JP4668937B2 - Method for forming water-repellent film and article coated with water-repellent film - Google Patents

Method for forming water-repellent film and article coated with water-repellent film Download PDF

Info

Publication number
JP4668937B2
JP4668937B2 JP2007065320A JP2007065320A JP4668937B2 JP 4668937 B2 JP4668937 B2 JP 4668937B2 JP 2007065320 A JP2007065320 A JP 2007065320A JP 2007065320 A JP2007065320 A JP 2007065320A JP 4668937 B2 JP4668937 B2 JP 4668937B2
Authority
JP
Japan
Prior art keywords
water
repellent
coating
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007065320A
Other languages
Japanese (ja)
Other versions
JP2008222515A (en
Inventor
豊幸 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2007065320A priority Critical patent/JP4668937B2/en
Publication of JP2008222515A publication Critical patent/JP2008222515A/en
Application granted granted Critical
Publication of JP4668937B2 publication Critical patent/JP4668937B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、撥水性被膜の形成方法及び撥水性被膜被覆物品に関する。さらに詳しくは、撥水性被膜の形成用塗布液をガラス等の表面に塗布して撥水性被膜を形成する方法及びこの方法により得られる撥水性被膜被覆物品に関する。   The present invention relates to a method for forming a water-repellent film and a water-repellent film-coated article. More specifically, the present invention relates to a method for forming a water-repellent coating by applying a coating solution for forming a water-repellent coating on the surface of glass or the like and a water-repellent coating-coated article obtained by this method.

ガラス等の基材に撥水性被膜を形成した機能性ガラスの製造において、基材上に撥水性被膜を形成するためには、撥水材料を基材上に塗布することが行われるが、単にこれらを塗布しただけでは、基材表面に存在する撥水材料の余剰分が反射色ムラやヘイズなどの外観不良の原因となり、また、撥水性能を低下させる場合がある。
そこで、従来、ガラス等の基材に撥水性被膜を形成する方法としては、撥水性被膜の形成用塗布液を紙・布等に付着させて、基材上に塗布し、透明状態になるまで紙・布等を何度も取り替えながら余剰の撥水性被膜形成用塗布液を除去していた。しかしながら、この方法では生産性が低いため、これまで種々の検討がなされてきた。
In the production of a functional glass having a water-repellent coating formed on a substrate such as glass, in order to form a water-repellent coating on the substrate, a water-repellent material is applied on the substrate. If only these are applied, the excess of the water-repellent material present on the surface of the base material may cause appearance defects such as uneven reflection color and haze, and may deteriorate the water-repellent performance.
Therefore, conventionally, as a method of forming a water-repellent coating on a substrate such as glass, the coating liquid for forming the water-repellent coating is adhered to paper, cloth, etc., and coated on the substrate until it becomes transparent. Excessive water-repellent coating-forming coating solution was removed while changing paper and cloth many times. However, since this method has low productivity, various studies have been made so far.

例えば、ガラス表面に撥水性被膜の形成用塗布液を余剰に塗布し、その後に該余剰分を除去する撥水性被膜の形成方法が提案されている(特許文献1参照)。この方法によれば、従来までの方法に比較して、生産性が向上するとともに、余剰分を拭き取ることによって、反射色ムラやヘイズの発生を抑制することができる。
また、フロートガラスのトップ面を選択し、これにシラン系化合物を含む溶液を接触させてCF3基もしくはCH3基が表面に露出した単分子膜(撥水性被膜)を形成させ、乾燥後、溶剤で洗浄してトップ面のシリケートと化学結合をしていないシロキサン結合を有する膜を溶剤に溶解させる撥水性被膜の形成方法が提案されている(特許文献2参照)。この方法によれば、やはり従来までの方法に比較して生産性が向上し、簡単な方法で一定性能の機能性フロートガラスが得られる。
さらに、特定の撥水性被膜の形成用塗布液を用い、該塗布液の表面張力を利用して、一様なウェット厚みの塗布膜を基材上に形成し、乾燥することで、その後の拭き上げ工程(溶媒を染み込ませた布で拭いて余剰分を除去する工程)を必要としない撥水性被膜の形成方法が提案されている(特許文献3参照)。この方法によれば、優れた生産性で基材上に撥水性被膜を形成することができる。
For example, a method of forming a water-repellent coating has been proposed in which a coating liquid for forming a water-repellent coating is excessively applied to the glass surface, and then the excess is removed (see Patent Document 1). According to this method, productivity is improved as compared with conventional methods, and the occurrence of reflected color unevenness and haze can be suppressed by wiping off the surplus.
Further, the top surface of the float glass is selected, and a solution containing a silane compound is brought into contact therewith to form a monomolecular film (water-repellent coating) having CF 3 groups or CH 3 groups exposed on the surface, and after drying, A method for forming a water-repellent coating has been proposed in which a film having a siloxane bond that is not chemically bonded to a silicate on the top surface is dissolved in a solvent by washing with a solvent (see Patent Document 2). According to this method, productivity is improved as compared with the conventional methods, and a functional float glass having a constant performance can be obtained by a simple method.
Furthermore, using a coating solution for forming a specific water-repellent coating, using the surface tension of the coating solution, a coating film with a uniform wet thickness is formed on the substrate and dried, so that the subsequent wiping There has been proposed a method for forming a water-repellent coating that does not require a raising step (step of removing excess by wiping with a cloth soaked with a solvent) (see Patent Document 3). According to this method, a water-repellent film can be formed on a substrate with excellent productivity.

