JP4674305B2 - 集積回路装置のデータバス電荷共有技術 - Google Patents

集積回路装置のデータバス電荷共有技術 Download PDF

Info

Publication number
JP4674305B2
JP4674305B2 JP2007333605A JP2007333605A JP4674305B2 JP 4674305 B2 JP4674305 B2 JP 4674305B2 JP 2007333605 A JP2007333605 A JP 2007333605A JP 2007333605 A JP2007333605 A JP 2007333605A JP 4674305 B2 JP4674305 B2 JP 4674305B2
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit device
voltage
coupled
voltage level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007333605A
Other languages
English (en)
Other versions
JP2009071798A (ja
Inventor
シー. ハーディ キム
シー. パリス マイケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2009071798A publication Critical patent/JP2009071798A/ja
Application granted granted Critical
Publication of JP4674305B2 publication Critical patent/JP4674305B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Description

関連技術
本発明は、ユナイテッド・メモリーズ・インコーポレーテッド(コロラド州コロラドスプリングス)、および、ソニー株式会社(日本・東京都)の両社に譲渡された、2007年1月22日出願の米国特許出願番号第11/625、728、Michael C.Parris,Douglas B.Butler、およびKim C.Hardeeによる「離散選択信号値の信号生成を可能にする集積回路装置」および、2007年6月7に出願された米国特許出願番号第11/759、823、Michael C.Parris、および、Kim C.Hardeeによる「データバススキュー用途のための最適化電荷共有」に関連する。
本発明は、概ね半導体集積回路装置の分野に関する。特に、本発明は、集積回路装置のデータバス電荷共有技術に関する。
多数の内部データバスを有する集積回路装置は、高周波数でのデータバスの切り替えによって消費電力が高くなる可能性がある。この電力を低減させる1つの方法は、データバスにおける電圧振幅をわずかな電源電圧VCCまで引き下げることであり、さまざまなやり方で行われる。
電力をさらに低減させるには、2つまたはそれ以上のデータバス間で電荷を共有することが望ましい。本技術の従来の実施態様は、VCCとグラウンドとの間に複雑な積層回路および/またはデータバスを有しており、一組の回路および/またはデータバスにおける信号の最高電圧レベルは、もう一方の組の回路および/またはデータバスにおける信号の最低電圧レベルに等しい。このスキームは、二組の回路および/またはデータバス間で電荷を効率的に共有する。
新規で有効な電荷共有技術が前述の特許出願で開示される。この技術を利用し、二組の小さい信号差動プリチャージデータバス間で電荷が共有される。一組のデータバスは、VCCとほぼ0.9×VCCとの間を切り替え、他の組のデータバスは、0.1×VCCと0Vとの間を切り替える。この場合、一組のデータバスの最低電圧レベルは、もう一組のデータバスの最高電圧レベルに等しく設定されない。したがって、新しい電荷共有方法が用いられなければならない。
この、先に参照された特許出願では、スイッチトキャパシタ回路は、電荷共有機能を提供するための1つの手段として開示される。この場合、一組のデータバスにおいてデータラインをVCCから0,9×VCCに駆動するために用いられる電荷は、もう一組のデータバスにおいてデータラインを0Vから0,1×VCCに駆動するためにも用いられる。好適な実施形態では、この電荷は、スイッチトキャパシタを介し転送される。
先の特許出願において開示された特定の技術の実施態様では、内部電圧レベル、0.9×VCCおよび0.1×VCCは、二組のデータバスおよびスイッチトキャパシタの相対的な容量によって決定される。このことは、それらの電圧レベルを設定する際におそらく若干の不確定さを招くであろうから、結果としては、やはり高電力および/または不十分な信号レベルになるかもしれない。さらに、この特定の技術は、差動プリチャージデータバスに特に適しており、信頼できる低周波数動作を確実にするためには、付加的な回路が必要とされるかもしれない。
本発明の電荷共有技術は、米国特許出願番号第11/625、728で開示されるスイッチトキャパシタ方法の変形例である。このアプローチでは、2つの電圧レギュレータは、特定の例示的実施で開示されるほぼ0.9倍のVCCおよび0.1倍のVCCである定電圧VEQ1およびVEQ2をそれぞれ生成するのに用いられる。一組の信号は、VCCとVEQ1との間を切り替え、もう一組の信号は、VEQ2と0Vとの間を切り替える。
二組の信号間での電荷共有は、電圧レギュレータのユニークな構成により実現する。
特に本願明細書に開示されるのは、第1の電圧レベルと、より高い第2の電圧レベルとの間を切り替えることができる少なくとも1つの第1の信号ラインと、異なる第3の電圧レベルと、より低い第4の電圧レベルとの間を切り替えることができる少なくとも1つの第2の信号ラインと、第1の電圧レベルのソースと第3の電圧レベルのソースとの間に結合される非同期電荷共有回路とを含む。
また、特に本願明細書中に開示されるのは、集積回路装置の操作方法であって、方法は、第1の電圧レベルとより高い第2の電圧レベルとの間を少なくとも1つの第1の信号ラインで切り替えることと、異なる第3の電圧レベルとより低い第4の電圧レベルとの間を少なくとも1つの第2の信号ラインで切り替えることと、第1の電圧レベルのソースと第3の電圧レベルとの間で電荷を共有することと、を含む。
さらに、本願明細書中に開示されるのは、第1および第2の信号ラインに結合される電荷共有回路を含む集積回路装置である。電荷共有回路は、第1および第2の電圧レベルをそれぞれの出力において供給するよう構成される第1および第2の電圧レギュレータを含む。第1のスイッチング素子は、第1の電圧レギュレータの出力に結合される入力を有し、第1の信号ラインと第2の信号ラインとの間に結合される。第2のスイッチング素子は、第2の電圧レギュレータの出力に結合される入力を有し、第1の信号ラインと第2の信号ラインとの間に結合される。
さらに、本願明細書中に開示されるのは、第1および第2の信号ラインに結合される電荷共有回路を含む集積回路装置である。電荷共有回路は、第1および第2の電圧レベルをそれぞれの出力において供給するよう構成される第1および第2の電圧レギュレータと、第1および第2の信号ライン間に結合され、制御端子を有するスイッチングデバイスと、第1および第2の電圧レギュレータの出力に結合され、スイッチングデバイスの制御端子に結合される出力を有する論理ゲートとを有する。
本発明の上記および他の特徴および目的、そしてそれらを達成する方法は、添付の図面と共に好適な実施形態の以下の説明を参照することにより、さらに明らかになり、発明自体がより理解されるであろう。
電荷共有を利用せずに二組の信号に小さい信号振幅を提供する従来技術を実行する回路の概略図である。
前図のVEQ1およびVEQ2ジェネレータがどのように実行され得るかを示す続きの概略図である。
本発明のデータバス電荷共有技術を実行する回路の概略図であり、ここでは、第2のデータ状態における電流が、VEQ1とVEQ2とを結合させる電荷共有回路間に流れる。
二組の差動データバスと共に用いられる本発明のデータバス電荷共有技術の他の回路実現の概略図である。
前図の回路実現のさらなる概略図であり、ここでは、差動データバスは、プリチャージされる。
本発明の電荷共有技術を実行する回路の概略図である。
前図のVEQ1およびVEQ2レギュレータの可能な回路実現の続きの概略図である。
図3の回路に対する変更態様を構成する本発明の電荷共有技術のさらなる可能性のある回路実現の他の概略図である。
図4の回路に対する変形態様を構成する本発明の電荷共有技術のまた別の可能性のある回路実現のさらなる概略図である。
Pチャネル素子の代わりにNチャネルトランジスタを利用する前図の回路の変形の概略図であって、ここでは、VEQ2コンパレータに対する入力は、スワップされる。
前図の回路の変形の概略図であり、ここでは、下部トランジスタは、除去され、単一のNチャネルトランジスタが二入力NORゲートの出力により駆動される。
前図の回路の変形の概略図であり、ここでは、単一のNチャネルトランジスタがPチャネル素子と交換され、NORゲートは、二入力NANDゲートと交換される。
図1Aを参照すると、電荷共有を利用せずに二組の信号に小さい信号振幅を提供する従来技術を実施する回路の概略図が示されている。
最初に、回路は、図の左側に第1のデータ状態100で示され、供給電圧VCCのソースとVEQ1発生器106の出力との間に結合される直列結合Pチャネルトランジスタ102および104を含む。VEQ1発生器106は、VCCと、基準電圧VSSまたは回路接地点との間に結合され、0.9×VCCの出力電圧を提供する。
図に示すように、VCCと0Vとの間を遷移している信号は、トランジスタ102のゲートにおけるノードN1に印加され、その一方で、実質的に同時に0VとVCCとの間を遷移している信号は、トランジスタ104のゲートにおけるノードN2に印加される。
そして、図に示すように、電流I1は、トランジスタ102を介し、0.9×VCCのVEQ1レベルとVCCとの間の信号遷移を提供するトランジスタ102および104の中間にあるDATA1出力ノードへと流れる。
回路は、さらに、VCCとVSSとの間に結合され、VEQ2と回路接地点との間に結合される直列接続Nチャネルトランジスタ110および112に0.1×VCCのVEQ2出力電圧を供給する。また、図に示すように、VCCと0Vとの間を遷移する信号は、トランジスタ110のゲートにおけるノードN3に印加され、その一方で、実質的に同時に0VとVCCとの間を遷移する信号は、トランジスタ112のゲートにおけるノードN4に印加される。そして、図に示すように、電流I2は、0.1×VCCのVEQ2レベルと0Vとの間を遷移するDATA2出力ノードに信号を提供するトランジスタ110および112の中間にあるDATA2出力ノードから、トランジスタ112を介し流れる。
この図では、第2のデータ状態120の回路も示されている。この状態では、0VからVCCへと遷移する信号がノードN1に印加される一方で、VCCから0Vねと遷移する信号は、ノードN2に印加される。実質的に同時に、0VからVCCへと遷移する信号がノードN3へと印加され、一方、VCCから0Vへと遷移する信号は、ノードN4へと印加される。この状態で、図に示すように、電流I3は、DATA1出力からトランジスタ104およびVEQ1ジェネレータ106を介し、出力信号レベルをVCCから0,9×VCCに遷移させるVSSへと流れる。その後さらに、電流I4は、VEQ2ジェネレータ108およびトランジスタ110を介し、出力信号を0Vから0.1×VCCへと遷移させるDATA2出力ノードへと流れる。
図1に示される技術は、二組の信号における小さい信号振幅を提供するが、電荷共有は行わない。DATA1ノードは、ほぼ0.9×VCCであるVCCとVEQ1との間を切り替える第1の組の信号におけるデータラインを表す。DATA2ノードは、0Vとほぼ0.1×VCCであるVEQ2との間を切り替える第2の組の信号におけるデータラインを表す。
第1のデータ状態100は、トランジスタ102を介しVCCからDATA1へと流れる電流I1によりVEQ1からVCCへと駆動されるDATA1を示す。データ2ノードは、DATA2からトランジスタ112を介しVSSへと流れる電流I2によりVEQ2から0Vへと駆動される。
第2のデータ状態120は、トランジスタ104を介しDATA1からVEQ1へと流れる電流I3によりVCCからVEQ1へと駆動される。DATA2ノードは、トランジスタ110を介しVCCからDATA2へと流れる電流I4により0VからVEQ2へと駆動される。
次に、図1Bを参照すると、前図のVEQ1 およびVEQ2発生器がどのように実行され得る下を示す続きの概略図が提供される。
VEQ1発生器106は、VCCと回路接地点との間のCMOSインバータとして結合される直列結合Pチャネルトランジスタ124およびNチャネルトランジスタ126を含む出力段を備えるVEQ1電圧レギュレータ122を含む。0.9×VCCの電圧レベルは、フィルタコンデンサ128を有する出力に提供される。同様に、VEQ2発生器108は、VCCと回路接地点との間のCMOSインバータとして結合される直列結合Pチャネルトランジスタ132およびNチャネルトランジスタ134を含む出力段を有するVEQ2電圧レギュレータを含む。0.1×VCCの電圧レベルVEQ2は、その出力で提供され、フィルタコンデンサ136を有する。
動作中、VEQ1レギュレータ122は、VEQ1のレベルを感知し、トランジスタ124または126のいずれかをオンにすることにより、VEQ1のレベルを0.9×VCCに維持する。また、VEQ2レギュレータ130は、VEQ2のレベルを感知し、トランジスタ132または134のいずれかをオンすることにより、VEQ2のレベルを0.1×VCCに維持する。VEQ1およびVEQ2を所望のレベルに維持するべく用いられるすべての電荷は、VCC供給からVSS(回路接地点)へと流れるので、この回路では電荷共有は実現しない。
続きの図に関しより詳細に説明されるように、本発明の技術の実行を通じて、電流I3およびI4により遷移される電荷が共有される。本質的に、ノードDATA2をVEQ2に駆動すべく電流をVCCから引き出す代わりに、若干のまたはすべての電流I4がVEQ1から流れる。電流I3はVEQ1へと流れ、ノードDATA1をVEQ1に駆動する電流I3によりVEQ1へと流れる電荷は、ノードDATA2をVEQ2に駆動する電流I4に要求される電荷を供給すべく用いられる。これは、ノードDATA1およびDATA2により表される二組のデータバス間で電荷を共有する動作である。二組の信号の容量が等しい場合、本発明の技術は、2の係数により電流を効率的に減らす。
さらに図2Aを参照すると、本発明のデータバス電荷共有技術を実行する回路の概略図が示され、第2のデータ状態における電流の流れは、VEQ1とVEQ2とを結合させる電荷共有回路間で実現する。
上述のように、回路は、まず、図の左側に第1のデータ状態200で示され、供給電圧VCCのソースと電荷共有回路206の1つの端末で受信される0.9×VCCのVEQ1レベルとの間に結合される直列接続Pチャネルトランジスタ202を含む。図に示す本発明の実施形態では、1つ、または、それ以上のイネーブル入力がまだ設けられてもよいが、電荷共有回路は、好ましくは非同期式であり、すなわち、1つまたはそれ以上のイネーブル入力がまだ設けられていても、クロック信号によってクロックされない。図に示すように、VCCと0Vとの間を遷移する信号がトランジスタ202のゲートにおけるノードN1に印加され、その一方で、実質的に同時に0VとVCCとの間を遷移する信号がトランジスタ204のゲートにおけるノードN2に印加される。その後、図に示すように、電流I1は、トランジスタ202を介し、0.9×VCCのVEQ1レベルとVCCとの間を遷移する信号を供給するトランジスタ202と204との中間にあるDATA1出力ノードへと流れる。
電荷共有回路206は、また、VEQ2と回路接地点との間に結合される直列接続Nチャネルトランジスタ208に提供される0.1×VCCのVEQ2電圧に結合される。また、図に示すように、VCCと0Vとの間を遷移する信号がトランジスタ208のゲートにおけるノードN3に印加され、その一方で、実質的に同時に0VとVCCとの間を遷移する信号は、トランジスタ210のゲートにおけるノードN4に印加される。その後、図に示すように、電流I2は、0.1×VCCのVEQ2レベルと0Vとの間を遷移するDATA2出力ノードに信号を供給するトランジスタ208と210との中間にあるDATA2出力ノードから、トランジスタ210を流れる。
この図では、回路は、第2のデータ状態220でも示される。この状態では、0VからVCCへと遷移する信号がノードN1に印加される一方で、VCCから0Vへと遷移する信号がノードN2に印加される。実質的に同時に、0VからVCCへと遷移する信号は、ノードN3に印加され、一方、VCCから0Vへと遷移する信号は、ノードN4に印加される。この状態では、共有電荷を含む電流は、DATA1出力ノードからトランジスタ204、電荷共有回路206、および、トランジスタ208を介し、DATA2出力ノードへと流れる。図に示すように、DATA1ノードがVCCから0.9×VCCへと遷移する一方で、DATA2ノードは、0Vから0.1×VCCへと遷移する。
この図は、本発明の技術を実行する回路の一実施形態の基本動作を示す。第1のデータ状態200では、電流の流れは、前図において示されるものと実質的に同じである。しかしながら、第2のデータ状態220では、DATA1ノードをVCCからVEQ1へと駆動するのに用いられる電流は、DATA2を0VからVEQ2へと駆動するのに用いられる。これは、VEQ1とVEQ2との間に接続される電荷共有回路206を介して達成される。
発明のこの実施態様は、この特別な例において、数組のシングルエンド信号(差動信号でない)間での電荷共有を可能にする。電荷共有量は、他の組の信号に対する一組の信号のデータパターンに依存する。理想的には、一組の信号のデータパターンは、他の組を補足するものである。これが生ずる用途は、一組の信号がパイプライン化されて反転されることにより、例えば、ローカルデータラインおよびグローバルデータラインなどの第2の組の信号を生成する。他の例は、集積回路チップ全域に送られ、その後パイプライン化されて返送されることにより合計遅延を最小化する制御およびアドレス信号であってよい。
次に、図2Bを参照すると、二組の差動データバスを用いる本発明のデータバス電荷共有技術の他の回路実施形態の概略図が示される。
回路230は、電荷共有回路240の1つの端子で受信されるVCCと0.9×VCCのVEQ1レベルとの間に結合される直列結合Pチャネルトランジスタ232および234を含む。図に示すように、VCCと0Vとの間を遷移してVCCに戻る信号は、トランジスタ232のゲートにおけるノードN1に印加され、その一方で、実質的に同時に0VとVCCとの間を遷移して0Vへと戻る信号は、トランジスタ234のゲートにおけるノードN2に印加される。回路230は、VCCとVEQ1との間に結合される直列結合Pチャネルトランジスタ236をさらに含む。図にさらに示すように、VCCと0Vとの間を遷移してVCCへと戻る信号は、トランスジスタ236のゲートにおけるノードN3に印加され、その一方で、実質的に同時に0VとVCCとの間を遷移して0Vへと戻る信号は、トランジスタ238のゲートにおけるノードN4に印加される。
回路230は、VEQ2と回路接地点との間に結合される直列結合Nチャネルトランジスタ242および244にVEQ2電圧を提供する電荷共有回路240の他の端末に結合される0.1×VCCのVEQ2ソースを含む。直列結合NチャネルとランジスTら246および248は、VEQ2と回路接地点との間にも結合される。図に示すように、VCCと0Vとの間を遷移してVCCへと戻る信号は、トランジスタ242のゲートにおけるノードN5に印加され、その一方で、実質的に同時に0VとVCCとの間を遷移して0Vへと戻る信号は、トランジスタ244のゲートにおけるノードN6へと印加される。また、0VとVCCとの間を遷移して0Vへと戻る信号は、トランジスタ246のゲートにおけるノードN7に印加され、その一方で、VCCと0Vとの間を遷移してVCCへと戻る信号は、トランジスタ248のゲートにおけるノードN8に印加される。
本図に示すように、二組の差動データバスはそれぞれ、DATA1、DATA1B、DATA2、および、DATA2Bとして示される。この場合、DATA1は、DATA1Bを補足すし、DATA2は、DATA2Bを補足する。動作中、DATA1バスは、VEQ1とVCCとの間を遷移してVEQ1へと戻り、一方、DATA1Bバスは、VCCとVEQ1との間を遷移してVCCへと戻る。同様に、DATA2バスは、VEQ2と0Vとの間を遷移してVEQ2へと戻り、一方DATA2Bバスは、0VとVEQ2との間を遷移して0Vへと戻る。
次に図2Cを参照すると、前図の回路実現のさらなる概略図が示され、ここでは、差動データバスがプリチャージされる。本図では、回路250は、先に説明され、例示されたのと同様の構造を含み、本図に対する説明はそれで十分なはずである。N8を介しノードN1へと入力される信号は、図に示すような差動データバスにおける出力信号を供給するように示される。
図に示すように、二組の差動データバス(DATA1/DATA1BおよびDATA2/DATA2B)は、VCCにプリチャージされるDATA1およびDATA1Bによりプリチャージされる。この特定の実施態様の長所は、データバスのデータパターンとは無関係に効率的な電荷共有が生じることである。理想的には、一組のデータバスにおける容量は、他の組のデータバスにおける容量と実質的に等しい。
図3を参照すると、本発明の電荷共有技術を実施する電荷共有回路の可能な実施形態の概略図が示される。回路300は、Pチャネルトランジスタ304および直列結合Nチャネルトランジスタ306を含む出力段を備えるVEQ1電圧レギュレータを含む。トランジスタ306のソース端子は、VEQ2ノードに結合される。トランジスタ304のソース端子は、VCCに結合される一方で、トランジスタ304および306のドレイン端子は、実質的に0.9×VCCの出力電圧を供給するVEQ1ノードに結合される。フィルタコンデンサ308は、VEQ1ノードと回路接地点とを結合させる。
同様に、回路300は、Pチャネルトランジスタ312および直列結合Nチャネルトランジスタ314を含む出力段を備えるVEQ2電圧レギュレータ310をさらに含む。トランジスタ312のソース端子は、VEQ1に結合され、その一方で、トランジスタ312および314のドレイン端子は、実質的に0.1×VCCの出力電圧を供給するVEQ2ノードに結合される。トランジスタ314のソース端子は、VSSに結合される。フィルタコンデンサ316は、VEQ2ノードと回路接地点とを結合させる。
トランジスタ306および312のユニークな接続は、VSSの代わりにノードVEQ2に結合されるトランジスタ306のソースと、VCCの代わりにノードVEQ1に結合されるトランジスタ312のソースとにより、本発明の電荷共有動作を有効に実施する。図2Aに示すように、電荷は、VEQ1へと切り替わるDATA1によりノードVEQへと流れるので、VEQ1の電圧は、上昇する傾向にある。VEQ1が0.9×VCCを超えると、その後VEQ1レギュレータ302は、ノードN1(図3)を"ハイ"にしてトランジスタ306をオンにする。そして電流は、VEQ1からVEQ2へと流れてVEQ1を0.9×VCCに保つ手助けとなる。
電荷は、VEQ2へと切り替わるDTA2によりノードVEQ2の外へと流れるので、VEQ2は、下降する傾向にある。VEQ2が0.1×VCCを下回ると、その後VEQ2レギュレータ310は、ノードN2(図3)を"ロー"にしてトランジスタ312をオンにする。そして、電流は、ノードVEQ1からVEQ2へと流れ、ノードVEQ2を0.1×VCCに保つ手助けをする。この方法では、データラインDATA1を"ロー"(VEQ1に)駆動するために必要とされる電荷は、信号DATA2を"ハイ"(VEQ2)に駆動するために用いられる。
また、同図に示されるように、VEQ1が0.9×VCCを下回ると、VEQ1レギュレータ302は、ノードN1(図3)を"ロー"にしてトランジスタ304をオンにし、それによって、電流がVCCからVEQ1へと流れ、VEQ1レベルが上昇する。VEQ2が0.1×VCCより高くなっていくと、VEQ2レギュレータ310は、ノードN2(図3)を"ハイ"にしてトランジスタ314をオンにし、それによって電流がVEQ2からVSSへと流れ、VEQ2レベルを低下させる。
次に図4を参照すると、前図の電荷共有回路300のVEQ1およびVEQ2レギュレータ302および310の可能な回路実現の続きの概略図が示される。この図では、トランジスタ404、406、412、および、414は、図3のトランジスタ304、306、312、および、314と丁度類似している。また、フィルタコンデンサ408および416は、フィルタコンデンサ308および316と対応している。
本図では、VEQ1およびVEQ2レギュレータの1つの可能な実施態様が示される。VEQ1に接続されるその正入力と0.9×VCCに接続されるその負入力とを備える電圧コンパレータ402は、VEQ1レギュレータ用に利用される。VEQ1のレベルが0.9×VCCより下にドリフトすると、ノードN1は"ロー"になる。VEQ1が0.9より上にドリフトすると、ノードN1は、"ハイ"になる。0.1×VCC接続されたその正入力とVEQ2に接続されたその負入力とを備える電圧コンパレータ410は、VEQ2レギュレータ用に利用される。VEQ2のレベルが0.1×VCCを上回りドリフトすると、ノードN2は"ハイ"になる。一方、VEQ2レベルが0.1×VCCを下回りドリフトすると、ノードN2は"ロー"になる。VEQ1およびVEQ2のいかなる比率(または小数部)も等価な機能を提供するVCCの適切な比率(または小数部)と比較されることができる。
次に、図5を参照すると、本発明の電荷共有技術のさらなる可能性のある回路実現が示され、図3の回路に対するさらなる変形を構成している。回路500の本図において、トランジスタ504、506、512、および、514も、図3のトランジスタ304、306、312、および、314と丁度類似している。フィルタコンデンサ508および516も、また、フィルタコンデンサ308および316に対応する。
回路500の実施形態では、トランジスタ504および506のゲートは、異なるノードN1およびN2に接続される。ノードN1およびN2は、トランジスタ504および506を含む出力ドライバにおける貫通電流を防ぐべく、わずかに異なってVEQ1レベルに応答する。VEQ1レベルが"ロー"にドリフトすると、ノードN1が"ロー"になる前にノードN2が "ロー"になるので、トランジスタ504が"オン"になる前に、トランジスタ506が"オフ"にされる。逆に、VEQ1レベルが"ハイ"にドリフトすると、ノードN2が"ハイ"になる前にノードN1が"ハイ"になるため、トランジスタ506が"オン"になる前にトランジスタ504が"オフ"にされる。
同様に、トランジスタ512および514のゲートは、ノードN3およびN4にそれぞれ結合される。VEQ2のレベルが"ハイ"にドリフトすると、ノードN4が"ハイ"になる前にノードN3が"ハイ"になるので、トランジスタ514が"オン"になる前にトランジスタ512が"オフ"にされる。また、VEQ2レベルが"ロー"にドリフトすると、ノードN3が"ロー"になる前にノードN4が"ロー"になるので、トランジスタ512が"オン"になる前にトランジスタ514が"オフ"にされる。
次に、図6を参照すると、図4の回路に対する変形を構成している、本発明の電荷共有技術の可能な回路実現のさらなる他の概略図が示される。本回路600では、電圧コンパレータ602は、その正入力におけるVEQ1出力レベルと、その負入力における0.9×VCCとを有する。ノードN1におけるコンパレータ602の出力は、VEQ1に結合されるそのドレイン端子と、VEQ2に結合されるそのソース端子とを有するNチャネルトランジスタ604のゲートに結合される。フィルタコンデンサ606は、VEQ1を回路接地点に接続する。
同様に、他の電圧コンパレータ608は、その正入力におけるVEQ2出力レベルと、その負入力における0.1×VCCとを有する。ノードN2におけるコンパレータ608の出力は、VEQ1に結合されるそのソース端子と、VEQ2に結合されるそのドレイン端子とを有するPチャネルトランジスタのゲートに結合される。フィルタコンデンサ612は、VEQ2を回路接地点に結合させる。
この特別な回路600では、VEQ1におけるプルアップトランジスタ、および、VEQ2におけるプルダウントランジスタがない。VEQ1およびVEQ2における電圧レベルは、DATA1およびDATRA2の相対的な容量により決定される(例えば図2A)。この構成の長所は、より効率的な電荷共有である一方、考えられるマイナス面は、VEQ1およびVEQ2の電圧レベルの相対的な不確かさである。
次に、図7を参照すると、Pチャネル素子(図6の610)の代わりにNチャネルトランジスタ710を利用する前図の回路のバリエーションの概略図が示され、ここでは、VEQ2コンパレータへの入力は、スワップされる。本図では、コンパレータ702は、コンパレータ602に対応し、トランジスタ704は、トランジスタ604に対応し、コンデンサ706は、コンデンサ606に対応し、コンパレータ708は、コンパレータ608に対応し、コンデンサ712は、コンデンサ612に対応する。
本質的に、図に示される回路700は、Pチャネルトランジスタ610がNチャネルトランジスタ710と置き換えられることを除いて図6の回路600と同じである。ここでも、VEQ2コンパレータ708の入力は、スワップされる。この回路は、Pチャネルデバイスよりも本質的に高い相互コンダクタンスにより、VEQ1とVEQ2との間の電荷のより良い転送をもたらす。
次に、図8を参照すると、前図の回路のバリエーションの概略図が示されており、ここでは、低いトランジスタが除去され、単一のNチャネルトランジスタが二入力NORゲートの出力により駆動される。回路800は、VEQ1に結合されるその負入力と0.9×VCCに結合されるその正入力とを有する電圧コンパレータ802を含む。ノードN1におけるコンパレータ802の出力は、VEQ1とVEQ2との間に結合されるNチャネルトランジスタ806のゲート端子に結合されるその出力を有するニ入力NORゲート804への1つの入力として供給される。他の電圧コンパレータ810は、VEQ2に結合されるその正入力と0.1×VCCに結合されるその負入力とを有する。ノードN2におけるその出力は、NORゲート804の他の入力に結合される。フィルタコンデンサ808および812は、VEQ1およびVEQ2ラインを回路接地点にそれぞれ結合させる。
回路800では、トランジスタ710(図7)は、省略され、トランジスタ806のゲートは、ノードN1およびN2に接続されるその入力を有するNORゲート804の出力に結合される。VEQ1およびVEQ2コンパレータ802および810の出力は、トランジスタ806を"オン"および"オフ"にするよう組み合わされる。回路800の構成は、図7に関して例示されかつ説明された回路を簡略化したものを含む。
次に、図9を参照すると、前図の回路のバリエーションの概略図が示され、ここでは、単一のNチャネルトランジスタ(図8の806)がPチャネル素子に置き換えられ、NORゲートは、二入力NANDゲートに置き換えられる。
回路900は、VEQ1に結合されたその正入力と0.9×VCCに結合されたその負入力とを有する電圧コンパレータ902を含む。ノードN1におけるコンパレータ902の出力は、VEQ1とVEQ2との間に結合されるPチャネルトランジスタ906のゲート端子に結合されるその出力を有する二入力NANDゲート904への1つの入力として供給される。他の電圧コンパレータ910は、VEQ2に結合されるその負入力と、0.1×VCCに結合されるその正入力とを有する。ノードN2におけるその出力は、NANDゲート904の他の入力に結合される。フィルタコンデンサ908および912は、VEQ1およびVEQ2ラインをそれぞれ回路接地点に結合させる。
回路900は、トランジスタ906がここではPチャネル素子であり、NORゲート804(図8)がここではNANDゲート904に置き換えられていることを除いて図8における回路800と同様である。同じく図でわかるように、コンパレータ902および910への入力は、スワップされている。
これまで特定の回路構成およびそれぞれの電圧レベルに関連して本発明の原理を説明してきたが、上記説明は、例示に過ぎず、本発明の範囲を限定するものではないことは明らかであろう。特に、上記開示の教示は、当業者に対し、他の変形例も示唆すると理解されたい。このような変形例は、本質的にすでに知られており、本願明細書中にすでに述べられた特徴の代わりに、または、追加して用いられ得る他の特徴を含み得る。本出願において、請求項は、特定の特徴の組み合わせに対し明確に構成されているが、本願明細書中における開示の範囲は、いずれの請求項に目下記載されているような同じ発明に関連しようがしまいが、また、本発明が直面するようないかなる、または、すべての同じ技術的問題を軽減しようがしまいが、当業者にとって明らかであろう明確または暗に開示されるいかなる新規な特徴、あるいは、いかなる新規な特徴の組み合わせ、あるいは、一般化またはその修正も含むと理解されなければならない。出願人は、本出願またはそこから導かれるさらなる出願の手続きの間、このような特徴および/またはこのような特徴の組み合わせに対する新規の請求項を構成する権利をここに保有する。
本願明細書中に使用される用語「含む」「備える」またはそのバリエーションは、特定の要素の詳述を含むプロセス、方法、物品、または、装置などが、必ずしもそれらの要素だけを含むのでなく、明確に列挙されていない、または、そのようなプロセス、方法、物品または装置に本来備わっている他の要素を含み得るよう、非排他的な包含を意図する。本出願におけるいかなる記載も任意の特定の要素、ステップまたは機能が請求項の範囲に含まれるべき必須要素であり、特許される内容の範囲は、許可された請求項によってのみ定義されることを意味すると解釈されるべきでない。
さらに、添付の請求項は、「〜のための手段」という明確な言い回しが用いられ、その後に分詞が続くのでない限り、米国特許法第112条第6段落の適用は受けないものと意図される。

Claims (24)

  1. 集積回路装置であって、
    一の第1の電圧レベルと、一のより高い第2の電圧レベルとの間を切り替え可能な少なくとも1つの第1の信号ラインと、
    一の異なる第3の電圧レベルと、一のより低い第4の電圧レベルとの間を切り替え可能な少なくとも1つの第2の信号ラインであって、前記第1の電圧レベルは、前記第3の電圧レベルより高い少なくとも1つの第2の信号ラインと、
    前記第1の電圧レベルの一のソースと、前記第3の電圧レベルの一のソースとの間に結合される一の非同期電荷共有回路と、
    を含む集積回路装置。
  2. 前記第2の電圧レベルは、実質的にVCCである、請求項1に記載の集積回路装置。
  3. 前記第4の電圧レベルは、実質的にVSSである、請求項1に記載の集積回路装置。
  4. 前記第1および第2の信号ラインの少なくとも1つは、複数のデータラインを含む、請求項1に記載の集積回路装置。
  5. 前記少なくとも1つの第1および第2の信号ラインのそれぞれは、互いに補足し合う複数対のデータラインを含む、請求項1に記載の集積回路装置。
  6. 前記第1および第3の電圧レベルは、それぞれの電圧レギュレータにより設定される、請求項1に記載の集積回路装置。
  7. 前記非同期電荷共有回路は、前記第1の電圧レベルが上昇するのを防ぐために用いられる電流を前記第3の電圧レベルに導くよう構成される、請求項1に記載の集積回路装置。
  8. 前記非同期電荷共有回路は、前記第3の電圧レベルが低下するのを防ぐために用いられる電流を前記第1の電圧レベルに導くよう構成される、請求項1に記載の集積回路装置。
  9. 一の集積回路装置を操作する方法であって、
    一の第1の電圧レベルと一のより高い第2の電圧レベルとの間で少なくとも1つの第1の信号ラインを切り替えることと、
    前記第1の電圧レベルより低い一の異なる第3の電圧レベルと一のより低い第4の電圧レベルとの間で少なくとも1つの第2の信号ラインを切り替えることと、
    一の非同期電荷共有回路を提供することと、
    前記非同期電荷共有回路を利用することにより、記第1の電圧レベルの一のソースと前記第3の電圧レベルとの間で電荷を共有することと、
    を含む方法。
  10. 前記電荷を共有する動作は、
    前記第1の電圧レベルが上昇するのを防ぐために利用される電流を第3の電圧レベルに導くことを含む、請求項9に記載の方法。
  11. 前記電荷を共有する動作は、
    前記第3の電圧が低下するのを防ぐために利用される電流を前記第1の電圧レベルに導くことを含む、請求項9に記載の方法。
  12. 第1および第2の信号ラインに結合される一の電荷共有回路を含む集積回路装置であって、前記電荷共有回路は、
    第1および第2の電圧レベルをそれぞれの出力で供給するよう構成される第1および第2の非同期電圧レギュレータと、
    前記第1の非同期電圧レギュレータの前記出力に結合される一の入力を有し、前記第1および第2の信号ライン間に結合される一の第1のスイッチング素子と、
    前記第2の非同期電圧レギュレータの前記出力に結合される一の入力を有し、前記第1および第2の信号ライン間に結合される一の第2のスイッチング素子と、
    を含む集積回路装置。
  13. 前記第1および第2のスイッチング素子は、複数のMOSトランジスタを含む、請求項12に記載の集積回路装置。
  14. 前記第1および第2のスイッチング素子は、前記第1および第2の非同期電圧レギュレータのそれぞれの前記出力に結合されるそれらのゲート端子を有する直列結合PチャネルおよびNチャネルトランジスタのそれぞれ第1および第2のグループを含む、請求項12に記載の集積回路装置。
  15. 前記直列結合PチャネルおよびNチャネルトランジスタの前記第1のグループは、前記第1の信号ラインに結合される一の第1の出力ノードを有し、一の供給電圧ラインと前記第2の信号ラインとの間に結合される、請求項14に記載の集積回路装置。
  16. 前記直列結合PチャネルおよびNチャネルトランジスタの前記第2のグループは、前記第2の信号ラインに結合される一の第2の出力ノードを有し、一の基準電圧ラインと前記第1の信号ラインとの間に結合される、請求項14に記載の集積回路装置。
  17. 前記第1および第2の非同期電圧レギュレータは、複数の電圧コンパレータを含む、請求項12に記載の集積回路装置。
  18. 前記第1および第2の信号ラインを一の基準電圧ラインにそれぞれ結合させる第1および第2のフィルタコンデンサをさらに含む、請求項12に記載の集積回路装置。
  19. 第1および第2の信号ラインに結合される一の電荷共有回路を含む集積回路装置であって、前記電荷共有回路は、
    第1および第2の電圧レベルをそれぞれの出力において供給するよう構成される第1および第2の非同期電圧レギュレータと、
    前記第1および第2の信号ライン間に結合され、一の制御端子を有する一のスイッチングデバイスと、
    前記第1および第2の非同期電圧レギュレータの前記出力に結合される一の論理ゲートであって、その一方の出力は、前記スイッチングデバイスの前記制御端子に結合される論理ゲートと、
    を含む集積回路装置。
  20. 前記第1および第2の非同期電圧レギュレータは、複数の電圧コンパレータを含む、請求項19に記載の集積回路装置。
  21. 前記スイッチングデバイスは、一のMOSトランジスタを含む、請求項19に記載の集積回路装置。
  22. 前記MOSトランジスタは、一のPチャネル素子を含む、請求項21に記載の集積回路装置。
  23. 前記論理ゲートは、一のNANDゲートを含む、請求項22に記載の集積回路装置。
  24. 前記第1および第2の信号ラインを一の基準電圧ラインにそれぞれ結合させる第1および第2のフィルタコンデンサをさらに含む、請求項19に記載の集積回路装置。
JP2007333605A 2007-09-12 2007-12-26 集積回路装置のデータバス電荷共有技術 Expired - Fee Related JP4674305B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/854,422 US7463054B1 (en) 2007-09-12 2007-09-12 Data bus charge-sharing technique for integrated circuit devices

Publications (2)

Publication Number Publication Date
JP2009071798A JP2009071798A (ja) 2009-04-02
JP4674305B2 true JP4674305B2 (ja) 2011-04-20

Family

ID=40090578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333605A Expired - Fee Related JP4674305B2 (ja) 2007-09-12 2007-12-26 集積回路装置のデータバス電荷共有技術

Country Status (2)

Country Link
US (1) US7463054B1 (ja)
JP (1) JP4674305B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649406B2 (en) * 2007-09-13 2010-01-19 United Memories, Inc. Short-circuit charge-sharing technique for integrated circuit devices
US8063618B2 (en) * 2007-12-31 2011-11-22 Intel Corporation Supply voltage control based at least in part on power state of integrated circuit
US8878758B2 (en) * 2011-07-29 2014-11-04 Stmicroelectronics S.R.L. Charge-sharing path control device for a scan driver of an LCD panel
US9645591B2 (en) 2014-01-09 2017-05-09 Qualcomm Incorporated Charge sharing linear voltage regulator
US20230268923A1 (en) * 2020-10-09 2023-08-24 Metis Microsystems, Llc Circuits & methods to harvest energy from transient data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118456A (ja) * 2000-07-17 2002-04-19 Agere Systems Guardian Corp 改良された差動電流ドライバ回路
JP2005505200A (ja) * 2001-09-28 2005-02-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ データ有効インジケータ及びスキュー不耐性データグループを有するパラレルデータ通信

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19929095B4 (de) * 1998-06-29 2005-12-08 Fujitsu Ltd., Kawasaki Halbleiterspeichervorrichtung mit übersteuertem Leseverstärker und Halbleitervorrichtung
US6259322B1 (en) * 1999-10-28 2001-07-10 Texas Instruments Incorporated Current efficient, ultra low noise differential gain amplifier architecture
US6347058B1 (en) * 2000-05-19 2002-02-12 International Business Machines Corporation Sense amplifier with overdrive and regulated bitline voltage
JP2002025264A (ja) * 2000-07-05 2002-01-25 Toshiba Corp 半導体装置
US6732336B2 (en) * 2001-10-11 2004-05-04 California Institute Of Technology Method and apparatus for an asynchronous pulse logic circuit
JP2003228981A (ja) * 2002-02-05 2003-08-15 Toshiba Corp 半導体記憶装置
US7327166B2 (en) * 2005-08-18 2008-02-05 Texas Intruments Incorporated Reference buffer with improved drift
US7400175B2 (en) * 2006-05-31 2008-07-15 Fujitsu Limited Recycling charge to reduce energy consumption during mode transition in multithreshold complementary metal-oxide-semiconductor (MTCMOS) circuits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118456A (ja) * 2000-07-17 2002-04-19 Agere Systems Guardian Corp 改良された差動電流ドライバ回路
JP2005505200A (ja) * 2001-09-28 2005-02-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ データ有効インジケータ及びスキュー不耐性データグループを有するパラレルデータ通信

Also Published As

Publication number Publication date
US7463054B1 (en) 2008-12-09
JP2009071798A (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
US7521978B2 (en) Clock driver
US6483728B1 (en) Charge pump circuit
US7449917B2 (en) Level shifting circuit for semiconductor device
US6639424B2 (en) Combined dynamic logic gate and level shifter and method employing same
US7795946B2 (en) Level shifter capable of improving current drivability
US9917585B2 (en) Data output circuit and method for driving the same
KR20010109095A (ko) 신호 전위 변환 회로
JP4674305B2 (ja) 集積回路装置のデータバス電荷共有技術
JP4393182B2 (ja) 電圧発生回路
US8750014B2 (en) Tri-state driver circuits having automatic high-impedance enabling
CN111433848A (zh) 输入缓冲电路
JP5021262B2 (ja) 半導体メモリ装置
KR100567497B1 (ko) 버스 인터페이스 회로 및 리시버 회로
US6813204B2 (en) Semiconductor memory device comprising circuit for precharging data line
JP3640703B2 (ja) バス駆動回路、レシーバ回路およびバスシステム
JP5441323B2 (ja) メモリ回路のための高速化されたシングルエンド・センシング
JP2012253432A (ja) 半導体装置
US8395949B2 (en) Semiconductor integrated circuit and method for controlling the same
JP4818226B2 (ja) 異なる選択された信号値の信号生成を実現する集積回路装置のスイッチキャパシタ電荷共有技術
US6653889B2 (en) Voltage generating circuits and methods including shared capacitors
CN108564979B (zh) 单端读取电路
US11380370B2 (en) Semiconductor device having a charge pump
US20140285247A1 (en) Semiconductor device
US20120126874A1 (en) Integrated circuit
JP2012147278A (ja) 半導体装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees