JP4670173B2 - Extrusion equipment - Google Patents

Extrusion equipment Download PDF

Info

Publication number
JP4670173B2
JP4670173B2 JP2001139178A JP2001139178A JP4670173B2 JP 4670173 B2 JP4670173 B2 JP 4670173B2 JP 2001139178 A JP2001139178 A JP 2001139178A JP 2001139178 A JP2001139178 A JP 2001139178A JP 4670173 B2 JP4670173 B2 JP 4670173B2
Authority
JP
Japan
Prior art keywords
extrusion
tension
tip
feed amount
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001139178A
Other languages
Japanese (ja)
Other versions
JP2002234012A (en
Inventor
悟 山口
広己 加藤
康直 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001139178A priority Critical patent/JP4670173B2/en
Priority to DE10122937.2A priority patent/DE10122937B4/en
Priority to US09/852,917 priority patent/US6790025B2/en
Publication of JP2002234012A publication Critical patent/JP2002234012A/en
Application granted granted Critical
Publication of JP4670173B2 publication Critical patent/JP4670173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/24Extrusion presses; Dies therefor using screws or worms
    • B30B11/245Extrusion presses; Dies therefor using screws or worms using two or more screws working in different chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/22Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded by screw or worm
    • B28B3/222Screw or worm constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/575Screws provided with elements of a generally circular cross-section for shearing the melt, i.e. shear-ring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/685Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/24Extrusion presses; Dies therefor using screws or worms
    • B30B11/246Screw constructions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【0001】
【技術分野】
本発明は,セラミックハニカム構造体等のセラミック成形体を成形するための押出成形装置に関する。
【0002】
【従来技術】
例えば自動車の排ガス浄化装置の触媒担体としては,後述する図9に示すごとく,多数のセル88を隔壁81により設けてなるセラミック製のハニカム構造体8が用いられている。このハニカム構造体8は,通常,押出成形により製造される。
従来のハニカム構造体の押出成形装置9は,例えば図10に示すごとく,ハニカム構造体8を成形するための成形型11と,セラミック材料80を連続的に混練して押出す上下2段のスクリュー押出機92,93を有してなる。
【0003】
同図に示すごとく,スクリュー押出機92,93は,ハウジング929,939内にスクリュー94,95を内蔵し,該スクリュー94,95を回転することによりハウジング929,939内に導入されたセラミック材料80を先端押出し口から押出すよう構成されている。スクリュー94,95は,リード部410,510を螺旋状に巻回して形成した加圧部41,51と,円盤状の鍔部420,520を複数枚軸方向に間隔をあけて連ねてなる混練部42,52とを有してなる。混練部42,52の先端押出し口の方向には,円錐状の先端部945,955を設けてある。
【0004】
また,各スクリュー押出機92,93の先端押出し口には,それぞれ濾過装置62,63を設けてある。そして,下段のスクリュー押出機93の先端押出し口の方向に抵抗管12を介して配設した成形型11からセラミック材料80をハニカム構造体8として押出し成形するよう構成してある。
なおスクリュー押出機としては,1段だけとする場合もあるし,3段以上とする場合もある。
【0005】
【解決しようとする課題】
ところで,上記従来の押出成形装置9においては,次の問題がある。
即ち,各スクリュー押出機93,94からセラミック材料80を押出す速度は,ハニカム構造体8等のセラミック成形体の押出し速度に反映される。そして,スクリュー押出機の押出し速度が速いほど,効率的なセラミック成形体の製造を行うことができる。
【0006】
このスクリュー押出機92,93の押出し速度は,内蔵されるスクリュー94,95の回転速度を高めることにより高速化することができるが,設備の駆動系に大幅な改造が必要となり,容易に実施することが困難である。
そこで,あまり駆動系に改造を行うことなく,効率的にスクリュー押出機の押出し速度を高速化する技術の開発が望まれていた。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,駆動系の大幅な改造を行うことなく,セラミック材料の押出し速度を向上させることができる押出成形装置を提供しようとするものである。
【0008】
【課題の解決手段】
請求項1の発明は,ハウジング内にスクリューを内蔵し,該スクリューを回転することにより上記ハウジング内に導入されたセラミック材料を先端押出し口から押出すよう構成されたスクリュー押出機を有する押出成形装置において,
上記スクリュー押出機に内蔵された上記スクリューは,加圧部と該加圧部よりも先端押出し口の方向に配設された引張部とを有し,
上記加圧部と引張部との間にはセラミック材料を混練する混練部を有し,
上記加圧部は1回転当りの送り量を先端押出し口の方向に行くにつれて徐々に少なくしてあり,
かつ,上記引張部は,1回転当りの送り量を先端押出し口の方向に行くにつれて多くしてあることを特徴とする押出成形装置にある。
【0009】
本発明において最も注目すべき点は,上記スクリューは,上記加圧部と,セラミック材料を混練する混練部と,上記引張部とを有していることである。
【0010】
次に,本発明の作用効果につき説明する。
本発明においては,上記スクリューが加圧部,混練部の下流側に引張部を有している。そのため,加圧部から押し出されて来たセラミック材料が混練部から出たときに,該セラミック材料は上記引張部によって積極的に先端押出し口に向って更に押し出される。そのため,スクリュー押出機によるセラミック材料の押出し速度を向上させることができる。
【0011】
そのため,セラミック材料をスムーズに先端押出し口へ導くことができる。また,スクリューの先端部分に上記引張部を設けることにより,上記作用効果が得られるので,駆動系の大幅な改造も必要としない。
【0012】
したがって,本発明によれば,駆動系の大幅な改造を行うことなく,セラミック材料の押出し速度を向上させることができる押出成形装置を提供することができる。
【0013】
本発明の押出成形装置によって成形するセラミック成形体としては,実施形態例1に示すハニカム構造体の他,シート,丸棒,パイプ,更にはこれらの薄肉体である薄肉ハニカム,薄肉シート,細い丸棒,薄肉パイプなどがある。
【0014】
次に上記加圧部は1回転当りの送り量を先端押出し口の方向に行くにつれて徐々に少なくしてあり,また,上記引張部は,1回転当りの送り量を先端押出し口の方向に行くにつれて多くしてある
【0015】
この場合には,加圧部は1回転当りの送り量が先端押出し口の方向に行くにしたがって徐々に小さくなっており,一方引張部は上記送り量が先端押出し口の方向に行くにしたがって徐々に多くなっている。
そのため,加圧部において加圧されたセラミック材料をスムーズに先端押出し口の方向へ導くことができる。それ故,セラミック材料の押出速度を向上させることができる。また,駆動系の大幅な改造も必要としない。
【0016】
次に,請求項2の発明のように,上記引張部の外径をR,長さをLとした場合,L/R≧1.0であることが好ましい。
この場合には,上記のごとく,特定の形状の引張部をスクリューの先端に設けてある。そのため,上記加圧部により加圧されたセラミック材料をスムーズに先端押出し口に導き,押出し速度の向上を図ることができる。
これは,上記加圧部によって高圧化したセラミック材料を,その後方からの押出し圧力のみによって先端押出し口の方向に押出すのではなく,これを先端押出し口の方向から引張る作用を上記特定の引張部のスクリューによって付与することができるためであると考えられる。
【0017】
上記引張部は,従来の拡散部と同様のセラミック材料の均一な拡散効果を付与できる。これに加えて引張部は,上記L/Rが上記特定の値以上となる比較的長い長さを有するので,長い距離にわたって徐々にセラミック材料の送り量をスムーズに増やすことができ,セラミック材料の流動性を向上させることができると考えられる。
そして,この引張部の配設による流動性の向上によって,駆動系が従来のままであっても,セラミック材料の押出し速度を向上させることができる。
【0018】
この場合,上記引張部は,上記のごとく1回転当たりのセラミック材料の送り量を先端押出し口の方向に行くにつれて徐々に多くしてあり,その外径Rと長さLとの比L/Rを1.0以上とする。このL/Rが1.0未満の場合には,セラミック材料の押出し速度の向上を十分に得ることができないおそれがある。なお,上記L/Rとしては,1.5以上がより好ましく,さらには,2.0以上が好ましい。なお,上限は,混練部,濾過部及び駆動系の大幅な改造を伴う必要がないという理由により,4.0以下であることが好ましい。
【0019】
次に,請求項3の発明のように,上記加圧部における加圧部最先端山の1回転当りの送り量に対する,上記引張部における引張部基端山の1回転当りの送り量の割合は,1.02以上であることが好ましい。
【0020】
この場合には,加圧部最先端山の1回転当りの送り量(A)に対する引張部基端山1回転当りの送り量(B)の割合(B/A)が1.02以上であるので,加圧部により加圧されたセラミック材料を,一層スムーズに先端押出し口の方向に導くことができ,押出速度の向上を図ることができる。それ故,駆動系が従来のままでも,セラミック材料の押出速度を向上させることができる。
【0021】
上記の割合(B/A)が1.02未満の場合には,上記押出速度の向上を図ることが困難である。また,その上限は,混練部,濾過部及び動力系の大幅な改造を行なう必要がないという理由より,4.0とすることが好ましい。
上記の加圧部最先端山の1回転当りの送り量とは,上記加圧部の最先端位置における,スクリュー寸法の単純計算値で効率等を加味しない,スクリュー1回転当りのセラミック材料の送り量をいう。
【0022】
また,上記の引張部基端山の1回転当りの送り量とは,上記引張部の基端における,スクリュー寸法の単純計算値で,効率等を加味しない,スクリュー1回転当りのセラミック材料の送り量をいう(実施形態例参照)。
【0023】
次に,請求項4の発明のように,上記加圧部における加圧部山の平均送り量に対する,上記引張部における引張部山の平均送り量の割合は,1.02以上であることが好ましい。
【0024】
この場合には,加圧部山の平均送り量(C)に対する引張部山の平均送り量(D)の割合(D/C)が1.02以上であるため,加圧部より加圧されたセラミック材料を一層スムーズに先端押出し口の方向に導くことができ,押出速度の向上を図ることができる。それ故,駆動系が従来のままでも,セラミック材料の押出速度を向上させることができる。
【0025】
上記の割合(D/C)が1.02未満の場合には,上記押出速度の向上を図れないおそれがある。また,その上限は,混練部,濾過部及び動力系の大幅な改善を行なう必要がないとの理由により4.0とすることが好ましい。
また,上記加圧部山の平均送り量とは,加圧部基端山部及び加圧部先端山部におけるスクリュー寸法の単純計算値で,効率等を加味しない,スクリュー1回転当りのセラミック材料の送り量を,両者加算して2分した値をいう。
また,引張部山の平均送り量とは,引張部基端山部及び引張部先端山部におけるスクリュー寸法の単純計算値で,効率等を加味しない,スクリュー1回転当りのセラミック材料の送り量を,両者加算して2分した値をいう。
【0026】
次に,請求項5の発明のように,上記混練部は,上記加圧部の先端部及び上記引張部の基端部よりも1回転当たりの送り量を少なくしてあることが好ましい。
この場合には,上記加圧部を通過することによって高圧になったセラミック材料がさらに混練部において高圧状態となるので,上記引張部の作用をさらに有効に発揮することができる。
【0027】
また,請求項6の発明のように,上記スクリュー押出機の先端押出し口にはセラミック材料を濾過するための濾過装置を配設してあり,該濾過装置と上記スクリューの先端との間隔が1mm以上30mm以下であることが好ましい。
この場合には,上記濾過装置とスクリュー先端との間にセラミック材料の塊等が滞留するのを抑制することができ,セラミック材料の押出し速度の更なる向上を図ることができる。
【0028】
また,1mm未満の場合には,濾過装置に滞留しているセラミック材料塊や異物等とスクリュー先端が接触し,濾過装置及びスクリュー先端が損傷を生ずるおそれがある。
一方,30mmを越えると上記押出し速度の更になる向上が困難となるおそれがある。なお,更に好ましくは,5〜10mmである。
【0029】
また,請求項7の発明のように,上記スクリュー押出機の先端押出し口の方向には,ハニカム構造体成形用の成形型を配設してあり,該成形型によってセラミックハニカム構造体を成形するよう構成することができる。
セラミックハニカム構造体は,多数のセルを有する複雑な形状を有しており,成形型を通過する押出し圧力が非常に高い。そのため,上記引張部の設置によるセラミック材料の流動性の向上が,成形型における押出し速度を向上させることができ,生産性の向上を図ることができる。
【0030】
次に,請求項8の発明のように,ハウジング内にスクリューを内蔵し,該スクリューを回転することにより上記ハウジング内に導入されたセラミック材料を先端押出し口から押出すよう構成されたスクリュー押出機を有する押出成形装置において,
上記スクリュー押出機に内蔵された上記スクリューは,1回転当りの送り量を先端押出し口の方向に行くにつれて徐々に少なくしてある加圧部と該加圧部よりも先端押出し口の方向に配設され,1回転当たりの送り量を先端押出し口の方向に行くにつれて徐々に多くした引張部とを有することを特徴とする押出成形装置がある。
【0031】
本発明においては,加圧部に続けて上記特定の引張部を配設している。即ち,引張部は,1回転当りの送り量を先端押出し口の方向に行くにつれて徐々に多くしてある。
そのため,加圧部から押し出されて来たセラミック材料は,上記引張部によって直ちに積極的に先端押出し口に向って押し出すことができ,スクリュー押出機によるセラミック材料の押出速度を高めることができる。
【0032】
そのため,セラミック材料をスムーズに先端押出し口へ導くことができる。また,スクリューの先端部分に上記引張部を設けることにより,上記作用効果が得られるので,駆動系の大幅な改造も必要としない。
【0033】
また,本発明の場合は,セラミック材料が加圧部等において既に充分に混練されている場合,特に混練部を経由させることなく,先端押出し口に送ることができ,装置も簡単で押出成形品の製造コストも安くすることができる。
【0034】
したがって,本発明によれば,駆動系の大幅な改造を行うことなく,セラミック材料の押出し速度を向上させることができる押出成形装置を提供することができる。
【0035】
次に上記加圧部は1回転当りの送り量を先端押出し口の方向に行くにつれて徐々に少なくしてある
【0036】
この場合には,加圧部は1回転当りの送り量が先端押出し口の方向に行くにしたがって徐々に小さくなっており,一方引張部は上記送り量が先端押出し口の方向に行くにしたがって徐々に多くなっている。
そのため,加圧部において加圧されたセラミック材料をスムーズに先端押出し口の方向へ導くことができる。
【0037】
次に,請求項9の発明のように,上記引張部の外径をR,長さをLとした場合,L/R≧1.0であることが好ましい。
この場合には,請求項2の場合と同様に,特定の形状の引張部をスクリューの先端に設けてある。そのため,上記加圧部により加圧されたセラミック材料をスムーズに先端押出し口に導き,押出し速度の向上を図ることができる。
その理由などは,請求項2に関する記載と同様である。
【0038】
次に,請求項10の発明のように,上記加圧部における加圧部最先端山の1回転当りの送り量に対する,上記引張部における引張部基端山の1回転当りの送り量の割合は,1.02以上であることが好ましい。
【0039】
この場合には,加圧部最先端山の1回転当りの送り量(A)に対する引張部基端山1回転当りの送り量(B)の割合(B/A)が1.02以上であるので,加圧部により加圧されたセラミック材料を,一層スムーズに先端押出し口の方向に導くことができ,押出速度の向上を図ることができる。それ故,駆動系が従来のままでも,セラミック材料の押出速度を向上させることができる。
その理由などは,請求項3に関する記載と同様である。
【0040】
次に,請求項11の発明のように,上記加圧部における加圧部山の平均送り量に対する,上記引張部における引張部山の平均送り量の割合は,1.02以上であることが好ましい。
【0041】
この場合には,加圧部山の平均送り量(C)に対する引張部山の平均送り量(D)の割合(D/C)が1.02以上であるため,加圧部より加圧されたセラミック材料を一層スムーズに先端押出し口の方向に導くことができ,押出速度の向上を図ることができる。それ故,駆動系が従来のままでも,セラミック材料の押出速度を向上させることができる。
その理由などは,請求項4に関する記載と同様である。
【0042】
次に,請求項12の発明のように,上記スクリュー押出機の先端押出し口にはセラミック材料を濾過するための濾過装置を配設してあり,該濾過装置と上記スクリューの先端との間隔が1mm以上30mm以下であることが好ましい。
この場合には,上記濾過装置とスクリュー先端との間にセラミック材料の塊等が滞留するのを抑制することができ,セラミック材料の押出し速度の更なる向上を図ることができる。
その理由などは,請求項6に関する記載と同様である。
【0043】
次に,請求項13の発明のように,上記スクリュー押出機の先端押出し口の方向には,ハニカム構造体成形用の成形型を配設してあり,該成形型によってセラミックハニカム構造体を成形するよう構成することができる。
セラミックハニカム構造体は,多数のセルを有する複雑な形状を有しており,成形型を通過する押出し圧力が非常に高い。そのため,上記引張部の設置によるセラミック材料の流動性の向上が,成形型における押出し速度を向上させることができ,生産性の向上を図ることができる。
【0044】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる押出成形装置につき,図1を用いて説明する。
本例の押出成形装置1は,前述した図9に示すごときハニカム構造体8を製造するための押出成形装置である。
この押出成形装置1は,ハウジング29,39内にスクリュー4,5を内蔵し,該スクリュー4,5を回転することにより上記ハウジング29,39内に導入されたセラミック材料80を先端押出し口68,69から押出すよう構成されたスクリュー押出機2,3を有する。
【0045】
上記スクリュー押出機2,3に内蔵された上記スクリュー4,5は,1回転当たりの送り量を先端押出し口の方向に行くにつれて徐々に少なくした加圧部41,51と,該加圧部41,51よりも先端押出し口の方向に配設され,1回転当たりの送り量を先端押出し口の方向に行くにつれて徐々に多くした引張部43,53とを有してなる。該引張部43,53の外径をR,長さをLとした場合,L/Rはいずれも2.5とした。
また,各スクリュー4,5における加圧部41,51と引張部43,53との間には,加圧部の先端部及び上記引張部の基端部よりも1回転当たりの送り量を少なくした混練部42,52を設けた。
【0046】
上記加圧部41,51は,リード部410,510を一重螺旋状に巻回したものであり,その巻き間隔を先端押出し口の方向に行くにつれて徐々に狭めてある。なお,加圧部41,51における送り量の変化は,リード部410,510の間隔調整以外に,軸部415,515の軸径を徐々に太くすることにより得ることができ,いずれか一方あるいは両方によって送り量の調整ができる。本例では,リード部410,510の間隔を狭めてある。
上記混練部42,52は,円錐面を前後に有する円盤部420,520を複数等間隔をあけて配設したものである。円盤部420,520には,図示していない切り欠き部を設けて混練部42,52内でのセラミック材料の流動性を少し高めてある。
【0047】
上記引張部43,53は,リード部430,530を一重螺旋状に巻回したものであり,その巻き間隔を先端押出し口の方向に行くにつれて広げてある。なお,引張部43,53における送り量の変化は,リード部430,530の間隔の調整以外に,軸部435,535の軸径を徐々に細くすることにより得ることができ,いずれか一方あるいは両方によって送り量の調整ができる。本例では,リード部430,530の間隔を徐々に広げると共に軸部435,535の軸径を徐々に細くしてある。
【0048】
ここで,上段のスクリュー4における1回転当たりの送り量の関係を示すと,加圧部41の最先端部の送り量を1とした場合,混練部42はほぼ0,引張部43の基端部は約1.5となる。
また,下段のスクリュー5における1回転当たりの送り量の関係を示すと,加圧部51の最先端部の送り量を1とした場合,混練部52はほぼ0,引張部53の基端部は約1.1となる。
【0049】
また,本例では,各スクリュー押出機2,3の先端押出し口にはセラミック材料80を濾過するための濾過装置62,63を配設した。そして,濾過装置62,63における濾過部621,631とスクリュー4,5の先端との間隔をいずれも10mmとした。
また,上段のスクリュー押出機2と下段のスクリュー押出機3との間は真空室13により連結し,下段のスクリュー押出機3の先端押出し口の方向には,抵抗管12を介してハニカム構造体用の成形型11を接続した。
また,上記ハニカム構造体8は,図9に示すごとく,セラミック材料によって形成された隔壁81と,その間に形成された四角状のセル88を有する円柱体であり,その軸方向に多数の上記セル88が貫通している。
【0050】
次に,本例の作用効果につき説明する。
本例の押出成形装置1においては,上記のごとく,特定の形状の引張部43,53をスクリュー4,5の先端に設けてある。そのため,上記加圧部41,51により加圧されたセラミック材料80をスムーズに先端押出し口68,69に導き,押出し速度の向上を図ることができる。
【0051】
実際に,上記押出成形装置1を用いて,コーディエライトを形成するセラミック材料80を押出し成形し,従来の押出成形装置9(図10)の場合と押出し速度を比較した。本例の押出成形装置1と従来の押出成形装置9との違いは,スクリュー4,5の構成のみであり,駆動系はまったく同じとした。
本例の押出成形装置1を用いたハニカム構造体8の押出し速度は,従来の押出成形装置9を用いた場合の,約3倍に向上した。
【0052】
この理由は,加圧部41,51によって高圧化したセラミック材料80を,その後方からの押出し圧力のみによって先端押出し口の方向に押出すのではなく,これを先端押出し口の方向から引張る作用を上記特定の引張部43,53によって付与することができるためであると考えられる。
【0053】
さらに,本例では,濾過装置62,63とスクリュー4,5の先端との間隔が1〜30mmの範囲の10mmであるので,セラミック材料の塊等の滞留を抑制することができ,これによっても,セラミック材料80の押出し速度の更なる向上が図れたと考えられる。
【0054】
実施形態例2
本例は,図2に示すごとく,引張部46,56に,各2本のリード部461(561),462(562)を配置して,二重螺旋状に巻回した例である。その他は実施形態例1と同様である。
この場合には,特にセラミック材料塊等の滞留抑制により一層の効果が得られる。その他は実施形態例1と同様の作用効果が得られる。
【0055】
実施形態例3
本例は,図3〜図5に示すごとく,実施形態例1におけるスクリュー押出機2,3の加圧部,引張部における上記割合(B/A)及び上記割合(D/C)に関する例である。
なお,本例においては,スクリュー5を代表例として説明する。本例のスクリュー押出機3は,図3に示すごとく,ハウジング39内に配設されており,加圧部51と混練部52と引張部53とを有する。
【0056】
そして,加圧部51は軸部515とリード部510を有する。また,混練部52は円盤部520を有する。また,引張部53は,リード部530を有する。
また,加圧部51は,スクリューを支持する支持軸500との境界部分に加圧部基端山517を有し,一方混練部52との境界部分に加圧部最先端山518を有する。また,引張部53は,混練部52との境界部分に,引張部基端山537を,また先端押出し口の方向に引張部先端山538を有する。そして,引張部53の外径,つまり引張部53のリード部530の外径はR,引張部53の長さ,つまり引張部基端山537から引張部先端山538の長さはLである。
【0057】
そして,本例においては,上記の加圧部最先端山518におけるスクリュー1回転当りの送り量(A)に対する,引張部基端山537におけるスクリュー1回転当りの送り量(B)の割合は,1.02以上とした。
そして,図4には,このように構成したスクリュー押出機3における,加圧部と引張部それぞれにおける送り量の変化,つまり加圧部基端山517と加圧部最先端山518の間の送り量の変化,引張部基端山537と引張部先端山538との間の送り量の変化を示した。なお,同図に示す送り量は加圧部最先端山518における送り量を1.0とした場合の値を示している。
【0058】
同図より,加圧部最先端山の1回転当りの送り量(A)に対する引張部基端山の1回転当りの送り量(B)の割合(B/A)は1.02である。
また,図5には,上記加圧部51,引張部53における平均送り量をそれぞれ例示した。同図より,加圧部山の平均送り量(C)は1.0,引張部山の平均送り量(D)は1.02であり,その割合(D/C)は1.02である。
【0059】
以上のごとく,本例では,上記割合(B/A)を1.02以上としてある。
そのため,加圧部より加圧されたセラミック材料をスムーズに先端押出し口の方向に導くことができ,押出速度の向上を図ることができる。それ故,駆動系が従来のままでも,セラミック材料の押出速度を向上させることができる。
また,上記割合(D/C)を1.02以上としてある。そのため,上記と同様の効果を得ることができる。
その他は,実施形態例1と同様であり,実施形態例1と同様の効果を得ることができる。
【0060】
実施形態例4
本例は,図6に示すごとく,実施形態例1において,引張部53における,スクリューのリード部530を一重螺旋としたものである。
また,他の例として,図7に示すごとく,引張部53における,スクリューのリード部530を二重螺旋としたものである。
その他は,実施形態例1と同様であり,図6の場合は実施形態例1と,また図7の場合は実施形態例2と同様の効果を得ることができる。
【0061】
実施形態例5
本例は,図8に示すごとく,加圧部51と引張部53とを連設した例である。
即ち,本例のスクリュー押出機においては,実施形態例3に示した混練部52を省略して,加圧部51の後流側に直接に引張部53を設けてある。その他は,実施形態例3と同様である。
そのため,加圧部51から押し出されて来たセラミック材料は,上記引張部53によって直ちに積極的に先端押出し口69に向って押し出すことができ,スクリュー押出機によるセラミック材料の押出速度を高めることができる。
【0062】
それ故,セラミック材料をスムーズに先端押出し口69へ導くことができる。また,スクリューの先端部分に上記引張部53を設けることにより,上記作用効果が得られるので,駆動系の大幅な改造も必要としない。
【0063】
また,本例の場合は,セラミック材料が加圧部等において既に充分に混練されている場合,特に混練部を経由させることなく,先端押出し口に送ることができ,装着も簡単で押出成形品の製造コストも安くすることができる。
【図面の簡単な説明】
【図1】実施形態例1における,押出成形装置の構造を示す説明図。
【図2】実施形態例2における,スクリューの構造を示す説明図。
【図3】実施形態例3における,スクリューの構造を示す説明図。
【図4】実施形態例3における,加圧部,引張部の送り量の説明図。
【図5】実施形態例3における,加圧部,引張部の平均送り量の説明図。
【図6】実施形態例4における,スクリューの構造を示す説明図。
【図7】実施形態例4における,別例のスクリューの構造を示す説明図。
【図8】実施形態例5における,スクリューの構造を示す説明図。
【図9】従来例における,ハニカム構造体の構造を示す説明図。
【図10】従来例における,押出成形装置の構造を示す説明図。
【符号の説明】
1...押出成形装置,
11...成形型,
2,3...スクリュー押出機,
29,39...ハウジング,
4,5...スクリュー,
41,51...加圧部,
42,52...混練部,
43,46,53,56...引張部,
410,430,461,462,510,530,561,562...リード部,
518...加圧部最先端山,
537...引張部基端山,
68,69...先端押出し口,
8...ハニカム構造体,
80...セラミック材料,
[0001]
【Technical field】
The present invention relates to an extrusion molding apparatus for molding a ceramic molded body such as a ceramic honeycomb structure.
[0002]
[Prior art]
For example, as shown in FIG. 9 to be described later, a ceramic honeycomb structure 8 in which a large number of cells 88 are provided by partition walls 81 is used as a catalyst carrier of an automobile exhaust gas purification device. The honeycomb structure 8 is usually manufactured by extrusion molding.
For example, as shown in FIG. 10, a conventional honeycomb structure extrusion molding apparatus 9 includes a molding die 11 for molding the honeycomb structure 8 and a two-stage screw that continuously kneads and extrudes the ceramic material 80. Extruders 92 and 93 are provided.
[0003]
As shown in the figure, the screw extruders 92 and 93 include screws 94 and 95 built in the housings 929 and 939, and the ceramic material 80 introduced into the housings 929 and 939 by rotating the screws 94 and 95. Is extruded from the tip extrusion port. Screws 94 and 95 are kneadings in which a plurality of pressure parts 41 and 51 formed by spirally winding lead parts 410 and 510 and disk-shaped flange parts 420 and 520 are arranged at intervals in the axial direction. Part 42,52. Conical tip portions 945 and 955 are provided in the direction of the tip extrusion port of the kneading portions 42 and 52.
[0004]
Further, filtration devices 62 and 63 are provided at the tip extrusion ports of the screw extruders 92 and 93, respectively. The ceramic material 80 is extruded and formed as a honeycomb structure 8 from the forming die 11 disposed through the resistance tube 12 in the direction of the tip extrusion port of the lower screw extruder 93.
In addition, as a screw extruder, there may be only one stage, and there may be three or more stages.
[0005]
[Problems to be solved]
Incidentally, the conventional extrusion molding apparatus 9 has the following problems.
That is, the speed at which the ceramic material 80 is extruded from the screw extruders 93 and 94 is reflected in the extrusion speed of the ceramic molded body such as the honeycomb structure 8. And the faster the extrusion speed of the screw extruder, the more efficient the ceramic molded body can be produced.
[0006]
The extrusion speed of the screw extruders 92 and 93 can be increased by increasing the rotational speed of the built-in screws 94 and 95, but the drive system of the equipment needs to be remodeled easily and is easily implemented. Is difficult.
Therefore, it has been desired to develop a technique for efficiently increasing the extrusion speed of the screw extruder without much modification to the drive system.
[0007]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an extrusion molding apparatus capable of improving the extrusion speed of a ceramic material without significantly modifying the drive system. .
[0008]
[Means for solving problems]
  The invention according to claim 1 is an extrusion molding apparatus having a screw extruder configured to incorporate a screw in a housing and to extrude the ceramic material introduced into the housing from a tip extrusion port by rotating the screw. In
  The screw incorporated in the screw extruder has a pressurizing part and a tension part arranged in the direction of the tip extrusion port from the pressurizing part,
A kneading part for kneading the ceramic material is provided between the pressure part and the tension part.And
The pressurizing part gradually reduces the feed amount per rotation as it goes in the direction of the tip extrusion port,
In addition, the tension part increases the feed amount per rotation in the direction of the tip extrusion port.The present invention provides an extrusion apparatus.
[0009]
The most notable point in the present invention is that the screw has the pressing portion, a kneading portion for kneading the ceramic material, and the tension portion.
[0010]
Next, the effects of the present invention will be described.
In the present invention, the screw has a tension part on the downstream side of the pressurizing part and the kneading part. For this reason, when the ceramic material extruded from the pressurizing part comes out of the kneading part, the ceramic material is positively pushed out further toward the tip extrusion port by the tension part. Therefore, the extrusion speed of the ceramic material by the screw extruder can be improved.
[0011]
Therefore, the ceramic material can be smoothly guided to the tip extrusion port. In addition, since the above-mentioned effect can be obtained by providing the above-mentioned tension portion at the tip portion of the screw, no major modification of the drive system is required.
[0012]
Therefore, according to the present invention, it is possible to provide an extrusion molding apparatus capable of improving the extrusion speed of the ceramic material without significantly modifying the drive system.
[0013]
As the ceramic molded body formed by the extrusion molding apparatus of the present invention, in addition to the honeycomb structure shown in the first embodiment, sheets, round bars, pipes, and thin-walled honeycombs, thin-sheets, thin rounds that are these thin-walled bodies. There are sticks, thin-walled pipes, etc.
[0014]
  next,The pressure part gradually decreases the feed amount per rotation as it goes in the direction of the tip extrusion port, and the tension part increases the feed amount per rotation in the direction of the tip extrusion port. Have.
[0015]
In this case, the pressurizing unit gradually decreases as the feed amount per rotation goes in the direction of the tip extrusion port, while the tension unit gradually increases as the feed rate goes in the direction of the tip extrusion port. Has increased.
Therefore, the ceramic material pressurized in the pressurizing portion can be smoothly guided toward the tip extrusion port. Therefore, the extrusion speed of the ceramic material can be improved. In addition, no major modification of the drive system is required.
[0016]
  next,Claim 2When the outer diameter of the tension part is R and the length is L, as in the invention, it is preferable that L / R ≧ 1.0.
  In this case, as described above, a tension portion having a specific shape is provided at the tip of the screw. Therefore, the ceramic material pressurized by the pressure unit can be smoothly guided to the tip extrusion port, and the extrusion speed can be improved.
  This is not to extrude the ceramic material whose pressure has been increased by the pressurizing part in the direction of the tip extrusion port only by the extrusion pressure from the back, but to pull the ceramic material from the direction of the tip extrusion port. This is considered to be because it can be applied by the screw of the part.
[0017]
The tension part can give a uniform diffusion effect of the ceramic material similar to the conventional diffusion part. In addition, since the tension portion has a relatively long length where the L / R is equal to or greater than the specific value, the feeding amount of the ceramic material can be gradually increased over a long distance. It is thought that fluidity can be improved.
Further, by improving the fluidity by the arrangement of the tension portion, the extrusion speed of the ceramic material can be improved even if the drive system remains the same.
[0018]
In this case, as described above, the tension portion gradually increases the feed amount of the ceramic material per rotation as it goes in the direction of the tip extrusion port, and the ratio L / R between the outer diameter R and the length L thereof. Is 1.0 or more. When this L / R is less than 1.0, there is a possibility that sufficient improvement in the extrusion speed of the ceramic material cannot be obtained. In addition, as said L / R, 1.5 or more are more preferable, Furthermore, 2.0 or more are preferable. The upper limit is preferably 4.0 or less because the kneading part, the filtering part, and the drive system do not need to be significantly modified.
[0019]
  next,Claim 3As in the invention of the present invention, the ratio of the feed amount per one rotation of the tension portion base mountain in the tension portion to the feed amount per one rotation of the pressure portion most advanced mountain in the pressure portion is 1.02 or more. It is preferable that
[0020]
In this case, the ratio (B / A) of the feed amount (B) per revolution of the tensile base end mountain to the feed amount (A) per revolution of the most advanced pressure portion mountain is 1.02 or more. Therefore, the ceramic material pressurized by the pressure unit can be guided more smoothly in the direction of the tip extrusion port, and the extrusion speed can be improved. Therefore, the extrusion speed of the ceramic material can be improved even if the drive system is the same as before.
[0021]
When the ratio (B / A) is less than 1.02, it is difficult to improve the extrusion speed. Further, the upper limit is preferably set to 4.0 because it is not necessary to make significant modifications to the kneading section, the filtration section and the power system.
The feed amount per revolution of the most advanced part of the pressurizing part is the feed rate of the ceramic material per revolution of the screw at the most advanced position of the pressurizing part, without taking into account the efficiency etc. Say quantity.
[0022]
In addition, the feed amount per rotation of the above-mentioned tension part base end peak is a simple calculation value of the screw dimensions at the base end of the above-mentioned tension part. Refers to an amount (see example embodiments).
[0023]
  next,Claim 4As in the invention, the ratio of the average feed amount of the tension part crest in the tension part to the average feed amount of the pressure part crest in the pressure part is preferably 1.02 or more.
[0024]
In this case, since the ratio (D / C) of the average feed amount (D) of the tension crest to the average feed amount (C) of the pressurization crest is 1.02 or more, the pressure is applied from the pressurization portion. The ceramic material can be guided more smoothly toward the tip extrusion port, and the extrusion speed can be improved. Therefore, the extrusion speed of the ceramic material can be improved even if the drive system is the same as before.
[0025]
If the ratio (D / C) is less than 1.02, the extrusion speed may not be improved. The upper limit is preferably set to 4.0 for the reason that it is not necessary to significantly improve the kneading part, the filtering part and the power system.
Moreover, the average feed amount of the pressure part crest is a simple calculation value of the screw dimensions at the base part of the pressure part and the crest part of the pressure part, and does not take into account efficiency etc. This is the value obtained by adding both to the feed amount.
In addition, the average feed amount of the tension crest is a simple calculated value of the screw dimensions at the base end crest of the tension portion and the tip crest of the tension portion. The feed rate of the ceramic material per rotation of the screw does not take efficiency into account. , The value obtained by adding the two and dividing into two.
[0026]
  next,Claim 5As in the invention, it is preferable that the kneading part has a smaller amount of feed per rotation than the distal end part of the pressurizing part and the proximal end part of the tension part.
  In this case, since the ceramic material that has become high pressure by passing through the pressurizing part is in a high pressure state in the kneading part, the action of the tension part can be more effectively exhibited.
[0027]
  Also,Claim 6As described in the invention, a filter device for filtering the ceramic material is disposed at the tip extrusion port of the screw extruder, and the distance between the filter device and the screw tip is 1 mm or more and 30 mm or less. It is preferable.
  In this case, it is possible to prevent the lump of the ceramic material from staying between the filtration device and the screw tip, and to further improve the extrusion speed of the ceramic material.
[0028]
If the thickness is less than 1 mm, the screw tip may come into contact with the ceramic material block or foreign matter remaining in the filtration device, which may cause damage to the filtration device and the screw tip.
On the other hand, if it exceeds 30 mm, further improvement of the extrusion speed may be difficult. In addition, More preferably, it is 5-10 mm.
[0029]
  Also,Claim 7As described above, a forming die for forming a honeycomb structure is disposed in the direction of the tip extrusion port of the screw extruder, and the ceramic honeycomb structure can be formed by the forming die. it can.
  The ceramic honeycomb structure has a complicated shape having a large number of cells, and the extrusion pressure passing through the forming die is very high. Therefore, the improvement of the fluidity of the ceramic material due to the installation of the tension part can improve the extrusion speed in the mold, and the productivity can be improved.
[0030]
  next,Claim 8In an extrusion molding apparatus having a screw extruder configured to extrude a ceramic material introduced into the housing from a tip extrusion port by incorporating the screw in the housing and rotating the screw as in the invention of ,
  The screw built into the screw extruder isThe feed amount per rotation is gradually reduced as it goes in the direction of the tip extrusion port.Pressurization part,There is an extrusion molding apparatus characterized in that it has a tension portion that is disposed in the direction of the tip extrusion port rather than the pressurizing portion and gradually increases the feed amount per rotation in the direction of the tip extrusion port. .
[0031]
In the present invention, the specific tension portion is disposed after the pressurizing portion. That is, the tension portion gradually increases the feed amount per rotation as it goes in the direction of the tip extrusion port.
Therefore, the ceramic material extruded from the pressurizing part can be immediately and positively pushed out toward the tip extrusion port by the tension part, and the extrusion speed of the ceramic material by the screw extruder can be increased.
[0032]
Therefore, the ceramic material can be smoothly guided to the tip extrusion port. In addition, since the above-mentioned effect can be obtained by providing the above-mentioned tension portion at the tip of the screw, no major modification of the drive system is required.
[0033]
Further, in the case of the present invention, when the ceramic material is already sufficiently kneaded in the pressurizing section or the like, it can be sent to the tip extrusion port without going through the kneading section, and the apparatus is simple and the extrusion molded product. The manufacturing cost can be reduced.
[0034]
Therefore, according to the present invention, it is possible to provide an extrusion molding apparatus capable of improving the extrusion speed of the ceramic material without significantly modifying the drive system.
[0035]
  next,The pressurizing part gradually reduces the feed amount per rotation as it goes in the direction of the tip extrusion port..
[0036]
In this case, the pressurizing portion gradually decreases as the feed amount per rotation goes in the direction of the tip extrusion port, while the tension portion gradually increases as the feed amount goes in the direction of the tip extrusion port. Has increased.
Therefore, the ceramic material pressurized in the pressurizing portion can be smoothly guided toward the tip extrusion port.
[0037]
  next,Claim 9When the outer diameter of the tension part is R and the length is L, as in the invention, it is preferable that L / R ≧ 1.0.
  In this case,Claim 2As in the case of, a tension part having a specific shape is provided at the tip of the screw. Therefore, the ceramic material pressurized by the pressure unit can be smoothly guided to the tip extrusion port, and the extrusion speed can be improved.
  The reason isClaim 2It is the same as the description about.
[0038]
  next,Claim 10As in the invention of the present invention, the ratio of the feed amount per one rotation of the tensile portion base mountain in the tension portion to the feed amount per one rotation of the pressure portion most advanced mountain in the pressure portion is 1.02 or more. It is preferable that
[0039]
  In this case, the ratio (B / A) of the feed amount (B) per one rotation of the tensile base end mountain to the feed amount (A) per revolution of the most advanced pressure portion peak is 1.02 or more. Therefore, the ceramic material pressurized by the pressure unit can be guided more smoothly toward the tip extrusion port, and the extrusion speed can be improved. Therefore, the extrusion speed of the ceramic material can be improved even if the drive system is the same as before.
  The reason isClaim 3It is the same as the description about.
[0040]
  next,Claim 11As in the invention, the ratio of the average feed amount of the tension part crest in the tension part to the average feed amount of the pressure part crest in the pressure part is preferably 1.02 or more.
[0041]
  In this case, since the ratio (D / C) of the average feed amount (D) of the tension crest to the average feed amount (C) of the pressurization crest is 1.02 or more, the pressure is applied from the pressurization portion. The ceramic material can be guided more smoothly toward the tip extrusion port, and the extrusion speed can be improved. Therefore, the extrusion speed of the ceramic material can be improved even if the drive system is the same as before.
  The reason isClaim 4It is the same as the description about.
[0042]
  next,Claim 12As described in the invention, a filter device for filtering the ceramic material is disposed at the tip extrusion port of the screw extruder, and the distance between the filter device and the screw tip is 1 mm or more and 30 mm or less. It is preferable.
  In this case, it is possible to prevent the lump of the ceramic material from staying between the filtration device and the screw tip, and to further improve the extrusion speed of the ceramic material.
  The reason isClaim 6It is the same as the description about.
[0043]
  next,Claim 13As described above, a forming die for forming a honeycomb structure is disposed in the direction of the tip extrusion port of the screw extruder, and the ceramic honeycomb structure can be formed by the forming die. it can.
  The ceramic honeycomb structure has a complicated shape having a large number of cells, and the extrusion pressure passing through the forming die is very high. Therefore, the improvement of the fluidity of the ceramic material due to the installation of the tension part can improve the extrusion speed in the mold, and the productivity can be improved.
[0044]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
An extrusion apparatus according to an embodiment of the present invention will be described with reference to FIG.
The extrusion molding apparatus 1 of this example is an extrusion molding apparatus for manufacturing the honeycomb structure 8 as shown in FIG. 9 described above.
The extrusion molding apparatus 1 has screws 4 and 5 built in housings 29 and 39, and the ceramic materials 80 introduced into the housings 29 and 39 by rotating the screws 4 and 5 are inserted into the tip extrusion ports 68 and 68, respectively. A screw extruder 2, 3 configured to extrude from 69.
[0045]
The screws 4 and 5 incorporated in the screw extruders 2 and 3 include pressurizing units 41 and 51 in which the feed amount per rotation is gradually reduced toward the tip extrusion port, and the pressurizing unit 41 , 51 in the direction of the tip extrusion port, and has tension portions 43 and 53 that gradually increase the feed amount per rotation in the direction of the tip extrusion port. When the outer diameter of the tension portions 43 and 53 is R and the length is L, L / R is 2.5.
In addition, between the pressurizing parts 41 and 51 and the tension parts 43 and 53 in each of the screws 4 and 5, the feed amount per rotation is smaller than that of the front end part of the pressurization part and the base end part of the tension part. The kneading sections 42 and 52 were provided.
[0046]
The pressurizing parts 41 and 51 are obtained by winding the lead parts 410 and 510 in a single spiral shape, and the winding interval is gradually narrowed in the direction of the tip extrusion port. The change in the feed amount in the pressurizing parts 41 and 51 can be obtained by gradually increasing the shaft diameters of the shaft parts 415 and 515 in addition to the adjustment of the distance between the lead parts 410 and 510. The feed amount can be adjusted by both. In this example, the interval between the lead portions 410 and 510 is narrowed.
The kneading parts 42 and 52 are formed by arranging a plurality of disk parts 420 and 520 having front and rear conical surfaces at equal intervals. The disk portions 420 and 520 are provided with notch portions (not shown) to slightly improve the fluidity of the ceramic material in the kneading portions 42 and 52.
[0047]
The tension portions 43 and 53 are obtained by winding the lead portions 430 and 530 in a single spiral shape, and the winding interval is widened in the direction of the tip extrusion port. The change in the feed amount in the tension portions 43 and 53 can be obtained by gradually reducing the shaft diameter of the shaft portions 435 and 535 in addition to the adjustment of the interval between the lead portions 430 and 530. The feed amount can be adjusted by both. In this example, the interval between the lead portions 430 and 530 is gradually increased and the shaft diameters of the shaft portions 435 and 535 are gradually reduced.
[0048]
Here, the relationship of the feed amount per rotation in the upper stage screw 4 is shown. When the feed amount at the most advanced portion of the pressurizing unit 41 is 1, the kneading unit 42 is almost 0, and the base end of the tension unit 43 is The part is about 1.5.
Further, the relationship of the feed amount per rotation in the lower stage screw 5 is shown. When the feed amount at the most advanced portion of the pressurizing portion 51 is 1, the kneading portion 52 is almost 0, and the base end portion of the tension portion 53 Is about 1.1.
[0049]
Further, in this example, filtration devices 62 and 63 for filtering the ceramic material 80 are disposed at the tip extrusion ports of the screw extruders 2 and 3. And the space | interval of the filtration parts 621 and 631 in the filtration apparatuses 62 and 63 and the front-end | tip of the screws 4 and 5 was all 10 mm.
Further, the upper screw extruder 2 and the lower screw extruder 3 are connected by a vacuum chamber 13, and the honeycomb structure body is connected via a resistance tube 12 in the direction of the tip extrusion port of the lower screw extruder 3. A mold 11 was connected.
In addition, as shown in FIG. 9, the honeycomb structure 8 is a cylindrical body having partition walls 81 made of a ceramic material and square cells 88 formed therebetween, and a large number of the cells in the axial direction. 88 penetrates.
[0050]
Next, the effect of this example will be described.
In the extrusion molding apparatus 1 of the present example, as described above, the tension portions 43 and 53 having a specific shape are provided at the tips of the screws 4 and 5. Therefore, the ceramic material 80 pressurized by the pressure units 41 and 51 can be smoothly guided to the tip extrusion ports 68 and 69, and the extrusion speed can be improved.
[0051]
Actually, the extrusion molding apparatus 1 was used to extrude the ceramic material 80 forming cordierite, and the extrusion speed was compared with the case of the conventional extrusion molding apparatus 9 (FIG. 10). The difference between the extrusion molding apparatus 1 of this example and the conventional extrusion molding apparatus 9 is only the configuration of the screws 4 and 5, and the drive system is exactly the same.
The extrusion speed of the honeycomb structure 8 using the extrusion molding apparatus 1 of this example was improved about three times as compared with the case where the conventional extrusion molding apparatus 9 was used.
[0052]
The reason for this is that the ceramic material 80 which has been pressurized by the pressurizing parts 41 and 51 is not extruded in the direction of the tip extrusion port only by the extrusion pressure from the rear side, but is pulled from the direction of the tip extrusion port. It is thought that this is because it can be applied by the specific tension portions 43 and 53.
[0053]
Furthermore, in this example, since the distance between the filtering devices 62 and 63 and the tips of the screws 4 and 5 is 10 mm in the range of 1 to 30 mm, it is possible to suppress stagnation of a lump of ceramic material. It is considered that the extrusion speed of the ceramic material 80 can be further improved.
[0054]
Embodiment 2
In this example, as shown in FIG. 2, two lead portions 461 (561) and 462 (562) are arranged on the tension portions 46 and 56, respectively, and wound in a double spiral shape. Others are the same as the first embodiment.
In this case, a further effect can be obtained particularly by suppressing the retention of the ceramic material lump. In other respects, the same effects as those of the first embodiment can be obtained.
[0055]
Embodiment 3
As shown in FIGS. 3 to 5, this example is an example relating to the ratio (B / A) and the ratio (D / C) in the pressurizing section and the tension section of the screw extruders 2 and 3 in the first embodiment. is there.
In this example, the screw 5 will be described as a representative example. As shown in FIG. 3, the screw extruder 3 of this example is disposed in a housing 39 and includes a pressurizing part 51, a kneading part 52, and a tension part 53.
[0056]
The pressure unit 51 includes a shaft part 515 and a lead part 510. The kneading part 52 has a disk part 520. The tension part 53 has a lead part 530.
Further, the pressurizing unit 51 has a pressurizing unit base end mountain 517 at the boundary part with the support shaft 500 that supports the screw, and has a pressurizing unit most advanced mountain 518 at the boundary part with the kneading unit 52. Further, the tension part 53 has a tension part base peak 537 at the boundary part with the kneading part 52 and a tension part tip peak 538 in the direction of the tip extrusion port. The outer diameter of the tension portion 53, that is, the outer diameter of the lead portion 530 of the tension portion 53 is R, and the length of the tension portion 53, that is, the length of the tension portion base end peak 537 to the tension portion distal end peak 538 is L. .
[0057]
In this example, the ratio of the feed amount (B) per rotation of the screw in the tension base hill 537 to the feed amount (A) per rotation of the screw in the above-mentioned pressurization portion cutting edge 518 is: 1.02 or more.
FIG. 4 shows a change in the feed amount in each of the pressure part and the tension part in the screw extruder 3 configured as described above, that is, between the pressure part base end mountain 517 and the pressure part most advanced mountain 518. A change in the feed amount and a change in the feed amount between the tensile portion base peak 537 and the tensile portion tip peak 538 are shown. In addition, the feed amount shown in the figure shows a value when the feed amount at the pressure-applying portion cutting edge 518 is 1.0.
[0058]
From the figure, the ratio (B / A) of the feed amount (B) per one rotation of the tension portion base mountain to the feed amount (A) per revolution of the pressing portion most advanced mountain is 1.02.
FIG. 5 illustrates the average feed amount in the pressurizing part 51 and the tension part 53, respectively. According to the figure, the average feed amount (C) of the pressurization crest is 1.0, the average feed amount (D) of the tension crest is 1.02, and the ratio (D / C) is 1.02. .
[0059]
As described above, in this example, the ratio (B / A) is set to 1.02 or more.
Therefore, the ceramic material pressurized from the pressurizing part can be smoothly guided in the direction of the tip extrusion port, and the extrusion speed can be improved. Therefore, the extrusion speed of the ceramic material can be improved even if the drive system is the same as before.
The ratio (D / C) is set to 1.02 or more. Therefore, the same effect as described above can be obtained.
Others are the same as in the first embodiment, and the same effects as in the first embodiment can be obtained.
[0060]
Embodiment 4
In this example, as shown in FIG. 6, the lead part 530 of the screw in the tension part 53 is a single helix in the first embodiment.
As another example, as shown in FIG. 7, the lead portion 530 of the screw in the tension portion 53 is a double helix.
Others are the same as those of the first embodiment. In the case of FIG. 6, the same effects as those of the first embodiment can be obtained, and in the case of FIG. 7, the same effects as those of the second embodiment can be obtained.
[0061]
Embodiment 5
In this example, as shown in FIG. 8, a pressurizing part 51 and a tension part 53 are connected in series.
That is, in the screw extruder of this example, the kneading part 52 shown in the third embodiment is omitted, and the tension part 53 is provided directly on the downstream side of the pressurizing part 51. Others are the same as the third embodiment.
Therefore, the ceramic material extruded from the pressurizing unit 51 can be immediately and positively pushed out toward the tip extrusion port 69 by the pulling unit 53, thereby increasing the extrusion speed of the ceramic material by the screw extruder. it can.
[0062]
Therefore, the ceramic material can be smoothly guided to the tip extrusion port 69. Further, since the above-mentioned effect can be obtained by providing the tension portion 53 at the tip portion of the screw, no significant modification of the drive system is required.
[0063]
In the case of this example, if the ceramic material has already been sufficiently kneaded in the pressurizing section, etc., it can be sent to the tip extrusion port without going through the kneading section. The manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing the structure of an extrusion molding apparatus in Embodiment 1;
FIG. 2 is an explanatory view showing the structure of a screw in Embodiment 2.
FIG. 3 is an explanatory view showing the structure of a screw in Embodiment 3;
FIG. 4 is an explanatory diagram of feed amounts of a pressurizing part and a tension part in Example 3 of the embodiment.
5 is an explanatory diagram of an average feed amount of a pressurizing part and a tension part in Embodiment 3. FIG.
FIG. 6 is an explanatory view showing a screw structure in Embodiment 4;
FIG. 7 is an explanatory view showing the structure of another example screw in the embodiment example 4;
FIG. 8 is an explanatory diagram showing the structure of a screw in Embodiment 5.
FIG. 9 is an explanatory view showing the structure of a honeycomb structure in a conventional example.
FIG. 10 is an explanatory view showing the structure of an extrusion molding apparatus in a conventional example.
[Explanation of symbols]
1. . . Extrusion equipment,
11. . . Mold,
2,3. . . Screw extruder,
29, 39. . . housing,
4,5. . . screw,
41,51. . . Pressure section,
42,52. . . Kneading section,
43, 46, 53, 56. . . Tension part,
410, 430, 461, 462, 510, 530, 561, 562. . . Lead part,
518. . . The most advanced mountain in the pressurization section,
537. . . Tensile base mountain,
68, 69. . . Tip extrusion port,
8). . . Honeycomb structure,
80. . . Ceramic materials,

Claims (13)

ハウジング内にスクリューを内蔵し,該スクリューを回転することにより上記ハウジング内に導入されたセラミック材料を先端押出し口から押出すよう構成されたスクリュー押出機を有する押出成形装置において,
上記スクリュー押出機に内蔵された上記スクリューは,加圧部と該加圧部よりも先端押出し口の方向に配設された引張部とを有し,
上記加圧部と引張部との間にはセラミック材料を混練する混練部を有し,
上記加圧部は1回転当りの送り量を先端押出し口の方向に行くにつれて徐々に少なくしてあり,
かつ,上記引張部は,1回転当りの送り量を先端押出し口の方向に行くにつれて多くしてあることを特徴とする押出成形装置。
In an extrusion apparatus having a screw extruder built in a screw and configured to extrude a ceramic material introduced into the housing from a tip extrusion port by rotating the screw.
The screw incorporated in the screw extruder has a pressurizing part and a tension part arranged in the direction of the tip extrusion port from the pressurizing part,
Between the pressing and pulling part it has a kneading section for kneading a ceramic material,
The pressurizing part gradually reduces the feed amount per rotation as it goes in the direction of the tip extrusion port,
And the said tension | pulling part is increasing the feed amount per rotation as it goes to the direction of a front-end | tip extrusion port, The extrusion molding apparatus characterized by the above-mentioned .
請求項1において,上記引張部の外径をR,長さをLとした場合,L/R≧1.0であることを特徴とする押出成形装置。  2. The extrusion molding apparatus according to claim 1, wherein when the outer diameter of the tension portion is R and the length is L, L / R ≧ 1.0. 請求項1又は2において,上記加圧部における加圧部最先端山の1回転当りの送り量に対する,上記引張部における引張部基端山の1回転当りの送り量の割合は,1.02以上であることを特徴とする押出成形装置。  3. The ratio of the feed amount per rotation of the tension portion base end mountain in the tension portion to the feed amount per rotation of the pressure portion most advanced mountain in the pressure portion according to claim 1 or 2 is 1.02. An extrusion apparatus characterized by the above. 請求項1〜3のいずれか一項において,上記加圧部における加圧部山の平均送り量に対する,上記引張部における引張部山の平均送り量の割合は,1.02以上であることを特徴とする押出成形装置。  In any one of Claims 1-3, The ratio of the average feed amount of the tension part crest in the said tension part with respect to the average feed amount of the pressurization part crest in the said pressurization part is 1.02 or more. An extrusion apparatus characterized. 請求項1〜4のいずれか一項において,上記混練部は,上記加圧部の先端部及び上記引張部の基端部よりも1回転当たりの送り量を少なくしてあることを特徴とする押出成形装置。  5. The kneading part according to any one of claims 1 to 4, wherein a feed amount per one rotation is smaller than that of a front end part of the pressurizing part and a base end part of the tension part. Extrusion equipment. 請求項1〜5のいずれか一項において,上記スクリュー押出機の先端押出し口にはセラミック材料を濾過するための濾過装置を配設してあり,該濾過装置と上記スクリューの先端との間隔が1mm以上30mm以下であることを特徴とする押出成形装置。  In any 1 item | term of Claims 1-5, the filtration apparatus for filtering a ceramic material is arrange | positioned in the front-end | tip extrusion port of the said screw extruder, The space | interval of this filtration apparatus and the front-end | tip of the said screw is set. An extrusion molding apparatus characterized by being 1 mm or more and 30 mm or less. 請求項1〜6のいずれか1項において,上記スクリュー押出機の先端押出し口の方向には,ハニカム構造体成形用の成形型を配設してあり,該成形型によってセラミックハニカム構造体を成形するよう構成されていることを特徴とする押出成形装置。  7. A ceramic honeycomb structure is formed in the direction of the tip extrusion port of the screw extruder according to claim 1, wherein a forming die for forming a honeycomb structure is provided. It is comprised so that it may perform. The extrusion molding apparatus characterized by the above-mentioned. ハウジング内にスクリューを内蔵し,該スクリューを回転することにより上記ハウジング内に導入されたセラミック材料を先端押出し口から押出すよう構成されたスクリュー押出機を有する押出成形装置において,  In an extrusion apparatus having a screw extruder built in a screw and configured to extrude a ceramic material introduced into the housing from a tip extrusion port by rotating the screw.
上記スクリュー押出機に内蔵された上記スクリューは,1回転当りの送り量を先端押出し口の方向に行くにつれて徐々に少なくしてある加圧部と,該加圧部よりも先端押出し口の方向に配設され,1回転当たりの送り量を先端押出し口の方向に行くにつれて徐々に多くした引張部とを有することを特徴とする押出成形装置。  The screw incorporated in the screw extruder includes a pressurizing portion in which the feed amount per one rotation is gradually reduced in the direction of the tip extrusion port, and the direction of the tip extrusion port from the pressurization portion. An extrusion apparatus characterized by having a tension portion that is disposed and gradually increases the feed amount per rotation in the direction of the tip extrusion port.
請求項8において,上記引張部の外径をR,長さをLとした場合,L/R≧1.0であることを特徴とする押出成形装置。  9. The extrusion molding apparatus according to claim 8, wherein L / R ≧ 1.0 when the outer diameter of the tension portion is R and the length is L. 請求項8又は9において,上記加圧部における加圧部最先端山の1回転当りの送り量に対する,上記引張部における引張部基端山の1回転当りの送り量の割合は,1.02以上であることを特徴とする押出成形装置。  The ratio of the feed amount per revolution of the tension base end mountain in the tension portion to the feed amount per revolution of the pressure portion most advanced mountain in the pressurization portion according to claim 8 or 9 is 1.02. An extrusion apparatus characterized by the above. 請求項8〜10のいずれか一項において,上記加圧部における加圧部山の平均送り量に対する,上記引張部における引張部山の平均送り量の割合は,1.02以上であることを特徴とする押出成形装置。  In any one of Claims 8-10, the ratio of the average feed amount of the tension part crest in the said tension part with respect to the average feed amount of the pressurization part crest in the said pressurization part is 1.02 or more. An extrusion apparatus characterized. 請求項8〜11のいずれか一項において,上記スクリュー押出機の先端押出し口にはセラミック材料を濾過するための濾過装置を配設してあり,該濾過装置と上記スクリューの先端との間隔が1mm以上30mm以下であることを特徴とする押出成形装置。  In any one of Claims 8-11, the filtration apparatus for filtering a ceramic material is arrange | positioned in the front-end | tip extrusion port of the said screw extruder, The space | interval of this filtration apparatus and the front-end | tip of the said screw is set | placed. An extrusion molding apparatus characterized by being 1 mm or more and 30 mm or less. 請求項8〜12のいずれか1項において,上記スクリュー押出機の先端押出し口の方向には,ハニカム構造体成形用の成形型を配設してあり,該成形型によってセラミックハニカム構造体を成形するよう構成されていることを特徴とする押出成形装置。  13. A honeycomb structure forming mold is disposed in the direction of the tip extrusion port of the screw extruder according to claim 8, and a ceramic honeycomb structure is formed by the mold. It is comprised so that it may perform. The extrusion molding apparatus characterized by the above-mentioned.
JP2001139178A 2000-05-12 2001-05-09 Extrusion equipment Expired - Lifetime JP4670173B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001139178A JP4670173B2 (en) 2000-05-12 2001-05-09 Extrusion equipment
DE10122937.2A DE10122937B4 (en) 2000-05-12 2001-05-11 Plodder
US09/852,917 US6790025B2 (en) 2000-05-12 2001-05-11 Extrusion molding apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000140212 2000-05-12
JP2000-140212 2000-05-12
JP2000-368916 2000-12-04
JP2000368916 2000-12-04
JP2001139178A JP4670173B2 (en) 2000-05-12 2001-05-09 Extrusion equipment

Publications (2)

Publication Number Publication Date
JP2002234012A JP2002234012A (en) 2002-08-20
JP4670173B2 true JP4670173B2 (en) 2011-04-13

Family

ID=27343359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001139178A Expired - Lifetime JP4670173B2 (en) 2000-05-12 2001-05-09 Extrusion equipment

Country Status (3)

Country Link
US (1) US6790025B2 (en)
JP (1) JP4670173B2 (en)
DE (1) DE10122937B4 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670174B2 (en) * 2000-06-30 2011-04-13 株式会社デンソー Ceramic sheet forming method and forming apparatus
JP4034124B2 (en) * 2002-06-05 2008-01-16 株式会社ブリヂストン Extruder screw and method for producing the same
DE10233213B4 (en) * 2002-07-22 2004-09-09 3+Extruder Gmbh extruder
JP4254187B2 (en) * 2002-09-27 2009-04-15 株式会社デンソー Ceramic molding extrusion equipment
JP4158472B2 (en) * 2002-10-01 2008-10-01 株式会社デンソー Ceramic molding extrusion equipment
US20070243409A1 (en) * 2004-03-19 2007-10-18 Denki Kagaku Kogyo Kabushiki Kaisha Process for Producing Ceramic Sheet, Ceramic Substrate Utilizing The Same and Use Thereof
JP4785358B2 (en) * 2004-08-17 2011-10-05 日本電産シンポ株式会社 Clay mill
JP2007160581A (en) * 2005-12-12 2007-06-28 Star Seiki Co Ltd Method and apparatus for dehumidifying and drying resin pellet
WO2007122680A1 (en) * 2006-04-13 2007-11-01 Ibiden Co., Ltd. Extrusion molding machine, method of extrusion molding and process for producing honeycomb structure
US20100052206A1 (en) * 2008-08-29 2010-03-04 Christopher Lane Kerr Extrusion Mixing Screw And Method Of Use
JP4805372B2 (en) * 2009-03-25 2011-11-02 日本碍子株式会社 Extrusion molding apparatus and method for producing molded body using the same
EP2353839B1 (en) * 2010-01-27 2014-12-10 Coperion GmbH Method and plant for degasing polymer melts
RU203652U1 (en) * 2019-11-01 2021-04-14 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Великолукская государственная сельскохозяйственная академия" PRESS EXTRUDER
CN112757642A (en) * 2020-04-02 2021-05-07 苏州美梦机器有限公司 Screw type feeding device, material extrusion system and method for 3D printing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144324A (en) * 1984-12-19 1986-07-02 Idemitsu Petrochem Co Ltd Extruding method of thermoplastic resin and extruding device therefor
JPS6241016A (en) * 1985-08-16 1987-02-23 Idemitsu Petrochem Co Ltd Screw for molding thermoplastic resin
JPH10119019A (en) * 1996-06-17 1998-05-12 Corning Inc Flow reversing homogenizer and method using it
JP2816356B2 (en) * 1990-06-28 1998-10-27 出光石油化学株式会社 Extrusion molding equipment
JPH1170303A (en) * 1997-08-29 1999-03-16 Babcock Hitachi Kk Strainer for extruder
JPH11216353A (en) * 1998-02-02 1999-08-10 Nippon Purakon Kk Extruder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685804A (en) * 1970-10-26 1972-08-22 Sterling Extruder Corp Mixing apparatus and method
CA1077922A (en) * 1976-07-14 1980-05-20 Paul Meyer Threaded multi start screw and barrel transfermixer
EP0213510B2 (en) * 1985-08-16 1995-01-11 Idemitsu Petrochemical Co. Ltd. Screw for molding thermoplastic resin
US4867927A (en) * 1987-02-13 1989-09-19 Idemitsu Petrochemical Co., Ltd. Process of producing thermplastic resin sheet and the like and molding screw therefor
JPS63207612A (en) * 1987-02-24 1988-08-29 日本碍子株式会社 Ceramic extruding method and device
JPH0643048B2 (en) * 1989-03-27 1994-06-08 日本碍子株式会社 Ceramic extrusion method and equipment used therefor
JPH0661825B2 (en) * 1989-07-12 1994-08-17 株式会社佐藤鉄工所 Soap extrusion machine
JP3635780B2 (en) * 1996-04-08 2005-04-06 株式会社デンソー Honeycomb structure forming apparatus and forming method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144324A (en) * 1984-12-19 1986-07-02 Idemitsu Petrochem Co Ltd Extruding method of thermoplastic resin and extruding device therefor
JPS6241016A (en) * 1985-08-16 1987-02-23 Idemitsu Petrochem Co Ltd Screw for molding thermoplastic resin
JP2816356B2 (en) * 1990-06-28 1998-10-27 出光石油化学株式会社 Extrusion molding equipment
JPH10119019A (en) * 1996-06-17 1998-05-12 Corning Inc Flow reversing homogenizer and method using it
JPH1170303A (en) * 1997-08-29 1999-03-16 Babcock Hitachi Kk Strainer for extruder
JPH11216353A (en) * 1998-02-02 1999-08-10 Nippon Purakon Kk Extruder

Also Published As

Publication number Publication date
DE10122937A1 (en) 2001-11-15
US6790025B2 (en) 2004-09-14
JP2002234012A (en) 2002-08-20
US20020015750A1 (en) 2002-02-07
DE10122937B4 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP4670173B2 (en) Extrusion equipment
JP3921955B2 (en) Ceramic molding extrusion equipment
JP4254187B2 (en) Ceramic molding extrusion equipment
JPS6365013B2 (en)
JPH02190317A (en) Single-shaft screw type extrusion machine or double-shaft screw type extrusion machine for bleeding gas from thermoplastic resin melt
JP2002144313A (en) Extrusion molding machine for ceramic molding
EP0797922A3 (en) Continuous extrusion of chocolate
JPH05220803A (en) Method and device for extrusion molding of powder material
EP2233265B1 (en) Extrusion-forming device and method for manufacturing formed article by use of the device
KR101641611B1 (en) Method for producing ceramic molded body and molding machine therefor
CN113273711B (en) Extrusion pasting device and system
JP4158472B2 (en) Ceramic molding extrusion equipment
JP4910636B2 (en) Extrusion molding apparatus and manufacturing method for honeycomb structure
US3212154A (en) Apparatus for producing conduit structures by extrusion
JPH0631725A (en) Four-screw extruder
CN113478779A (en) Defoaming device and use method thereof
CN210174160U (en) Double-screw extruder
JP2602673B2 (en) Honeycomb molding die
JP2008137166A (en) Method for producing honeycomb molding
CN219855877U (en) Extrusion device of extruder
CN210332623U (en) Forming strip discharging device for hot melt adhesive
JP2000161542A (en) Synthetic resin made porous pipe, manufacture thereof and manufacture device
CN116924861A (en) Auxiliary device for pressing medicine for screw press forming die
JP2018158551A (en) Extrusion molding device
JP2004249517A (en) Extruder for thin-walled rubber and extrusion method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R151 Written notification of patent or utility model registration

Ref document number: 4670173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term