特開平11−79789号公報JP-A-11-79789 特開2001−31447号公報JP 2001-31447 A 特開2000−219875号公報Japanese Patent Laid-Open No. 2000-21875

しかしながら、上記特許文献1に開示される方法では、拭き上げ工程が必要であり、また、上記特許文献2に開示される方法では、溶剤による洗浄工程が必要であって、生産性の点で不十分である。一方、特許文献3に開示される方法は生産性に優れるものの、一様なウェット厚みを得るために、基材の形状や状態がある範囲に限られる。すなわち、大きく湾曲した形状の表面に塗布する際に、撥水液がたまる場所が発生することがあり、それが原因で外観不良を起こす場合がある。
従って、基材の形状や状態の制約を受けず、拭き上げ工程の必要ない、生産性の高い、撥水性被膜の形成方法が望まれていた。
本発明の目的は、基材の形状や状態の制約を受けず、高い生産性で基材上に撥水性被膜を形成させる方法を提供することにある。
However, the method disclosed in Patent Document 1 requires a wiping step, and the method disclosed in Patent Document 2 requires a washing step with a solvent, which is not efficient in terms of productivity. It is enough. On the other hand, although the method disclosed in Patent Document 3 is excellent in productivity, in order to obtain a uniform wet thickness, it is limited to a range where the shape and state of the substrate are present. That is, when applying to a surface having a large curved shape, a place where the water repellent liquid accumulates may occur, which may cause poor appearance.
Therefore, there has been a demand for a method of forming a water-repellent coating that is highly productive and does not require a wiping process without being restricted by the shape and state of the substrate.
An object of the present invention is to provide a method for forming a water-repellent coating on a substrate with high productivity without being restricted by the shape and state of the substrate.

本発明者は、前記目的を達成するために鋭意研究を重ねた結果、乾燥後に撥水性被膜上に略円形の撥水材料の凝集体を点在させ、かつ該凝集体の平均直径を20〜50μmに制御することで、拭き上げ工程を行わなくても、反射色ムラやヘイズなどの外観不良を起こさず、かつ良好な撥水性能が得られることを見出した。本発明はかかる知見に基づいて完成したものである。
すなわち、本発明は、
[1]基材上に、撥水材料を含有する撥水性被膜形成用塗布液を用いて撥水性被膜を形成する方法であって、撥水性被膜形成用塗布液をスプレーコート法により基材上に塗布する塗布工程及び乾燥工程を有し、乾燥後に撥水性被膜上に略円形の撥水材料の凝集体を点在させ、かつ該凝集体の平均直径を20〜50μmに制御することを特徴とする撥水性被膜の形成方法、
[2]前記スプレーコート法において、2流体式スプレーノズルを用いる上記[1]に記載の撥水性被膜の形成方法、
[3]前記2流体式スプレーはノズルから水を噴霧した場合に、該水の平均粒子径が5〜30μmとなるように条件設定されている上記[2]に記載の撥水性被膜の形成方法、
[4]前記撥水性被膜形成用塗布液の溶媒が、炭化水素系溶媒、シリコーン系溶媒及びフッ素系溶媒からなる群から選ばれる少なくとも1種の非水系溶媒を含有し、該非水系溶媒の25℃における蒸気圧が500Pa以上である上記[1]〜[3]のいずれかに記載の撥水性被膜の形成方法、
[5]前記撥水性被膜形成用塗布液の溶媒が非水系溶媒を含有し、かつ該非水系溶媒が常圧蒸留によって210℃以下で留出するパラフィン系炭化水素を少なくとも含む上記[1]〜[4]のいずれかに記載の撥水性被膜の形成方法、
[6]前記撥水性被膜形成用塗布液が、フルオロアルキル基含有シラン化合物を前記溶媒に溶解させて得られるものである上記[4]又は[5]に記載の撥水性被膜の形成方法、及び
[8]基材上に撥水性被膜を備えた撥水性被膜被覆物品であって、撥水性被膜上に略円形の撥水材料の凝集体が点在し、該凝集体の平均直径が20〜50μmであることを特徴とする撥水性被膜被覆物品、
を提供するものである。
As a result of intensive studies to achieve the above object, the present inventor has scattered the aggregates of substantially circular water-repellent materials on the water-repellent coating after drying, and the average diameter of the aggregates is 20 to 20%. By controlling to 50 μm, it has been found that even if the wiping process is not performed, appearance defects such as uneven reflection color and haze are not caused, and good water repellency can be obtained. The present invention has been completed based on such findings.
That is, the present invention
[1] A method of forming a water-repellent coating on a substrate using a water-repellent coating-forming coating solution containing a water-repellent material, wherein the water-repellent coating-forming coating solution is spray-coated on the substrate. And having a coating step and a drying step applied to the substrate, and after drying, a substantially circular aggregate of water-repellent material is scattered on the water-repellent coating, and the average diameter of the aggregate is controlled to 20 to 50 μm. A method for forming a water-repellent coating,
[2] The method for forming a water-repellent film according to [1] above, wherein a two-fluid spray nozzle is used in the spray coating method,
[3] The method for forming a water-repellent coating according to the above [2], wherein the two-fluid spray is set so that an average particle diameter of the water is 5 to 30 μm when water is sprayed from a nozzle. ,
[4] The solvent of the coating liquid for forming the water-repellent film contains at least one non-aqueous solvent selected from the group consisting of hydrocarbon solvents, silicone solvents, and fluorine solvents, and the non-aqueous solvent at 25 ° C. The method for forming a water-repellent coating film according to any one of the above [1] to [3], wherein the vapor pressure at is at least 500 Pa,
[5] The above [1] to [1], wherein the solvent of the water-repellent coating forming coating solution contains a non-aqueous solvent, and the non-aqueous solvent contains at least paraffinic hydrocarbons distilled at 210 ° C. or lower by atmospheric distillation. 4], the method for forming a water-repellent coating according to any one of
[6] The method for forming a water-repellent coating according to the above [4] or [5], wherein the coating liquid for forming the water-repellent coating is obtained by dissolving a fluoroalkyl group-containing silane compound in the solvent. [8] A water-repellent coating-coated article provided with a water-repellent coating on a substrate, the water-repellent coating being dotted with aggregates of substantially circular water-repellent materials, and the average diameter of the aggregates being 20 to 20 A water-repellent film-coated article characterized by being 50 μm,
Is to provide.

本発明によれば、基材の形状や状態の制約を受けず、高い生産性で基材上に撥水性被膜を形成させ得る。また、本発明の方法により得られた撥水性被膜被覆物品は優れた撥水性及び耐久性を有し、かつ外観品質に優れる。   According to the present invention, a water-repellent coating can be formed on a substrate with high productivity without being restricted by the shape and state of the substrate. In addition, the water-repellent film-coated article obtained by the method of the present invention has excellent water repellency and durability, and is excellent in appearance quality.

本発明の撥水性被膜の形成方法は、撥水材料を含有する撥水性被膜形成用塗布液(以下、単に「撥水液」ということがある。)をスプレーコート法により基材上に塗布する塗布工程及び乾燥工程を有する。そして、乾燥後に撥水性被膜上に略円形の撥水材料の凝集体を点在させ、かつ該凝集体の平均直径を20〜50μmに制御することを特徴とする。
該凝集体は、撥水液中の溶媒が揮発する工程(乾燥工程)で、撥水材料が凝集するものであり、形成された撥水性被膜の上に点在する、略円形の形状を有する余剰の撥水材料である。しかしながら、該凝集体の平均直径を50μm以下とすることで、基材上にこのような撥水材料の余剰分が存在した状態であっても、余剰分によって生ずるとされていた反射色ムラやヘイズなどの外観不良が生じない。一方、基材表面に結合した必要量の撥水材料が存在すれば、余剰分の存在は必ずしも必要なく、十分な撥水性能を発揮するが、スプレーコート法による塗布の場合、上記凝集体の平均直径が20μm未満となるような塗布状態であると、必要量の撥水材料が供給されず、十分な撥水性能が発揮されない場合がある。以上の観点から、上記凝集体の平均直径は20〜40μmの範囲であることが好ましい。
In the method for forming a water-repellent film of the present invention, a water-repellent film-forming coating liquid containing a water-repellent material (hereinafter sometimes simply referred to as “water-repellent liquid”) is applied on a substrate by a spray coating method. It has a coating process and a drying process. Then, after drying, a substantially circular aggregate of water-repellent material is scattered on the water-repellent coating, and the average diameter of the aggregate is controlled to 20 to 50 μm.
The aggregate is a process in which the water-repellent material is aggregated in a process (drying process) in which the solvent in the water-repellent liquid is volatilized, and has an approximately circular shape that is scattered on the formed water-repellent film. It is an excess water repellent material. However, by setting the average diameter of the aggregate to 50 μm or less, even when the surplus of such a water-repellent material is present on the substrate, the reflection color unevenness or Appearance defects such as haze do not occur. On the other hand, if there is a necessary amount of water-repellent material bonded to the surface of the substrate, the presence of the surplus is not necessarily required, and sufficient water-repellent performance is exhibited. When the average diameter is less than 20 μm, the required amount of water repellent material is not supplied and sufficient water repellency performance may not be exhibited. From the above viewpoint, the average diameter of the aggregate is preferably in the range of 20 to 40 μm.

上記凝集体を撥水性被膜上に点在させ、かつ該凝集体の平均直径を20〜50μmに制御する方法としては、撥水液をスプレーコート法により基材上に塗布する方法が好ましい。スプレーコート法は噴霧する撥水液の平均粒子径を容易に制御することができ、この制御によって乾燥後の凝集体の平均直径を20〜50μmに制御することが可能となる。特に、2流体式スプレーノズルを用いることが好ましい。
2流体式スプレーノズルとは、圧搾空気などの高速気流で液体を粉砕し、微粒化するものであり、低圧で微細な粒子を噴霧することができる。しかも、気体と液体の割合から定まる気水比の変更により、ノズルから噴霧される液滴径が容易に調整できるため好ましい。
As a method of dispersing the aggregates on the water-repellent coating and controlling the average diameter of the aggregates to 20 to 50 μm, a method of applying a water-repellent liquid on the substrate by a spray coating method is preferable. In the spray coating method, the average particle diameter of the water repellent liquid to be sprayed can be easily controlled, and by this control, the average diameter of the aggregate after drying can be controlled to 20 to 50 μm. In particular, it is preferable to use a two-fluid spray nozzle.
A two-fluid spray nozzle pulverizes and atomizes a liquid with a high-speed airflow such as compressed air, and can spray fine particles at a low pressure. In addition, it is preferable because the droplet diameter sprayed from the nozzle can be easily adjusted by changing the air-water ratio determined from the ratio of gas to liquid.

上記凝集体の平均直径を20〜50μmに制御する方法としては、例えば、2流体式スプレーノズルから水を噴霧した場合に、該水の平均粒子径が5〜30μmとなるように条件設定することにより行うことができる。撥水液自体は後述するように種々の撥水材料及び溶媒を選択することができ、撥水材料の凝集のしやすさや溶媒の乾燥速度などによって、凝集体の平均直径と2流体式スプレーノズルから噴霧される液滴の平均粒子径は必ずしも一致しない。しかしながら、上記のように条件設定することによって、撥水性被膜上に点在する撥水性材料の凝集体の平均直径を20〜50μmに制御することができる。また、凝集体の平均直径は、2流体式スプレーノズルから噴霧される液滴の平均粒子径が大きくなるほど、大きくなる傾向にあるため、撥水材料や溶媒の種類を変えた場合でも、2流体式スプレーノズルから噴霧される水の平均粒子径を、上記範囲内で適宜変更することにより、最適な平均直径を有する撥水剤の凝集体を得ることができる。
2流体式スプレーノズルから噴霧される水の平均粒子径を上記範囲に制御するためには、気体と液体の割合、すなわち空気圧と液体圧(水圧)を制御する。具体的には、水圧を上げるほど噴霧される撥水液の平均粒子径は増大し、空気圧を上げるほど平均粒子径は減少する。
As a method for controlling the average diameter of the aggregate to 20 to 50 μm, for example, when water is sprayed from a two-fluid spray nozzle, the condition is set so that the average particle diameter of the water is 5 to 30 μm. Can be performed. As will be described later, various water repellent materials and solvents can be selected as the water repellent liquid itself. The average diameter of the aggregate and the two-fluid spray nozzle are selected depending on the ease of aggregation of the water repellent material and the drying speed of the solvent. The average particle size of the droplets sprayed from is not always the same. However, by setting the conditions as described above, the average diameter of the aggregates of the water-repellent material scattered on the water-repellent coating can be controlled to 20 to 50 μm. In addition, since the average diameter of the aggregate tends to increase as the average particle diameter of the droplets sprayed from the two-fluid spray nozzle increases, even if the type of the water-repellent material or the solvent is changed, the two-fluid By appropriately changing the average particle diameter of water sprayed from the spray nozzle within the above range, an aggregate of water repellent having an optimum average diameter can be obtained.
In order to control the average particle diameter of water sprayed from the two-fluid spray nozzle within the above range, the ratio of gas to liquid, that is, air pressure and liquid pressure (water pressure) are controlled. Specifically, the average particle diameter of the sprayed water repellent liquid increases as the water pressure increases, and the average particle diameter decreases as the air pressure increases.

スプレーコート法により基板上に撥水液を塗布する際には、基板を固定してスプレーノズルを移動させてもよいし、スプレーノズルを固定して基板を移動させてもよく、例えば撥水液のスプレー雰囲気の中を、基材を通過させ、基材の全面(表面及び裏面)に撥水性被膜を形成させることができる。また、基材表面の一部に撥水性被膜を形成しない部分を設けたい場合には、その部分をマスキングすることで容易に得ることができる。   When applying the water repellent liquid on the substrate by the spray coating method, the spray nozzle may be moved while fixing the substrate, or the substrate may be moved while fixing the spray nozzle. For example, the water repellent liquid The water-repellent film can be formed on the entire surface (front surface and back surface) of the substrate by passing the substrate through the spray atmosphere. Moreover, when it is desired to provide a part where the water-repellent film is not formed on a part of the substrate surface, it can be easily obtained by masking the part.

また、前記撥水液は、撥水剤であるフルオロアルキル基含有シラン化合物を非水系溶媒に溶解させて得られるものであることが好ましい。フルオロアルキル基含有シラン化合物としては、フルオロアルキル基を含有し、かつ、アルコキシル基、アシロキシ基、または塩素基を含有するシラン化合物を好ましく使用することができ、例えば下記化学式(1)で示される化合物を挙げることができる。これらの中から、単独でまたは複数の物質を組み合わせて使用することができる。   The water repellent liquid is preferably obtained by dissolving a fluoroalkyl group-containing silane compound as a water repellent in a non-aqueous solvent. As the fluoroalkyl group-containing silane compound, a silane compound containing a fluoroalkyl group and containing an alkoxyl group, an acyloxy group, or a chlorine group can be preferably used. For example, a compound represented by the following chemical formula (1) Can be mentioned. Of these, a single substance or a combination of a plurality of substances can be used.

CF3−(CF2n−R−SiXp3-p ・・(1)
ここで、nは0〜12の整数、好ましくは3〜12の整数、Rは炭素原子数2〜10の二価の有機基(例えばメチレン基、エチレン基)又はケイ素原子および酸素原子を含む基、Xは水素又は炭素原子数1〜4の一価炭化水素基(例えばアルキル基、シクロアルキル基、アリル基)もしくはこれらの誘導体から選ばれる置換基、pは0、1又は2、Yは炭素原子数が1〜4のアルコキシル基、アシロキシ基、又はハロゲン原子である。
CF 3 - (CF 2) n -R-SiX p Y 3-p ·· (1)
Here, n is an integer of 0 to 12, preferably an integer of 3 to 12, and R is a divalent organic group having 2 to 10 carbon atoms (for example, a methylene group or an ethylene group) or a group containing a silicon atom and an oxygen atom. , X is hydrogen or a monovalent hydrocarbon group having 1 to 4 carbon atoms (for example, alkyl group, cycloalkyl group, allyl group) or a derivative thereof, p is 0, 1 or 2, Y is carbon An alkoxyl group having 1 to 4 atoms, an acyloxy group, or a halogen atom.

上記化学式(1)で表わされる化合物の具体例としては、次のものを挙げることができる。
613CH2CH2Si(OCH33、C715CH2CH2Si(OCH33、C817CH2CH2Si(OCH33、C919CH2CH2Si(OCH33、C1021CH2CH2Si(OCH33、C613CH2CH2SiCl3、C715CH2CH2SiCl3、C817CH2CH2SiCl3、C817CH2CH2Si(CH3)Cl2、C919CH2CH2SiCl3、C1021CH2CH2SiCl3
Specific examples of the compound represented by the chemical formula (1) include the following.
C 6 F 13 CH 2 CH 2 Si (OCH 3) 3, C 7 F 15 CH 2 CH 2 Si (OCH 3) 3, C 8 F 17 CH 2 CH 2 Si (OCH 3) 3, C 9 F 19 CH 2 CH 2 Si (OCH 3 ) 3 , C 10 F 21 CH 2 CH 2 Si (OCH 3 ) 3 , C 6 F 13 CH 2 CH 2 SiCl 3 , C 7 F 15 CH 2 CH 2 SiCl 3 , C 8 F 17 CH 2 CH 2 SiCl 3 , C 8 F 17 CH 2 CH 2 Si (CH 3 ) Cl 2 , C 9 F 19 CH 2 CH 2 SiCl 3 , C 10 F 21 CH 2 CH 2 SiCl 3 ,

Figure 0004668937
Figure 0004668937

817CH2CH2Si(OC253、C817CH2CH2Si(OCOCH33 C 8 F 17 CH 2 CH 2 Si (OC 2 H 5) 3, C 8 F 17 CH 2 CH 2 Si (OCOCH 3) 3

Figure 0004668937
Figure 0004668937

これらの中でC817CH2SiCl3(ヘプタデカフルオロデシルトリクロロシラン)が、基材の表面との反応性が高く好ましい。 Among these, C 8 F 17 CH 2 SiCl 3 (heptadecafluorodecyltrichlorosilane) is preferable because of its high reactivity with the surface of the substrate.

また、非水系溶媒としては、炭化水素系溶媒、シリコーン系溶媒、フッ素系溶媒などが挙げられ、これらの少なくとも1種を含有することが、本発明の効果が得られやすい点で好ましい。炭化水素系溶媒としては、n−ブタン、n−ヘプタン、n−オクタン、n−ノナンなどのノルマルパラフィン;イソブタン、イソペンタンなどのイソパラフィンなどが挙げられ、シリコーン系溶媒としては、ヘキサメチルジシロキサン、オクタメチルトリシロキサンなどが挙げられ、フッ素系溶媒としては、炭素数8及び/又は9のパーフルオロカーボンを主成分とするものなどが挙げられる。
特に、これらの溶媒のうち、揮発性の高いものが好ましく、具体的には、25℃における蒸気圧が500Pa以上であるもの、さらには1000Pa以上であるものが好ましい。
In addition, examples of the non-aqueous solvent include hydrocarbon solvents, silicone solvents, fluorine solvents, and the like, and it is preferable to contain at least one of these from the viewpoint of easily obtaining the effects of the present invention. Examples of the hydrocarbon solvent include normal paraffins such as n-butane, n-heptane, n-octane, and n-nonane; isoparaffins such as isobutane and isopentane. Silicone solvents include hexamethyldisiloxane, octane. Examples thereof include methyltrisiloxane, and examples of the fluorine-based solvent include those containing a perfluorocarbon having 8 and / or 9 carbon atoms as a main component.
In particular, among these solvents, those having high volatility are preferable, and specifically, those having a vapor pressure at 25 ° C. of 500 Pa or more, and more preferably 1000 Pa or more are preferable.

また、非水系溶媒としては、常圧蒸留によって210℃以下で留出するパラフィン系炭化水素であってもよく、非水系溶媒としてパラフィン系炭化水素を用いる場合には、特に、常圧蒸留によって150℃以下で留出するパラフィン系炭化水素を用いることが好ましい。市販品としてはIP−ソルベント1620(蒸留範囲166〜202℃)、IP−ソルベント1016(蒸留範囲73〜140℃)(以上、出光興産(株)製)、日石アイソゾール200(蒸留範囲73〜140℃、新日本石油(株)製)、KF−96L−0.65CS(蒸気圧4700Pa(25℃))、KF−96L−1CS(蒸気圧530Pa(25℃))(以上、信越化学工業(株)製)、フロリナートFC−3283(蒸気圧2000Pa(23℃))、フロリナートFC−77(蒸気圧5599Pa(20℃))(以上、住友スリーエム(株))などが挙げられる。   Further, the non-aqueous solvent may be a paraffinic hydrocarbon distilled at 210 ° C. or less by atmospheric distillation. When a paraffinic hydrocarbon is used as the non-aqueous solvent, it is particularly 150 by atmospheric distillation. It is preferable to use paraffinic hydrocarbons distilled at a temperature of less than or equal to ° C. Commercially available products include IP-solvent 1620 (distillation range 166 to 202 ° C.), IP-solvent 1016 (distillation range 73 to 140 ° C.) (above, manufactured by Idemitsu Kosan Co., Ltd.), Nisseki Isosol 200 (distillation range 73 to 140). C, Shin Nippon Oil Co., Ltd.), KF-96L-0.65CS (vapor pressure 4700 Pa (25 ° C)), KF-96L-1CS (vapor pressure 530 Pa (25 ° C)) (Shin-Etsu Chemical Co., Ltd. ), Fluorinert FC-3283 (vapor pressure 2000 Pa (23 ° C.)), Fluorinert FC-77 (vapor pressure 5599 Pa (20 ° C.)) (the above, Sumitomo 3M Co., Ltd.) and the like.

このように揮発性の高い非水系溶媒を用いると、スプレーコート法によって撥水液を塗布するに際し、ノズルから噴出した塗布液中の溶媒が、基材に付着する前に一部揮発し、撥水材料が基材上で凝縮することによって、前記凝集体の平均直径を容易に20〜50μmに制御することができる。また、本発明においては、撥水液を塗布した後に拭き上げ工程を必要としないために、塗布直後に該基材を他の工程に移すことが可能であるが、その際に撥水液の揮発性が高いことで、ハンドリングが容易となり、作業性が向上するという利点もある。
なお、上記炭化水素系溶媒、シリコーン系溶媒、フッ素系溶媒は1種を単独で、又は2種以上を混合して用いることができる。
When such a highly volatile non-aqueous solvent is used, when the water-repellent liquid is applied by the spray coating method, the solvent in the coating liquid ejected from the nozzle partially volatilizes before adhering to the substrate, and the water-repellent liquid is repelled. As the water material condenses on the substrate, the average diameter of the aggregate can be easily controlled to 20 to 50 μm. Further, in the present invention, since the wiping process is not required after the water repellent liquid is applied, the substrate can be transferred to another process immediately after the application. The high volatility has the advantage that handling becomes easy and workability is improved.
In addition, the said hydrocarbon solvent, a silicone type solvent, and a fluorine-type solvent can be used individually by 1 type or in mixture of 2 or more types.

上記本発明の方法を用いることで、基材上に撥水性被膜を備え、該撥水性被膜上に略円形の撥水材料の凝集体が点在し、該凝集体の平均直径が20〜50μmである撥水性被膜被覆物品が得られる。この撥水性被膜被覆物品は、優れた撥水性及び耐久性を有し、かつ外観品質に優れる。
ここで、基材としては特に限定されないが、透明なガラス板、樹脂板または樹脂フィルム等を好適に用いることができる。基材の厚さは、用途に応じ適宜選定されるものであり、特に限定されないが、通常0.01〜10mm程度である。
By using the method of the present invention, a water repellent coating is provided on a substrate, and a substantially circular aggregate of water repellent material is scattered on the water repellent coating, and the average diameter of the aggregate is 20 to 50 μm. A water repellent coated article is obtained. This water-repellent film-coated article has excellent water repellency and durability, and is excellent in appearance quality.
Here, although it does not specifically limit as a base material, A transparent glass plate, a resin plate, a resin film, etc. can be used suitably. The thickness of the substrate is appropriately selected according to the application and is not particularly limited, but is usually about 0.01 to 10 mm.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によってなんら限定されるものではない。以下に評価方法について記載する。
評価方法
(1)撥水材料の凝集体の平均直径
各実施例及び比較例で得られた撥水性ガラスについて、基材の表面に点在する撥水材料の凝集体の大きさを、レーザー顕微鏡(キーエンス社製「VK−8500」)を用いて6点測定し、その平均値を撥水材料の凝集体の平均直径とした。
(2)撥水性能
(2−1)接触角
各実施例及び比較例で得られた撥水性ガラスについて、接触角度計(協和界面科学製「CA−DT」)を用いて、2mgの質量の水滴による静的接触角を測定した。
(2−2)転落角
水平に配置した撥水性ガラスの表面に50μLの水滴を置き、ガラスを徐々に傾斜させて、その表面に置かれた水滴が転がり始めるときのガラスの角度(転落角)を測定した。
(3)ヘイズ値
各実施例及び比較例で得られた撥水性ガラスについて、表面のヘイズ値を、ヘイズメーター(スガ試験機製「HZ−1」)を用いて測定した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example. The evaluation method is described below.
Evaluation Method (1) Average Diameter of Aggregates of Water-Repellent Material For the water-repellent glass obtained in each Example and Comparative Example, the size of the aggregate of water-repellent materials scattered on the surface of the substrate was measured with a laser microscope. ("VK-8500" manufactured by Keyence Corporation) was used to measure 6 points, and the average value was taken as the average diameter of the aggregate of water repellent material.
(2) Water-repellent performance (2-1) Contact angle About the water-repellent glass obtained in each Example and Comparative Example, using a contact angle meter ("CA-DT" manufactured by Kyowa Interface Science), the mass of 2 mg The static contact angle due to water droplets was measured.
(2-2) Falling angle The glass angle (falling angle) when 50 μL of water drops are placed on the surface of the water-repellent glass placed horizontally, the glass is gradually tilted, and the water drops placed on the surface start to roll. Was measured.
(3) Haze value About the water-repellent glass obtained by each Example and the comparative example, the haze value of the surface was measured using the haze meter ("HZ-1" by Suga Test Instruments).

実施例1
イソパラフィン(出光興産(株)製「IP−ソルベント1620」)99.8gにヘプタデカフルオロデシルトリクロロシラン(アズマックス製(株)「SIH5841.0」)0.2gを添加し、30分間攪拌して撥水液を得た。ヘプタデカフルオロデシルトリクロロシランの濃度(FAS濃度)は0.2質量%である。
この撥水液を洗浄したガラス基板(600×600mm)の表面上に、温度20℃、相対湿度20%の環境で、スプレーコーティング法にて塗布し、同環境下で約10分間乾燥させて撥水性ガラスを得た。スプレーコーティングの条件は以下の通りである。
<スプレーコーティングの条件>
スプレーノズル;SUE18A(スプレーイングシステムジャパン(株)製)
液圧;0.05MPa
空気圧;0.1MPa
同条件によりノズルから水を噴霧した際の水の平均粒子径(ザウタ平均粒子径);約18μm
ノズル−ガラス間距離;480mm
ノズル移動速度;11.4m/min(ガラス基板を固定してノズルを移動)
得られた撥水性ガラスについて、上記方法にて評価した。結果を第1表に示す。
Example 1
0.2 g of heptadecafluorodecyltrichlorosilane (ASIMAX Co., Ltd. “SIH5841.0”) was added to 99.8 g of isoparaffin (Idemitsu Kosan Co., Ltd. “IP-Solvent 1620”) and stirred for 30 minutes to repel the water. An aqueous solution was obtained. The concentration of heptadecafluorodecyltrichlorosilane (FAS concentration) is 0.2% by mass.
This water-repellent solution is applied on the surface of a glass substrate (600 × 600 mm) washed with a spray coating method in an environment at a temperature of 20 ° C. and a relative humidity of 20%, and is dried in the same environment for about 10 minutes. An aqueous glass was obtained. The conditions for spray coating are as follows.
<Conditions for spray coating>
Spray nozzle; SUE18A (manufactured by Spraying System Japan Co., Ltd.)
Fluid pressure: 0.05 MPa
Air pressure: 0.1 MPa
Average particle diameter of water when water is sprayed from the nozzle under the same conditions (Sauta average particle diameter); about 18 μm
Nozzle-glass distance; 480 mm
Nozzle moving speed: 11.4 m / min (moving the nozzle with the glass substrate fixed)
The obtained water-repellent glass was evaluated by the above method. The results are shown in Table 1.

実施例2
イソパラフィンを99.7gとし、ヘプタデカフルオロデシルトリクロロシランを0.3g(FAS濃度;0.3質量%)としたこと以外は実施例1と同様にして撥水性ガラスを得た。実施例1と同様にして評価した結果を第1表に示す。
Example 2
A water-repellent glass was obtained in the same manner as in Example 1 except that 99.7 g of isoparaffin and 0.3 g of heptadecafluorodecyltrichlorosilane (FAS concentration; 0.3 mass%) were used. The results evaluated in the same manner as in Example 1 are shown in Table 1.

実施例3
スプレーコーティングの条件において、空気圧を0.15MPaとしたこと以外は実施例1と同様にして撥水性ガラスを得た。実施例1と同様にして評価した結果を第1表に示す。なお、このスプレーコーティング条件は、ノズルから水を噴霧した際の水の平均粒子径(ザウタ平均粒子径)において、約15μmを示す条件である。
Example 3
A water-repellent glass was obtained in the same manner as in Example 1 except that the air pressure was 0.15 MPa under the spray coating conditions. The results evaluated in the same manner as in Example 1 are shown in Table 1. In addition, this spray coating conditions are conditions which show about 15 micrometers in the average particle diameter (Sauta average particle diameter) of the water at the time of spraying water from a nozzle.

実施例4
スプレーコーティングの条件において、空気圧を0.15MPaとしたこと以外は実施例2と同様にして撥水性ガラスを得た。実施例1と同様にして評価した結果を第1表に示す。なお、スプレーコーティング条件は、実施例3と同様である。
Example 4
A water-repellent glass was obtained in the same manner as in Example 2 except that the air pressure was 0.15 MPa under the spray coating conditions. The results evaluated in the same manner as in Example 1 are shown in Table 1. The spray coating conditions are the same as in Example 3.

比較例1
スプレーコーティングの条件において、空気圧を0.05MPaとしたこと以外は実施例2と同様にして撥水性ガラスを得た。実施例1と同様にして評価した結果を第1表に示す。なお、このスプレーコーティング条件は、ノズルから水を噴霧した際の水の平均粒子径(ザウタ平均粒子径)において、約32μmを示す条件である。
Comparative Example 1
A water-repellent glass was obtained in the same manner as in Example 2 except that the air pressure was 0.05 MPa under the spray coating conditions. The results evaluated in the same manner as in Example 1 are shown in Table 1. In addition, this spray coating conditions are conditions which show about 32 micrometers in the average particle diameter (Sauta average particle diameter) of the water at the time of spraying water from a nozzle.

比較例2
スプレーコーティングの条件において、空気圧を0.05MPaとしたこと以外は実施例1と同様にして撥水性ガラスを得た。実施例1と同様にして評価した結果を第1表に示す。なお、このスプレーコーティング条件は、比較例1と同様にノズルから水を噴霧した際の水の平均粒子径(ザウタ平均粒子径)において、約32μmを示す条件である。
Comparative Example 2
A water-repellent glass was obtained in the same manner as in Example 1 except that the air pressure was 0.05 MPa under the spray coating conditions. The results evaluated in the same manner as in Example 1 are shown in Table 1. In addition, this spray coating conditions are conditions which show about 32 micrometers in the average particle diameter (Sauta average particle diameter) of the water at the time of spraying water from a nozzle similarly to the comparative example 1. FIG.

Figure 0004668937
Figure 0004668937

実施例1及び3により製造された撥水性ガラスは、拭き上げや溶媒による洗浄などの後工程を行わなくても、良好な撥水性能と外観品質を有しており、高い生産性で撥水性ガラスを製造できることが確認された。また、実施例2及び4の結果から、撥水液中の撥水材料の濃度を1.5倍に上げても、良好な撥水性能と外観品質を有することが確認された。
一方、比較例1の撥水性ガラスは、乾燥後における撥水材料の凝集体の平均直径が276μmと大きいため、十分な撥水性能は示すものの、ヘイズ値が高く、外観品質に劣るものであった。また、比較例2の撥水性ガラスは、乾燥後における撥水材料の凝集体の平均直径が、比較例1との比較では小さいが、それでも82.5μmと大きいため、実施例の撥水性ガラスと比較して、ヘイズ値が高い。
The water-repellent glass produced according to Examples 1 and 3 has good water-repellent performance and appearance quality without performing post-processes such as wiping and washing with a solvent, and is highly productive and water-repellent. It was confirmed that glass could be manufactured. Further, from the results of Examples 2 and 4, it was confirmed that even when the concentration of the water repellent material in the water repellent liquid was increased 1.5 times, the water repellent performance and appearance quality were good.
On the other hand, since the water repellent glass of Comparative Example 1 has a large average diameter of the water repellent material aggregate of 276 μm after drying, it exhibits a sufficient water repellent performance but has a high haze value and poor appearance quality. It was. Further, the water repellent glass of Comparative Example 2 has a small average diameter of the aggregate of water repellent material after drying compared with Comparative Example 1, but is still as large as 82.5 μm. In comparison, the haze value is high.

また、実施例及び比較例の結果から、撥水材料の凝集体の平均直径(μm)とヘイズ(%)の関係をまとめると図1に示すようになる。第1表及び図1の結果から明らかなように、乾燥後における撥水材料の凝集体の平均直径を50μm以下とすることで、ヘイズ値を0.5%と以下とすることができる。   Further, from the results of Examples and Comparative Examples, the relationship between the average diameter (μm) and the haze (%) of the aggregate of the water repellent material is summarized as shown in FIG. As apparent from the results of Table 1 and FIG. 1, the haze value can be reduced to 0.5% or less by setting the average diameter of the aggregate of the water-repellent material after drying to 50 μm or less.

本発明によれば、基材の形状や状態の制約を受けず、高い生産性で基材上に撥水性被膜を形成させることができる。また、本発明の方法により得られた撥水性被膜被覆物品は優れた撥水性及び耐久性を有し、かつ外観品質に優れる。   According to the present invention, a water-repellent coating can be formed on a substrate with high productivity without being restricted by the shape and state of the substrate. In addition, the water-repellent film-coated article obtained by the method of the present invention has excellent water repellency and durability, and is excellent in appearance quality.

撥水材料の凝集体の平均直径(μm)とヘイズ(%)の相関を示す図である。It is a figure which shows the correlation of the average diameter (micrometer) and haze (%) of the aggregate of a water repellent material.

Claims (7)

基材上に、撥水材料を含有する撥水性被膜形成用塗布液を用いて撥水性被膜を形成する方法であって、撥水性被膜形成用塗布液をスプレーコート法により基材上に塗布する塗布工程及び乾燥工程を有し、乾燥後に撥水性被膜上に略円形の撥水材料の凝集体を点在させ、かつ該凝集体の平均直径を20〜50μmに制御することを特徴とする撥水性被膜の形成方法。   A method of forming a water-repellent coating on a substrate using a water-repellent coating-forming coating solution containing a water-repellent material, wherein the water-repellent coating-forming coating solution is applied on the substrate by a spray coating method. A coating process and a drying process, and after drying, a substantially circular aggregate of water-repellent material is scattered on the water-repellent coating, and the average diameter of the aggregate is controlled to 20 to 50 μm. A method for forming an aqueous film. 前記スプレーコート法において、2流体式スプレーノズルを用いる請求項1に記載の撥水性被膜の形成方法。   The method for forming a water-repellent coating according to claim 1, wherein a two-fluid spray nozzle is used in the spray coating method. 前記2流体式スプレーはノズルから水を噴霧した場合に、該水の平均粒子径が5〜30μmとなるように条件設定されている請求項2に記載の撥水性被膜の形成方法。   The method of forming a water-repellent coating according to claim 2, wherein the two-fluid spray is set so that when water is sprayed from a nozzle, the average particle diameter of the water is 5 to 30 µm. 前記撥水性被膜形成用塗布液の溶媒が、炭化水素系溶媒、シリコーン系溶媒及びフッ素系溶媒からなる群から選ばれる少なくとも1種の非水系溶媒を含有し、該非水系溶媒の25℃における蒸気圧が500Pa以上である請求項1〜3のいずれかに記載の撥水性被膜の形成方法。   The solvent of the coating liquid for forming the water repellent film contains at least one non-aqueous solvent selected from the group consisting of hydrocarbon solvents, silicone solvents and fluorine solvents, and the vapor pressure of the non-aqueous solvent at 25 ° C. The method for forming a water-repellent coating according to claim 1, wherein the water repellent film is 500 Pa or more. 前記撥水性被膜形成用塗布液の溶媒が非水系溶媒を含有し、かつ該非水系溶媒が常圧蒸留によって210℃以下で留出するパラフィン系炭化水素を少なくとも含む請求項1〜4のいずれかに記載の撥水性被膜の形成方法。   The solvent of the coating liquid for forming the water-repellent film contains a non-aqueous solvent, and the non-aqueous solvent contains at least paraffinic hydrocarbons distilled at 210 ° C. or lower by atmospheric distillation. A method for forming the water-repellent coating as described. 前記撥水性被膜形成用塗布液が、フルオロアルキル基含有シラン化合物を前記溶媒に溶解させて得られるものである請求項4又は5に記載の撥水性被膜の形成方法。   The method for forming a water-repellent coating according to claim 4 or 5, wherein the coating liquid for forming the water-repellent coating is obtained by dissolving a fluoroalkyl group-containing silane compound in the solvent. 基材上に撥水性被膜を備えた撥水性被膜被覆物品であって、撥水性被膜上に略円形の撥水材料の凝集体が点在し、該凝集体の平均直径が20〜50μmであることを特徴とする撥水性被膜被覆物品。   A water-repellent coating-coated article provided with a water-repellent coating on a substrate, the water-repellent coating being dotted with aggregates of substantially circular water-repellent materials, and the average diameter of the aggregates being 20 to 50 μm A water-repellent film-coated article characterized by the above.
JP2007065320A 2007-03-14 2007-03-14 Method for forming water-repellent film and article coated with water-repellent film Expired - Fee Related JP4668937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065320A JP4668937B2 (en) 2007-03-14 2007-03-14 Method for forming water-repellent film and article coated with water-repellent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065320A JP4668937B2 (en) 2007-03-14 2007-03-14 Method for forming water-repellent film and article coated with water-repellent film

Publications (2)

Publication Number Publication Date
JP2008222515A JP2008222515A (en) 2008-09-25
JP4668937B2 true JP4668937B2 (en) 2011-04-13

Family

ID=39841556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065320A Expired - Fee Related JP4668937B2 (en) 2007-03-14 2007-03-14 Method for forming water-repellent film and article coated with water-repellent film

Country Status (1)

Country Link
JP (1) JP4668937B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200091053A (en) * 2019-01-21 2020-07-30 주식회사 비케이이앤씨 Evaporator super water-repellent coating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024025759A (en) * 2022-08-10 2024-02-26 ダイキン工業株式会社 Article which comprises surface treatment layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137769A (en) * 1999-08-31 2001-05-22 Matsushita Electric Ind Co Ltd Coating film, and method and apparatus for production thereof
JP2001205151A (en) * 2000-01-26 2001-07-31 Inax Corp Uniform liquid thin film forming device
JP2001334184A (en) * 2000-05-29 2001-12-04 Nippon Sheet Glass Co Ltd Method and device for forming coating film
JP2004137137A (en) * 2001-11-08 2004-05-13 Nippon Sheet Glass Co Ltd Article covered with coating, method of producing the same, and coating solution used in the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137769A (en) * 1999-08-31 2001-05-22 Matsushita Electric Ind Co Ltd Coating film, and method and apparatus for production thereof
JP2001205151A (en) * 2000-01-26 2001-07-31 Inax Corp Uniform liquid thin film forming device
JP2001334184A (en) * 2000-05-29 2001-12-04 Nippon Sheet Glass Co Ltd Method and device for forming coating film
JP2004137137A (en) * 2001-11-08 2004-05-13 Nippon Sheet Glass Co Ltd Article covered with coating, method of producing the same, and coating solution used in the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200091053A (en) * 2019-01-21 2020-07-30 주식회사 비케이이앤씨 Evaporator super water-repellent coating method

Also Published As

Publication number Publication date
JP2008222515A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
CN103596701B (en) Hydrophobic hydrocarbon coating
JP6357407B2 (en) Hybrid coating and related application methods
JP5950925B2 (en) Hydrophobic fluorinated coating
RU2569530C2 (en) Anti-fingerprint protective covering composition and film applying it
JP6609382B2 (en) Film forming liquid composition and method for producing the same
JP6262341B2 (en) Support coating composition and coating method
CN1422311A (en) Silicone compositions, method of making and using VOC free, non-flammable creams, paste and pwoder for treating non porous surfaces
JP2007523959A (en) Super hydrophobic coating
WO2013061747A1 (en) Method for producing coated substrate
WO2013129691A1 (en) Process for producing article having fluorine-containing silane-based coating
US20220010170A1 (en) Easy to clean coating
JP2007238931A (en) Hydrophobic coating film-forming composition, the resultant hydrophobic coating film, method for forming the film, and functional material having the film
JP4668937B2 (en) Method for forming water-repellent film and article coated with water-repellent film
WO2012081524A1 (en) Fluorine-containing compound, coating composition, base material having water-repellent layer, and method for producing same
US20230061460A1 (en) Antifogging coating composition, antifogging coating film and antifogging article
JP5065236B2 (en) Antifouling coating liquid, antifouling coating layer forming method, and ceramic building material having antifouling coating layer
JP5022584B2 (en) Fluorocarbon silane-containing aqueous emulsion and water drop tumbling and water / oil repellency coating
EP1556452B1 (en) Process and composition for coating
JP2010138358A5 (en)
JP5291451B2 (en) Coating composition, painted product, painting method
JP2011006653A (en) Substrate with cured film
KR101381391B1 (en) Substrate having fluorine compound coating layer and forming method of the same
JP2004167415A (en) Nozzle coated with liquid repelling film and method for forming the same
US20210101828A1 (en) Atomized anti-scratching nano-coating for glass surface and method of manufacturing thereof
US20240287352A1 (en) Polysilazane compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees