=0.25kg/l.h、水素ガス速度=1000Nl/kg、全圧=40バール、及び反応器温度=335℃である。
脱蝋工程では、前述の沸点370℃から750℃を超える範囲のフラクションは、WO−A−0029511の実施例9に記載される、Ptを0.7重量%及びZSM−5を30重量%含有する脱アルミ化シリカ結合ZSM−5触媒と接触させた。脱蝋条件は、水素=40バール、WHSV=1kg/l.h及び温度=365℃である。
Most of the residue “R” was recycled to the process and the remainder was sent to the catalytic dewaxing process. The conditions for the catalytic cracking process were: hourly space velocity (WHSV) = 0.8 kg / l. h, WHSV of recycle material = 0.25 kg / l. h, hydrogen gas velocity = 1000 Nl / kg, total pressure = 40 bar, and reactor temperature = 335 ° C.
In the dewaxing step, the above-mentioned fraction in the range of boiling point 370 ° C. to over 750 ° C. contains 0.7% by weight of Pt and 30% by weight of ZSM-5 as described in Example 9 of WO-A-0029511. Was contacted with a dealuminated silica bonded ZSM-5 catalyst. The dewaxing conditions were: hydrogen = 40 bar, WHSV = 1 kg / l. h and temperature = 365 ° C.

脱蝋油は、305〜420℃の沸点範囲の基油フラクション(脱蝋工程への原料に対する収率は16.1重量%)、420〜510℃の沸点範囲の基油フラクション(脱蝋工程への原料に対する収率は16.1重量%)及び510℃より高い沸点を有する基油フラクション(脱蝋工程への原料に対する収率は27.9重量%)の3つの基油フラクションに蒸留した。420〜510℃の沸点範囲の基油フラクション及びそれ以上重質のフラクションは、更に詳細に分析した(第1表参照)。   The dewaxed oil has a base oil fraction in the boiling range of 305 to 420 ° C. (yield to the raw material to the dewaxing process is 16.1% by weight), a base oil fraction in the boiling range of 420 to 510 ° C. (to the dewaxing process) The base oil fraction was 16.1 wt%) and the base oil fraction having a boiling point higher than 510 ° C. (yield based on the feed to the dewaxing process was 27.9 wt%). Base oil fractions in the boiling range of 420-510 ° C. and heavier fractions were analyzed in more detail (see Table 1).

実施例2、3に使用する脱蝋触媒の製造:
テンプレートとしてテトラエチルアンモニウムブロミドを用い、Micropores and mesopores materials,第22巻(1998),644−645頁“Verified synthesis of zeolitic materials”の記載に従って、MTW型ゼオライト微結晶を製造した。走査電子顕微鏡(SEM)で視覚的に観察した粒子サイズは、1〜10μmのZSM−12粒子を示した。XRD線拡大技術で測定した平均微結晶サイズは、0.05μmであった。こうして得られた微結晶をシリカバインダーと一緒に押し出した(ゼオライト10重量%、シリカバインダー90重量%)。押出物は、120℃で乾燥した。この押出物に(NHSiF溶液(ゼオライト微結晶1g当り0.019N溶液45ml)を注いだ。次いで、押出物上を静かに撹拌しながら、混合物を還流下、100℃で17時間加熱した。ろ過後、押出物を脱イオン水で2回洗浄し、120℃で2時間乾燥し、次いで480℃で2時間焼成した。
Production of dewaxing catalyst used in Examples 2 and 3:
Using tetraethylammonium bromide as a template, MTW-type zeolite microcrystals were produced as described in Micropores and mesopores materials, Vol. 22 (1998), pages 644-645, “Verified synthesis of zeolitic materials”. The particle size visually observed with a scanning electron microscope (SEM) showed 1-10 μm ZSM-12 particles. The average crystallite size measured with the XRD line magnification technique was 0.05 μm. The microcrystals thus obtained were extruded together with a silica binder (zeolite 10% by weight, silica binder 90% by weight). The extrudate was dried at 120 ° C. (NH 4 ) 2 SiF 6 solution (45 ml of 0.019N solution per 1 g of zeolite microcrystals) was poured into the extrudate. The mixture was then heated at 100 ° C. under reflux for 17 hours with gentle stirring over the extrudate. After filtration, the extrudate was washed twice with deionized water, dried at 120 ° C. for 2 hours, and then calcined at 480 ° C. for 2 hours.

こうして得られた押出物を水酸化白金テトラミンの水溶液に浸漬後、乾燥し(120℃で2時間)、更に焼成した(300℃で2時間)。白金を100 l/hrの水素速度下、350℃の温度で2時間還元することにより、触媒を活性化した。得られた触媒は、脱アルミ化シリカ結合MTWゼオライト上にPtを0.35重量%担持していた。   The extrudate thus obtained was immersed in an aqueous solution of platinum hydroxide tetramine, dried (at 120 ° C. for 2 hours), and further calcined (at 300 ° C. for 2 hours). The catalyst was activated by reducing platinum at a temperature of 350 ° C. for 2 hours under a hydrogen rate of 100 l / hr. The resulting catalyst supported 0.35 wt% Pt on dealuminated silica-bound MTW zeolite.

実施例2
第2表に示す特性を有する部分異性化フィッシャー・トロプシュ誘導蝋を、約ほぼ390〜520℃の沸点範囲を有する軽質基油前駆体フラクション及び520℃より高い沸点を有する重質基油前駆体フラクションに蒸留した。
Example 2
A partially isomerized Fischer-Tropsch derived wax having the properties shown in Table 2 is added to a light base oil precursor fraction having a boiling range of about 390-520 ° C and a heavy base oil precursor fraction having a boiling point higher than 520 ° C. Distilled on.

重質基油前駆体フラクションは、前記脱蝋触媒と接触させた。脱蝋条件は、水素=40バール、WHSV=1kg/l.h、温度=340℃、水素ガス速度=700Nl/kg原料である。
脱蝋油は、第3表に示す特性を有する2種の基油フラクションに蒸留した。
The heavy base oil precursor fraction was contacted with the dewaxing catalyst. The dewaxing conditions were: hydrogen = 40 bar, WHSV = 1 kg / l. h, temperature = 340 ° C., hydrogen gas velocity = 700 Nl / kg raw material.
The dewaxed oil was distilled into two base oil fractions having the properties shown in Table 3.

軽質基油前駆体フラクションも前記脱蝋触媒と接触させることにより、接触的に脱蝋した。脱蝋条件は、水素=40バール、WHSV=1kg/l.h、温度=310℃、水素ガス速度=700Nl/kg原料である。
脱蝋油は、第4表に示す特性を有する2種の基油フラクションに蒸留した。
The light base oil precursor fraction was also dewaxed catalytically by contacting with the dewaxing catalyst. The dewaxing conditions were: hydrogen = 40 bar, WHSV = 1 kg / l. h, temperature = 310 ° C., hydrogen gas velocity = 700 Nl / kg raw material.
The dewaxed oil was distilled into two base oil fractions having the properties shown in Table 4.

以上、重質基油前駆体フラクション及び軽質基油前駆体フラクションの脱蝋流出流の蒸留は、別々に行った。これらの流出流は、各種基油生成物に蒸留する前に、組合わせできることも、当業者ならば明らかであろう。   As mentioned above, distillation of the dewaxed effluent of the heavy base oil precursor fraction and the light base oil precursor fraction was performed separately. It will also be apparent to those skilled in the art that these effluent streams can be combined prior to distillation into various base oil products.

実施例3
第5表に示す特性を有する部分異性化フィッシャー・トロプシュ誘導蝋から出発して、実施例2を繰り返した。この原料は、ほぼ390〜520℃の沸点範囲を有する軽質基油前駆体フラクション及び520℃より高い沸点を有する重質基油前駆体フラクションに蒸留した。
Example 3
Example 2 was repeated starting from a partially isomerized Fischer-Tropsch derived wax having the properties shown in Table 5. This feed was distilled into a light base oil precursor fraction having a boiling range of approximately 390-520 ° C and a heavy base oil precursor fraction having a boiling point higher than 520 ° C.

重質基油前駆体フラクションは、前記脱蝋触媒と接触させた。脱蝋条件は、水素=40バール、WHSV=1kg/l.h、温度=355℃、水素ガス速度=700Nl/kg原料である。
脱蝋油は、第6表に示す特性を有する2種の基油フラクションに蒸留した。
The heavy base oil precursor fraction was contacted with the dewaxing catalyst. The dewaxing conditions were: hydrogen = 40 bar, WHSV = 1 kg / l. h, temperature = 355 ° C., hydrogen gas velocity = 700 Nl / kg raw material.
The dewaxed oil was distilled into two base oil fractions having the properties shown in Table 6.

実施例4
本例は、重質フィッシャー・トロプシュ誘導基油等級を、粘度調整剤の使用を必要とせずに、いわゆるSAE J300分類による5W−30潤滑油組成物の一部として使用する方法を示す。フィッシャー・トロプシュ誘導基油及び得られた潤滑油の特性を第7表に示す。
Example 4
This example shows how a heavy Fischer-Tropsch derived base oil grade can be used as part of a 5W-30 lubricating oil composition according to the so-called SAE J300 classification without the use of viscosity modifiers. The properties of the Fischer-Tropsch derived base oil and the resulting lubricating oil are shown in Table 7.

Claims (8)

一方のフィッシャー・トロプシュ誘導基油は、100℃での動粘度が7cSt未満で、かつ粘度指数が120を超える低粘度成分であり、他方のフィッシャー・トロプシュ誘導基油は、100℃での動粘度が18cStを超え、かつ粘度指数が150〜190の範囲の高粘度成分である2種のフィッシャー・トロプシュ誘導基油と、分散剤、洗剤、極圧/摩耗防止剤、酸化防止剤、流動点降下剤、乳化剤、乳化破壊剤、腐食防止剤、錆防止剤、汚染防止剤及び摩擦改質剤からなる群から選択された1種以上の添加物との混合物からなる、SAE “xW−y”(ただし、y−xは25以上である)粘度の、粘度調整剤を含有しない潤滑油組成物。One Fischer-Tropsch derived base oil is a low viscosity component having a kinematic viscosity at 100 ° C. of less than 7 cSt and a viscosity index exceeding 120 , and the other Fischer-Tropsch derived base oil has a kinematic viscosity at 100 ° C. There exceeded 18CSt, and the two Fischer-Tropsch derived base oils Ru high viscosity component der ranging viscosity index 150-190, dispersants, detergents, extreme pressure / antiwear agents, antioxidants, pour point SAE “xW-y” comprising a mixture with one or more additives selected from the group consisting of a depressant, an emulsifier, an emulsion breaker, a corrosion inhibitor, a rust inhibitor, a pollution inhibitor and a friction modifier. (However, y-x is 25 or more) A lubricating oil composition containing no viscosity modifier . 前記低粘度成分の流動点が、−18℃未満である請求項1に記載の粘度調整剤を含有しない潤滑油組成物The lubricating oil composition containing no viscosity modifier according to claim 1, wherein the pour point of the low viscosity component is less than -18 ° C. 前記低粘度成分の流動点が、−30℃未満である請求項に記載の粘度調整剤を含有しない潤滑油組成物The lubricating oil composition containing no viscosity modifier according to claim 2 , wherein the pour point of the low viscosity component is less than -30 ° C. 前記低粘度成分の100℃での動粘度が3.5〜6cStの範囲であり、かつNoack揮発減量が14重量%未満である請求項2又は3に記載の粘度調整剤を含有しない潤滑油組成物The lubricant kinematic viscosity at 100 ° C. of low viscosity component Ri range der of 3.5~6CSt, either One Noack volatility does not contain a viscosity modifier according to claim 2 or 3 is less than 14 wt% Oil composition . 前記高粘度成分の100℃での動粘度が20〜40cStの範囲である請求項1〜のいずれか1項に記載の粘度調整剤を含有しない潤滑油組成物The lubricating oil composition containing no viscosity modifier according to any one of claims 1 to 4 , wherein the high viscosity component has a kinematic viscosity at 100C of 20 to 40 cSt. 前記高粘度成分の流動点が、−15〜+20℃の範囲である請求項に記載の粘度調整剤を含有しない潤滑油組成物The lubricating oil composition containing no viscosity modifier according to claim 5 , wherein the pour point of the high viscosity component is in the range of -15 to + 20 ° C. 全てのフィッシャー・トロプシュ誘導基油の含有量が、65〜95重量%の範囲である請求項1〜のいずれか1項に記載の粘度調整剤を含有しない潤滑油組成物The lubricating oil composition containing no viscosity modifier according to any one of claims 1 to 6 , wherein the content of all Fischer-Tropsch derived base oils is in the range of 65 to 95% by weight. ガソリン直接噴射エンジンを潤滑するために使用する請求項1〜のいずれか1項に記載の粘度調整剤を含有しない潤滑油組成物The lubricating oil composition containing no viscosity modifier according to any one of claims 1 to 7 is used to lubricate the gasoline direct injection engine.
JP2004516693A 2002-06-26 2003-06-25 Lubricating oil composition Expired - Fee Related JP4674342B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02254469 2002-06-26
PCT/EP2003/006758 WO2004003113A1 (en) 2002-06-26 2003-06-25 Lubricant composition

Publications (2)

Publication Number Publication Date
JP2005530902A JP2005530902A (en) 2005-10-13
JP4674342B2 true JP4674342B2 (en) 2011-04-20

Family

ID=29797298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004516693A Expired - Fee Related JP4674342B2 (en) 2002-06-26 2003-06-25 Lubricating oil composition

Country Status (5)

Country Link
US (1) US20060052252A1 (en)
EP (1) EP1516037A1 (en)
JP (1) JP4674342B2 (en)
AU (1) AU2003280148A1 (en)
WO (1) WO2004003113A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144497B2 (en) 2002-11-20 2006-12-05 Chevron U.S.A. Inc. Blending of low viscosity Fischer-Tropsch base oils with conventional base oils to produce high quality lubricating base oils
US7053254B2 (en) * 2003-11-07 2006-05-30 Chevron U.S.A, Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US7520976B2 (en) * 2004-08-05 2009-04-21 Chevron U.S.A. Inc. Multigrade engine oil prepared from Fischer-Tropsch distillate base oil
US7510674B2 (en) * 2004-12-01 2009-03-31 Chevron U.S.A. Inc. Dielectric fluids and processes for making same
US20060219597A1 (en) * 2005-04-05 2006-10-05 Bishop Adeana R Paraffinic hydroisomerate as a wax crystal modifier
JP4769085B2 (en) * 2006-01-13 2011-09-07 Jx日鉱日石エネルギー株式会社 Method for hydrotreating wax
EP1820841B1 (en) * 2006-02-14 2018-10-31 Infineum International Limited Use for reducing intake valve deposits
CN101020856B (en) 2006-02-14 2012-08-29 英菲诺姆国际有限公司 Lubrication
JP4945178B2 (en) * 2006-07-06 2012-06-06 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for internal combustion engines
JP5498644B2 (en) * 2006-07-06 2014-05-21 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for drive transmission device
JP5137314B2 (en) 2006-03-31 2013-02-06 Jx日鉱日石エネルギー株式会社 Lubricating base oil
JP2007270062A (en) * 2006-03-31 2007-10-18 Nippon Oil Corp Lubricant base oil, lubricating oil composition and method for producing lubricant base oil
JP4945180B2 (en) * 2006-07-06 2012-06-06 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for wet clutch
JP4945179B2 (en) * 2006-07-06 2012-06-06 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for internal combustion engines
EP2075314A1 (en) 2007-12-11 2009-07-01 Shell Internationale Research Maatschappij B.V. Grease formulations
WO2009080672A1 (en) 2007-12-20 2009-07-02 Shell Internationale Research Maatschappij B.V. Fuel compositions
JP2011508000A (en) 2007-12-20 2011-03-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fuel composition
JP5483662B2 (en) 2008-01-15 2014-05-07 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP5806794B2 (en) * 2008-03-25 2015-11-10 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for internal combustion engines
EP2343357B1 (en) 2008-10-07 2019-12-04 JX Nippon Oil & Energy Corporation Method for producing a lubricant composition
JP2010090251A (en) 2008-10-07 2010-04-22 Nippon Oil Corp Lubricant base oil, method for producing the same, and lubricating oil composition
EP2581437B2 (en) 2008-10-07 2019-05-01 JX Nippon Oil & Energy Corporation Process for producing lubricant base oil and lubricating oil composition
JP5806796B2 (en) * 2008-10-07 2015-11-10 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for internal combustion engine and method for producing the same
WO2010066860A1 (en) * 2008-12-12 2010-06-17 Shell Internationale Research Maatschappij B.V. Lubricating compositions
JP2012511609A (en) * 2008-12-12 2012-05-24 昭和シェル石油株式会社 Lubricating composition
JP5829374B2 (en) 2009-06-04 2015-12-09 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
CN105695045A (en) 2009-06-04 2016-06-22 吉坤日矿日石能源株式会社 Lubricant oil composition
US9404062B2 (en) 2009-06-04 2016-08-02 Jx Nippon Oil & Energy Corporation Lubricant oil composition
CN103525515A (en) 2009-06-04 2014-01-22 吉坤日矿日石能源株式会社 A lubricating oil composition and a method for manufacturing same
JP5689592B2 (en) 2009-09-01 2015-03-25 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
US9115615B2 (en) 2010-10-06 2015-08-25 The Lubrizol Corporation Lubricating oil composition with anti-mist additive
JP5552139B2 (en) * 2012-05-23 2014-07-16 Jx日鉱日石エネルギー株式会社 Lubricating base oil, lubricating oil composition, and method for producing lubricating base oil
JP6266606B2 (en) 2012-06-21 2018-01-24 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap Lubricating oil composition comprising heavy Fischer-Tropsch derived and alkylated aromatic base oil
CN115093893A (en) 2014-04-25 2022-09-23 路博润公司 Multi-stage lubricating composition
KR101694622B1 (en) * 2015-06-25 2017-01-09 에스케이이노베이션 주식회사 Lube base oil composition
US10557092B2 (en) * 2016-08-03 2020-02-11 Exxonmobil Research And Engineering Company Raffinate hydroconversion for production of high performance base stocks
JP6810657B2 (en) * 2017-05-30 2021-01-06 シェルルブリカンツジャパン株式会社 Lubricating oil composition for automatic transmission
KR20230133367A (en) * 2021-01-26 2023-09-19 셰브런 유.에스.에이.인크. Heavy grade base oil product manufacturing process
CN115340894B (en) * 2021-10-22 2023-11-28 福斯润滑油(中国)有限公司 Low-viscosity lubricating oil for engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309592A (en) * 1987-06-12 1988-12-16 Idemitsu Kosan Co Ltd Lube base oil composition
JPH09221685A (en) * 1995-11-28 1997-08-26 Shell Internatl Res Maatschappij Bv Production of lubricating base oil
WO2001057166A1 (en) * 2000-02-04 2001-08-09 Mobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175046A (en) * 1978-09-20 1979-11-20 Mobil Oil Corporation Synthetic lubricant
US4574043A (en) * 1984-11-19 1986-03-04 Mobil Oil Corporation Catalytic process for manufacture of low pour lubricating oils
US4859311A (en) * 1985-06-28 1989-08-22 Chevron Research Company Catalytic dewaxing process using a silicoaluminophosphate molecular sieve
US5157191A (en) * 1986-01-03 1992-10-20 Mobil Oil Corp. Modified crystalline aluminosilicate zeolite catalyst and its use in the production of lubes of high viscosity index
US5252527A (en) * 1988-03-23 1993-10-12 Chevron Research And Technology Company Zeolite SSZ-32
US5053373A (en) * 1988-03-23 1991-10-01 Chevron Research Company Zeolite SSZ-32
US5321172A (en) * 1993-02-26 1994-06-14 Exxon Research And Engineering Company Lubricating composition for two-cycle internal combustion engines
GB9708628D0 (en) * 1997-04-29 1997-06-18 Castrol Ltd A two-stroke motorcycle lubricant
ZA989528B (en) * 1997-12-03 2000-04-19 Schuemann Sasol S A Pty Ltd "Production of lubricant base oils".
US6190532B1 (en) * 1998-07-13 2001-02-20 Mobil Oil Corporation Production of high viscosity index lubricants
US6179994B1 (en) * 1998-09-04 2001-01-30 Exxon Research And Engineering Company Isoparaffinic base stocks by dewaxing fischer-tropsch wax hydroisomerate over Pt/H-mordenite
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6475960B1 (en) * 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6332974B1 (en) * 1998-09-11 2001-12-25 Exxon Research And Engineering Co. Wide-cut synthetic isoparaffinic lubricating oils
FR2792946B1 (en) * 1999-04-29 2003-10-24 Inst Francais Du Petrole PROCESS FOR PRODUCING OIL BASES AND MEDIUM DISTILLATES FROM HYDROCARBON FILLERS BY A LOW-DISPERSE CATALYST FOLLOWED BY CATALYTIC DEPAINTING
US7670996B2 (en) * 2001-02-13 2010-03-02 Shell Oil Company Lubricant composition having a base oil and one or more additives, wherein the base oil has been obtained from waxy paraffinic fischer-tropsch synthesized hydrocarbons
AR032930A1 (en) * 2001-03-05 2003-12-03 Shell Int Research PROCEDURE TO PREPARE AN OIL BASED OIL AND GAS OIL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309592A (en) * 1987-06-12 1988-12-16 Idemitsu Kosan Co Ltd Lube base oil composition
JPH09221685A (en) * 1995-11-28 1997-08-26 Shell Internatl Res Maatschappij Bv Production of lubricating base oil
WO2001057166A1 (en) * 2000-02-04 2001-08-09 Mobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons

Also Published As

Publication number Publication date
JP2005530902A (en) 2005-10-13
WO2004003113A1 (en) 2004-01-08
EP1516037A1 (en) 2005-03-23
US20060052252A1 (en) 2006-03-09
AU2003280148A1 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
JP4674342B2 (en) Lubricating oil composition
EP1370633B1 (en) Lubricant composition
US7497941B2 (en) Process to prepare a lubricating base oil and a gas oil
CN1245485C (en) Process to prepare waxy raffinate
EP1666569B1 (en) Lubricant formulation and its use
AU2002249198A1 (en) Lubricant composition
AU2002308283A1 (en) Base oil composition
AU2002247753A1 (en) Process to prepare a lubricating base oil and a gas oil
EP2231839A1 (en) Grease formulations
CN1898364A (en) Process to prepare a haze free base oil
US20060183651A1 (en) Lubricant composition based on fischer-tropsch derived base oils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090723

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20090723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4674342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees