JP4670651B2 - Shift control device for automatic transmission - Google Patents

Shift control device for automatic transmission Download PDF

Info

Publication number
JP4670651B2
JP4670651B2 JP2006008060A JP2006008060A JP4670651B2 JP 4670651 B2 JP4670651 B2 JP 4670651B2 JP 2006008060 A JP2006008060 A JP 2006008060A JP 2006008060 A JP2006008060 A JP 2006008060A JP 4670651 B2 JP4670651 B2 JP 4670651B2
Authority
JP
Japan
Prior art keywords
learning
temperature
shift
value
learning value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006008060A
Other languages
Japanese (ja)
Other versions
JP2007187300A (en
Inventor
伸晃 稲垣
泰雄 塚本
旭 中田
健一 佐藤
洋 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2006008060A priority Critical patent/JP4670651B2/en
Publication of JP2007187300A publication Critical patent/JP2007187300A/en
Application granted granted Critical
Publication of JP4670651B2 publication Critical patent/JP4670651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば自動車等の車両に搭載される自動変速機の変速制御装置に係り、詳しくは、摩擦係合要素の油圧サーボに供給する油圧の指令値を学習し得る自動変速機の変速制御装置に関する。   The present invention relates to a shift control device for an automatic transmission mounted on a vehicle such as an automobile, and more particularly, to a shift control for an automatic transmission capable of learning a command value of hydraulic pressure supplied to a hydraulic servo of a friction engagement element. Relates to the device.

一般に、車両等に搭載される自動変速機、特に有段式の自動変速機にあっては、摩擦係合要素(クラッチやブレーキ)同士の掴み換えによる変速が行われており、この掴み換えによる変速は、それら摩擦係合要素の油圧サーボに供給する油圧を、入力軸の回転数やエンジン出力に応じて演算される油圧指令値に基づきリニアソレノイドバルブ等を用いて油圧制御することによって変速制御されている。   In general, in an automatic transmission mounted on a vehicle or the like, in particular, a stepped automatic transmission, a gear shift is performed by gripping frictional engagement elements (clutch and brake). Shifting is controlled by hydraulically controlling the hydraulic pressure supplied to the hydraulic servo of these friction engagement elements using a linear solenoid valve or the like based on a hydraulic pressure command value calculated according to the rotational speed of the input shaft and the engine output. Has been.

このような自動変速機の変速制御装置においては、自動変速機における製品誤差や経時変化を補うために、上記油圧指令値を補正するための学習値(補正値)を設け、前回の変速状況に基づき該学習値を演算・記録し、次回の変速に該学習値を油圧指令値に反映させる、いわゆる学習制御を行うものが提案されている(特許文献1参照)。   In such a shift control device for an automatic transmission, a learning value (correction value) for correcting the hydraulic pressure command value is provided in order to compensate for a product error or a change with time in the automatic transmission. Based on this, the learning value is calculated and recorded, and so-called learning control is performed in which the learning value is reflected in the hydraulic pressure command value in the next shift (see Patent Document 1).

特開2004−293593号公報JP 2004-293593 A

ところで、自動変速機に用いられる油(即ちATF)は、温度が低いと粘性が増してしまうという性質がある。このため、通常の走行状態で使用される油温領域の状態(常温状態)に対し、油温が低い状態(低温状態)では、常温時と同じ学習状態の油圧指令で変速制御を行うと、油圧の応答遅れ等により変速ショック等を生じてしまう虞がある。   By the way, oil (that is, ATF) used for an automatic transmission has a property that viscosity increases when temperature is low. For this reason, when the oil temperature is low (low temperature state) in the oil temperature region state (normal temperature state) used in the normal running state, if the shift control is performed with the hydraulic command in the same learning state as at normal temperature, There is a possibility that a shift shock or the like may occur due to a delay in response of the hydraulic pressure.

そこで、常温状態の変速で学習した学習値をベースとして、さらに補正するための低温用の学習値を設け、該低温用学習値を学習し、低温状態の変速においても変速ショック等を生じないようにすることが考えられる。このように、油の粘性が低温状態よりも低い常温状態における学習値を、低温状態の変速の学習値のベースとして用い、低温用学習値により細やかに調整することで、より信頼性の高い変速制御を行うことが可能になると考えられる。   Therefore, a learning value for low temperature is provided for further correction based on the learning value learned in the normal temperature shift, so that the low temperature learning value is learned so that a shift shock or the like does not occur even in the low temperature shift. Can be considered. In this way, the learning value in the normal temperature state in which the viscosity of the oil is lower than the low temperature state is used as the base of the learning value for the low temperature shifting, and the finer adjustment is made by the learning value for low temperature, thereby achieving a more reliable shifting. It will be possible to perform control.

しかしながら、上記自動変速機を搭載した車両を、例えば気温の低い環境ばかりで使用する場合や、短距離走行ばかり使用する場合(油温が高くなる前に走行を停止してしまうことが多い場合)等、つまり常温状態の変速の回数が少ない状態では、上述した低温状態の変速の学習値のベースとなる常温状態の学習値の学習が進行せず、細やかに調整するための低温用学習値の学習だけでは、シフトクォリティがあまり向上しないという問題がある。   However, when the vehicle equipped with the automatic transmission is used only in an environment where the temperature is low, for example, when the vehicle is used only for short-distance driving (when the driving is often stopped before the oil temperature becomes high). In other words, in the state where the number of shifts in the normal temperature state is small, learning of the learning value in the normal temperature state, which is the base of the learning value in the low temperature state shift described above, does not proceed, and the low temperature learning value for fine adjustment There is a problem that shift quality is not improved by learning alone.

そのため、油温に基づき、変速を低温状態の変速と常温状態の変速とに判別し、低温状態の変速の学習値と常温状態の変速の学習値とを個別に学習することで、上述のような常温状態の変速の回数が少ない状態であっても、低温状態の変速の学習値における学習を進行させて、低温状態の変速のシフトクォリティを向上させることが考えられる。   Therefore, based on the oil temperature, the shift is discriminated between the low-temperature shift and the normal-temperature shift, and the learning value for the low-temperature shift and the learning value for the normal-temperature shift are separately learned, as described above. Even in a state where the number of shifts in the normal temperature state is small, it is conceivable to improve the shift quality of the shift in the low temperature state by advancing learning in the learning value of the shift in the low temperature state.

しかし、このように低温状態の変速の学習値と常温状態の変速の学習値とを個別に学習すると、例えば常温状態の変速の回数が多くなる使用状態では、低温状態の変速の回数が少ないために低温状態の変速のシフトクォリティがなかなか向上しない等の問題がある。   However, if the learning value of the shift in the low temperature state and the learning value of the shift in the normal state are individually learned in this way, for example, in the use state where the number of shifts in the normal state increases, the number of shifts in the low temperature state is small However, there is a problem that the shift quality of the shift in the low temperature state is not easily improved.

そこで本発明は、低温状態の変速の学習値と常温状態の変速の学習値とを個別に学習するものでありながら、常温状態ばかり又は低温状態ばかりのいずれか一方で走行する場合であっても、他方の状態での変速におけるシフトクォリティが向上することを可能とする自動変速機の変速制御装置を提供することを目的とするものである。   Therefore, the present invention separately learns the learning value of the shift in the low temperature state and the learning value of the shift in the normal temperature state, even if the vehicle travels only in the normal temperature state or only in the low temperature state. An object of the present invention is to provide a shift control device for an automatic transmission that can improve the shift quality in shifting in the other state.

請求項1に係る本発明は(例えば図1乃至図7参照)、変速時における変速状況を検知する変速状況検知手段(22)と、前記変速状況検知手段(22)の検知結果に基づき、次回の変速制御における摩擦係合要素(例えばB−4)の油圧サーボに供給する油圧の指令値(PB4)を補正するための学習値(PS2A,PTAA,PS2B,PTAB,PS2C,PTAC,PS2B’,PTAB’,PS2C’,PTAC’)を演算・記録することで学習を行う学習制御手段(26)と、前記学習制御手段(26)による学習結果に基づき摩擦係合要素(例えばB−4)の油圧サーボの油圧制御を行う変速制御手段(21)と、を備える自動変速機(20)の変速制御装置(1)において、
油温を検出する油温検出手段(31)と、
前記油温検出手段(31)により検出される前記油温に基づき、常温状態(Normal)の変速と低温状態(Cold−Mid,Cold−High)の変速とに判別する油温状態判別手段(24)と、を備え、
前記学習制御手段(26)は、
前記油温状態判別手段(24)による判別結果に基づき、前記常温状態(Normal)の変速と前記低温状態(Cold−Mid,Cold−High)の変速とでそれぞれ常温用学習値(PS2A,PTAA)と第1低温用学習値(PS2B,PTAB,PS2C,PTAC)とを個別に学習する個別学習手段(28)と、
前記個別学習手段(28)により学習される前記常温用学習値(PS2A,PTAA)と前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)との学習結果の一方を、他方の学習値に反映させる学習反映手段(29)と、を有する、
ことを特徴とする自動変速機の変速制御装置(1)にある。
The present invention according to claim 1 (see, for example, FIG. 1 to FIG. 7) is based on the shift state detecting means (22) for detecting the shift state at the time of shifting and the detection result of the shift state detecting means (22). Learning values (P S2 A, P TA A, P S2 B, P TA ) for correcting the hydraulic pressure command value (P B4 ) supplied to the hydraulic servo of the frictional engagement element (for example, B-4) in the shift control of B, P S2 C, P TA C, P S2 B ′, P TA B ′, P S2 C ′, P TA C ′) and learning control means (26) for performing learning by calculating and recording, and the learning A shift control device (1) of an automatic transmission (20), comprising: a shift control means (21) that performs hydraulic control of a hydraulic servo of a friction engagement element (for example, B-4) based on a learning result by the control means (26). )
Oil temperature detecting means (31) for detecting the oil temperature;
Based on the oil temperature detected by the oil temperature detection means (31), an oil temperature state determination means (24) for determining a shift in a normal temperature state (Normal) and a shift in a low temperature state (Cold-Mid, Cold-High). ) And
The learning control means (26)
Based on the determination result by the oil temperature state determination means (24), the shift to the low temperature (Cold-Mid, Cold-High ) of the normal temperature (Normal) each normal-temperature learned value by the shift of the (P S2 A, Individual learning means (28) for individually learning the learning value for P TA A) and the first low temperature learning value (P S2 B, P TA B, P S2 C, P TAC );
The individual learning the normal-temperature learned value is learned by the means (28) (P S2 A, P TA A) and the first low-temperature learned value (P S2 B, P TA B , P S2 C, P TA C) Learning reflecting means (29) for reflecting one of the learning results of the second learning value to the other learning value,
The present invention resides in a shift control device (1) for an automatic transmission.

請求項2に係る本発明は(例えば図1乃至図7参照)、前記油温状態判別手段(24)によって判別された前記常温状態(Normal)の変速にて、前記学習制御手段(26)による学習の進行状態が所定の進行状態以上となる初期学習完了を判定する初期学習完了判定手段(25)を備え、
前記個別学習手段(28)は、前記初期学習完了判定手段(25)により前記初期学習完了が判定されるまでは、前記油温状態判別手段(24)による判別結果に基づき、前記常温用学習値(PS2A,PTAA)と前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)とをそれぞれ学習し、
前記学習制御手段(26)は、前記初期学習完了判定手段(25)により前記初期学習完了が判定された後は、前記油温状態判別手段(24)による判別結果に基づき、前記常温状態(Normal)の変速において、前記常温用学習値(PS2A,PTAA)の学習を継続し、かつ前記低温状態(Cold−Mid,Cold−High)の変速において、前記常温用学習値(PS2A,PTAA)をベースとして設定される第2低温用学習値(PS2B’,PTAB’,PS2C’,PTAC’)を学習する常温ベース学習手段(27)を有する、
ことを特徴とする請求項1記載の自動変速機の変速制御装置(1)にある。
According to a second aspect of the present invention (see, for example, FIGS. 1 to 7), the learning control means (26) performs the shift at the normal temperature state (Normal) determined by the oil temperature state determination means (24). Initial learning completion determination means (25) for determining completion of initial learning when the learning progress state is equal to or greater than a predetermined progress state;
The individual learning means (28) is based on the result of determination by the oil temperature state determination means (24) until the initial learning completion is determined by the initial learning completion determination means (25). (P S2 A, P TA A) and the first low-temperature learning value (P S2 B, P TA B, P S2 C, P TA C), respectively,
After the initial learning completion is determined by the initial learning completion determining means (25), the learning control means (26) is based on the determination result by the oil temperature state determining means (24), and the normal temperature state (Normal in shifting), the ambient temperature learning value (P S2 a, continued learning P TA a), and the low temperature (cold-Mid, in the shift of cold-High), the ambient temperature learning value (P S2 A room temperature base learning means (27) for learning second low temperature learning values (P S2 B ′, P TA B ′, P S2 C ′, P TAC ′) set based on A, P TA A) Have
The shift control apparatus (1) for an automatic transmission according to claim 1, wherein

請求項3に係る本発明は(例えば図1乃至図7参照)、前記学習反映手段(29)は、前記個別学習手段(28)により学習される前記常温用学習値(PS2A,PTAA)と前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)との学習結果のいずれか一方を他方の学習値に反映させ、前記他方の学習値の学習結果を前記一方の学習値に反映させない、
ことを特徴とする請求項1または2記載の自動変速機の変速制御装置(1)にある。
According to a third aspect of the present invention (see, for example, FIGS. 1 to 7), the learning reflecting means (29) is configured to learn the normal temperature learning values (P S2 A, P TA ) learned by the individual learning means (28). A) and the learning result of the first low-temperature learning value ( PS2B , PTAB , PS2C , PTAC ) are reflected in the other learning value, and the learning value of the other The learning result is not reflected on the one learning value.
The shift control device (1) for an automatic transmission according to claim 1 or 2, characterized in that

請求項4に係る本発明は(例えば図3、図4、及び図6参照)、前記学習反映手段(29)は、前記常温用学習値(PS2A,PTAA)の学習結果を前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)に反映させてなる、
ことを特徴とする請求項3記載の自動変速機の変速制御装置(1)にある。
In the present invention according to claim 4 (see, for example, FIGS. 3, 4, and 6), the learning reflection means (29) uses the learning result of the learning value for normal temperature (P S2 A, P TA A) as the learning result. Reflected in the first low temperature learning value (P S2 B, P TA B, P S2 C, P TAC ),
A shift control apparatus (1) for an automatic transmission according to claim 3, wherein

請求項5に係る本発明は(例えば図6参照)、前記学習反映手段(29)は、学習前の前記常温用学習値(PS2A,PTAA)が前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)よりも大きい際に、該常温用学習値(PS2A,PTAA)における学習前と学習後との変化量(PS2ΔA,PTAΔA)を該第1低温用学習値(PS2B,PTAB,PS2C,PTAC)に反映してなる、
ことを特徴とする請求項4記載の自動変速機の変速制御装置(1)にある。
In the present invention according to claim 5 (see, for example, FIG. 6), the learning reflection means (29) is configured such that the learning value for normal temperature (P S2 A, P TA A) before learning is the learning value for the first low temperature ( When it is larger than P S2 B, P TA B, P S2 C, and P TA C), the amount of change (P S2 ΔA) between the learning value for normal temperature (P S2 A, P TA A) before and after learning , P TA ΔA) is reflected on the first low temperature learning value (P S2 B, P TA B, P S2 C, P TA C),
The shift control device (1) for an automatic transmission according to claim 4, wherein the shift control device (1) is an automatic transmission.

請求項6に係る本発明は(例えば図6参照)、前記学習反映手段(29)は、学習前の前記常温用学習値(PS2A,PTAA)が前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)よりも小さく、かつ学習後の前記常温用学習値(PS2A,PTAA)が前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)よりも大きい際に、学習後の前記常温用学習値(PS2A,PTAA)を該第1低温用学習値(PS2B,PTAB,PS2C,PTAC)に反映してなる、
ことを特徴とする請求項4または5記載の自動変速機の変速制御装置(1)にある。
In the present invention according to claim 6 (see, for example, FIG. 6), the learning reflection means (29) is configured such that the learning value for normal temperature (P S2 A, P TA A) before learning is the learning value for the first low temperature ( P S2 B, P TA B, P S2 C, P TA C) and the learning value for normal temperature (P S2 A, P TA A) after learning is the first low temperature learning value (P S2 B). , P TA B, P S2 C, P TA C), the learning value for normal temperature (P S2 A, P TA A) after learning is the learning value for the first low temperature (P S2 B, P TA B, P S2 C, P TAC )
The shift control device (1) for an automatic transmission according to claim 4 or 5, characterized in that

請求項7に係る本発明は(例えば図6参照)、前記常温用学習値(PS2A,PTAA)及び前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)は、正負の値を有してなり、
前記学習反映手段(29)は、学習後の前記常温用学習値(PS2A,PTAA)が前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)と正負逆の値で、かつ学習後の前記常温用学習値(PS2A,PTAA)が前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)よりも遠ざかる際に、該常温用学習値(PS2A,PTAA)における学習前と学習後との変化量(PS2ΔA,PTAΔA)を該第1低温用学習値(PS2B,PTAB,PS2C,PTAC)に反映してなる、
ことを特徴とする請求項4ないし6のいずれか記載の自動変速機の変速制御装置にある。
The present invention according to claim 7 (see, for example, FIG. 6) includes the normal temperature learning values ( PS2A , PTAA ) and the first low temperature learning values ( PS2B , PTAB , PS2C , PTAC ) has positive and negative values,
In the learning reflecting means (29), the learning value for normal temperature (P S2 A, P TA A) after learning is the learning value for the first low temperature (P S2 B, P TA B, P S2 C, P TA C). ) And the learning value for normal temperature (P S2 A, P TA A) after learning is the learning value for the first low temperature (P S2 B, P TA B, P S2 C, P TA C). ), The amount of change (P S2 ΔA, P TA ΔA) between the learning value for normal temperature (P S2 A, P TA A) before and after learning is calculated as the first low-temperature learning value (P S2 A, P TA A). S2 B, P TA B, P S2 C, P TAC )
The shift control device for an automatic transmission according to any one of claims 4 to 6, wherein:

請求項8に係る本発明は(例えば図5参照)、前記個別学習手段(28)は、前記常温用学習値(PS2A,PTAA)の修正限度幅(±q,±t)よりも前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)の修正限度幅(±r,±u,±s,±v)を小さく設定してなり、かつ前記常温用学習値(PS2A,PTAA)が前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)の修正限度幅(±r,±u,±s,±v)よりも大きくなった際に、前記第1低温用学習値(PS2B,PTAB,PS2C,PTAC)の修正限度幅(±r,±u,±s,±v)を該大きくなった常温用学習値(PS2A,PTAA)に再設定してなる、
ことを特徴とする請求項4ないし7のいずれか記載の自動変速機の変速制御装置(1)にある。
The present invention according to claim 8 (see, for example, FIG. 5), the individual learning means (28), the normal temperature for the learning value (P S2 A, P TA A ) fixes the limit width (± q, ± t) from And the correction limit width (± r, ± u, ± s, ± v) of the first low temperature learning value (P S2 B, P TA B, P S2 C, P TAC ) is set small, and The learning value for normal temperature (P S2 A, P TA A) is the correction limit width (± r, ± u,) of the first low-temperature learning value (P S2 B, P TA B, P S2 C, P TAC ). When it becomes larger than ± s, ± v), the correction limit width (± r, ± u, ±) of the first learning value for low temperature (P S2 B, PTAB , PS2 C, PTAC ) s, ± v) is reset to the increased learning value for normal temperature (P S2 A, P TA A),
A shift control apparatus (1) for an automatic transmission according to any one of claims 4 to 7.

請求項9に係る本発明は(例えば図1、図3、及び図7参照)、入力軸(3)の回転数を検出する入力軸回転数センサ(32)を備え、
前記変速状況検知手段(22)は、変速時における前記入力軸(3)の回転数の変化に基づき前記変速状況を検知する、
ことを特徴とする請求項1ないし8のいずれか記載の自動変速機の変速制御装置(1)にある。
The present invention according to claim 9 (see, for example, FIG. 1, FIG. 3, and FIG. 7) includes an input shaft rotational speed sensor (32) for detecting the rotational speed of the input shaft (3),
The shift state detection means (22) detects the shift state based on a change in the rotational speed of the input shaft (3) during a shift.
The shift control device (1) for an automatic transmission according to any one of claims 1 to 8, characterized in that:

請求項10に係る本発明は(例えば図3及び図7参照)、前記変速における時間経過を計時する変速計時手段(23)を備え、
前記変速状況検知手段(22)は、前記変速計時手段(23)の計時結果に基づき前記変速状況を検知する、
ことを特徴とする請求項1ないし9のいずれか記載の自動変速機の変速制御装置(1)にある。
The present invention according to claim 10 (see, for example, FIG. 3 and FIG. 7) includes a gear timing means (23) for timing the time passage in the gear shift,
The shift state detecting means (22) detects the shift state based on a time measurement result of the shift time measuring means (23).
A shift control apparatus (1) for an automatic transmission according to any one of claims 1 to 9.

請求項11に係る本発明は(例えば図3乃至図7参照)、前記学習制御手段(26)が学習する前記油圧指令値(PB4)を補正するための学習値は、前記摩擦係合要素(B−4)の係合を行う前の待機圧(PS2)に対する学習値(PS2A,PS2B,PS2C,PS2B’,PS2C’)である、
ことを特徴とする請求項1ないし10のいずれか記載の自動変速機の変速制御装置(1)にある。
In the present invention according to claim 11 (see, for example, FIGS. 3 to 7), the learning value for correcting the hydraulic pressure command value (P B4 ) learned by the learning control means (26) is the friction engagement element. (B-4) is a learning value ( PS2A , PS2B , PS2C , PS2B ', PS2C ') with respect to the standby pressure ( PS2 ) before engaging.
The shift control device (1) for an automatic transmission according to any one of claims 1 to 10, characterized in that:

請求項12に係る本発明は(例えば図3乃至図7参照)、前記学習制御手段(26)が学習する前記油圧指令値(PB4)を補正するための学習値は、前記摩擦係合要素(B−4)の係合を開始する係合開始圧(PTA)に対する学習値(PTAA,PTAB,PTAC,PTAB’,PTAC’)である、
ことを特徴とする請求項1ないし10のいずれか記載の自動変速機の変速制御装置(1)にある。
According to the twelfth aspect of the present invention (see, for example, FIGS. 3 to 7), the learning value for correcting the hydraulic pressure command value (P B4 ) learned by the learning control means (26) is the friction engagement element. (B-4) is a learning value (P TA A, P TA B, P TA C, P TA B ′, P TA C ′) with respect to the engagement start pressure (P TA ) for starting the engagement.
The shift control device (1) for an automatic transmission according to any one of claims 1 to 10, characterized in that:

請求項13に係る本発明は(例えば図1及び図2参照)、前記摩擦係合要素(B−4)は、バンドブレーキからなる、
ことを特徴とする請求項12記載の自動変速機の変速制御装置(1)にある。
In the present invention according to claim 13 (see, for example, FIGS. 1 and 2), the friction engagement element (B-4) includes a band brake.
The shift control device (1) for an automatic transmission according to claim 12, wherein the shift control device (1) is an automatic transmission.

請求項14に係る本発明は(例えば図7参照)、前記変速は、パワーオンアップシフト変速である、
ことを特徴とする請求項1ないし13のいずれか記載の自動変速機の変速制御装置(1)にある。
In the present invention according to claim 14 (see, for example, FIG. 7), the shift is a power-on upshift.
A shift control apparatus (1) for an automatic transmission according to any one of claims 1 to 13, characterized in that:

なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、特許請求の範囲の構成に何等影響を及ぼすものではない。   In addition, although the code | symbol in the said parenthesis is for contrast with drawing, this is for convenience for making an understanding of invention easy, and has no influence on the structure of a claim. It is not a thing.

請求項1に係る本発明によると、個別学習手段が、油温状態判別手段による判別結果に基づき常温状態の変速と低温状態の変速とでそれぞれ常温用学習値と第1低温用学習値とを個別に学習するので、低温状態ばかりで走行する場合であっても、低温状態での変速におけるシフトクォリティを向上することができるものでありながら、学習反映手段が、個別学習手段により学習される常温用学習値と第1低温用学習値との学習結果の一方を他方の学習値に反映させるので、常温状態ばかり又は低温状態ばかりのいずれか一方ばかりで走行する場合であっても、一方の学習値の学習結果によって、常温及び低温状態の双方の変速で、信頼性の高い変速制御を行うことを可能とすることができる。   According to the first aspect of the present invention, the individual learning unit obtains the normal temperature learning value and the first low temperature learning value for the normal temperature shift and the low temperature shift based on the determination result by the oil temperature state determination unit, respectively. Since learning is performed individually, even if the vehicle is traveling only in a low temperature state, it is possible to improve the shift quality in the shift in the low temperature state, but the learning reflection means is a normal temperature that is learned by the individual learning means. One of the learning results of the learning value for the first temperature and the learning value for the first low temperature is reflected in the other learning value, so even if the vehicle is running only in the normal temperature state or only in the low temperature state, one of the learning results Based on the learning result of the value, it is possible to perform highly reliable shift control at both a normal temperature and a low temperature shift.

請求項2に係る本発明によると、個別学習手段が、初期学習完了判定手段により初期学習完了が判定されるまで、常温用学習値と第1低温用学習値との個別学習を行い、常温ベース学習手段が、初期学習完了判定手段により初期学習完了が判定された後、常温状態の変速にて常温用学習値の学習を継続し、かつ低温状態の変速にて常温用学習値をベースとして設定される第2低温用学習値を学習するので、初期学習完了が判定される前であっても、学習反映手段の反映によって常温状態の変速と低温状態の変速におけるシフトクォリティを向上することができ、初期学習が完了した後は、常温及び低温状態の双方の変速で、信頼性の高い常温用学習値をベースとする信頼性の高い変速制御を行うことを可能とすることができる。   According to the second aspect of the present invention, the individual learning means performs the individual learning of the normal temperature learning value and the first low temperature learning value until the initial learning completion determining means determines the initial learning completion, and the normal learning base After the learning device determines that the initial learning is completed by the initial learning completion determination device, the learning device continues to learn the learning value for the normal temperature at the normal temperature shift, and sets the learning value for the normal temperature as the base at the low temperature shift. Since the learning value for the second low temperature is learned, even before the completion of the initial learning is judged, the shift quality in the normal temperature shift and the low temperature shift can be improved by reflecting the learning reflecting means. After the initial learning is completed, it is possible to perform highly reliable shift control based on a highly reliable learning value for normal temperature at both normal temperature and low temperature shifts.

請求項3に係る本発明によると、学習反映手段は、常温用学習値と第1低温用学習値との学習結果のいずれか一方を他方の学習値に反映させ、他方の学習値の学習結果を一方の学習値に反映させないので、より信頼性の高い一方の学習結果を他方の学習値に反映させることができると共に、信頼性に欠ける他方の学習結果を信頼性の高い一方の学習結果に反映してしまうことを防ぐことができる。   According to the third aspect of the present invention, the learning reflecting means reflects one of the learning results of the normal temperature learning value and the first low temperature learning value in the other learning value, and the learning result of the other learning value. Is not reflected in one learning value, so that one of the more reliable learning results can be reflected in the other learning value, and the other learning result lacking in reliability can be reflected in one of the highly reliable learning results. It can be prevented from reflecting.

請求項4に係る本発明によると、学習反映手段は、常温用学習値の学習結果を第1低温用学習値に反映させるので、信頼性の高い常温用学習値の学習結果を第1低温用学習値に反映させることができ、低温状態の変速で信頼性の高い変速制御を行うことを可能とすることができる。   According to the fourth aspect of the present invention, the learning reflecting means reflects the learning result of the normal temperature learning value in the first low temperature learning value, so that the highly reliable learning value of the normal temperature learning value is used for the first low temperature. The learning value can be reflected, and it is possible to perform highly reliable shift control by shifting in a low temperature state.

請求項5に係る本発明によると、学習反映手段は、学習前の常温用学習値が第1低温用学習値よりも大きい際に、該常温用学習値における学習前と学習後との変化量を該第1低温用学習値に反映するので、個別学習手段により個別に学習された第1低温用学習値を大幅に変更することなく、信頼性の高い常温用学習値の学習結果を第1低温用学習値に反映させることができ、低温状態の変速で信頼性の高い変速制御を行うことを可能とすることができる。   According to the fifth aspect of the present invention, when the learning reflection value before learning is larger than the first learning value for low temperature, the learning reflection means changes the amount of learning before and after learning in the learning value for normal temperature. Is reflected in the first low-temperature learning value, so that the learning result of the highly reliable normal-temperature learning value can be obtained without significantly changing the first low-temperature learning value individually learned by the individual learning means. This can be reflected in the learning value for low temperature, and it is possible to perform highly reliable shift control by shifting in a low temperature state.

請求項6に係る本発明によると、学習反映手段は、学習前の常温用学習値が第1低温用学習値よりも小さく、かつ学習後の常温用学習値が第1低温用学習値よりも大きい際に、学習後の常温用学習値を該第1低温用学習値に反映するので、個別学習手段により個別に学習された第1低温用学習値を大幅に変更することなく、信頼性の高い常温用学習値の学習結果を第1低温用学習値に反映させることができ、低温状態の変速で信頼性の高い変速制御を行うことを可能とすることができる。   According to the sixth aspect of the present invention, the learning reflecting means has the learning value for normal temperature before learning smaller than the first learning value for low temperature, and the learning value for normal temperature after learning is less than the first learning value for low temperature. When the value is large, the learning value for normal temperature after learning is reflected in the learning value for the first low temperature, so that the reliability of the reliability can be improved without significantly changing the learning value for the first low temperature individually learned by the individual learning means. The learning result of the high learning value for normal temperature can be reflected in the first learning value for low temperature, and it is possible to perform highly reliable shift control by shifting in the low temperature state.

請求項7に係る本発明によると、学習反映手段は、学習後の常温用学習値が第1低温用学習値と正負逆の値で、かつ学習後の常温用学習値が第1低温用学習値よりも遠ざかる際に、該常温用学習値における学習前と学習後との変化量を該第1低温用学習値に反映するので、個別学習手段により個別に学習された第1低温用学習値を大幅に変更することなく、信頼性の高い常温用学習値の学習結果を第1低温用学習値に反映させることができ、低温状態の変速で信頼性の高い変速制御を行うことを可能とすることができる。   According to the seventh aspect of the present invention, the learning reflecting means has a learning value for normal temperature after learning that is positive and negative with respect to the learning value for low temperature, and the learning value for normal temperature after learning is learning for the first low temperature. Since the amount of change in the learning value for normal temperature before and after learning is reflected in the first learning value for low temperature when moving away from the value, the first learning value for low temperature learned individually by the individual learning means The learning result of the highly reliable learning value for normal temperature can be reflected in the first learning value for low temperature without drastically changing the value, and it is possible to perform highly reliable shift control by shifting in a low temperature state. can do.

請求項8に係る本発明によると、個別学習手段は、常温用学習値の修正限度幅よりも第1低温用学習値の修正限度幅を小さく設定しているので、信頼性の低い低温状態の変速における学習により第1低温用学習値が大幅に誤った値になってしまうことを防止することができるものでありながら、常温用学習値が第1低温用学習値の修正限度幅よりも大きくなった際には、第1低温用学習値の修正限度幅を該大きくなった常温用学習値に再設定するので、常温用学習値の学習結果を第1低温用学習値に必ず反映させることができる。   According to the eighth aspect of the present invention, since the individual learning means sets the correction limit width of the first low temperature learning value smaller than the correction limit width of the normal temperature learning value, the low learning state with low reliability is set. While it is possible to prevent the learning value for the first low temperature from becoming a significantly incorrect value due to learning at the shift, the learning value for the normal temperature is larger than the correction limit width of the learning value for the first low temperature. When this happens, the correction range of the first low-temperature learning value is reset to the increased normal learning value, so that the learning result of the normal-temperature learning value must be reflected in the first low-temperature learning value. Can do.

請求項9に係る本発明によると、変速状況検知手段は、変速時における入力軸の回転数の変化に基づき変速状況を検知するので、学習制御手段は、エンジン吹きやタイアップ、変速ショック等を考慮した変速状況に基づき、学習値の学習を行うことができる。   According to the ninth aspect of the present invention, since the shift state detecting means detects the shift state based on a change in the rotational speed of the input shaft at the time of shifting, the learning control means detects engine blow, tie-up, shift shock, etc. The learning value can be learned on the basis of the shift state considered.

請求項10に係る本発明によると、変速状況検知手段は、変速計時手段の計時結果に基づき変速状況を検知するので、学習制御手段は、変速における各種の時間経過を考慮した変速状況に基づき、学習値の学習を行うことができる。   According to the tenth aspect of the present invention, since the shift state detecting means detects the shift state based on the time measurement result of the shift time measuring means, the learning control means is based on the shift state considering various time passages in the shift, Learning value can be learned.

請求項11に係る本発明によると、学習制御手段が学習する油圧指令値を補正するための学習値は、摩擦係合要素の係合を行う前の待機圧に対する学習値であるので、変速(係合)ショックや変速時間の遅延等を防ぐための学習を行うことができる。   According to the eleventh aspect of the present invention, the learning value for correcting the hydraulic pressure command value learned by the learning control means is the learning value for the standby pressure before the engagement of the friction engagement elements. Engagement) Learning can be performed to prevent shock, shift time delay, and the like.

請求項12に係る本発明によると、学習制御手段が学習する油圧指令値を補正するための学習値は、摩擦係合要素の係合を開始する係合開始圧に対する学習値であるので、エンジン吹きやタイアップ等を防ぐための学習を行うことができる。   According to the twelfth aspect of the present invention, the learning value for correcting the hydraulic pressure command value learned by the learning control means is the learning value for the engagement start pressure for starting the engagement of the friction engagement element. You can learn to prevent blowing and tie-up.

請求項13に係る本発明によると、摩擦係合要素は、バンドブレーキからなるので、係合開始圧の学習が充分でないと、ブレーキバンドの巻き込みに起因する係合ショックを生じやすいが、一方の学習値の学習結果によって、常温及び低温状態の双方の変速で、信頼性の高い変速制御を行うことを可能とすることができるので、係合ショック発生の防止を図ることができる。   According to the thirteenth aspect of the present invention, since the friction engagement element is composed of a band brake, if the learning of the engagement start pressure is not sufficient, an engagement shock caused by the engagement of the brake band is likely to occur. According to the learning result of the learning value, it is possible to perform highly reliable gear shifting control at both the normal temperature and low temperature gear shifting, so that the occurrence of engagement shock can be prevented.

請求項14に係る本発明によると、変速は、パワーオンアップシフト変速であるので、摩擦係合要素の掴み換え変速における係合側の摩擦係合要素の油圧制御を高精度に行うことができる。   According to the fourteenth aspect of the present invention, since the speed change is a power-on upshift, the hydraulic control of the frictional engagement element on the engagement side can be performed with high accuracy in the change-over shift of the frictional engagement element. .

以下、本発明の実施の形態を図1乃至図7に沿って説明する。まず、以下に本発明を適用し得る自動変速機20について図1及び図2に沿って説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. First, an automatic transmission 20 to which the present invention can be applied will be described with reference to FIGS. 1 and 2.

例えばFF(フロントエンジン、フロントドライブ)タイプの車両に用いて好適な自動変速機20は、図1に示すように、トルクコンバータ4、3速主変速機構2、3速副変速機構5及びディファレンシャル(図示せず)を備えており、かつこれら各部は互に接合して一体に構成されるケースに収納されている。そして、トルクコンバータ4は、ロックアップクラッチ4aを備えており、エンジンクランクシャフト13から、トルクコンバータ内の油流を介して又はロックアップクラッチによる機械的接続を介して主変速機構2の入力軸3に入力する。そして、一体ケースにはクランクシャフトと整列して配置されている入力軸3及び該入力軸3と平行にカウンタ軸6及びディファレンシャルの左右出力軸が回転自在に支持されており、また該ケースの外側に後述する油圧制御装置30が配設されている。   For example, an automatic transmission 20 suitable for use in an FF (front engine, front drive) type vehicle includes a torque converter 4, a 3-speed main transmission mechanism 2, a 3-speed auxiliary transmission mechanism 5, and a differential (see FIG. 1). (Not shown), and these components are housed in a case that is integrally joined together. The torque converter 4 is provided with a lock-up clutch 4a, and the input shaft 3 of the main transmission mechanism 2 from the engine crankshaft 13 through an oil flow in the torque converter or through a mechanical connection by the lock-up clutch. To enter. The integral case supports the input shaft 3 arranged in alignment with the crankshaft and the counter shaft 6 and the differential left and right output shafts in parallel with the input shaft 3, and is rotatably supported by the outside of the case. A hydraulic control device 30 which will be described later is disposed.

主変速機構2は、シンプルプラネタリギヤ7とダブルピニオンプラネタリギヤ9からなるプラネタリギヤユニット15を有しており、シンプルプラネタリギヤ7はサンギヤS1、S2、リングギヤR1、及びこれらギヤに噛合するロングピニオンからなるピニオンP1を支持したキャリヤCRからなり、またダブルピニオンプラネタリタリギヤ9はサンギヤS2、リングギヤR2、並びにサンギヤS2に噛合しかつ共通ピニオンとなるピニオンP1及びリングギヤR2に噛合するピニオンP2を互に噛合するように支持する共通キャリヤCRからなる。   The main speed change mechanism 2 has a planetary gear unit 15 including a simple planetary gear 7 and a double pinion planetary gear 9. The simple planetary gear 7 includes sun gears S1, S2, a ring gear R1, and a pinion P1 including a long pinion that meshes with these gears. The double pinion planetary gear 9 is composed of a supported carrier CR, and supports the sun gear S2, the ring gear R2, and the pinion P1 meshing with the sun gear S2 and meshing with the pinion P1 and the ring gear R2 that mesh with each other. Common carrier CR.

そして、エンジンクランクシャフト13からトルクコンバータ4を介して連動している入力軸3は、第1の(フォワード)クラッチC−1を介してシンプルプラネタリギヤ7のリングギヤR1に連結し得ると共に、第2の(ダイレクト)クラッチC−2を介してシンプルプラネタリギヤ7のサンギヤS1に連結し得る。ダブルピニオンプラネタリギヤ9のサンギヤS2は、第1のブレーキB−1にて直接係止し得ると共に、第1のワンウェイクラッチF−1を介して第2のブレーキB−2にて係止し得る。更に、ダブルピニオンプラネタリギヤ9のリングギヤR2は、第3のブレーキB−3及び第2のワンウェイクラッチF−2にて係止し得る。そして、共通キャリヤCRが、主変速機構2の出力部材となるカウンタドライブギヤ8に連結している。   The input shaft 3 linked from the engine crankshaft 13 via the torque converter 4 can be connected to the ring gear R1 of the simple planetary gear 7 via the first (forward) clutch C-1, and the second It can be connected to the sun gear S1 of the simple planetary gear 7 via the (direct) clutch C-2. The sun gear S2 of the double pinion planetary gear 9 can be directly locked by the first brake B-1 and can be locked by the second brake B-2 via the first one-way clutch F-1. Further, the ring gear R2 of the double pinion planetary gear 9 can be locked by the third brake B-3 and the second one-way clutch F-2. The common carrier CR is connected to a counter drive gear 8 that is an output member of the main transmission mechanism 2.

一方、副変速機構(部)5は、第2軸を構成するカウンタ軸6の軸線方向にリヤ側に向って、出力ギヤ16、第1のシンプルプラネタリギヤ10及び第2のシンプルプラネタリギヤ11が順に配置されており、またカウンタ軸6はベアリングを介して一体ケース側に回転自在に支持されている。前記第1及び第2のシンプルプラネタリギヤ10,11は、シンプソンタイプからなる。   On the other hand, in the auxiliary transmission mechanism (unit) 5, the output gear 16, the first simple planetary gear 10, and the second simple planetary gear 11 are arranged in this order in the axial direction of the counter shaft 6 constituting the second shaft toward the rear side. The counter shaft 6 is rotatably supported on the integral case side through a bearing. The first and second simple planetary gears 10 and 11 are of the Simpson type.

また、第1のシンプルプラネタリギヤ10は、そのリングギヤR3が前記カウンタドライブギヤ8に噛合するカウンタドリブンギヤ17に連結しており、そのサンギヤS3がカウンタ軸6に回転自在に支持されているスリーブ軸12に固定されている。そして、ピニオンP3はカウンタ軸6に一体に連結されたフランジからなるキャリヤCR3に支持されており、また該ピニオンP3の他端を支持するキャリヤCR3はUDダイレクトクラッチC−3のインナハブに連結している。また、第2のシンプルプラネタリギヤ11は、そのサンギヤS4が前記スリーブ軸12に形成されて前記第1のシンプルプラネタリギヤのサンギヤS3に連結されており、そのリングギヤR4は、カウンタ軸6に連結されている。   The first simple planetary gear 10 is connected to a counter driven gear 17 whose ring gear R3 meshes with the counter drive gear 8, and the sun gear S3 is connected to a sleeve shaft 12 rotatably supported by the counter shaft 6. It is fixed. The pinion P3 is supported by a carrier CR3 having a flange integrally connected to the counter shaft 6, and the carrier CR3 supporting the other end of the pinion P3 is connected to the inner hub of the UD direct clutch C-3. Yes. The second simple planetary gear 11 has a sun gear S4 formed on the sleeve shaft 12 and connected to the sun gear S3 of the first simple planetary gear. The ring gear R4 is connected to the counter shaft 6. .

そして、UDダイレクトクラッチC−3は、前記第1のシンプルプラネタリギヤのキャリヤCR3と前記連結サンギヤS3,S4との間に介在しており、かつ該連結サンギヤS3,S4は、バンドブレーキからなる第4のブレーキB−4(摩擦係合要素)にて係止し得る。更に、第2のシンプルプラネタリギヤのピニオンP4を支持するキャリヤCR4は、第5のブレーキB−5にて係止し得る。   The UD direct clutch C-3 is interposed between the carrier CR3 of the first simple planetary gear and the connecting sun gears S3 and S4, and the connecting sun gears S3 and S4 are fourth brake band brakes. The brake B-4 (friction engagement element) can be used. Further, the carrier CR4 that supports the pinion P4 of the second simple planetary gear can be locked by the fifth brake B-5.

ついで、本自動変速機の作用について図1及び図2に沿って説明する。   Next, the operation of the automatic transmission will be described with reference to FIGS.

D(ドライブ)レンジにおける1速(1ST)状態では、フォワードクラッチC−1が係合し、かつ第5のブレーキB−5及び第2のワンウェイクラッチF−2が係止して、ダブルピニオンプラネタリギヤのリングギヤR2及び第2のシンプルプラネタリギヤ11のキャリヤCR4が停止状態に保持される。この状態では、入力軸3の回転は、フォワードクラッチC−1を介してシンプルプラネタリギヤのリングギヤR1に伝達され、かつダブルピニオンプラネタリギヤのリングギヤR2は停止状態にあるので、サンギヤS1、S2を逆方向に空転させながら共通キャリヤCRが正方向に大幅減速回転される。即ち、主変速機構2は、1速状態にあり、該減速回転がカウンタギヤ8,17を介して副変速機構5における第1のシンプルプラネタリギヤのリングギヤR3に伝達される。該副変速機構5は、第5のブレーキB−5により第2のシンプルプラネタリギヤのキャリヤCR4が停止され、1速状態にあり、前記主変速機構2の減速回転は、該副変速機構5により更に減速されて、出力ギヤ16から出力する。   In the first speed (1ST) state in the D (drive) range, the forward clutch C-1 is engaged, and the fifth brake B-5 and the second one-way clutch F-2 are engaged, and the double pinion planetary gear is engaged. The ring gear R2 and the carrier CR4 of the second simple planetary gear 11 are held in a stopped state. In this state, the rotation of the input shaft 3 is transmitted to the ring gear R1 of the simple planetary gear via the forward clutch C-1, and the ring gear R2 of the double pinion planetary gear is in the stopped state, so that the sun gears S1 and S2 are moved in the reverse direction. The common carrier CR is greatly decelerated and rotated in the forward direction while idling. That is, the main transmission mechanism 2 is in the first speed state, and the reduced rotation is transmitted to the ring gear R3 of the first simple planetary gear in the auxiliary transmission mechanism 5 via the counter gears 8 and 17. The sub-transmission mechanism 5 is in the first speed state when the carrier CR4 of the second simple planetary gear is stopped by the fifth brake B-5, and the decelerated rotation of the main transmission mechanism 2 is further performed by the sub-transmission mechanism 5. Decelerated and output from the output gear 16.

2速(2ND)状態では、フォワードクラッチC−1に加えて、第2のブレーキB−2が作動(係合)し、更に、第2のワンウェイクラッチF−2から第1のワンウェイクラッチF−1に作動が切換わり、かつ第5のブレーキB−5が係止状態に維持されている。この状態では、サンギヤS2が第2のブレーキB−2及び第1のワンウェイクラッチF−1により停止され、従って入力軸3からフォワードクラッチC−1を介して伝達されたシンプルプラネタリギヤのリングギヤR1の回転は、ダブルピニオンプラネタリギヤのリングギヤR2を正方向に空転させながらキャリヤCRを正方向に減速回転する。更に、該減速回転は、カウンタギヤ8,17を介して副変速機構5に伝達される。即ち、主変速機構2は2速状態となり、副変速機構5は、第5のブレーキB−5の係合により1速状態にあり、この2速状態と1速状態が組合されて、自動変速機20全体で2速が得られる。   In the second speed (2ND) state, in addition to the forward clutch C-1, the second brake B-2 is operated (engaged), and further, the second one-way clutch F-2 to the first one-way clutch F- The operation is switched to 1, and the fifth brake B-5 is maintained in the locked state. In this state, the sun gear S2 is stopped by the second brake B-2 and the first one-way clutch F-1, and therefore the rotation of the ring gear R1 of the simple planetary gear transmitted from the input shaft 3 via the forward clutch C-1. Rotates the carrier CR in the forward direction while rotating the ring gear R2 of the double pinion planetary gear in the forward direction. Further, the reduced speed rotation is transmitted to the auxiliary transmission mechanism 5 via the counter gears 8 and 17. That is, the main transmission mechanism 2 is in the second speed state, and the sub transmission mechanism 5 is in the first speed state by the engagement of the fifth brake B-5, and the second speed state and the first speed state are combined to automatically shift. The second speed is obtained by the entire machine 20.

3速(3RD)状態では、フォワードクラッチC−1、第2のブレーキB−2及び第1のワンウェイクラッチF−1はそのまま係合状態に保持され、第5のブレーキB−5の係止が解放されると共に第4のブレーキB−4が係合する。即ち、主変速機構2はそのままの状態が保持されて、上述した2速時の回転がカウンタギヤ8,17を介して副変速機構5に伝えられ、そして副変速機構5では、第1のシンプルプラネタリギヤのリングギヤR3からの回転がそのサンギヤS3の固定により2速回転としてキャリヤCR3から出力し、従って主変速機構2の2速と副変速機構5の2速で、自動変速機20全体で3速が得られる。   In the third speed (3RD) state, the forward clutch C-1, the second brake B-2, and the first one-way clutch F-1 are held in the engaged state as they are, and the fifth brake B-5 is locked. It is released and the fourth brake B-4 is engaged. That is, the main transmission mechanism 2 is maintained as it is, and the rotation at the second speed described above is transmitted to the auxiliary transmission mechanism 5 via the counter gears 8 and 17, and the auxiliary transmission mechanism 5 has the first simple structure. The rotation from the ring gear R3 of the planetary gear is output from the carrier CR3 as the second speed rotation by fixing the sun gear S3. Therefore, the second speed of the main transmission mechanism 2 and the second speed of the auxiliary transmission mechanism 5 are the third speed in the entire automatic transmission 20. Is obtained.

4速(4TH)状態では、主変速機構2は、フォワードクラッチC−1、第2のブレーキB−2及び第1のワンウェイクラッチF−1が係合した上述2速及び3速状態と同じであり、副変速機構5は、第4のブレーキB−4を解放すると共にUDダイレクトクラッチC−3が係合する。この状態では、第1のシンプルプラネタリギヤのキャリヤCR3とサンギヤS3,S4が連結して、プラネタリギヤ10,11が一体回転する直結回転となる。従って、主変速機構2の2速と副変速機構5の直結(3速)が組合されて、自動変速機20全体で、4速回転が出力ギヤ16から出力する。   In the 4th speed (4TH) state, the main speed change mechanism 2 is the same as the 2nd speed and 3rd speed states in which the forward clutch C-1, the second brake B-2, and the first one-way clutch F-1 are engaged. Yes, the subtransmission mechanism 5 releases the fourth brake B-4 and engages the UD direct clutch C-3. In this state, the carrier CR3 of the first simple planetary gear and the sun gears S3 and S4 are connected to each other so that the planetary gears 10 and 11 are directly connected to rotate integrally. Accordingly, the second speed of the main transmission mechanism 2 and the direct connection (third speed) of the auxiliary transmission mechanism 5 are combined, and the automatic transmission 20 as a whole outputs the fourth speed rotation from the output gear 16.

5速(5TH)状態では、フォワードクラッチC−1及びダイレクトクラッチC−2が係合して、入力軸3の回転がシンプルプラネタリギヤのリングギヤR1及びサンギヤSに共に伝達されて、主変速機構2は、ギヤユニットが一体回転する直結回転となる。また、副変速機構5は、UDダイレクトクラッチC−3が係合した直結回転となっており、従って主変速機構2の3速(直結)と副変速機構5の3速(直結)が組合されて、自動変速機20全体で、5速回転が出力ギヤ16から出力する。   In the fifth speed (5TH) state, the forward clutch C-1 and the direct clutch C-2 are engaged, and the rotation of the input shaft 3 is transmitted to the ring gear R1 and the sun gear S of the simple planetary gear. In this case, the gear unit is directly connected to rotate integrally. Further, the subtransmission mechanism 5 is directly coupled with the UD direct clutch C-3 engaged, and therefore the third speed (direct coupling) of the main transmission mechanism 2 and the third speed (direct coupling) of the subtransmission mechanism 5 are combined. Thus, the fifth transmission is output from the output gear 16 throughout the automatic transmission 20.

なお、図2においてカッコ内丸印は、コースト時エンジンブレーキが作動状態(4、3又は2レンジ)を示す。即ち、1速時、第3のブレーキB−3が作動して第2のワンウェイクラッチF−2のオーバランによるリングギヤR2の回転を阻止する。また、2速時、3速時及び4速時、第1のブレーキB−1が作動して第1のワンウェイクラッチF−1のオーバランによるサンギヤS1の回転を阻止する。また、黒丸は、ブレーキB−2は係合するが、ワンウェイクラッチF−1がフリー回転することによりトルクを担持することはない。   In FIG. 2, the parenthesized circles indicate the coasting engine brake operating state (4, 3 or 2 range). That is, at the first speed, the third brake B-3 is operated to prevent the ring gear R2 from rotating due to the overrun of the second one-way clutch F-2. In the second speed, the third speed, and the fourth speed, the first brake B-1 is operated to prevent the sun gear S1 from rotating due to the overrun of the first one-way clutch F-1. The black circle is engaged with the brake B-2 but does not carry torque when the one-way clutch F-1 rotates freely.

また、R(リバース)レンジにあっては、ダイレクトクラッチC−2及び第3のブレーキB−3が係合すると共に、第5のブレーキB−5が係合する。この状態では、入力軸3の回転はダイレクトクラッチC−2を介してサンギヤS1に伝達され、かつ第3のブレーキB−3によりダブルピニオンプラネタリギヤのリングギヤR2が停止状態にあるので、シンプルプラネタリギヤのリングギヤR1を逆転方向に空転させながらキャリヤCRも逆転し、該逆転が、カウンタギヤ8,17を介して副変速機構5に伝達される。副変速機構5は、第5のブレーキB5に基づき第2のシンプルプラネタリギヤのキャリヤCR4が逆回転方向にも停止され、1速状態に保持される。従って、主変速機構2の逆転と副変速機構5の1速回転が組合されて、出力軸16から逆転減速回転が出力する。   In the R (reverse) range, the direct clutch C-2 and the third brake B-3 are engaged, and the fifth brake B-5 is engaged. In this state, the rotation of the input shaft 3 is transmitted to the sun gear S1 via the direct clutch C-2, and the ring gear R2 of the double pinion planetary gear is stopped by the third brake B-3. The carrier CR is also reversely rotated while the R1 is idling in the reverse direction, and the reverse rotation is transmitted to the auxiliary transmission mechanism 5 via the counter gears 8 and 17. In the auxiliary transmission mechanism 5, the carrier CR4 of the second simple planetary gear is also stopped in the reverse rotation direction based on the fifth brake B5, and is maintained in the first speed state. Therefore, the reverse rotation of the main transmission mechanism 2 and the first speed rotation of the auxiliary transmission mechanism 5 are combined, and the reverse rotation speed reduction rotation is output from the output shaft 16.

つづいて、本自動変速機の変速制御装置1について図3乃至図7に沿って説明する。   Next, the shift control device 1 of the automatic transmission will be described with reference to FIGS.

図3に示すように、制御部(ECU)Uは、例えば不揮発性メモリ(不図示)等を備えたマイクロコンピュータからなり、油圧制御装置30内の油(ATF)の油温を検出する油温センサ31、上記入力軸3の回転数を検出する入力軸回転数センサ32、ドライバのアクセルペダル踏み量を検出するアクセル開度センサ33、図示を省略したエンジン(E/G)の出力回転数を検出するE/G回転数センサ34、出力軸16の回転数を検出し、車速を検出する車速センサ35がそれぞれ接続されており、それら各センサからの信号が入力されている。また、制御部Uは、変速制御手段21、変速状況検知手段22、変速計時手段23、油温状態判別手段24、初期学習完了判定手段25、学習制御手段26を備えており、更に該学習制御手段26は、常温ベース学習手段27、個別学習手段28、学習反映手段29を有して構成されている。   As shown in FIG. 3, the control unit (ECU) U is composed of, for example, a microcomputer including a nonvolatile memory (not shown), and detects an oil temperature of oil (ATF) in the hydraulic control device 30. A sensor 31, an input shaft speed sensor 32 for detecting the speed of the input shaft 3, an accelerator opening sensor 33 for detecting the accelerator pedal depression amount of the driver, and an output speed of an engine (E / G) not shown. An E / G rotational speed sensor 34 to detect and a vehicle speed sensor 35 to detect the rotational speed of the output shaft 16 and detect the vehicle speed are connected to each other, and signals from these sensors are inputted. Further, the control unit U includes a shift control means 21, a shift state detection means 22, a transmission time measuring means 23, an oil temperature state determination means 24, an initial learning completion determination means 25, and a learning control means 26, and further includes the learning control. The means 26 includes a normal temperature base learning means 27, an individual learning means 28, and a learning reflection means 29.

上記変速制御手段21は、油圧制御装置30のソレノイドバルブ(リニアソレノイドバルブも含む)を電子制御するため、上述の各クラッチや各ブレーキの油圧サーボに供給する油圧の指令値を出力可能に構成されており、車速センサ35により検出される車速Vとアクセル開度センサ33により検出されるアクセル開度θdとに基づき変速判断がなされると、詳しくは後述する油圧指令値の演算を行うと共に、後述の学習制御手段26の学習結果を該油圧指令値に加算し、各クラッチや各ブレーキの係合状態を制御することで変速制御を行う。なお、油圧指令値を出力するタイミングは、後述の変速計時手段23により計時された計時結果に基づき制御される。   Since the shift control means 21 electronically controls solenoid valves (including linear solenoid valves) of the hydraulic control device 30, the shift control means 21 is configured to be able to output hydraulic pressure command values to be supplied to the hydraulic servos of the clutches and brakes described above. When a shift determination is made based on the vehicle speed V detected by the vehicle speed sensor 35 and the accelerator opening θd detected by the accelerator opening sensor 33, a hydraulic pressure command value described later is calculated in detail, and later described. The learning result of the learning control means 26 is added to the hydraulic pressure command value, and the shift control is performed by controlling the engagement state of each clutch and each brake. The timing at which the hydraulic pressure command value is output is controlled based on the time measurement time measured by a transmission time measuring means 23 described later.

上記変速計時手段23は、上記変速制御手段21により変速判断がなされた際、詳しくは後述する各タイマの計時を行うように構成されており、これらの計時結果を変速制御手段21や変速状況検知手段22に出力する。   The transmission timing unit 23 is configured to perform timing of each timer, which will be described later in detail, when the shift determination is made by the transmission control unit 21, and these timing results are used as the transmission control unit 21 and the shift state detection. Output to means 22.

上記変速状況検知手段22は、上記変速制御手段21により制御される変速時において、入力軸回転数センサ32の検出による入力軸回転数NINや変速計時手段23により計時された実際の変速開始から終了までの時間(即ちイナーシャ相の時間)などに基づき、変速の状況を検知し、その状況を詳しくは後述する学習制御手段26に出力する。 The shift state detection means 22 is configured to detect the input shaft rotation speed N IN detected by the input shaft rotation speed sensor 32 and the actual shift start time measured by the shift timing means 23 during the shift controlled by the shift control means 21. Based on the time until the end (that is, the inertia phase time), the shift state is detected, and the state is output to the learning control means 26 described later in detail.

上記油温状態判別手段24は、油温センサ31により検出される油温に基づき、変速制御手段21により変速制御された変速が何れの温度状態であるかを判別し、学習制御手段26に判別結果を出力する。本実施の形態においては、図5に示すように、閾値Temp1以上でかつ閾値Temp2未満である際は「最低低温状態Cold−Low1」、閾値Temp2以上でかつ閾値Temp3未満である際は「低低温状態Cold−Low2」、閾値Temp3以上でかつ閾値Temp4未満である際は「中低温状態Cold−Mid」、閾値Temp4以上でかつ閾値Temp5未満である際は「高低温状態Cold−High」、閾値Temp5以上でかつ閾値Temp6未満である際は「常温状態Normal」、閾値Temp6以上である際は「高温状態Hot」、として判別する。   Based on the oil temperature detected by the oil temperature sensor 31, the oil temperature state determination unit 24 determines which temperature state the shift controlled by the shift control unit 21 is, and determines to the learning control unit 26. Output the result. In the present embodiment, as shown in FIG. 5, “lowest low temperature Cold-Low1” is greater than or equal to threshold Temp1 and less than threshold Temp2, and “low and low temperature” is greater than or equal to threshold Temp2 and less than threshold Temp3. "Cold-Low2", when it is not less than the threshold Temp3 and less than the threshold Temp4, "mid-low temperature Cold-Mid", and when it is not less than the threshold Temp4 and less than the threshold Temp5, it is "high / low temperature Cold-High", threshold Temp5 When it is above and below the threshold Temp6, it is determined as “normal temperature state Normal”, and when it is above the threshold Temp6, it is determined as “high temperature state Hot”.

なお、本実施の形態においては、油の粘性のバラツキに起因して、高温状態Hotの変速、低低温状態Cold−Low2の変速、最低低温状態Cold−Low1の変速における学習結果に信頼性が欠けるため、これらの3つの状態を判別した際は、学習制御手段26による学習制御を行わず、詳しくは後述するように常温状態Normal、高低温状態Cold−High、中低温状態Cold−Midの学習結果を用いて油圧制御の油圧指令を行う。即ち、本実施の形態において、常温状態の変速の学習とは、常温状態Normalの変速時における学習を指し、低温状態の変速の学習とは、高低温状態Cold−High及び中低温状態Cold−Midの変速時における学習を指すものとする。   In this embodiment, due to variations in the viscosity of the oil, the learning results in the shift in the high temperature state Hot, the shift in the low / low temperature state Cold-Low 2 and the shift in the minimum low temperature state Cold-Low 1 are not reliable. Therefore, when these three states are determined, the learning control by the learning control means 26 is not performed, and the learning results of the normal temperature state Normal, the high / low temperature state Cold-High, and the intermediate / low temperature state Cold-Mid are described in detail later. Is used to issue a hydraulic command for hydraulic control. That is, in the present embodiment, learning of shifting at a normal temperature state refers to learning at the time of shifting in a normal temperature state Normal, and learning of shifting at a low temperature state refers to a high-low temperature state Cold-High and a low-temperature state Cold-Mid. It means learning at the time of shifting.

上記初期学習完了判定手段25は、図3に示すように、詳しくは後述する学習制御手段26の個別学習手段28により常温学習値PS2A,PTAAの学習の進行状態が所定の進行状態以上となった場合、詳しくは所定回数連続した常温状態Normalの変速にて、個別学習手段28により常温学習値PS2A,PTAAの学習に変化がない場合に、初期学習が完了したことを判定する。 As shown in FIG. 3, the initial learning completion determination unit 25 has a learning progress state of the normal temperature learning values P S2 A and P TA A determined by the individual learning unit 28 of the learning control unit 26 described later in detail. In this case, the initial learning is completed when there is no change in the learning of the normal temperature learning values P S2 A and P TA A by the individual learning means 28 in the normal state normal speed shifting continuously for a predetermined number of times. Determine.

上記学習制御手段26は、上記変速状況検知手段22の検知結果に基づき、次回の変速制御における各クラッチや各ブレーキの油圧サーボに供給する油圧の指令値を補正するための学習値を演算・記録することで学習を行うように構成されており、この学習は、各クラッチや各ブレーキの油圧サーボに供給する油圧指令値毎に演算・記録する。なお、本実施の形態においては、パワーオン時の2−3アップシフト変速を一例として説明し、その他の変速ないし摩擦係合要素の油圧指令値の学習については、略々同様のものであるので、その説明を省略する。   The learning control unit 26 calculates and records a learning value for correcting the command value of the hydraulic pressure supplied to the hydraulic servo of each clutch or each brake in the next shift control based on the detection result of the shift state detecting unit 22. Thus, learning is performed, and this learning is calculated and recorded for each hydraulic pressure command value supplied to the hydraulic servo of each clutch or each brake. In the present embodiment, the 2-3 upshift at power-on will be described as an example, and other shifts or learning of the hydraulic pressure command values of the friction engagement elements are substantially the same. The description is omitted.

上記常温ベース学習手段27は、上記初期学習完了判定手段25により初期学習の完了が判定された後、上記油温状態判別手段24により判別された常温状態Normalの変速にあっては、常温用学習値の学習を継続し、また、上記油温状態判別手段24により判別された高低温状態Cold−Highの変速にあっては、常温用学習値PS2A,PTAAを補正するための第2低温用学習値PS2B’,PTAB’の学習を行い、更に、上記油温状態判別手段24により判別された中低温状態Cold−Midの変速にあっては、常温用学習値PS2A,PTAAを補正するための第2低温用学習値PS2C’,PTAC’の学習を行う。 The normal temperature base learning means 27 is for normal temperature learning in the normal temperature state normal shift determined by the oil temperature state determination means 24 after the initial learning completion determination means 25 determines completion of the initial learning. In the shift of the high and low temperature state Cold-High discriminated by the oil temperature state discriminating means 24, the learning of the normal temperature learning values P S2 A and P TA A is corrected. 2 Learning of low-temperature learning values P S2 B ′, P TA B ′ is performed, and further, in the middle-low temperature Cold-Mid shift determined by the oil temperature state determination means 24, the learning value P for normal temperature is used. Learning of the second low-temperature learning values P S2 C ′ and P TA C ′ for correcting S2 A and P TA A is performed.

上記個別学習手段28は、上記初期学習完了判定手段25により初期学習の完了が判定されるまで、油温状態判別手段24により判別された常温状態Normalの変速と高低温状態Cold−Highの変速と中低温状態Cold−Midの変速とで、それぞれ常温用学習値PS2A,PTAA、第1低温用学習値PS2B,PTAB、第1低温用学習値PS2C,PTACを個別に学習する。 The individual learning means 28 performs the normal temperature state normal shift and the high / low temperature state Cold-High shift determined by the oil temperature state determination means 24 until the initial learning completion determination means 25 determines the completion of the initial learning. With the medium-low temperature Cold-Mid shift, the normal temperature learning values P S2 A and P TA A, the first low temperature learning values P S2 B and P TA B, and the first low temperature learning values P S2 C and P TA, respectively. Learn C individually.

上記学習反映手段29は、上記個別学習手段28により学習される常温用学習値PS2A,PTAAを、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに反映させる演算処理を行う。なお、本実施の形態においては、高低温状態Cold−Highの変速と中低温状態Cold−Midの変速との学習結果が、油の粘性の増加に起因して、常温状態Normalの変速の学習結果に比して信頼性が低いため、第1低温用学習値PS2B,PTABや第1低温用学習値PS2C,PTACを常温用学習値PS2A,PTAAに反映させる演算処理は行わないが、勿論、相互に反映させる演算処理を行ってもよい。 The learning reflection means 29 uses the normal temperature learning values P S2 A and P TA A learned by the individual learning means 28 as the first low temperature learning values P S2 B and P TA B and the first low temperature learning value P. S2 C, performs arithmetic processing to reflect the P TA C. In the present embodiment, the learning result of the high / low temperature state Cold-High shift and the middle / low temperature state Cold-Mid shift is the result of learning the normal temperature state normal shift due to the increase in oil viscosity. Therefore, the first low-temperature learning values P S2 B and P TA B and the first low-temperature learning values P S2 C and P TAC are used as the normal temperature learning values P S2 A and P TA A, respectively. The calculation processing to reflect is not performed, but of course, the calculation processing to reflect each other may be performed.

ついで、まず、変速制御手段21による油圧制御(油圧指令値)について、2−3アップシフト変速を一例に、図7のタイムチャートに沿って説明する。   Next, the hydraulic control (hydraulic command value) by the shift control means 21 will be described with reference to the time chart of FIG. 7 taking 2-3 upshift as an example.

まず、アクセル開度センサ33及び車速センサ35からの信号に基づき、変速制御手段21が2−3アップシフト変速を判断すると(時点t1)、変速計時手段23による計時が開始される。そして、係合側の第4のブレーキB−4(図2参照)の油圧サーボへの油圧指令値PB4(以下、「係合側油圧」という。)が所定圧PS1になるように、また、解放側の第5のブレーキB−5の油圧サーボへの油圧PB5(以下、「解放側油圧」という。)が、係合圧からなる高い油圧Pになるように、油圧制御装置30の図示を省略したソレノイドバルブに信号出力する(時点t2)。該高油圧Pの供給は、係合側油圧PB4が第1のスイープアップを開始するまで(tSE、時点t5)保持される。 First, when the shift control means 21 determines a 2-3 upshift shift based on signals from the accelerator opening sensor 33 and the vehicle speed sensor 35 (time t1), the time measurement by the transmission time measuring means 23 is started. The hydraulic pressure command value P B4 (hereinafter referred to as “engagement hydraulic pressure”) to the hydraulic servo of the engagement-side fourth brake B-4 (see FIG. 2) is set to a predetermined pressure PS1 . Further, the hydraulic pressure control device is configured so that the hydraulic pressure P B5 (hereinafter referred to as “release hydraulic pressure”) to the hydraulic servo of the fifth brake B-5 on the release side becomes a high hydraulic pressure PW including the engagement pressure. A signal is output to a solenoid valve (not shown) 30 (time t2). The supply of the high hydraulic pressure PW is maintained until the engagement-side hydraulic pressure P B4 starts the first sweep-up ( tSE, time point t5).

一方、所定圧PS1は、油圧サーボの油圧室を満たすために必要な油圧に設定されており、所定時間tSA保持される。該所定時間tSAが経過すると(時点t3)、係合側油圧PB4は、所定勾配[(PS1−PS2)/tSB]でスイープダウンし、係合側油圧PB4が待機圧PS2になると(時点t4)、該スイープダウンが停止され、該待機圧PS2に保持される。 On the other hand, the predetermined pressure P S1 is set to hydraulic pressure required to fill the hydraulic pressure chamber of the hydraulic servo, is the predetermined time t SA holds. When the predetermined time t SA elapses (time point t3), the engagement side hydraulic pressure P B4 is swept down at a predetermined gradient [(P S1 −P S2 ) / t SB ], and the engagement side hydraulic pressure P B4 is changed to the standby pressure P. At S2 (time t4), the sweep down is stopped and held at the standby pressure PS2 .

該待機圧PS2は、詳しくは後述する学習制御手段26により学習された学習値(常温用学習値PS2A、第1低温用学習値PS2B、第1低温用学習値PS2C、或いは常温用学習値PS2A及び第2低温用学習値PS2B’、常温用学習値PS2A及び第2低温用学習値PS2C’)を加算した、つまり学習された油圧値であって、ピストンストローク圧以上でかつ入力軸の回転変化を生じさせない圧となるように学習される。該待機圧PS2は、所定時間tSE経過するまで保持される(時点t5)。 該待machine pressure P S2 is more information learned learning value by the learning control means 26 to be described later (the normal-temperature learned value P S2 A, first low-temperature learned value P S2 B, for the first low-temperature learned value P S2 C, or room temperature for learning value P S2 a and the second low-temperature learned value P S2 B obtained by adding the 'cold learning value P S2 a and the second low-temperature learned value P S2 C'), i.e. in the learned hydraulic pressure value Thus, the pressure is learned so that the pressure is not less than the piston stroke pressure and does not cause the rotational change of the input shaft.該待machine pressure P S2 is maintained until a predetermined time t SE elapsed (time point t5).

この間、解放側の制御として、係合側油圧PB4及び入力トルクTの関数[TB5’=fTB5(PB4,T)]により解放側トルクTB5’が算定され、更に余裕率S1U,S2Uが考慮されて(TB5=S1U×TB5’+S2U)、解放側トルクTB5が算出される。そして、該解放側トルクTB5から解放側油圧PB5が算出される[PB5=fPB5(TB5)]。即ち、まず、係合側摩擦係合要素が分担するトルクTB4が[TB4=AB4+PB4+BB4]にて算出され(AB4;有効半径×ピストン=面積×枚数×摩擦係数、BB4;ピストンストローク圧)、更にこれにより、解放側摩擦係合要素が分担するトルクTB5’が、[TB5’=(1/b)T−(a/b)TB4]にて算出される。なお、ここで、bは解放側のトルク分担、aは係合側のトルク分担、Tは入力軸トルクである。そして、余裕率(タイアップ度合)S1U,S2Uにより、係合側摩擦係合要素とのタイアップ度合を、ドライブフィーリングを考慮して設定し、解放側トルクTB5が[TB5=S1U×TB5’+S2U]にて算出される。上記余裕率S1U,S2Uは、油温の相違により選択される多数のスロットル開度・車速マップ(不図示)にて、ドライバのフィーリングに合うように任意に設定されるものであって、一般に、S1U>1.0、S2U>0.0からなる。更に、該余裕率を考慮した解放側トルクTB5から、解放側油圧PB5が、[PB5=(TB5/AB5)+BB5]にて算定される(AB5;解放側摩擦係合要素の有効半径×ピストン面積×枚数×摩擦係数,BB5;解放側ピストンストローク圧)。 During this time, as the release side control, the release side torque T B5 ′ is calculated by the function [T B5 ′ = f TB5 (P B4 , T T )] of the engagement side hydraulic pressure P B4 and the input torque T T , and the margin rate S 1U and S 2U are considered (T B5 = S 1U × T B5 ′ + S 2U ), and the release side torque T B5 is calculated. Then, the release side hydraulic pressure P B5 is calculated from the release side torque T B5 [P B5 = f PB5 (T B5 )]. That is, first, the torque T B4 shared by the engagement side frictional engagement element is calculated by [T B4 = A B4 + P B4 + B B4 ] (A B4 ; effective radius × piston = area × number × friction coefficient, B B4 ; piston stroke pressure), and further, the torque T B5 ′ shared by the disengagement side frictional engagement element is calculated by [T B5 ′ = (1 / b) T T − (a / b) T B4 ]. Is done. Note that, b is the torque sharing the disengagement side, a is the torque sharing engagement side, the T T is the input shaft torque. Then, the margin ratios (tie-up degrees) S 1U and S 2U are used to set the tie-up degree with the engagement side frictional engagement element in consideration of drive feeling, and the release side torque T B5 is set to [T B5 = S1U × TB5 ′ + S2U ]. The margin rates S 1U and S 2U are arbitrarily set so as to match the driver's feeling in a large number of throttle opening / vehicle speed maps (not shown) selected according to the difference in oil temperature. In general, S 1U > 1.0 and S 2U > 0.0. Further, the release side hydraulic pressure P B5 is calculated from [P B5 = (T B5 / A B5 ) + B B5 ] from the release side torque T B5 considering the margin ratio (A B5 ; release side friction engagement). Effective radius of element × piston area × number of sheets × friction coefficient, B B5 ; release-side piston stroke pressure).

上述のようにして算出された解放側油圧PB5によるスイープダウンは、係合側油圧PB4に依存するものであるため、入力軸回転数が変化を始めるイナーシャ相開始時(tTA)にて屈曲する2段の勾配、即ち係合側の第1のスイープアップに対応する比較的急勾配のスイープダウンと、係合側の第2のスイープアップに対応する比較的緩勾配のスイープダウンからなる。 Since the sweep-down by the release side hydraulic pressure P B5 calculated as described above depends on the engagement side hydraulic pressure P B4 , at the start of the inertia phase (t TA ) at which the input shaft rotation speed starts to change. It consists of two steps of bending, that is, a relatively steep sweep-down corresponding to the first sweep-up on the engagement side, and a relatively gentle-gradient sweep-down corresponding to the second sweep-up on the engagement side. .

そして、該スイープダウンは、詳しくは後述する係合側と同様に、入力軸回転変化量ΔNが、所定回転変化開始判定回転数dNになるまで続く(時点t8)。ついで、解放油圧の変化δPが設定され、該油圧変化による勾配でスイープダウンし、該スイープダウンは、解放側油圧PB5が0になるまで続き、これにより、解放側の油圧制御が完了する。 Then, the sweep-down is details like the engaging side to be described later, the input shaft rotational speed change amount .DELTA.N, continues until a predetermined rotation change start determining rotational speed dN S (time t8). Next, a change δP E in the release hydraulic pressure is set, and sweeps down with a gradient due to the change in the hydraulic pressure. The sweep down continues until the release side hydraulic pressure P B5 becomes 0, thereby completing the release side hydraulic control. .

また一方、係合側の制御として、エンジンからのトルクコンバータ4を介して入力される入力トルクTに応じて変化する所定関数[PTA=fPTA(T)]に基づき、入力回転数NINの回転変化が開始する直前(イナーシャ相の開始直前)の係合開始圧PTAを算定する。該イナーシャ相開始時直前の係合開始圧PTAは、まず入力トルクTに対する係合側トルク分担トルクTB4(=1/a・T;a:トルク分担率)が算定され、更にPTA=(TB4/AB4)+BB4+dPTA[BB4;ピストンストローク圧(=スプリング荷重)、AB4;摩擦板有効半径×ピストン面積×摩擦板枚数×摩擦係数、dPTA;油圧の遅れ分の油圧量]にて該目標係合開始圧PTAが算出される。 On the other hand, as the control on the engagement side, the input rotation speed is based on a predetermined function [P TA = f PTA (T T )] that changes according to the input torque T T input from the engine via the torque converter 4. calculating the engagement starting pressure P TA immediately before (immediately before the inertia phase) the rotation change of the N iN is started. Engagement starting pressure P TA immediately before the time of the inertia phase starts, first input torque T T engagement side torque allotment torque to T B4 (= 1 / a · T T; a: torque sharing rate) is calculated, further P TA = (T B4 / A B4 ) + B B4 + dP TA [B B4 ; piston stroke pressure (= spring load), A B4 ; friction plate effective radius × piston area × number of friction plates × friction coefficient, dP TA ; oil pressure delay The target engagement start pressure PTA is calculated from the hydraulic pressure of minutes].

また、ここで、算出された目標係合開始油圧PTAに、詳しくは後述する学習制御手段26により学習された学習値(常温用学習値PTAA、第1低温用学習値PTAB、第1低温用学習値PTAC、或いは常温用学習値PTAA及び第2低温用学習値PTAB’、常温用学習値PTAA及び第2低温用学習値PTAC’)が加算され、最終的な目標係合開始圧PTAが算出される。 Further, here, the calculated target engagement start hydraulic pressure PTA includes learning values (learning value P TA A for normal temperature, first learning value P TA B for first temperature, The first low temperature learning value P TA C, the normal temperature learning value P TA A, the second low temperature learning value P TA B ′, the normal temperature learning value P TA A, and the second low temperature learning value P TA C ′) The final target engagement start pressure PTA is calculated by addition.

そして、該入力トルクTに応じて算定されたイナーシャ相開始時直前の係合開始圧PTAに基づき、予め設定された所定時間tTAにより所定勾配が算定され[(PTA−PS2)/tTA]、該勾配に基づき係合側油圧がスイープアップする(時点t5〜t7)。該比較的ゆるやかな勾配からなる第1のスイープアップにより、係合トルクが増加し、入力回転数変化が開始する直前の状態、即ち前記算出された所定目標係合開始圧PTAまで油圧が上昇する。この状態は、アップシフト前の状態にあって、出力軸トルクが一時的に急降下するトルク相になる。 Then, based on the engagement starting pressure P TA that was calculated inertia phase start immediately before according to the input torque T T, the predetermined gradient is calculated by a preset predetermined time t TA [(P TA -P S2 ) / T TA ], the engagement side hydraulic pressure sweeps up based on the gradient (time t5 to t7). Due to the first sweep-up having a relatively gentle gradient, the engagement torque increases, and the hydraulic pressure rises to the state just before the input rotational speed change starts, that is, to the calculated predetermined target engagement start pressure PTA. To do. This state is a state before the upshift, and becomes a torque phase in which the output shaft torque drops temporarily.

なお、入力トルクT(=タービントルク)は、車輌走行状況に基づき、不図示のマップによりスロットル開度とエンジン回転数に基づき線形補間してエンジントルクを求め、ついで変速装置の入出力回転数から速度比を計算し、該速度比によりマップによりトルク比を求め、そして前記エンジントルクに上記トルク比を乗じて求められる。 The input torque T T (= turbine torque) is determined based on the vehicle running condition, and the engine torque is obtained by linear interpolation based on the throttle opening and the engine speed using a map (not shown). The speed ratio is calculated from the speed ratio, the torque ratio is obtained from the map based on the speed ratio, and the engine torque is multiplied by the torque ratio.

そして、上記目標係合開始圧PTAに達すると、即ち入力軸回転数の回転変化が開始されるイナーシャ相に入ったと予測される時点t7で、前記油圧の変化δPTAが入力軸回転数NINの回転変化開始時における目標とする目標回転変化率(dωa/dt;ωa′と表記)に応じた関数[δPTA=fδPTA(ωa′)]により算出される。即ち、kを定数、taimを目標変速開始時間、ωa′を目標回転変化率[ωa;目標回転数への勾配]、Iをイナーシャ量とすると、前記油圧変化δPTA=[I・ωa]/[k・taim]にて算定される。そして、該油圧変化δPTAによる勾配でスイープアップされる(時点t7〜t8)。該第2のスイープアップは、回転変化開始時の入力軸回転数NTSからの回転変化分ΔNが所定変速開始判定回転数dNに達するまで続けられる(時点t8)。 When reaching the target engagement starting pressure P TA, i.e. at time t7 that is predicted to have entered the inertia phase rotation change of the input shaft rotational speed is started, the hydraulic change [delta] P TA is the input shaft rotational speed N It is calculated by a function [δP TA = fδ PTA (ωa ′)] corresponding to a target target rotation change rate (dωa / dt; expressed as ωa ′) at the start of IN rotation change. That is, assuming that k is a constant, t aim is a target shift start time, ωa ′ is a target rotational change rate [ωa; gradient to target rotational speed], and I is an inertia amount, the hydraulic pressure change δP TA = [I · ωa]. / [K · t aim ]. Then, it is swept up with a gradient by the oil pressure change δP TA (time t7 to t8). Sweep-up of the second is continued until the rotation variation ΔN from the input shaft rotational speed N TS during rotation change start reaches a predetermined shift start judgment rotation speed dN S (time t8).

ついで、回転変化分ΔNが所定変速開始判定回転数dNに達すると、係合側油圧PB4は、バンドブレーキである第4のブレーキB−4のブレーキバンドの巻き込み加速分を考慮して、所定油圧PDWを下降させる(時点t8)。つづいて、係合側油圧変化δPが、入力軸回転数センサ5の検出に基づく回転数の変化量ΔNにてフィードバック制御されて設定され、該δPの勾配によりスイープアップされる(時点t8〜t9)。該δPによるスイープアップは、変速完了までの回転変化量ΔNのα[%]、例えば70[%]まで続けられる(S15)。即ち、NTSを変速開始時の入力軸回転数、ΔNを回転変化量、gを変速前ギヤ比、gi+1を変速後ギヤ比とすると、[(ΔN×100)/NTS(g−gi+1)]がα[%]になるまで続けられる。 Next, when the rotation change ΔN reaches the predetermined shift start determination rotation speed dN S , the engagement side hydraulic pressure P B4 takes into account the amount of acceleration of the brake band of the fourth brake B-4 that is a band brake, The predetermined oil pressure PDW is lowered (time point t8). Then, the engagement hydraulic pressure change [delta] P I is set is feedback-controlled by the rotation speed of the change amount ΔN based on the detection of the input shaft speed sensor 5, is swept up by the slope of the [delta] P I (point t8 ~ T9). The sweep-up by δP I is continued up to α 1 [%], for example, 70 [%] of the rotation change amount ΔN until the completion of the shift (S15). That is, assuming that N TS is the input shaft speed at the start of shifting, ΔN is the rotation change amount, g i is the gear ratio before shifting, and g i + 1 is the gear ratio after shifting, [(ΔN × 100) / N TS (g i -G i + 1 )] reaches α 1 [%].

更に、上記回転変化量のα[%]を越えると、滑らかな入力軸回転数変化量ΔNに基づくフィードバック制御により異なる油圧変化δPが設定され、該δPの勾配によりスイープアップされる(時点t9〜t10)。該δPは、一般にδPより僅かにゆるい勾配となり、該スイープアップは、変速完了近傍までの回転数変化量のα[%]、例えば90[%]まで続けられる。上記δP及びδPによるスイープアップ目標変速時間tは、油温による異なる複数のスロットル開度・車速マップ(不図示)が選択され、該マップに基づき設定される。 Further, when α 1 [%] of the rotation change amount is exceeded, a different oil pressure change δP L is set by feedback control based on the smooth input shaft rotation speed change amount ΔN, and is swept up by the gradient of δP L ( Time t9 to t10). The δP L generally has a slightly gentler slope than δP I , and the sweep-up is continued up to α 2 [%], for example, 90 [%] of the amount of change in the rotational speed until the shift is completed. The [delta] P I and [delta] P L by sweep-up target shift time t I is different according to the oil temperature more throttle opening-vehicle speed map (not shown) is selected and set based on the map.

そして、該目標変速時間tが経過すると、変速終了の判断がなされると共に、該計時時間tFEが設定され(時点t10)、この状態はイナーシャ相が終了した状態と略々対応している。更に、比較的急な油圧変化δPFEが設定されて、該油圧変化により油圧が急激にスイープアップし(時点t10〜t11)、そして時点t10から、係合圧まで上昇するに充分な時間に設定されている所定時間tFEが経過した状態で、係合側の油圧制御が完了し、つまり2−3アップシフト変速が完了する。 When the target shift time t I elapses, the shift end determination is made, the regimen at the time t FE is set (time t10), the state is in state and substantially corresponds to the inertia phase has ended . Furthermore, a relatively sudden change in hydraulic pressure δP FE is set, and the hydraulic pressure sweeps up rapidly due to the change in hydraulic pressure (time t10 to t11), and is set to a time sufficient to increase to the engagement pressure from time t10. When the predetermined time tFE has elapsed, the hydraulic pressure control on the engagement side is completed, that is, the 2-3 upshift is completed.

つづいて、本発明の要部である学習制御について図4の学習制御のフローチャート、図5の油温状態別の学習値の表、図6の学習値の反映パターンの説明図に沿って説明する。   Next, learning control, which is a main part of the present invention, will be described with reference to a flowchart of learning control in FIG. 4, a table of learning values for each oil temperature state in FIG. 5, and an explanatory diagram of reflection patterns of learning values in FIG. 6. .

図4に示すように、例えば上述したような2−3アップシフト変速が完了すると(S1)、まず、初期学習完了判定手段25により初期学習完了の判定がなされているか否かを判定する(S2)。なお、この初期学習完了の判定については、後述のステップS9において詳細説明する。   As shown in FIG. 4, for example, when the 2-3 upshift as described above is completed (S1), first, it is determined whether or not the initial learning completion determination means 25 has determined whether or not the initial learning has been completed (S2). ). The determination of the completion of initial learning will be described in detail in step S9 described later.

ここで、例えば車両が製造直後等であって、初期学習が完了していない場合には(S2のNo)、ステップS6に進み、油温センサ31の検出結果、及び油温状態判別手段24の判別結果に基づき、上記2−3アップシフト変速が図5(a)の表の横軸で示す何れの温度状態であったか判別する。例えば油温がTemp4〜Temp5の間であって、油温状態の判別結果が高低温状態Cold−Highであった場合は、ステップS10に進み、個別学習手段28が、上述の待機圧PS2及び係合開始圧PTAに対する第1低温用学習値PS2B,PTABの演算を開始する。 Here, for example, when the vehicle is immediately after manufacture and the initial learning is not completed (No in S2), the process proceeds to step S6, where the detection result of the oil temperature sensor 31 and the oil temperature state determination means 24 Based on the determination result, it is determined which temperature state is indicated by the horizontal axis in the table of FIG. For example, when the oil temperature is between Temp4 and Temp5 and the discrimination result of the oil temperature state is the high / low temperature state Cold-High, the process proceeds to step S10, and the individual learning means 28 is operated by the above-described standby pressure PS2 and The calculation of the first low-temperature learning values P S2 B and P TA B for the engagement start pressure P TA is started.

この待機圧PS2に対する第1低温用学習値PS2Bの演算にあっては、変速状況検知手段22によって検知された変速の状況、即ち、入力軸回転数センサ32により検出される入力回転数NINの変化開始までの時間が変速計時手段23によって計時されることによって演算される。変速開始までの時間経過が最良のタイミングより長い場合は待機圧PS2が足りないために遅れを生じているので、第1低温用学習値PS2Bを変速開始までの時間経過に応じて増加させるように演算し、変速開始までの時間経過が最良のタイミングより短い場合は待機圧PS2が高すぎるために変速開始が早くなり過ぎているので、第1低温用学習値PS2Bを変速開始までの時間経過に応じて減少させるように演算する。なお、この第1低温用学習値PS2Bは、修正限度幅が±rに設定されており、第1低温用学習値PS2Cの修正限度幅±sよりも大きい幅で、常温用学習値PS2Aの修正限度幅±qよりも小さい幅(即ちq>r>s)に設定されている。 In the calculation of the first low-temperature learning value P S2 B for the standby pressure P S2 , the shift state detected by the shift state detection means 22, that is, the input rotational speed detected by the input shaft rotational speed sensor 32. The time until the start of the change of N IN is calculated by the time measuring means 23 measuring time. When the time elapsed until the start of the shift is longer than the best timing, the standby pressure P S2 is insufficient and a delay occurs, so the first low temperature learning value P S2 B increases with the time until the shift starts. If the time elapsed until the start of the shift is shorter than the best timing, the standby pressure PS2 is too high and the start of the shift is too early, so the first low-temperature learning value PS2B is shifted. Calculation is performed so as to decrease as time elapses until the start. The first low-temperature learning value P S2 B has a correction limit width set to ± r, and is larger than the correction limit width ± s of the first low-temperature learning value P S2 C, so The width is set to be smaller than the correction limit width ± q of the value P S2 A (that is, q>r> s).

また、係合開始圧PTAに対する第1低温用学習値PTABの演算にあっては、変速状況検知手段22によって検知された変速の状況、即ち、入力軸回転数センサ32により検出される入力回転数NINの変化によって、エンジン吹き、又はタイアップを生じている状況を検知したことに基づき演算される。エンジン吹きが生じた場合は、係合開始圧PTAが足りないために第4のブレーキB−4の係合(入力軸3の負荷)が遅れているので、そのエンジン吹き量に応じて第1低温用学習値PTABを増加させるように演算し、タイアップが生じた場合には、係合開始圧PTAが高すぎるために第4のブレーキB−4の係合(入力軸3の負荷)が早くなり過ぎているので、そのタイアップ量に応じて第1低温用学習値PTABを減少させるように演算する。なお、この第1低温用学習値PTABは、修正限度幅が±uに設定されており、第1低温用学習値PS2Cの修正限度幅±vよりも大きい幅で、常温用学習値PS2Aの修正限度幅±tよりも小さい幅(即ちt>u>v)に設定されている。 Further, in the calculation of the first low temperature learning value P TA B with respect to the engagement start pressure P TA , the shift state detected by the shift state detecting means 22, that is, the input shaft rotational speed sensor 32 is detected. The calculation is based on the detection of a situation where engine blow or tie-up has occurred due to a change in the input rotational speed N IN . When engine blow occurs, the engagement start pressure PTA is insufficient and the engagement of the fourth brake B-4 (load on the input shaft 3) is delayed. 1 When the tie-up is calculated to increase the learning value P TA B for low temperature, the engagement start pressure P TA is too high, and the engagement of the fourth brake B-4 (input shaft 3 The first low-temperature learning value PTAB is reduced according to the tie-up amount. The first low temperature learning value P TA B has a correction limit width set to ± u, and has a width larger than the correction limit width ± v of the first low temperature learning value P S2 C, and is used for normal temperature learning. The width is set to be smaller than the correction limit width ± t of the value P S2 A (that is, t>u> v).

なお、これら待機圧PS2に対する学習値の演算や係合開始圧PTAに対する学習値の演算は、常温用学習値PS2A,PTAA、第1低温用学習値PS2C,PTAC、第2低温用学習値PS2B’,PTAB’、第2低温用学習値PS2C’,PTAC’においても同様な演算となるので、以降それらの演算の説明を省略する。 The calculation of the learning value for the standby pressure P S2 and the calculation of the learning value for the engagement start pressure P TA are the normal temperature learning values P S2 A and P TA A, the first low temperature learning values P S2 C and P TA. C, the second low-temperature learning value P S2 B ′, P TA B ′, and the second low-temperature learning value P S2 C ′, P TA C ′ are the same calculations, and hence the description of these calculations is omitted. To do.

このように個別学習手段28によって第1低温用学習値PS2B,PTABの演算が行われた後は、この演算結果に基づき変化量PS2ΔB,PTAΔBが前回の記録されている第1低温用学習値PS2B,PTABに加減演算される形で、新たな第1低温用学習値PS2B,PTABとして不揮発性メモリ等に記録され、ステップS11に進む。 Thus, after the first low temperature learning values P S2 B and P TA B are calculated by the individual learning means 28, the changes P S2 ΔB and P TA ΔB are recorded the previous time based on the calculation results. The first low temperature learning values P S2 B and P TA B are added and subtracted and recorded as new first low temperature learning values P S2 B and P TA B in the non-volatile memory or the like, and the process proceeds to step S11. .

また、上記ステップS6において、例えば油温がTemp3〜Temp4の間であって、油温状態の判別結果が中低温状態Cold−Midであった場合も、同様にステップS10に進み、個別学習手段28が、上述の待機圧PS2及び係合開始圧PTAに対する第1低温用学習値PS2C,PTACの演算を修正幅±s,±vを限度として行い、同様に不揮発性メモリ等に記録し、ステップS11に進む。 Further, in step S6, for example, when the oil temperature is between Temp3 and Temp4 and the discrimination result of the oil temperature state is the middle / low temperature state Cold-Mid, the process similarly proceeds to step S10, and the individual learning means 28 However, the calculation of the first low temperature learning values P S2 C and P TAC for the standby pressure P S2 and the engagement start pressure P TA is performed with the correction widths ± s and ± v as the limits, and the non-volatile memory or the like is similarly applied. And proceed to step S11.

一方、上記ステップS6において、例えば油温がTemp5〜Temp6の間であって、油温状態の判別結果が常温状態Normalであった場合は、ステップS7に進み、個別学習手段28が、上述の待機圧PS2及び係合開始圧PTAに対する常温用学習値PS2A,PTAAの演算を修正幅±q,±tを限度として行って、不揮発性メモリ等に記録した後、ステップS8に進み、学習反映手段29による学習反映制御を行う。 On the other hand, when the oil temperature is between Temp5 and Temp6 and the discrimination result of the oil temperature state is the normal temperature state Normal in step S6, for example, the process proceeds to step S7, where the individual learning means 28 The calculation of the learning values P S2 A, P TA A for normal temperature with respect to the pressure P S2 and the engagement start pressure P TA is performed with the correction widths ± q, ± t as the limits, and is recorded in the non-volatile memory or the like. Then, learning reflection control by the learning reflection means 29 is performed.

なお、この学習された常温用学習値PS2A,PTAAの値が第1低温用学習値PS2C,PTACの修正幅±s,±v、或いは第1低温用学習値PS2B,PTABの修正幅±r,±uを越えた場合は、これら修正幅±s,±v,±r,±uを常温用学習値PS2A,PTAAの値に拡大する再設定を行う。 Note that the learned values P S2 A and P TA A for learning are the corrected ranges ± s and ± v of the first low temperature learned values P S2 C and P TAC , or the first low temperature learned value P. If the correction widths ± r, ± u of S2 B and P TA B are exceeded , the correction widths ± s, ± v, ± r, ± u are expanded to the values of the learning values P S2 A, P TA A for normal temperature Perform reconfiguration.

上記学習反映制御は、低温状態の変速に比して信頼性の高い常温状態の変速に基づき演算された常温用学習値PS2A,PTAAを、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに反映するための制御であり、図6(a)に示すような12個の反映パターンによって該反映が行われる。なお、この図6におけるパターンの説明にあっては、紙面の都合上、常温用学習値PS2A,PTAAを「A」、第1低温用学習値PS2B,PTABを「B」、第1低温用学習値PS2C,PTACを「C」、変化量PS2ΔA,PTAΔAを「ΔA」、として省略して示している。 In the learning reflection control, the learning value P S2 A, P TA A for normal temperature calculated based on the shifting in the normal temperature state, which is more reliable than the shifting in the low temperature state, is used as the first learning value P S2 B, This is control for reflecting in P TA B and the first low-temperature learning value P S2 C, P TAC , and the reflection is performed by 12 reflection patterns as shown in FIG. In the description of the pattern in FIG. 6, the learning values P S2 A and P TA A for normal temperature are “A” and the first low-temperature learning values P S2 B and P TA B are “ B ”, the first low-temperature learning values P S2 C and P TA C are abbreviated as“ C ”, and the change amounts P S2 ΔA and P TA ΔA are abbreviated as“ ΔA ”.

即ち、パターンAにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さく、かつ演算された変化量PS2ΔA,PTAΔAの増加量が少なくて、学習後の常温用学習値PS2A,PTAAも第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さい場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに修正を加えず、つまり何ら常温状態の変速の学習を低温状態の変速の学習に反映しない。 That is, in the pattern A, before learning cold learning value P S2 A, P TA A first low-temperature learned value P S2 B, P TA B or the first low-temperature learned value P S2 C, P TA The learning amount P S2 A, P TA A after learning is the first low-temperature learning value P S2 B, P, which is smaller than C and the increase amount of the calculated change amount P S2 ΔA, P TA ΔA is small. In this case, the first low temperature learning value P S2 B, P TA B and the first low temperature learning value P S2 C, are smaller than TA B or the first low temperature learning value P S2 C, P TAC . No correction is made to P TAC , that is, no learning of shifting at normal temperature is reflected in learning of shifting at low temperature.

パターンBにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さいが、演算された変化量PS2ΔA,PTAΔAが増加され、学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより大きくなった場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに学習後の常温用学習値PS2A,PTAAの値を反映し、つまり第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACと学習後の常温用学習値PS2A,PTAAとを同じにする。 In the pattern B, the learning values P S2 A and P TA A for normal temperature before learning are the first learning values for low temperatures P S2 B and P TA B or the first learning values for low temperatures P S2 C and P TA C. Although small, the calculated changes P S2 ΔA and P TA ΔA are increased, and the learning values for normal temperature P S2 A and P TA A after learning are the first low-temperature learning values P S2 B, P TA B or first This is a case where the learning value P S2 C, P TA C is lower than the first low temperature learning value P S2 B, P TA B and the first low temperature learning value P S2 C, P TA C. The learning values P S2 A and P TA A for normal temperature after learning are reflected on the first learning value P S2 B and P TA B for the first low temperature, and the learning values P S2 C and P TA C for the first low temperature. The learning values P S2 A and P TA A for normal temperature after learning are made the same.

パターンCにあっては、例えば低温状態の変速が数回行われて第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACが個別学習手段28により個別に小さい値に学習された後、常温状態の変速が行われた状態などであって、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより大きく、更に演算された変化量PS2ΔA,PTAΔAが増加された学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより大きいままの場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに学習後の常温用学習値PS2A,PTAAの値を反映し、つまり第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに演算された変化量PS2ΔA,PTAΔAを加算する。 In the pattern C, for example, the low temperature state shift is performed several times, and the first low temperature learning values P S2 B and P TA B or the first low temperature learning values P S2 C and P TAC are used as the individual learning means 28. The learning value for normal temperature P S2 A, P TA A before learning is the first low-temperature learning value P S2 B, P TA B or the first low-temperature learned value P S2 C, P TA greater than C, further computed amount of change P S2 ΔA, P TA ΔA is increased cold learning value P S2 a after learning, P TA This is a case where A remains larger than the first low-temperature learning value P S2 B, P TA B or the first low-temperature learning value P S2 C, P TA C. In this case, the first low-temperature learning value P S2 B , P TA B and the first low-temperature learned value P S2 C, room temperature after learning the P TA C Learned value P S2 A, P TA value of A reflects, i.e. first low-temperature learned value P S2 B, P TA B and the first low-temperature learned value P S2 C, P TA C to the calculated amount of change P S2 ΔA and P TA ΔA are added.

パターンDにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さく、かつ演算された変化量PS2ΔA,PTAΔAが減少されて、学習後の常温用学習値PS2A,PTAAも第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さいままの場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに修正を加えず、つまり何ら常温状態の変速の学習を低温状態の変速の学習に反映しない。 In the pattern D, the learning values P S2 A and P TA A for normal temperature before learning are the first learning values for low temperatures P S2 B and P TA B or the first learning values for low temperatures P S2 C and P TA C. The small and calculated change amounts P S2 ΔA, P TA ΔA are decreased, and the learning values P S2 A, P TA A after learning are also the first low-temperature learning values P S2 B, P TA B or 1 for low temperature learned value P S2 C, a case remains less than P TA C, this time is for the first low-temperature learned value P S2 B, P TA B and the first low-temperature learned value P S2 C, P TA No correction is made to C, that is, no learning of shifting at normal temperature is reflected in learning of shifting at low temperature.

パターンEにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより大きく、かつ演算された変化量PS2ΔA,PTAΔAが減少された学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより大きいままの場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに学習後の常温用学習値PS2A,PTAAの値を反映し、つまり第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに演算された変化量PS2ΔA,PTAΔAを減算する。 In the pattern E, the learning values P S2 A and P TA A for normal temperature before learning are the first learning values for low temperatures P S2 B and P TA B or the first learning values for low temperatures P S2 C and P TA C. The learning values P S2 A and P TA A after learning in which the large and calculated change amounts P S2 ΔA and P TA ΔA are reduced are the first low-temperature learning values P S2 B, P TA B or the first low temperature learned value P S2 C, a case remains greater than P TA C, this time is for the first low-temperature learned value P S2 B, P TA B and the first low-temperature learned value P S2 C, P TA C Are reflected in the learning values P S2 A, P TA A for normal temperature after learning, that is, in the first low-temperature learning values P S2 B, P TA B and the first low-temperature learning values P S2 C, P TA C The calculated change amounts P S2 ΔA and P TA ΔA are subtracted.

パターンFにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより大きく、かつ演算された変化量PS2ΔA,PTAΔAが減少された学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さくなった場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに学習後の常温用学習値PS2A,PTAAの値を反映し、つまり第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに演算された変化量PS2ΔA,PTAΔAを減算する。 In the pattern F, the learning values P S2 A, P TA A for normal temperature before learning are the first learning values for the low temperature P S2 B, P TA B or the first learning values for the low temperature P S2 C, P TA C. The learning values P S2 A and P TA A after learning in which the large and calculated change amounts P S2 ΔA and P TA ΔA are reduced are the first low-temperature learning values P S2 B, P TA B or the first This is a case where the learning value becomes lower than the low temperature learning value P S2 C, P TA C. In this case, the first low temperature learning value P S2 B, P TA B and the first low temperature learning value P S2 C, P TA C Are reflected in the learning values P S2 A, P TA A for normal temperature after learning, that is, in the first low-temperature learning values P S2 B, P TA B and the first low-temperature learning values P S2 C, P TA C The calculated change amounts P S2 ΔA and P TA ΔA are subtracted.

パターンGにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さいが、演算された変化量PS2ΔA,PTAΔAが減少された学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さくなると共に正負逆となった場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに学習後の常温用学習値PS2A,PTAAの値を反映し、つまり第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに演算された変化量PS2ΔA,PTAΔAを減算する。 In the pattern G, the learning values P S2 A and P TA A for normal temperature before learning are the first learning values for the low temperature P S2 B and P TA B or the first learning values for the low temperature P S2 C and P TA C. The learning values P S2 A and P TA A after learning in which the calculated change amounts P S2 ΔA and P TA ΔA are reduced but the learning values P S2 A and P TA A after learning are the first learning values P S2 B, P TA B or the first This is a case where the learning value P S2 C, P TAC is smaller than the low temperature learning value P S2 C, and the first and second low temperature learning values P S2 B, P TA B and the first low temperature learning value P S2 are obtained. The learning values P S2 A and P TA A after learning are reflected in C and P TA C, that is, the first low temperature learning values P S2 B and P TA B and the first low temperature learning value P S2 C , P TA C to the calculated amount of change P S2 .DELTA.A, subtracts the P TA .DELTA.A.

パターンHにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより大きいが、演算された変化量PS2ΔA,PTAΔAが大幅に減少された学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACより小さくなると共に正負逆となった場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに学習後の常温用学習値PS2A,PTAAの値を反映し、つまり第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに演算された変化量PS2ΔA,PTAΔAを減算する。 In the pattern H, the learning values P S2 A and P TA A for normal temperature before learning are the first learning values for low temperatures P S2 B and P TA B or the first learning values for low temperatures P S2 C and P TA C. The learning values P S2 A and P TA A for learning after learning, which are large but the calculated changes P S2 ΔA and P TA ΔA are greatly reduced, are the first low-temperature learning values P S2 B and P TA B or This is a case where the learning value becomes smaller than the first low-temperature learning value P S2 C, P TAC and becomes positive and negative. In this case, the first low-temperature learning value P S2 B, P TA B and the first low-temperature learning value The learning values P S2 A and P TA A after learning are reflected in P S2 C and P TAC , that is, the first low-temperature learning values P S2 B and P TA B and the first low-temperature learning value P S2 C, P TA C to the calculated amount of change P S2 .DELTA.A, subtracts the P TA .DELTA.A.

パターンIにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負逆であり、演算された変化量PS2ΔA,PTAΔAが増加され、学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負逆のままであると共に値が近づいた場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに修正を加えず、つまり何ら常温状態の変速の学習を低温状態の変速の学習に反映しない。 In pattern I, the learning values P S2 A and P TA A for normal temperature before learning are the first learning values for low temperatures P S2 B and P TA B or the first learning values for low temperatures P S2 C and P TA C The calculated change amounts P S2 ΔA and P TA ΔA are increased, and the learning values P S2 A and P TA A for learning after learning are the learning values P S2 B and P TA B for the first low temperature or This is a case where the first low-temperature learning values P S2 C and P TAC remain positive and negative and the values approach each other. In this case, the first low-temperature learning values P S2 B, P TA B and the first low temperature No correction is made to the learned values P S2 C and P TAC for use, that is, no learning of gear shift in the normal temperature state is reflected in learning of gear shift in the low temperature state.

パターンJにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負逆であり、演算された変化量PS2ΔA,PTAΔAが増加され、学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負が同じになると共に値が近づいた場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに修正を加えず、つまり何ら常温状態の変速の学習を低温状態の変速の学習に反映しない。 In the pattern J, the learning values P S2 A and P TA A for normal temperature before learning are the first learning values for low temperatures P S2 B and P TA B or the first learning values for low temperatures P S2 C and P TA C The calculated change amounts P S2 ΔA and P TA ΔA are increased, and the learning values P S2 A and P TA A for learning after learning are the learning values P S2 B and P TA B for the first low temperature or the first low-temperature learned value P S2 C, a case where the value is approaching with P TA C and polarity are the same, this time, the first low-temperature learned value P S2 B, for P TA B and the first low temperature No correction is made to the learned values P S2 C and P TAC , that is, no learning of shifting at normal temperature is reflected in learning of shifting at low temperature.

パターンKにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負逆であり、演算された変化量PS2ΔA,PTAΔAが大幅に増加され、学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負が同じになると共に大きくなった(値が遠ざかった)場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに学習後の常温用学習値PS2A,PTAAの値を反映し、つまり第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACと学習後の常温用学習値PS2A,PTAAとを同じにする。 In the pattern K, the learning value P S2 A, P TA A for normal temperature before learning is the first learning value for low temperature P S2 B, P TA B or the first learning value for low temperature P S2 C, P TA C The calculated change amounts P S2 ΔA, P TA ΔA are significantly increased, and the learning values P S2 A, P TA A for learning after learning are the first low-temperature learning values P S2 B, P TA. B or the first low-temperature learning value P S2 C, P TA C is the same as the positive and negative values and increases (the value goes away). In this case, the first low-temperature learning value P S2 B, P The learning values P S2 A and P TA A after learning are reflected in TA B and the first low temperature learning values P S2 C and P TAC , that is, the first low temperature learning values P S2 B and P TA. B and first low-temperature learning value P S2 C, P TAC and learning temperature learning value P S2 A, P T after learning A Make A the same.

パターンLにあっては、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負逆であり、演算された変化量PS2ΔA,PTAΔAが更に減少され、学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負逆のままに小さくなった(値が遠ざかった)場合であり、この際は、第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに学習後の常温用学習値PS2A,PTAAの値を反映し、つまり第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACに演算された変化量PS2ΔA,PTAΔAを減算する。 In the pattern L, the learning values P S2 A and P TA A for normal temperature before learning are the first learning values for the low temperature P S2 B and P TA B or the first learning values for the low temperature P S2 C and P TA C, respectively. The calculated changes P S2 ΔA and P TA ΔA are further reduced, and the learning values P S2 A and P TA A for learning after learning are the first low-temperature learning values P S2 B and P TA B. Alternatively, the first low-temperature learning value P S2 C, P TAC is smaller than the first negative learning value P S2 B, P TA B. In this case, the first low-temperature learning value P S2 B, P TA B And the learning values P S2 A, P TA A after learning are reflected in the first low-temperature learning values P S2 C, P TAC , that is, the first low-temperature learning values P S2 B, P TA B and the first low-temperature learned value P S2 C, P TA C to the calculated amount of change P S2 .DELTA.A, subtracts the P TA .DELTA.A That.

なお、上記12個のパターンは、第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACが正の値である場合であり、正負を逆転した同じパターンが12個あり、つまり反映のパターンは全24個のパターンがあるが、上記パターンA〜Lと同様であるので、その説明を省略する。 The 12 patterns are cases where the first low-temperature learning values P S2 B and P TA B or the first low-temperature learning values P S2 C and P TAC are positive values, and the signs are reversed. There are 12 identical patterns, that is, there are a total of 24 reflected patterns, which are the same as the patterns A to L, and the description thereof is omitted.

以上の反映パターンを大まかに大別すると、
(1)学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACよりも大きい際に(パターンC,E,F,H)、該常温用学習値PS2A,PTAAにおける学習前と学習後との変化量PS2ΔA,PTAΔAを該第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACに反映。
(2)学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACよりも小さく、かつ学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACよりも大きい際に(パターンB,K)、学習後の常温用学習値PS2A,PTAAを該第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACにそのまま反映。
(3)学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACと正負逆の値で、かつ学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACよりも遠ざかる際に(パターンG,H,L)、該常温用学習値PS2A,PTAAにおける学習前と学習後との変化量PS2ΔA,PTAΔAを第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACに反映。
(4)上記(1)〜(3)に該当しない際は、反映無し。
の4つに分けることができる。
The above reflection patterns can be roughly divided.
(1) When the learning values P S2 A and P TA A for normal temperature before learning are larger than the first low-temperature learning values P S2 B and P TA B or the first low-temperature learning values P S2 C and P TA C (Patterns C, E, F, H), the amount of change P S2 ΔA, P TA ΔA between the learning value P S2 A and P TA A for normal temperature before and after learning is used as the first low-temperature learning value P S2. Reflected in B, P TA B, or first low temperature learning value P S2 C, P TAC .
(2) The learning value P S2 A, P TA A for normal temperature before learning is smaller than the first low temperature learning value P S2 B, P TA B or the first low temperature learning value P S2 C, P TA C, and When the learning values P S2 A and P TA A for normal temperature after learning are larger than the first learning values for low temperature P S2 B and P TA B or the first learning values for low temperature P S2 C and P TA C (pattern B , K), directly reflects ambient temperature for learning value P S2 a after learning, the P TA a first low-temperature learned value P S2 B, P TA B or the first low-temperature learned value P S2 C, the P TA C .
(3) The learning values for normal temperature P S2 A and P TA A after learning are values that are positive and negative with respect to the first low-temperature learning values P S2 B and P TA B or the first low-temperature learning values P S2 C and P TA C in, and room temperature for learning value P S2 a after learning, P TA a first low-temperature learned value P S2 B, P TA B or the first low-temperature learned value P S2 C, when away than P TA C (Patterns G, H, and L), the amounts of change P S2 ΔA and P TA ΔA between the learning values P S2 A and P TA A for normal temperature before and after learning are used as the first low-temperature learning values P S2 B and P, respectively. Reflected in TA B or first low temperature learning value P S2 C, P TAC .
(4) There is no reflection when it does not fall under (1) to (3) above.
It can be divided into four.

これにより、個別学習手段28により個別に学習された第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACを大幅に変更することなく、常温用学習値PS2A,PTAAの学習結果を第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACに反映させることができ、つまり常温状態の変速の学習によって低温状態の変速の学習も進行させることができる。 Thus, the first low temperature learning value P S2 B, P TA B or the first low temperature learning value P S2 C, P TAC individually learned by the individual learning means 28 can be used without changing the room temperature. The learning results of the learning values P S2 A and P TA A can be reflected in the first low-temperature learning values P S2 B and P TA B or the first low-temperature learning values P S2 C and P TA C, that is, the normal temperature state The learning of the shift in the low temperature state can also be advanced by the learning of the shifting.

なお、上述したように、常温用学習値PS2A,PTAAの値が第1低温用学習値PS2C,PTACの修正幅±s,±v、或いは第1低温用学習値PS2B,PTABの修正幅±r,±uを越えた場合は、これら修正幅±s,±v,±r,±uが常温用学習値PS2A,PTAAの値に対応して拡大する再設定がなされるので、上述の学習値同士の反映が必ず行われる状態となる。 As described above, the normal temperature learning values P S2 A and P TA A are the correction ranges ± s and ± v of the first low temperature learning values P S2 C and P TAC , or the first low temperature learning value. When the correction widths ± r, ± u of P S2 B and P TA B are exceeded , these correction widths ± s, ± v, ± r, ± u are the values of the learning values P S2 A, P TA A for normal temperature. Since resetting corresponding to enlargement is performed, the above-described learning values are always reflected.

つづいて、図4に示すように、上記ステップS8の学習反映制御が終了すると、ステップS9に進み、初期学習完了判定手段25による初期学習完了判定制御が開始される。この初期学習完了判定制御においては、初期学習完了の判定がなされていない常温状態の変速の学習(S7)にて、例えば所定回数連続して学習に変化がないか否か(つまり良好な常温状態の変速が所定回数連続したか否か)を判定する。例えば常温状態の変速の学習(S7)にて、初期学習完了が判定されず、つまり学習に変化があった場合は、後述する初期学習完了の判定まで何もせず、ステップS11にそのまま進む。   Subsequently, as shown in FIG. 4, when the learning reflection control in step S8 is completed, the process proceeds to step S9, and initial learning completion determination control by the initial learning completion determination means 25 is started. In this initial learning completion determination control, for example, whether or not there is a change in learning continuously for a predetermined number of times in the learning of the shift in the normal temperature state where the determination of the completion of initial learning has not been made (S7) It is determined whether or not the speed change has continued for a predetermined number of times. For example, in the learning of the gear change in the normal temperature state (S7), when the completion of the initial learning is not determined, that is, when the learning is changed, nothing is performed until the determination of the completion of the initial learning described later, and the process proceeds to step S11.

なお、以上の説明において、初期学習完了が判定される前の個別学習手段28による個別学習について(ステップS7、S10)説明したが、ステップS6において、変速状態判別手段24が中低温状態Cold−Mid、高低温状態Cold−High、常温状態Normal以外の状態を判別した場合、即ち、最低低温状態Cold−Low1、低低温状態Cold−Low2、高温状態Hotを判別した場合は、油の粘性に起因して学習の信頼性に欠けるので、そのままステップS11に進み、つまり常温用学習値PS2A,PTAA、第1低温用学習値PS2B,PTAB、及び第1低温用学習値PS2C,PTACは、何ら学習しない。 In the above description, the individual learning by the individual learning means 28 before the completion of the initial learning is determined (steps S7 and S10). However, in step S6, the shift state determination means 24 is in the middle / low temperature state Cold-Mid. When the state other than the high and low temperature state Cold-High and the normal temperature state Normal is determined, that is, when the lowest low temperature state Cold-Low1, the low and low temperature state Cold-Low2 and the high temperature state Hot are determined, it is caused by the oil viscosity. Therefore, the process proceeds to step S11 as it is, that is, the normal temperature learning values P S2 A and P TA A, the first low temperature learning values P S2 B and P TA B, and the first low temperature learning value P. S2 C and PTAC do not learn anything.

以上のように個別学習手段28による常温用学習値PS2A,PTAA、第1低温用学習値PS2B,PTAB、及び第1低温用学習値PS2C,PTACがそれぞれ学習されている状態で、変速制御手段21により次回の2−3アップシフト変速が判断され、該変速が開始されると(S11)、ここでは、初期学習完了判定手段25による初期学習完了の判定がなされてないので(S12のNo)、ステップS16に進み、油温状態判別手段24により図5(a)に示す何れの温度状態であるかを判別し、常温以上であれば(即ちTemp5以上であれば)、ステップS17に進み、低温以下であれば(即ちTemp5未満)、ステップS18に進む。 As described above, the learning values P S2 A, P TA A for the normal temperature, the first learning values for the low temperature P S2 B, P TA B, and the first learning values for the low temperature P S2 C, P TA C by the individual learning means 28 are obtained. When the next 2-3 upshift shift is determined by the shift control means 21 in the state of learning, and the shift is started (S11), here, the initial learning completion by the initial learning completion determination means 25 is completed. Since the determination is not made (No in S12), the process proceeds to step S16, and the temperature state shown in FIG. 5A is determined by the oil temperature state determination unit 24. If so, the process proceeds to step S17, and if it is lower than the low temperature (that is, less than Temp5), the process proceeds to step S18.

温度状態が常温以上にあって、ステップS17においては、図5(a)に示すように、常温状態Normal、高温状態Hotのどちらであっても、変速制御手段21が不揮発性メモリより常温用学習値PS2A,PTAAを読み出し(即ち学習値・展開する学習値(1))、上述の油圧制御(図7参照)における待機圧PS2と係合開始圧PTAとに常温用学習値PS2A,PTAAを加算した油圧指令値に基づき、係合側油圧PB4を油圧制御する。また、この変速が常温状態Normalの変速であれば、この際の変速状況が変速状況検知手段22により検知され、上記ステップS7において再度常温用学習値PS2A,PTAAが学習される。なお、「展開する学習値」とは、ステップS7で学習されず、専ら油圧指令値に用いられる場合を指す。 In step S17, as shown in FIG. 5A, the shift control means 21 learns from the non-volatile memory for normal temperature in either the normal temperature state Normal or the high temperature state Hot in step S17. The values P S2 A and P TA A are read out (that is, the learning value and the learning value (1) to be developed), and learning at normal temperature is performed for the standby pressure PS2 and the engagement start pressure PTA in the above-described hydraulic control (see FIG. 7). Based on the hydraulic pressure command value obtained by adding the values P S2 A and P TA A, the engagement side hydraulic pressure P B4 is hydraulically controlled. If this shift is a normal-mode normal shift, the shift state at this time is detected by the shift state detection means 22, and the normal temperature learning values P S2 A and P TA A are learned again in step S7. The “learning value to be developed” refers to the case where the learning value is not learned in step S7 but is used exclusively for the hydraulic pressure command value.

一方、温度状態が低温以下にあって、ステップS18においては、高低温状態Cold−Highであれば、変速制御手段21が不揮発性メモリより第1低温用学習値PS2B,PTABを読み出し、また、最低低温状態Cold−Low1、低低温状態Cold−Low2、中低温状態Cold−Midであれば、変速制御手段21が不揮発性メモリより第1低温用学習値PS2C,PTACを読み出し(即ち学習値・展開する学習値(1))、上述の油圧制御(図7参照)における待機圧PS2と係合開始圧PTAとに第1低温用学習値PS2B,PTAB又は第1低温用学習値PS2C,PTACを加算した油圧指令値に基づき、係合側油圧PB4を油圧制御する。また、この変速が中低温状態Cold−Midの変速であれば、この際の変速状況が変速状況検知手段22により検知され、上記ステップS10において再度第1低温用学習値PS2C,PTACが学習され、この変速が高低温状態Cold−Highの変速であれば、この際の変速状況が変速状況検知手段22により検知され、上記ステップS10において再度第1低温用学習値PS2B,PTABが学習される。 On the other hand, if the temperature state is lower than the low temperature and the high / low temperature state Cold-High in step S18, the shift control means 21 reads the first low temperature learning values P S2 B and P TA B from the nonvolatile memory. If the lowest low temperature state Cold-Low1, the low low temperature state Cold-Low2, and the intermediate low temperature state Cold-Mid, the shift control means 21 obtains the first low-temperature learning values P S2 C and P TA C from the nonvolatile memory. Reading (ie, learning value / learning learning value (1)), the first low-temperature learning value P S2 B, P TA for the standby pressure P S2 and the engagement start pressure P TA in the above-described hydraulic pressure control (see FIG. 7). The engagement side hydraulic pressure P B4 is hydraulically controlled based on the hydraulic pressure command value obtained by adding B or the first low temperature learning value P S2 C, P TAC . If this shift is a mid-low temperature Cold-Mid shift, the shift state at this time is detected by the shift state detecting means 22, and the first low temperature learning value P S2 C, P TA C is again detected in step S10. If this shift is a high-low temperature Cold-High shift, the shift state at this time is detected by the shift state detecting means 22, and the first low-temperature learning value P S2 B, P is again detected in step S10. TAB is learned.

以上のように、初期学習完了の判定がなされる前の制御が行われている際に、上記ステップS9において、初期学習完了判定手段25により初期学習の完了が判定されると、不図示の不揮発性メモリに初期学習の完了が記録され、その後は、ステップS2及びステップS12において初期学習完了が判定されるようになって、つまり上述した個別学習手段28による個別学習が終了することになる。また、初期学習の完了が判定された際、学習制御手段26は、図6(b)に示すように、その時点の第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACを、常温用学習値PS2A,PTAAと第2低温用学習値PS2B’,PTAB’及び第2低温用学習値PS2C’,PTAC’とに割り当て演算し、常温用学習値PS2A,PTAAと第2低温用学習値PS2B’,PTAB’及び第2低温用学習値PS2C’,PTAC’とが加算された値が第1低温用学習値PS2B,PTAB及び第1低温用学習値PS2C,PTACと同じ値になるようにする。 As described above, if the completion of initial learning is determined by the initial learning completion determination unit 25 in step S9 when the control before the determination of completion of initial learning is being performed, the nonvolatile memory (not shown) The completion of the initial learning is recorded in the sex memory, and thereafter, the completion of the initial learning is determined in step S2 and step S12, that is, the individual learning by the individual learning means 28 described above is completed. Further, when it is determined that the initial learning is completed, the learning control means 26, as shown in FIG. 6B, the first low temperature learning value P S2 B, P TA B and the first low temperature learning at that time. the value P S2 C, the P TA C, room temperature learning value P S2 a, P TA a second low-temperature learned value P S2 B ', P TA B ' and the second low-temperature learned value P S2 C ', P TAC 'is assigned and calculated, and the learning values P S2 A, P TA A for the normal temperature, the learning values P S2 B', P TA B 'for the second low temperature, and the learning values P S2 C', P TA for the second low temperature are calculated. A value obtained by adding C ′ is set to the same value as the first low-temperature learning value P S2 B, P TA B and the first low-temperature learning value P S2 C, P TA C.

このように初期学習完了の判定がなされ、第2低温用学習値PS2B’,PTAB’及び第2低温用学習値PS2C’,PTAC’が設定された後は、2−3アップシフト変速が完了すると(S1)、初期学習が完了しているので(S2のYes)、ステップS3に進み、油温状態判別手段24の判別結果に基づき、上記2−3アップシフト変速が常温状態Normalであった場合は、ステップS4に進み、常温ベース学習手段28が、上記ステップS7と同様に、図5(a)に示すような常温用学習値PS2A,PTAAの学習を個別学習から継続した形で行う。 After the completion of the initial learning is thus determined and the second low-temperature learning values P S2 B ′ and P TA B ′ and the second low-temperature learning values P S2 C ′ and P TA C ′ are set, 2 When the -3 upshift shift is completed (S1), the initial learning is completed (Yes in S2). Therefore, the process proceeds to step S3, and based on the determination result of the oil temperature state determination means 24, the 2-3 upshift shift is performed. If the normal temperature state is normal, the process proceeds to step S4, and the normal temperature base learning means 28, as in step S7, has the normal temperature learning values P S2 A and P TA A as shown in FIG. Learning continues from individual learning.

また一方、油温状態判別手段24の判別結果に基づき、上記2−3アップシフト変速が高低温状態Cold−High、又は中低温状態Cold−Midであった場合は、ステップS5に進み、常温ベース学習手段28が、図5(a)に示すように、常温用学習値PS2A,PTAAをベースとして、該常温用学習値PS2A,PTAAを補正した学習値とするための第2低温用学習値PS2B’,PTAB’又は第2低温用学習値PS2C’,PTAC’の学習を行う。この第2低温用学習値PS2B’,PTAB’と第2低温用学習値PS2C’,PTAC’との修正幅は、それぞれ順に±w,±y,±x,±z(±w>±x,±y>±z)に設定されており、常温用学習値PS2A,PTAAの修正幅±q,±tよりも大幅に小さい幅に設定されている。このため、この常温ベース学習手段28による低温状態の変速の学習によって、第2低温用学習値PS2B’,PTAB’又は第2低温用学習値PS2C’,PTAC’が大きくなり過ぎて、低温状態の変速における変速制御の信頼性を低下させてしまうことが防止され、低温状態の変速にあっても常温用学習値PS2A,PTAAをベースとした信頼性の高い変速制御を行うことを可能としている。 On the other hand, if the 2-3 upshift is in the high / low temperature state Cold-High or the intermediate / low temperature state Cold-Mid based on the determination result of the oil temperature state determination unit 24, the process proceeds to Step S5, As shown in FIG. 5A, the learning means 28 uses the normal temperature learning values P S2 A and P TA A as a base to obtain learning values obtained by correcting the normal temperature learning values P S2 A and P TA A. The second low temperature learning value P S2 B ′, P TA B ′ or the second low temperature learning value P S2 C ′, P TA C ′ is learned. The correction ranges of the second low-temperature learning values P S2 B ′, P TA B ′ and the second low-temperature learning values P S2 C ′, P TA C ′ are respectively ± w, ± y, ± x, ± z (± w> ± x, ± y> ± z), which is set to a range that is significantly smaller than the correction widths ± q, ± t of the learning values P S2 A, P TA A for normal temperature . Therefore, the second low temperature learning value P S2 B ′, P TA B ′ or the second low temperature learning value P S2 C ′, P TA C ′ is obtained by learning the low temperature shift by the room temperature base learning means 28. It is prevented from becoming too large to reduce the reliability of the shift control in the low-temperature shift, and the reliability based on the learning values P S2 A and P TA A for normal temperature even in the low-speed shift It is possible to perform high speed shift control.

以上のように常温ベース学習手段27による常温用学習値PS2A,PTAA、第2低温用学習値PS2B’,PTAB’、及び第2低温用学習値PS2C’,PTAC’がそれぞれ学習されている状態で、変速制御手段21により次回の2−3アップシフト変速が判断され、該変速が開始されると(S11)、既に初期学習完了判定手段25による初期学習完了の判定がなされているので(S12のYes)、ステップS13に進み、油温状態判別手段24により図5(a)に示す何れの温度状態であるかを判別し、常温以上であれば(即ちTemp5以上であれば)、ステップS14に進み、低温以下であれば(即ちTemp5未満)、ステップS15に進む。 As described above, the normal temperature learning value P S2 A, P TA A, the second low temperature learning value P S2 B ′, P TA B ′, and the second low temperature learning value P S2 C ′, In the state where PTAC 'is learned, when the next 2-3 upshift is determined by the shift control means 21 and the shift is started (S11), the initial learning completion determination means 25 has already started the initial shift. Since the learning completion has been determined (Yes in S12), the process proceeds to step S13, where the oil temperature state determining means 24 determines which temperature state is shown in FIG. If it is Temp 5 or more, the process proceeds to Step S14, and if it is lower than the low temperature (that is, less than Temp 5), the process proceeds to Step S15.

温度状態が常温以上にあって、ステップS14においては、図5(a)に示すように、常温状態Normal、高温状態Hotのどちらであっても、変速制御手段21が不揮発性メモリより常温用学習値PS2A,PTAAを読み出し(即ち学習値・展開する学習値(1))、同様に、上述の油圧制御(図7参照)における待機圧PS2と係合開始圧PTAとに常温用学習値PS2A,PTAAを加算した油圧指令値に基づき、係合側油圧PB4を油圧制御する。また、この変速が常温状態Normalの変速であれば、この際の変速状況が変速状況検知手段22により検知され、上記ステップS4において再度常温用学習値PS2A,PTAAが学習される。 In step S14, as shown in FIG. 5 (a), the shift control means 21 learns from the non-volatile memory for normal temperature in either the normal temperature state Normal or the high temperature state Hot in step S14. The values P S2 A and P TA A are read out (that is, the learning value and the learning value (1) to be developed), and similarly, the standby pressure P S2 and the engagement start pressure P TA in the above-described hydraulic control (see FIG. 7). The engagement-side hydraulic pressure P B4 is hydraulically controlled based on the hydraulic pressure command value obtained by adding the learning values for normal temperature P S2 A and P TA A. If this shift is a normal-speed normal shift, the shift status at this time is detected by the shift status detection means 22, and the normal temperature learning values P S2 A and P TA A are learned again in step S4.

また、温度状態が低温以下にあって、ステップS15においては、高低温状態Cold−Highであれば、変速制御手段21が不揮発性メモリより常温用学習値PS2A,PTAAと第2低温用学習値PS2B’,PTAB’とを読み出し(即ち学習値・展開する学習値(1))、また、最低低温状態Cold−Low1、低低温状態Cold−Low2、中低温状態Cold−Midであれば、変速制御手段21が不揮発性メモリより常温用学習値PS2A,PTAAと第2低温用学習値PS2C’,PTAC’とを読み出し(即ち学習値・展開する学習値(1)・展開する学習値(2))、上述の油圧制御(図7参照)における待機圧PS2と係合開始圧PTAとに常温用学習値PS2A,PTAA及び第2低温用学習値PS2B’,PTAB’、又は常温用学習値PS2A,PTAA及び第2低温用学習値PS2C’,PTAC’を加算した油圧指令値に基づき、係合側油圧PB4を油圧制御する。 If the temperature state is lower than the low temperature and the high / low temperature state Cold-High in step S15, the shift control means 21 uses the non-volatile memory for the normal temperature learning values P S2 A, P TA A and the second low temperature. Learning values P S2 B ′ and P TA B ′ are read out (that is, the learning value / learning value (1) to be developed), and the lowest low-temperature state Cold-Low1, the low-low-temperature state Cold-Low2, and the low-temperature state Cold- If it is Mid, the shift control means 21 reads out the normal temperature learning values P S2 A, P TA A and the second low temperature learning values P S2 C ′, P TA C ′ from the non-volatile memory (that is, learning values / development). learning value (1) learning value to expand (2)), the standby pressure P S2 and the oncoming pressure P TA and the normal-temperature learned value P S2 a in the hydraulic control described above (see FIG. 7), P TA a and second low-temperature learned value P 2 B ', P TA B' , or ambient learning value P S2 A, P TA A and the second low-temperature learned value P S2 C ', P TA C ' based on the hydraulic pressure command value obtained by adding the engagement-side oil pressure P B4 is hydraulically controlled.

また、この変速が中低温状態Cold−Midの変速であれば、この際の変速状況が変速状況検知手段22により検知され、上記ステップS5において再度第2低温用学習値PS2C’,PTAC’が学習され、この変速が高低温状態Cold−Highの変速であれば、この際の変速状況が変速状況検知手段22により検知され、上記ステップS5において再度第2低温用学習値PS2B’,PTAB’が学習される。 If this shift is a medium-low temperature Cold-Mid shift, the shift state at this time is detected by the shift state detecting means 22, and the second low-temperature learning values P S2 C ′, P TA are again detected in step S5. If C ′ is learned and this shift is a high-low-temperature Cold-High shift, the shift state at this time is detected by the shift state detecting means 22, and the second low-temperature learning value P S2 B is detected again in step S5. ', P TAB ' is learned.

以上説明したように本自動変速機の変速制御装置1によると、個別学習手段28が、油温状態判別手段24による判別結果に基づき常温状態Normalの変速と低温状態Cold−High,Cold−Midの変速とでそれぞれ常温用学習値PS2A,PTAAと第1低温用学習値PS2B,PTAB,PS2C,PTACとを個別に学習するので、低温状態Cold−High,Cold−Midばかりで走行する場合であっても、低温状態Cold−High,Cold−Midでの変速におけるシフトクォリティを向上することができるものでありながら、学習反映手段29が、個別学習手段28により学習される常温用学習値PS2A,PTAAと第1低温用学習値PS2B,PTAB,PS2C,PTACとの学習結果の一方を他方の学習値に反映させるので、常温状態Normalばかり又は低温状態Cold−High,Cold−Midばかりのいずれか一方ばかりで走行する場合であっても、一方の学習値の学習結果によって、常温及び低温状態の双方の変速で、信頼性の高い変速制御を行うことを可能とすることができる。 As described above, according to the speed change control device 1 of the automatic transmission, the individual learning means 28 is based on the discrimination result by the oil temperature state discriminating means 24 and the normal temperature shift, the low temperature conditions Cold-High, Cold-Mid. The learning value P S2 A, P TA A for the normal temperature and the first learning value P S2 B, P TA B, P S2 C, P TAC for the normal temperature are individually learned at the shift, so that the low temperature state Cold-High , Cold-Mid only, the learning reflection means 29 can be used as the individual learning means 28 while the shift quality in the low-temperature conditions Cold-High, Cold-Mid can be improved. the cold learning value P S2 A learned, P TA A and the first low-temperature learned value P S2 B, P TA B, P S2 C, and P TA C Since one of the learning results is reflected in the learning value of the other, the learning result of one of the learning values can be obtained even when the vehicle is running only at either the normal temperature state Normal or the low temperature state Cold-High or Cold-Mid. Thus, it is possible to perform highly reliable shift control at both a normal temperature and a low temperature shift.

また、個別学習手段28が、初期学習完了判定手段25により初期学習完了が判定されるまで、常温用学習値PS2A,PTAAと第1低温用学習値PS2B,PTAB,PS2C,PTACとの個別学習を行い、常温ベース学習手段27が、初期学習完了判定手段25により初期学習完了が判定された後、常温状態Normalの変速にて常温用学習値PS2A,PTAAの学習を継続し、かつ低温状態Cold−High,Cold−Midの変速にて常温用学習値PS2A,PTAAをベースとして設定される第2低温用学習値PS2B’,PTAB’,PS2C’,PTAC’を学習するので、初期学習完了が判定される前であっても、学習反映手段の反映によって常温状態の変速と低温状態の変速におけるシフトクォリティを向上することができ、初期学習が完了した後は、常温及び低温状態の双方の変速で、信頼性の高い常温用学習値PS2A,PTAAをベースとする信頼性の高い変速制御を行うことを可能とすることができる。 Further, until the individual learning unit 28 determines the completion of the initial learning by the initial learning completion determination unit 25, the learning value for the normal temperature P S2 A, P TA A and the first low temperature learning value P S2 B, P TA B, Individual learning with P S2 C and P TAC is performed, and after the normal temperature base learning means 27 determines that the initial learning is completed by the initial learning completion determination means 25, the normal temperature learning value P S2 is changed at a normal temperature state Normal shift. a, P TA continued learning a, and low temperature cold-High, cold-Mid room temperature for learning value P S2 a in shift, P TA a second low-temperature learned value P S2 is set as the base Since B ′, P TA B ′, P S2 C ′, and P TAC C ′ are learned, even before the completion of initial learning is determined, the normal state shift and the low state shift are reflected by the reflection of the learning reflecting means. Shifting in Can improve the utility, initial after completion of the learning is the shift of both the normal temperature and low temperature, high reliability to high normal-temperature learned value P S2 A reliable, the P TA A base shift It may be possible to perform control.

また、学習反映手段29は、常温用学習値PS2A,PTAAと第1低温用学習値PS2B,PTAB,PS2C,PTACとの学習結果のいずれか一方を他方の学習値に反映させ、他方の学習値の学習結果を一方の学習値に反映させないので、より信頼性の高い一方の学習結果を他方の学習値に反映させることができると共に、信頼性に欠ける他方の学習結果を信頼性の高い一方の学習結果に反映してしまうことを防ぐことができる。 Further, the learning reflecting means 29 calculates one of the learning results of the normal temperature learning values P S2 A, P TA A and the first low temperature learning values P S2 B, P TA B, P S2 C, P TA C. Since it is reflected in the other learning value and the learning result of the other learning value is not reflected in one learning value, one learning result with higher reliability can be reflected in the other learning value, and reliability can be improved. It is possible to prevent the other learning result lacking from being reflected in one learning result with high reliability.

特に、学習反映手段29は、常温用学習値PS2A,PTAAの学習結果を第1低温用学習値PS2B,PTAB,PS2C,PTACに反映させるので、信頼性の高い常温用学習値PS2A,PTAAの学習結果を第1低温用学習値PS2B,PTAB,PS2C,PTACに反映させることができ、低温状態の変速で信頼性の高い変速制御を行うことを可能とすることができる。 In particular, the learning reflection means 29, for room temperature learned value P S2 A, P TA A first low-temperature learned value P S2 B a learning result, P TA B, P S2 C , so to be reflected in the P TA C, trust The learning result of the normal temperature learning values P S2 A and P TA A can be reflected in the first low temperature learning values P S2 B, P TA B, P S2 C, and P TA C, and the low temperature shift Thus, it is possible to perform highly reliable shift control.

更に、学習反映手段29は、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB,PS2C,PTACよりも大きい際に、該常温用学習値PS2A,PTAAにおける学習前と学習後との変化量PS2ΔA,PTAΔAを該第1低温用学習値PS2B,PTAB,PS2C,PTACに反映するので、個別学習手段28により個別に学習された第1低温用学習値PS2B,PTAB,PS2C,PTACを大幅に変更することなく、信頼性の高い常温用学習値PS2A,PTAAの学習結果を第1低温用学習値PS2B,PTAB,PS2C,PTACに反映させることができ、低温状態の変速で信頼性の高い変速制御を行うことを可能とすることができる。 Further, the learning reflecting means 29, when the learning value for normal temperature P S2 A, P TA A before learning is larger than the first learning value for low temperature P S2 B, P TA B, P S2 C, P TA C, The amount of change P S2 ΔA, P TA ΔA before and after learning in the normal temperature learning values P S2 A, P TA A is used as the first low temperature learning values P S2 B, P TA B, P S2 C, P. since reflected in TA C, without significantly changing the individual learning means 28 by individually learned first low-temperature learned value P S2 B, P TA B, P S2 C, P TA C, reliable for room temperature learned value P S2 a, P TA a learning result of the first low-temperature learned value P S2 B, P TA B, P S2 C, can be reflected in the P TA C, reliable shifting of the low temperature It is possible to perform high speed shift control.

更に、学習反映手段29は、学習前の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB,PS2C,PTACよりも小さく、かつ学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB,PS2C,PTACよりも大きい際に、学習後の常温用学習値PS2A,PTAAを該第1低温用学習値PS2B,PTAB,PS2C,PTACに反映するので、個別学習手段28により個別に学習された第1低温用学習値PS2B,PTAB,PS2C,PTACを大幅に変更することなく、信頼性の高い常温用学習値PS2A,PTAAの学習結果を第1低温用学習値PS2B,PTAB,PS2C,PTACに反映させることができ、低温状態の変速で信頼性の高い変速制御を行うことを可能とすることができる。 Further, the learning reflection means 29 is such that the learning values for normal temperature P S2 A and P TA A before learning are smaller than the first low-temperature learning values P S2 B, P TA B, P S2 C and P TA C and learning is performed. When the later learning value for normal temperature P S2 A, P TA A is larger than the first low temperature learning value P S2 B, P TA B, P S2 C, P TAC , the learning value for normal temperature after learning P S2 Since A and P TA A are reflected in the first low-temperature learning value P S2 B, P TA B, P S2 C and P TAC , the first low-temperature learning value P learned individually by the individual learning means 28. S2 B, P TA B, P S2 C, P TA without significantly changing the C, high room temperature learning value P S2 a reliable, P TA a learning result of the first low-temperature learned value P S2 B , P TA B, P S2 C , can be reflected in the P TA C, in shifting the low temperature It may be possible to perform the security capabilities shift control.

更に、学習反映手段29は、学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB,PS2C,PTACと正負逆の値で、かつ学習後の常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB,PS2C,PTACよりも遠ざかる際に、該常温用学習値PS2A,PTAAにおける学習前と学習後との変化量PS2ΔA,PTAΔAを該第1低温用学習値PS2B,PTAB,PS2C,PTACに反映するので、個別学習手段28により個別に学習された第1低温用学習値PS2B,PTAB,PS2C,PTACを大幅に変更することなく、信頼性の高い常温用学習値PS2A,PTAAの学習結果を第1低温用学習値PS2B,PTAB,PS2C,PTACに反映させることができ、低温状態の変速で信頼性の高い変速制御を行うことを可能とすることができる。 Further, the learning reflecting means 29 is such that the learning values P S2 A, P TA A for normal temperature after learning are values that are positive and negative with respect to the first low-temperature learning values P S2 B, P TA B, P S2 C, P TA C. and room temperature for learning value P S2 a after learning, P TA a first low-temperature learned value P S2 B, P TA B, P S2 C, P TA C when away than, for the normally temperature learned value P Since the changes P S2 ΔA and P TA ΔA before and after learning in S2 A and P TA A are reflected in the first low-temperature learning values P S2 B, P TA B, P S2 C and P TA C. The first low-temperature learning values P S2 B, P TA B, P S2 C, and P TA C individually learned by the individual learning means 28 are highly reliable and the learning values for normal temperatures P S2 are high. a, P TA a learning result of the first low-temperature learned value P S2 B, P TA B, P S2 , Can be reflected in the P TA C, it may be capable of performing a highly reliable shift control in shift low temperature.

また、個別学習手段28は、常温用学習値PS2A,PTAAの修正限度幅±q,±tよりも第1低温用学習値PS2B,PTAB,PS2C,PTACの修正限度幅±r,±u,±s,±vを小さく設定しているので、信頼性の低い低温状態の変速における学習により第1低温用学習値PS2B,PTAB,PS2C,PTACが大幅に誤った値になってしまうことを防止することができるものでありながら、常温用学習値PS2A,PTAAが第1低温用学習値PS2B,PTAB,PS2C,PTACの修正限度幅幅±r,±u,±s,±vよりも大きくなった際には、第1低温用学習値PS2B,PTAB,PS2C,PTACの修正限度幅±r,±u,±s,±vを該大きくなった常温用学習値PS2A,PTAAに再設定するので、常温用学習値PS2A,PTAAの学習結果を第1低温用学習値PS2B,PTAB,PS2C,PTACに必ず反映させることができる。 Further, the individual learning means 28 uses the first low temperature learning values P S2 B, P TA B, P S2 C, and P TA rather than the correction limit widths ± q and ± t of the normal temperature learning values P S2 A and P TA A. Since the correction limit widths ± r, ± u, ± s, ± v of C are set to be small, the first low-temperature learning values P S2 B, P TA B, P are obtained by learning in a low-temperature shift with low reliability. While it is possible to prevent S2 C and P TAC from becoming a significantly incorrect value, the normal temperature learning values P S2 A and P TA A are the first low temperature learning values P S2 B, When the correction limit widths of P TA B, P S2 C, and P TA C are larger than ± r, ± u, ± s, ± v, the first low temperature learning values P S2 B, P TA B, P S2 C, P TA C correction limit width ± r, ± u, ± s , ± v the greater since the normal-temperature learned value P S2 a, P Since reset to A A, ambient temperature learning value P S2 A, P TA A learning result of the first low-temperature learned value P S2 B, P TA B, P S2 C, be always reflected in P TA C it can.

また、変速状況検知手段24は、変速時における入力軸3の回転数NINの変化に基づき変速状況を検知するので、学習制御手段26は、エンジン吹きやタイアップ、変速ショック等を考慮した変速状況に基づき、学習値の学習を行うことができる。 Further, the shift speed change status detection unit 24, since detecting the transmission status based on a change in the rotational speed N IN of the input shaft 3 at the time of speed change, learning control means 26, the engine racing and tie-up, considering shift shock and the like Learning values can be learned based on the situation.

更に、変速状況検知手段22は、変速計時手段23の計時結果に基づき変速状況を検知するので、学習制御手段26は、変速における各種の時間経過を考慮した変速状況に基づき、学習値の学習を行うことができる。   Further, since the shift state detecting means 22 detects the shift state based on the time measurement result of the speed change timer means 23, the learning control means 26 learns the learning value based on the shift state in consideration of various time passages in the shift. It can be carried out.

また、学習制御手段26が学習する油圧指令値PB4を補正するための学習値は、第4のブレーキB−4の係合を行う前の待機圧PS2に対する学習値であるので、変速(係合)ショックや変速時間の遅延等を防ぐための学習を行うことができる。 Further, since the learning value for correcting the hydraulic pressure command value P B4 learned by the learning control means 26 is a learning value for the standby pressure P S2 before engaging the fourth brake B-4, shifting ( Engagement) Learning can be performed to prevent shocks, shift time delays, and the like.

更に、学習制御手段26が学習する油圧指令値PB4を補正するための学習値は、第4のブレーキB−4の係合を開始する係合開始圧PTAに対する学習値であるので、エンジン吹きやタイアップ等を防ぐための学習を行うことができる。 Further, the learning value for correcting the hydraulic pressure command value P B4 learned by the learning control means 26 is a learning value for the engagement start pressure P TA for starting the engagement of the fourth brake B-4. You can learn to prevent blowing and tie-up.

また、第4のブレーキB−4は、バンドブレーキからなるので、係合開始圧PTAの学習が充分でないと、ブレーキバンドの巻き込みに起因する係合ショックを生じやすいが、低温状態ばかりで走行する場合であっても、低温状態の変速における学習を行うことができ、かつ初期学習が完了した場合には、常温状態の変速における学習をベースとした信頼性の高い学習を行うことができ、更に、一方の学習値の学習結果によって、常温及び低温状態の双方の変速で、信頼性の高い変速制御を行うことを可能とすることができるので、係合ショック発生の防止を図ることができる。 The fourth brake B-4 is, since a band brake, the learning of the engagement starting pressure P TA is not sufficient, prone to engaging shock due to the entrainment of the brake band, but running at only a low temperature Even in the case where the learning can be performed in the low temperature shift, and when the initial learning is completed, the highly reliable learning based on the learning in the normal temperature shift can be performed. Further, since the learning result of one of the learning values can make it possible to perform highly reliable shift control at both the normal temperature and low temperature shifts, it is possible to prevent the occurrence of engagement shock. .

また、学習を行う変速は、パワーオンアップシフト変速であるので、クラッチやブレーキの掴み換え変速における係合側のクラッチ又はブレーキの油圧制御を高精度に行うことを可能としている。   Further, since the gear shift for learning is a power-on upshift gear shift, it is possible to perform the hydraulic control of the clutch or brake on the engagement side in the clutch / brake reshuffling gear shift with high accuracy.

なお、以上説明した本発明に係る実施の形態においては、例えば前進5速段・後進1速段を達成するFFタイプの自動変速機20に変速制御装置1を適用した一例を説明したが、これに限らず、どのような自動変速機に本変速制御装置1を適用してもよいことは勿論である。   In the embodiment according to the present invention described above, an example in which the shift control device 1 is applied to the FF type automatic transmission 20 that achieves, for example, the fifth forward speed and the first reverse speed has been described. Of course, the present shift control device 1 may be applied to any automatic transmission.

また、本実施の形態においては、2−3アップシフト変速を一例とし、係合側油圧として第4のブレーキB−4の油圧サーボに供給する油圧指令値PB4を一例とした説明を行ったが、これに限るものではなく、特に摩擦係合要素同士の掴み換えを行う変速であればどのような種類の変速(例えばパワーオフ変速、ダウンシフト変速等)であってもよく、また、どのような摩擦系業要素に対する油圧指令値であっても構わない。 In the present embodiment, the 2-3 upshift is taken as an example, and the hydraulic pressure command value P B4 supplied to the hydraulic servo of the fourth brake B-4 is taken as an example of the engagement side hydraulic pressure. However, the present invention is not limited to this, and any type of shifting (for example, power-off shifting, downshift shifting, etc.) may be used as long as it is a shifting that re-engages the friction engagement elements. The hydraulic pressure command value for such friction system elements may be used.

更に、本実施の形態においては、待機圧と係合開始圧に対する学習を行うものを一例に説明したが、これらに限らず、ガタ詰めするための圧(PS1)等であってもよく、つまりどのような油圧指令の値に対する学習値であっても、本発明を適用することができる。 Further, in the present embodiment, the learning for the standby pressure and the engagement start pressure has been described as an example. However, the present invention is not limited thereto, and may be a pressure (P S1 ) for loosening, That is, the present invention can be applied to any learning value for any hydraulic pressure command value.

また、本実施の形態においては、常温状態Normalにあって学習値PS2A,PTAAを、高低温状態Cold−Highにあって学習値PS2B,PTAB及び学習値PS2B’,PTAB’を、中低温状態Cold−Midにあって学習値PS2C,PTAC及び学習値PS2C’,PTAC’を学習し、その他の温度状態Hot,Cold−Low2,Cold−Low1にあっては、それら学習値を展開する(読み出す)だけのものを説明したが(図5(a)参照)、これに限定されるものではなく、全ての温度状態において、個別に或いは常温をベースに学習を行ってもよく、また、例えば常温状態Normalと高低温状態Cold−Highの2つの温度状態だけで学習を行ってもよい。また、これらの温度状態の区別は6種類でなくてもよいことは勿論のことである。 In the present embodiment, the learning values P S2 A and P TA A are in the normal temperature state Normal, and the learning values P S2 B, P TA B and the learning value P S2 B are in the high and low temperature Cold-High state. ', P TA B' is in the low-temperature state Cold-Mid, learning values P S2 C, P TA C and learning values P S2 C ', P TA C' are learned, and other temperature states Hot, Cold- In the case of Low 2 and Cold-Low 1, those that only develop (read) these learning values have been described (see FIG. 5A), but this is not a limitation, and in all temperature states, Learning may be performed individually or based on room temperature, or may be performed only in two temperature states, for example, a normal temperature state Normal and a high / low temperature state Cold-High. Needless to say, these temperature states need not be distinguished from six types.

本発明を適用し得る自動変速機を示すスケルトン図。The skeleton figure which shows the automatic transmission which can apply this invention. 本自動変速機の作動表。Operation table of this automatic transmission. 本発明に係る自動変速機の変速制御装置を示すブロック図。1 is a block diagram showing a shift control device for an automatic transmission according to the present invention. 学習制御を示すフローチャート。The flowchart which shows learning control. 油温状態別の学習値を示す表で、(a)は個別学習時を示す表、(b)は常温ベース学習時を示す表。It is a table | surface which shows the learning value according to oil temperature state, (a) is a table | surface which shows the time of individual learning, (b) is a table | surface which shows the time of normal temperature base learning. 学習値の反映パターンを示す説明図で、(a)は個別学習時の反映パターンを示す図、(b)は初期学習完了時の反映パターンを示す図。It is explanatory drawing which shows the reflection pattern of a learning value, (a) is a figure which shows the reflection pattern at the time of individual learning, (b) is a figure which shows the reflection pattern at the time of completion of initial learning. 2−3変速時の入力回転数と油圧指令値とを示すタイムチャート。2-3 is a time chart showing an input rotation speed and a hydraulic pressure command value at the time of shifting.

符号の説明Explanation of symbols

1 自動変速機の変速制御装置
3 入力軸
20 自動変速機
21 変速制御手段
22 変速状況検知手段
23 変速計時手段
24 油温状態判別手段
25 初期学習完了判定手段
26 学習制御手段
27 常温ベース学習手段
28 個別学習手段
29 学習反映手段
31 油温検出手段
32 入力軸回転数センサ
B−4 摩擦係合要素(第4のブレーキ)
Normal 常温状態
Cold−Mid 低温状態(中低温状態)
Cold−High 低温状態(高低温状態)
B4 油圧指令値(係合側油圧)
S2 待機圧
S2A (待機圧の)常温用学習値
S2ΔA 変化量
S2B (待機圧の)第1低温用学習値
S2C (待機圧の)第1低温用学習値
S2B’ (待機圧の)第2低温用学習値
S2C’ (待機圧の)第2低温用学習値
TA 係合開始圧
TAA (係合開始圧の)常温用学習値
TAΔA 変化量
TAB (係合開始圧の)第1低温用学習値
TAC (係合開始圧の)第1低温用学習値
TAB’ (係合開始圧の)第2低温用学習値
TAC’ (係合開始圧の)第2低温用学習値
±q 修正限度幅
±t 修正限度幅
±w 修正限度幅
±x 修正限度幅
±y 修正限度幅
±z 修正限度幅

DESCRIPTION OF SYMBOLS 1 Shift control apparatus of automatic transmission 3 Input shaft 20 Automatic transmission 21 Shift control means 22 Shift condition detection means 23 Shift meter timing means 24 Oil temperature state determination means 25 Initial learning completion determination means 26 Learning control means 27 Normal temperature base learning means 28 Individual learning means 29 Learning reflecting means 31 Oil temperature detecting means 32 Input shaft rotational speed sensor B-4 Friction engagement element (fourth brake)
Normal Normal Temperature Cold-Mid Low Temperature (Medium / Low Temperature)
Cold-High Low temperature state (high and low temperature state)
P B4 Oil pressure command value (engagement side oil pressure)
P S2 standby pressure P S2 A (standby pressure) learning value P S2 ΔA change amount P S2 B (standby pressure) first low temperature learning value P S2 C (standby pressure) first low temperature learning value P S2 B ′ (second standby pressure) second low temperature learning value P S2 C ′ (standby pressure) second low temperature learning value P TA engagement start pressure P TA A (engagement start pressure) normal temperature learning value P TA ΔA change amount P TA B (learning start pressure) first low temperature learning value P TA C (engagement start pressure) first low temperature learning value P TA B ′ (engagement start pressure) second low temperature Learning value PTAC '(for engagement start pressure) Second low temperature learning value ± q Correction limit width ± t Correction limit width ± w Correction limit width ± x Correction limit width ± y Correction limit width ± z Correction limit width

Claims (14)

変速時における変速状況を検知する変速状況検知手段と、前記変速状況検知手段の検知結果に基づき、次回の変速制御における摩擦係合要素の油圧サーボに供給する油圧の指令値を補正するための学習値を演算・記録することで学習を行う学習制御手段と、前記学習制御手段による学習結果に基づき摩擦係合要素の油圧サーボの油圧制御を行う変速制御手段と、を備える自動変速機の変速制御装置において、
油温を検出する油温検出手段と、
前記油温検出手段により検出される前記油温に基づき、常温状態の変速と低温状態の変速とに判別する油温状態判別手段と、を備え、
前記学習制御手段は、
前記油温状態判別手段による判別結果に基づき、前記常温状態の変速と前記低温状態の変速とでそれぞれ常温用学習値と第1低温用学習値とを個別に学習する個別学習手段と、
前記個別学習手段により学習される前記常温用学習値と前記第1低温用学習値との学習結果の一方を、他方の学習値に反映させる学習反映手段と、を有する、
ことを特徴とする自動変速機の変速制御装置。
A shift condition detecting means for detecting a shift condition at the time of a shift, and learning for correcting the command value of the hydraulic pressure supplied to the hydraulic servo of the friction engagement element in the next shift control based on the detection result of the shift condition detecting means Shift control of an automatic transmission comprising learning control means for performing learning by calculating and recording a value, and shift control means for performing hydraulic control of a hydraulic servo of a friction engagement element based on a learning result by the learning control means In the device
Oil temperature detecting means for detecting the oil temperature;
Oil temperature state determination means for determining a shift in a normal temperature state and a shift in a low temperature state based on the oil temperature detected by the oil temperature detection means,
The learning control means includes
Individual learning means for individually learning the normal temperature learning value and the first low temperature learning value for the normal temperature state shift and the low temperature state shift, respectively, based on the determination result by the oil temperature state determination means;
Learning reflecting means for reflecting one of the learning results of the normal temperature learning value and the first low temperature learning value learned by the individual learning means on the other learning value;
A shift control apparatus for an automatic transmission.
前記油温状態判別手段によって判別された前記常温状態の変速にて、前記学習制御手段による学習の進行状態が所定の進行状態以上となる初期学習完了を判定する初期学習完了判定手段を備え、
前記個別学習手段は、前記初期学習完了判定手段により前記初期学習完了が判定されるまでは、前記油温状態判別手段による判別結果に基づき、前記常温用学習値と前記第1低温用学習値とをそれぞれ学習し、
前記学習制御手段は、前記初期学習完了判定手段により前記初期学習完了が判定された後は、前記油温状態判別手段による判別結果に基づき、前記常温状態の変速において、前記常温用学習値の学習を継続し、かつ前記低温状態の変速において、前記常温用学習値をベースとして設定される第2低温用学習値を学習する常温ベース学習手段を有する、
ことを特徴とする請求項1記載の自動変速機の変速制御装置。
Initial learning completion determination means for determining completion of initial learning in which the learning progress state by the learning control means is equal to or higher than a predetermined progress state at the shift in the normal temperature state determined by the oil temperature state determination means;
The individual learning means, based on the determination result by the oil temperature state determination means, until the initial learning completion determination means determines the initial learning completion, the normal temperature learning value and the first low temperature learning value, Learn each
After the initial learning completion is determined by the initial learning completion determination unit, the learning control unit learns the learning value for normal temperature in the shift at the normal temperature state based on the determination result by the oil temperature state determination unit. And the normal temperature base learning means for learning the second low temperature learning value set based on the normal temperature learning value in the low temperature shift.
The shift control apparatus for an automatic transmission according to claim 1.
前記学習反映手段は、前記個別学習手段により学習される前記常温用学習値と前記第1低温用学習値との学習結果のいずれか一方を他方の学習値に反映させ、前記他方の学習値の学習結果を前記一方の学習値に反映させない、
ことを特徴とする請求項1または2記載の自動変速機の変速制御装置。
The learning reflecting means reflects one of the learning results of the normal temperature learning value and the first low temperature learning value learned by the individual learning means to the other learning value, and The learning result is not reflected on the one learning value.
The shift control apparatus for an automatic transmission according to claim 1 or 2,
前記学習反映手段は、前記常温用学習値の学習結果を前記第1低温用学習値に反映させてなる、
ことを特徴とする請求項3記載の自動変速機の変速制御装置。
The learning reflecting means reflects the learning result of the learning value for normal temperature in the learning value for the first low temperature,
The shift control device for an automatic transmission according to claim 3.
前記学習反映手段は、学習前の前記常温用学習値が前記第1低温用学習値よりも大きい際に、該常温用学習値における学習前と学習後との変化量を該第1低温用学習値に反映してなる、
ことを特徴とする請求項4記載の自動変速機の変速制御装置。
When the learning value for normal temperature before learning is larger than the learning value for the first low temperature, the learning reflecting means calculates the amount of change between the learning value for the normal temperature before and after learning in the first learning for low temperature. Reflected in the value,
The shift control apparatus for an automatic transmission according to claim 4.
前記学習反映手段は、学習前の前記常温用学習値が前記第1低温用学習値よりも小さく、かつ学習後の前記常温用学習値が前記第1低温用学習値よりも大きい際に、学習後の前記常温用学習値を該第1低温用学習値に反映してなる、
ことを特徴とする請求項4または5記載の自動変速機の変速制御装置。
The learning reflecting means learns when the learning value for normal temperature before learning is smaller than the learning value for first low temperature and the learning value for normal temperature after learning is larger than the learning value for first low temperature. The subsequent learning value for normal temperature is reflected in the learning value for the first low temperature,
6. A shift control apparatus for an automatic transmission according to claim 4, wherein the shift control apparatus is an automatic transmission.
前記常温用学習値及び前記第1低温用学習値は、正負の値を有してなり、
前記学習反映手段は、学習後の前記常温用学習値が前記第1低温用学習値と正負逆の値で、かつ学習後の前記常温用学習値が前記第1低温用学習値よりも遠ざかる際に、該常温用学習値における学習前と学習後との変化量を該第1低温用学習値に反映してなる、
ことを特徴とする請求項4ないし6のいずれか記載の自動変速機の変速制御装置。
The learning value for normal temperature and the learning value for the first low temperature have positive and negative values,
The learning reflecting means is configured such that the learning value for normal temperature after learning is a value that is positive and negative with respect to the learning value for the first low temperature, and the learning value for normal temperature after learning moves away from the learning value for the first low temperature. In addition, the amount of change in the learning value for normal temperature before and after learning is reflected in the first learning value for low temperature.
The shift control apparatus for an automatic transmission according to any one of claims 4 to 6.
前記個別学習手段は、前記常温用学習値の修正限度幅よりも前記第1低温用学習値の修正限度幅を小さく設定してなり、かつ前記常温用学習値が前記第1低温用学習値の修正限度幅よりも大きくなった際に、前記第1低温用学習値の修正限度幅を該大きくなった常温用学習値に再設定してなる、
ことを特徴とする請求項4ないし7のいずれか記載の自動変速機の変速制御装置。
The individual learning means is configured to set a correction limit width of the first low temperature learning value smaller than a correction limit width of the normal temperature learning value, and the normal temperature learning value is equal to the first low temperature learning value. When the correction limit width is larger than the correction limit width, the correction limit width of the first low-temperature learning value is reset to the increased normal temperature learning value.
The shift control apparatus for an automatic transmission according to any one of claims 4 to 7.
入力軸の回転数を検出する入力軸回転数センサを備え、
前記変速状況検知手段は、変速時における前記入力軸の回転数の変化に基づき前記変速状況を検知する、
ことを特徴とする請求項1ないし8のいずれか記載の自動変速機の変速制御装置。
It has an input shaft speed sensor that detects the speed of the input shaft,
The shift state detecting means detects the shift state based on a change in the rotational speed of the input shaft during shift;
The shift control apparatus for an automatic transmission according to any one of claims 1 to 8,
前記変速における時間経過を計時する変速計時手段を備え、
前記変速状況検知手段は、前記変速計時手段の計時結果に基づき前記変速状況を検知する、
ことを特徴とする請求項1ないし9のいずれか記載の自動変速機の変速制御装置。
A transmission timing means for measuring the time elapsed in the shift;
The shift state detecting means detects the shift state based on a time measurement result of the shift time measuring means;
The shift control apparatus for an automatic transmission according to any one of claims 1 to 9,
前記学習制御手段が学習する前記油圧指令値を補正するための学習値は、前記摩擦係合要素の係合を行う前の待機圧に対する学習値である、
ことを特徴とする請求項1ないし10のいずれか記載の自動変速機の変速制御装置。
The learning value for correcting the hydraulic pressure command value learned by the learning control means is a learning value for the standby pressure before engaging the friction engagement element.
11. The shift control apparatus for an automatic transmission according to claim 1, wherein the shift control apparatus is an automatic transmission.
前記学習制御手段が学習する前記油圧指令値を補正するための学習値は、前記摩擦係合要素の係合を開始する係合開始圧に対する学習値である、
ことを特徴とする請求項1ないし10のいずれか記載の自動変速機の変速制御装置。
The learning value for correcting the hydraulic pressure command value learned by the learning control means is a learning value for an engagement start pressure for starting engagement of the friction engagement element.
11. The shift control apparatus for an automatic transmission according to claim 1, wherein the shift control apparatus is an automatic transmission.
前記摩擦係合要素は、バンドブレーキからなる、
ことを特徴とする請求項12記載の自動変速機の変速制御装置。
The friction engagement element comprises a band brake;
13. The shift control apparatus for an automatic transmission according to claim 12, wherein
前記変速は、パワーオンアップシフト変速である、
ことを特徴とする請求項1ないし13のいずれか記載の自動変速機の変速制御装置。

The shift is a power-on upshift.
14. The shift control apparatus for an automatic transmission according to claim 1, wherein the shift control apparatus is an automatic transmission.

JP2006008060A 2006-01-16 2006-01-16 Shift control device for automatic transmission Expired - Fee Related JP4670651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008060A JP4670651B2 (en) 2006-01-16 2006-01-16 Shift control device for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008060A JP4670651B2 (en) 2006-01-16 2006-01-16 Shift control device for automatic transmission

Publications (2)

Publication Number Publication Date
JP2007187300A JP2007187300A (en) 2007-07-26
JP4670651B2 true JP4670651B2 (en) 2011-04-13

Family

ID=38342599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008060A Expired - Fee Related JP4670651B2 (en) 2006-01-16 2006-01-16 Shift control device for automatic transmission

Country Status (1)

Country Link
JP (1) JP4670651B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024277B2 (en) * 2012-08-10 2016-11-16 アイシン・エィ・ダブリュ株式会社 Transmission control apparatus and control method
JP7331789B2 (en) 2020-06-25 2023-08-23 トヨタ自動車株式会社 Vehicle control device, vehicle control system, vehicle learning device, and vehicle learning method
JP2022007027A (en) * 2020-06-25 2022-01-13 トヨタ自動車株式会社 Vehicle control device, vehicle control system and vehicle learning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231511A (en) * 1992-02-19 1993-09-07 Nissan Motor Co Ltd Speed change controller of automatic transmission
JPH1182703A (en) * 1997-09-11 1999-03-26 Aisin Aw Co Ltd Hydraulic control device of automatic transmission
JP2002276799A (en) * 2001-01-11 2002-09-25 Jatco Ltd Shift control device for automatic transmission
JP2004293593A (en) * 2003-03-26 2004-10-21 Denso Corp Control device for automatic transmission
JP2005233370A (en) * 2004-02-23 2005-09-02 Aisin Seiki Co Ltd Automatic transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231511A (en) * 1992-02-19 1993-09-07 Nissan Motor Co Ltd Speed change controller of automatic transmission
JPH1182703A (en) * 1997-09-11 1999-03-26 Aisin Aw Co Ltd Hydraulic control device of automatic transmission
JP2002276799A (en) * 2001-01-11 2002-09-25 Jatco Ltd Shift control device for automatic transmission
JP2004293593A (en) * 2003-03-26 2004-10-21 Denso Corp Control device for automatic transmission
JP2005233370A (en) * 2004-02-23 2005-09-02 Aisin Seiki Co Ltd Automatic transmission

Also Published As

Publication number Publication date
JP2007187300A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4185878B2 (en) Control device for automatic transmission
JP3339405B2 (en) Hydraulic control device for automatic transmission
JP4285529B2 (en) Shift control device for automatic transmission
JP5031052B2 (en) Control device for automatic transmission
WO2010073648A1 (en) Control device for an automatic transmission
JP4670651B2 (en) Shift control device for automatic transmission
JP2009236262A (en) Shift control device for automatic transmission
US5401219A (en) Oil pressure control system for automatic transmission
JP6431561B2 (en) Automatic transmission
JP2002295663A (en) Gear shift control device of automatic transmission
JP4605027B2 (en) Shift control device for automatic transmission
JP3189216B2 (en) Hydraulic pressure control device for automatic transmission
JP2004286183A (en) Automatic transmission, and method for setting precharge time for automatic transmission
JP4066597B2 (en) Control device for automatic transmission
JPH0517979B2 (en)
JPH10213215A (en) Shift control device for automatic transmission
JP2009243492A (en) Control device for automatic transmission
JP4400077B2 (en) Control device for automatic transmission
JPH0341254A (en) Multiple changing device in automatic transmission
JP2009144588A (en) Control device for automatic transmission
JP2005249078A (en) Automatic transmission
JP4066596B2 (en) Control device for automatic transmission
JP2002206635A (en) Shifting control device of automatic transmission
JP2011190893A (en) Control device of automatic transmission
JP4667193B2 (en) Control device for automatic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees