JP4667670B2 - Alloy plating apparatus and alloy plating method using the same - Google Patents

Alloy plating apparatus and alloy plating method using the same Download PDF

Info

Publication number
JP4667670B2
JP4667670B2 JP2001243973A JP2001243973A JP4667670B2 JP 4667670 B2 JP4667670 B2 JP 4667670B2 JP 2001243973 A JP2001243973 A JP 2001243973A JP 2001243973 A JP2001243973 A JP 2001243973A JP 4667670 B2 JP4667670 B2 JP 4667670B2
Authority
JP
Japan
Prior art keywords
plating
anode
metal
plating solution
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001243973A
Other languages
Japanese (ja)
Other versions
JP2003055798A (en
Inventor
仁志 田中
智 鈴木
欣也 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2001243973A priority Critical patent/JP4667670B2/en
Publication of JP2003055798A publication Critical patent/JP2003055798A/en
Application granted granted Critical
Publication of JP4667670B2 publication Critical patent/JP4667670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は合金めっき装置とそれを用いた合金めっき方法に関し、更に詳しくは、多元合金を電気めっきするための装置とそれを用いためっき方法に関する。
【0002】
【従来の技術】
合金の電気めっきに関しては、従来から、次のような方法が知られている。例えば合金がSn−Pb合金(はんだ)である場合、所定の組成に調製されたSn−Pb合金それ自体を陽極とし、被めっき材を陰極とし、これらをめっき槽のめっき液の中に配置して電気めっきを行う方法や、SnとPbでそれぞれ別個の陽極を製作し、それぞれの陽極に、目的とする合金組成に対応する電流を通電して、Sn,Pbのめっき液への溶解量を制御して電気めっきを行う方法がある。
【0003】
この場合は、Sn,Pbのイオン化電位が非常に近似しているので、上記したような方法での合金めっきが可能である。
しかしながら、ほとんどの合金の場合、その構成金属のそれぞれは、イオン化電位が異なっている。そのため、上記したSn−Pb合金の電気めっきのような方法を採用すると、構成金属のうちイオン化しやすい金属が優先的にめっき液に溶解し、逆にイオン化しにくい金属は陽極に析出してしまうという問題が発生する。すなわち、合金の構成金属のうち、めっき液中で起こるイオン化電位が卑な(低い)金属とイオン化電位が貴な(高い)金属との接触に基づき、前者の置換析出が起こり、目的とする合金めっきが実現できなくなる。
【0004】
また、合金の電気めっきに関しては、めっき槽のめっき液中に例えばAu−Co合金から成る不溶性陽極と被めっき材を配置し、そして、めっき目的の合金の構成金属をめっき液に可溶な金属化合物の形で当該めっき液に供給する方法もある。
この方法では上記した置換析出は起こらない。しかしながら、この方法の場合、合金の構成金属を一旦めっき液に可溶な金属化合物の形に調製することが必要であるため、コスト高になる。とりわけ、構成金属が貴金属である場合、上記した金属化合物を調製するための薬品代は非常に高価になってしまう。
【0005】
また、この方法の場合、用いる金属化合物はそのほとんどがイオン性化合物であり、電気めっきの過程で、その金属化合物の陰イオン種は消費されることなくめっき液中に蓄積されるため、めっき液としてのバランスが崩れてしまうという問題もある。
【0006】
【発明が解決しようとする課題】
本発明は、従来の合金めっきにおける上記した問題を解決し、めっき時の置換析出を防止し、また高価な薬品の使用も不要である合金めっき装置とそれを用いた合金めっき方法の提供を目的とする。
【0007】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、被めっき材にめっき合金を電気めっきするための合金めっき装置において、前記被めっき材に前記めっき合金を構成する金属を析出させる析出装置であって、前記めっき合金を構成する金属のうちイオン化電位が最も高い第1金属の陽イオン及び前記めっき合金を構成する金属のうち前記第1金属以外の他金属の陽イオンを含むめっき液を蓄え、第1陰極となる前記被めっき材が配置されるべきめっき槽と、前記めっき槽にそれぞれ配置された、前記第1金属から成り前記第1金属の陽イオンを発生させる主陽極と、前記めっき液に溶解しない不溶性陽極とを含む析出装置、及び前記他金属の陽イオンを含むめっき液を調製する電解装置を備え、前記電解装置は、記めっき槽に接続され、前記他金属の陽イオンを含むめっき液を蓄えためっき液室、前記他金属の陽イオンを発生させる少なくとも1個の副陽極槽ユニット、電解液が蓄えられた1個の陰極室、前記陰極室内に配置された第2陰極、及び前記めっき液室と前記陰極室との間を仕切り、前記めっき液室から前記陰極室への前記他金属の陽イオンを少なくとも含む陽イオンの透過を阻止する陰極側隔壁を含み、前記副陽極槽ユニットは、陽極側隔壁で仕切られ、電解液が蓄えられた副陽極室、及び前記副陽極室内に配置され、前記他金属のうちの1種から成りこの他金属の陽イオンを発生させる副陽極を有し、前記陽極側隔壁は、前記めっき液室と前記副陽極室との間にて、前記副陽極室から前記めっき液室への前記他金属の陽イオンの透過を許容し、前記副陽極槽ユニットで発生した陽イオンが前記めっき液室に加えられて前記他金属の陽イオンを含むめっき液が調製され、めっき液室の当該他金属の陽イオンを含むめっき液が前記めっき槽に供給されることを特徴とする合金めっき装置が提供される。
また、前記電解装置は、前記副陽極を形成する他金属を互いに異ならした2個の副陽極槽ユニットを含む構成とすることが好ましい。
更に、前記電解装置は、前記副陽極を形成する他金属を互い異ならした3個の副陽極槽ユニットを含む構成とすることが好ましい。
より好ましくは、前記めっき槽と前記めっき液室との間に配置され、前記めっき液室から前記めっき槽に前記他金属の陽イオンを含むめっき液を供給する供給装置を更に備える構成とする。
【0008】
また、本発明においては、上記した合金めっき装置の運転中、前記電解装置のめっき液室内の前記他金属の陽イオンを含むめっき液を前記供給装置により前記析出装置の前記めっき槽に強制的に加えながら、前記析出装置にて前記被めっき材に電気めっきを行うことを特徴とする合金めっき方法が提供される。
【0009】
【発明の実施の形態】
本発明は2元以上の多元合金の電気めっきに適用される。最初に、2元合金の電気めっきを行う装置と方法につき1例を示す図1に基づいて説明する。説明に先立ち、めっきすべき合金がMxNy(M,Nは構成金属、x,yは組成比を表す)で示され、そして構成金属Mの方が構成元金Nよりもイオン化電位が貴であるとする。
【0010】
まず、本発明の装置は、図1で示したように、めっき装置A(析出装置),電解装置B、およびめっき液供給装置Cで構成されている。
めっき装置Aは、めっき槽1の中に、後述する電解装置Bで生産されためっき液2が収容され、その中に、金属Mから成る陽極3と、不溶性陽極4と、被めっき材5を配置し、陽極3と被めっき材5の間、および不溶性陽極4と被めっき材5の間には、それぞれ独立して整流器a1,a2が配置されている。
【0011】
このときに用いる不溶性陽極4の材料としては、めっき液2に溶解しない材料であれば何であってもよく、例えば、Ti板やZr板を、PtやIrO2で被覆したような材料をあげることができる。
次に電解装置Bについて説明する。
電解装置Bは、電解槽6の内部が後述する2個の隔壁部71,72で画分され、3個の部屋81,82,9が形成されている。
【0012】
そして、部屋81には構成金属Nから成る陽極10が配置されて陽極室が構成され、部屋82にはステンレス鋼のような酸に溶解しない材料から成る陰極11が配置されて陰極室が構成され、陽極10と陰極11の間には整流器a3が配置されている。
陽極室81と陰極室82の間に位置する部屋9は、ここで所望する組成のめっき液2が生産されるめっき液室になっている。
【0013】
ここで、陽極室81を画分する隔壁部71は、構成金属M,Nの陽イオン種は透過できるが、しかし、各部屋の液が互いに混合することを防止できる例えばカチオン交換膜などで構成されている。また、陰極室82を画分する隔壁部72は、構成金属M,Nの陽イオン種が透過できない例えば水素イオン選択透過膜やアニオン交換膜で構成されている。
【0014】
そして、この電解装置Bのめっき液室9と前記しためっき装置Aの間は、例えば配管とポンプと弁機構から成るめっき液供給装置Cで連結されている。
後述するようにしてめっき液室9で生産されためっき液2は、例えばポンプでめっき装置Aに供給される。そして、整流器a1,a2を作動し、陽極3と被めっき材5の間に所定電流を通電して電気めっきを行うことにより、被めっき材5の表面は所定組成の合金めっきで被覆される。
【0015】
次に、図1で示した装置の運転と作用効果について説明する。
めっき装置Aと電解装置Bに、構成金属M,Nの陽イオン種を含む所定組成の例えば酸性めっき液を収容し、整流器a1,a2,a3を作動して、各極間に通電してめっき装置Aと電解装置Bを同時に運転する。また、めっき液供給装置Cも同時運転し、めっき装置Aと電解装置Bの間をめっき液で連結する。
【0016】
装置の運転開始と同時に、めっき装置Aでは、陽極3の溶解が進み、構成金属Mの陽イオン種が生成し、また電解装置Bの陽極室81では陽極10の溶解が進んで構成金属Nの陽イオン種が生成し、陽極液(N)が生産される。
なお、このとき、陽極3と陽極10への通電量をそれぞれ制御することにより、構成金属Mの陽イオン種の量と構成金属Nの陽イオン種の量を、目的とする合金めっきにおける構成金属M,Nの組成比x,yに相当するような量に調製することが好ましい。
【0017】
陽極室81で生成した構成金属Nの陽イオン種は隔壁部71を透過してめっき液室9へ移動し、まためっき装置Aで生成した構成金属Mの陽イオン種はめっき液供給装置Cを経由してめっき液室9に移動し、両イオン種はこのめっき液室9で合流する。
このとき、めっき液室9内のめっき液と陽極室81内の陽極液(N)とは、隔壁部71の働きで互いに混合することはない。したがって、構成金属Mが陽極10に置換析出することはない。
【0018】
なお、構成金属Mの陽イオン種が隔壁部71を透過して陽極室81へ移動することも可能であるが、電解装置Bの運転時には常にバイアスが印加しているので、構成金属Mの上記した移動はほとんど起こらず、その移動量は事実上無視できる。
一方、上記した運転の過程で、めっき液室9に供給されてくる構成金属M,Nの陽イオン種は隔壁部72での陰極室82への移動が阻止されるので、陰極室82には上記陽イオン種を含まない陰極液のみが存在しており、そのため、陰極11に構成金属M,Nが析出することはない。そして、陰極室82では、専ら水素が発生して陰イオン種が生成し、これは隔壁部72を透過してめっき液室9へ移動する。
【0019】
このようにして、めっき液室9には、構成金属M,Nの間で置換析出を起こすことなく、所定濃度のめっき液が生産される。そして、このめっき液は、めっき液供給装置Cを介してめっき装置Aに供給され、被めっき材5に電気めっきされる。
なお、図1で示した装置において、前記したように、陰極室82で生成した陰イオン種はめっき液室9に移動するので、めっき液室9中の陰イオン種は一方的に増量していく。このような問題を防止するためには、隔壁部72を水素イオン選択透過膜で構成することが好ましい。めっき液室9への生成陰イオン種の移動を防止できるからである。なお、その場合には、めっき液室9内のめっき液の水素イオンが陰極室82へ移動していくことになる。
【0020】
次に、3元合金のめっき装置の1例を図2に示す。
ここで、3元合金はMxNyRzで示され、構成金属のイオン化電位は、金属Rが最も卑で、金属Mが最も貴であるとする。このような3元合金としては、例えばAg−Cu−Sn合金をあげることができる。
この装置がめっき装置と電解装置とめっき液供給装置で構成されていることは図1で示した装置の場合と同じである。
【0021】
具体的には、電解装置が後述する構成になっており、まためっき装置Aにおいて、イオン化電位が最も貴である構成金属Mで陽極3Aが構成されていることを除いては図1の装置と同じである。
ここで、図2に基づいて電解装置B1を説明する。
この電解装置B1の場合、電解槽6の内部には、陽極室81A,81Bが連設配置されている。すなわち、図1で示した電解装置Bにおける1個の陽極室81が隔壁部71Aを介して2個の陽極室81A,81Bで構成されている。また図1の装置と同じ構成の陰極室82が設けられ、陽極室81Bと陰極室82の間にめっき液室9が位置している。
【0022】
陽極室81Aと陽極室81Bを画分する隔壁部71A、および陽極室81Bとめっき液室9を画分する隔壁部71Bは、いずれも、構成金属M,N,Rの陽イオン種は透過するが、各部屋の液の混合を防止することができる例えばカチオン交換膜で構成されている。
そして、陰極室82から最も離隔した箇所に設けられている陽極室81Aには、イオン化電位が最も卑である構成金属Rから成る陽極10Aが配置され、これと陰極11の間には整流器a3Aが配置され、また、陽極室81Aに隣接する陽極室81Bには、イオン化電位が構成金属MとRの間にある構成金属Nから成る陽極10Bが配置され、これと陰極11の間には別の整流器a3Bが配置されている。
【0023】
この装置の運転に際しては、目的とする合金めっきにおける構成金属M,N,Rの組成比x,y,zに相当する量のM,N,Rが溶解するように、整流器a1と整流器a2の通電量、整流器a3Aの通電量、および整流器a3Bの通電量をそれぞれ制御する。
電解装置B1の陽極室81Aにおいては、陽極10Aが溶解して構成金属Rの陽イオン種が所定量生成し、また陽極室81Bでは陽極10Bが溶解して構成金属Nの陽イオン種が所定量生成する。そして、構成金属Rの陽イオン種は隔壁部71Aと隔壁部71Bを順次透過してめっき液室9へ移動し、また構成金属Nの陽イオン種も隔壁部71Bを透過してめっき液室9へ移動し、これらはこのめっき液室9で、めっき装置Aで生成した構成金属Mの陽イオン種と合流する。
【0024】
このとき、電解装置B1の陽極室においては、陰極室82に近い陽極室ほど、イオン化電位が貴である構成金属の陽極が配置されているので、電解電流は、陽極10A→陽極10B→めっき液室9→陰極11の方向に流れる。したがって、めっき液室9内の構成金属Mの陽イオン種が陽極室81Bの方に移動すること、または陽極室81B内の構成金属Nの陽イオン種が陽極室81Aの方に移動することは防止されている。
【0025】
そのため、めっき液室9内には、構成金属M,N,Rの各陽イオン種が所定の量で混在する3元合金めっき用のめっき液が生産される。
なお、図2の装置は3元合金めっき装置を例示しているが、電解装置Bにおいて、隔壁部を介して陽極室を更に連設し、かつ、陰極室8から最も離隔した位置の陽極室に配置する陽極を構成金属のうちイオン化電位が最も卑である金属で形成し、以後、順次イオン化電位が貴になる金属で連された陽極室の陽極を形成することにより、4元合金、5元合金などの合金めっき装置に変形することができる。
【0026】
図3は、3元合金めっき装置の別の例を示す。
この装置の場合、めっき装置Aとめっき液供給装置Cは図2で示した装置の場合と同じであるが、電解装置B2が次のように構成されている点が異なっている。
この電解装置B2において、構成金属Rの陽イオン種を生成する陽極室81Aと構成金属Nの陽イオン種を生成する陽極室81Bは、図2で示した電解装置B1の場合と異なり、互いに連設されることなくそれぞれ独立して形成されている。
【0027】
この電解装置B2の場合、電解電流は、陽極10A→めっき液室9→陰極11の方向と、それとは別の陽極10B→めっき液室9→陰極11の方向との2種類になり、それぞれの電解電流により、陽極10Aと陽極10Bの溶解が進み、各陽イオン種は隔壁部71B,71Aをそれぞれ透過してめっき液室9で合流する。
したがって、この電解装置B2の場合も、めっき液室9内の構成金属Mの陽イオン種が陽極室81Aや陽極室81Bに移動することはなく、めっき液室9内には所定組成のめっき液が生産される。
【0028】
【実施例】
実施例1,比較例1
図1で示した合金めっき装置を用いてBi−Sn合金めっきを行った。
図1のめっき装置Aにおいて、不溶性陽極4としてPtめっきTi板、被めっき材5としてステンレス鋼板を用い、陽極3としてBi板を用い、また、電解装置B1において、隔壁部71には陽イオン交換膜、隔壁部72には水素イオン選択透過膜を用い、陽極10としてはSn板、陰極11としてはステンレス鋼板を用いた。なお、全ての電極の面積は0.01m2と一定にした。
【0029】
まず、Sn濃度45.0g/L,Bi濃度5.0g/Lのメタンスルホン酸めっき液2を5L調製し、これをめっき槽1に投入し、めっき液供給装置Cを作動してめっき装置Aとめっき液室9の間を上記めっき液2で連結した。
一方、陽極室81にはSn濃度50.0g/Lの陽極液を1L投入し、陰極室82にはメタンスルホン酸のみの陰極液を1L投入した。
【0030】
この状態において、整流器a1を作動して0.5Aを通電し、整流器a2を作動して11.3Aを通電し、また、整流器a3を作動して11.3Aを通電した。
50分間通電したのちステンレス鋼板5を取り出し、析出物を剥離してそのバルク蛍光X線分析を行ってBi含有量を求めた。また、めっき装置A内のめっき液についても容量法で組成分析を行った。
【0031】
比較のために、電解装置Bを用いなかったこと、不溶性陽極4を作動しなかったことを除いては、実施例1と同様の条件で電気めっきを行い、析出物の分析とめっき液組成の分析を行った。以上の結果を一括して表1に示した。
【0032】
【表1】

Figure 0004667670
【0033】
【表2】
Figure 0004667670
【0034】
表1から明らかなように、実施例装置を運転した場合には、通電前後においてめっき液の組成はほとんど変化していない。また析出物におけるBi含有量は5.0質量%であり、めっき液の組成と同じである。
ただし、陰極室82の陰極11の表面にやや曇りが認められ、微量のSnが検出されたが、陽極10の溶解で生成したSnイオンのほとんどはめっき液2に供給されていた。
これに反し、比較例の場合は、通電前後でめっき液からBi成分が多量に失われており、析出物は目的の組成になっていない。そして、陽極3の表面は黒色のスポンジ状となり、Biの置換析出が起こっていることが観察された。
【0035】
実施例2,比較例2
めっき液として、Sn濃度55.0g/L,Cu濃度1.0g/Lのメタンスルホン酸めっき液を用いたこと、めっき装置Aの陽極3としてCu板を用いたこと、整流器a1,a2,a3の通電量が、それぞれ、0.4A,10.5A,10.5Aであったこと、通電時間は1時間であったことを除いては、実施例1と同様の条件で装置を運転した。
【0036】
比較のために、電解装置Bと不溶性陽極を用いることなく、陽極としてSn−2%Cu合金板を用い、通電量10.9Aで1時間通電して合金めっきを行った。
得られた析出物につき、実施例1と同様の分析を行った。その結果を表2に示した。
【0037】
表2から明らかなように、実施例装置を運転した場合には、通電前後においてめっき液の組成はほとんど変化していない。また析出物におけるCu含有量は2.0質量%であり、めっき液の組成と同じである。
ただし、陰極室82の陰極11の表面にやや曇りが認められ、微量のSnが検出されたが、陽極10の溶解で生成したSnイオンのほとんどはめっき液2に供給されていた。
【0038】
これに反し、比較例の場合は、通電前後でめっき液からBi成分が多量に失われており、析出物は目的の組成になっていない。そして、陽極の表面は赤みがかった粗面になり、Cuの置換析出が起こっていることが観察された。
【0039】
【発明の効果】
以上の説明で明らかなように、本発明の合金めっき装置は、構成金属のうちイオン化電位が貴な金属と卑な金属との間で起こる置換析出を防止できる構造になっているので、多種多様な多元合金の電気めっきを行うことができ、その工業的価値は大である。
【図面の簡単な説明】
【図1】2元合金の電気めっきを行う本発明の合金めっき装置例を示す模式図である。
【図2】3元合金の電気めっきを行う本発明の合金めっき装置例を示す模式図である。
【図3】3元合金の電気めっきを行う本発明の別の合金めっき装置例を示す模式図である。
【符号の説明】
A めっき装置
B,B1,B2 電解装置
C めっき液供給装置
1 めっき槽
2 めっき液
3,3A 陽極
4 不溶性陽極
5 被めっき材
6 電解槽
1,71A,71B,72 隔壁部
1,81A,81B 陽極室
2 陰極室
9 めっき液室
10,10A,10B 陽極
11 陰極
1,a2,a3,a3A,a3B 整流器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloy plating apparatus and an alloy plating method using the same, and more particularly to an apparatus for electroplating a multi-component alloy and a plating method using the same.
[0002]
[Prior art]
Regarding the electroplating of alloys, the following methods are conventionally known. For example, when the alloy is a Sn—Pb alloy (solder), the Sn—Pb alloy itself prepared in a predetermined composition is used as an anode, the material to be plated is used as a cathode, and these are placed in a plating solution in a plating tank. Electroplating method, producing separate anodes for Sn and Pb, and applying current corresponding to the target alloy composition to each anode to reduce the amount of Sn and Pb dissolved in the plating solution There is a method of controlling and performing electroplating.
[0003]
In this case, since the ionization potentials of Sn and Pb are very similar, alloy plating by the method as described above is possible.
However, for most alloys, each of the constituent metals has a different ionization potential. Therefore, when a method such as electroplating of the Sn—Pb alloy described above is adopted, a metal that is easily ionized among the constituent metals is preferentially dissolved in the plating solution, whereas a metal that is difficult to ionize is deposited on the anode. The problem occurs. That is, among the constituent metals of the alloy, the former substitutional precipitation occurs based on the contact between a metal having a low (low) ionization potential and a metal having a high (high) ionization potential in the plating solution. Plating cannot be realized.
[0004]
In addition, regarding the electroplating of the alloy, an insoluble anode made of, for example, an Au-Co alloy and a material to be plated are arranged in the plating solution of the plating tank, and the constituent metal of the alloy for plating is a metal soluble in the plating solution. There is also a method of supplying the plating solution in the form of a compound.
In this method, the above substitutional precipitation does not occur. However, in this method, since it is necessary to prepare the constituent metal of the alloy once in the form of a metal compound soluble in the plating solution, the cost increases. In particular, when the constituent metal is a noble metal, the chemical cost for preparing the above metal compound becomes very expensive.
[0005]
In the case of this method, most of the metal compound used is an ionic compound, and the anionic species of the metal compound is accumulated in the plating solution without being consumed during the electroplating process. There is also a problem that the balance is lost.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems in conventional alloy plating, to provide an alloy plating apparatus that prevents substitution deposition during plating and does not require the use of expensive chemicals, and an alloy plating method using the same. And
[0007]
[Means for Solving the Problems]
To achieve the above object, in the present invention, the alloy plating apparatus for electroplating a plating alloy in the plated material, deposition apparatus encounters depositing a metal constituting the plating alloy said to be plated material A plating solution containing a cation of the first metal having the highest ionization potential among the metals constituting the plating alloy and a cation of a metal other than the first metal among the metals constituting the plating alloy, a plating tank to the material to be plated is arranged to be the first cathode, and disposed respectively on the plating bath, the main cause cations formed Ri before Symbol first metal from the first metal anode, said precipitation and a insoluble anode which does not dissolve in the plating solution system, and includes an electrolytic device for preparing a plating solution containing a cation of the other metal, the electrolysis device is connected before Symbol plating tank The other metals in the plating solution chamber accumulated a plating solution containing a cation, at least one auxiliary anode cell unit to generate positive ions before Symbol other metals, one in the cathode chamber electrolytic solution stored, the the second negative electrode disposed in the cathode chamber, and a partition between said cathode compartment and said plating liquid chamber, the transmission of the other metal cation containing at least cations to the cathode chamber from the plating solution chamber includes a cathode side septal wall to prevent the sub-anode cell unit is partitioned by the anode-side partition wall, auxiliary anode chamber electrolytic solution stored, and the arranged sub anode compartment, one of said other metals has a secondary anode to generate positive ions of the other metal consists, the anode-side partition wall, in between the auxiliary anode chamber and the plating solution chamber, wherein the auxiliary anode chamber to the plating solution chamber to allow transmission of other metal cations, the auxiliary anode Soyu The cation generated in the plating is added to the plating solution chamber to prepare a plating solution containing the cation of the other metal, and the plating solution containing the cation of the other metal in the plating solution chamber is supplied to the plating tank. alloy plating apparatus is provided, characterized in that the.
Moreover, it is preferable that the electrolyzer includes two sub anode tank units in which other metals forming the sub anode are different from each other.
Furthermore, the electrolytic apparatus is preferably configured to include three sub-anode cell unit with different other metal forming said auxiliary anode to each other.
More preferably, the apparatus further includes a supply device that is disposed between the plating tank and the plating solution chamber and supplies a plating solution containing a cation of the other metal from the plating solution chamber to the plating bath.
[0008]
Further, in the present invention, during operation of the above-described alloy plating apparatus, a plating solution containing a cation of the other metal in the plating solution chamber of the electrolytic device is forcibly applied to the plating tank of the deposition device by the supply device. In addition, an alloy plating method is provided in which electroplating is performed on the material to be plated by the deposition apparatus.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is applicable to electroplating of binary and multi-component alloys. First, an apparatus and method for electroplating a binary alloy will be described with reference to FIG. Prior to the description, the alloy to be plated is indicated by MxNy (M and N are constituent metals, x and y are composition ratios), and the constituent metal M has a higher ionization potential than the constituent metal N. And
[0010]
First, as shown in FIG. 1, the apparatus of the present invention includes a plating apparatus A (deposition apparatus), an electrolysis apparatus B, and a plating solution supply apparatus C.
In the plating apparatus A, a plating solution 2 produced by an electrolysis apparatus B described later is accommodated in a plating tank 1, and an anode 3 made of metal M, an insoluble anode 4 and a material to be plated 5 are contained therein. The rectifiers a 1 and a 2 are arranged independently between the anode 3 and the material to be plated 5 and between the insoluble anode 4 and the material to be plated 5.
[0011]
The material of the insoluble anode 4 used at this time may be any material that does not dissolve in the plating solution 2, and examples thereof include a material in which a Ti plate or a Zr plate is covered with Pt or IrO 2. Can do.
Next, the electrolysis apparatus B will be described.
In the electrolyzer B, the inside of the electrolytic cell 6 is fractionated by two partition walls 7 1 and 7 2 which will be described later, and three chambers 8 1 , 8 2 and 9 are formed.
[0012]
Then, in the room 8 1 consists anode 10 is disposed anode chamber comprising a constituent metal N, in the room 82 is arranged a cathode 11 made of a material that does not dissolve in an acid, such as stainless steel cathode chamber The rectifier a 3 is arranged between the anode 10 and the cathode 11.
The chamber 9 located between the anode chamber 8 1 and the cathode chamber 8 2 is a plating solution chamber in which the plating solution 2 having a desired composition is produced.
[0013]
Here, the partition wall portion 71 which fraction the anode chamber 81 is configured metal M, but cationic species N is permeable, however, possible to prevent the liquid in each room are mixed with each other for example a cation exchange membrane, etc. It consists of Further, partition wall 7 2 for fractions a cathode chamber 8 2, constituent metal M, cationic species N is composed of not penetrate, for example, hydrogen ion permselective membrane and anion exchange membrane.
[0014]
The plating solution chamber 9 of the electrolytic device B and the plating device A are connected by a plating solution supply device C including, for example, a pipe, a pump, and a valve mechanism.
The plating solution 2 produced in the plating solution chamber 9 as described later is supplied to the plating apparatus A by a pump, for example. Then, by operating the rectifiers a 1 and a 2 and conducting electroplating by passing a predetermined current between the anode 3 and the material to be plated 5, the surface of the material to be plated 5 is coated with an alloy plating having a predetermined composition. The
[0015]
Next, operation and effects of the apparatus shown in FIG. 1 will be described.
The plating apparatus A and the electrolysis apparatus B contain, for example, an acidic plating solution having a predetermined composition containing the cation species of the constituent metals M and N, operate the rectifiers a 1 , a 2 , and a 3 to energize the electrodes. Then, the plating apparatus A and the electrolysis apparatus B are operated simultaneously. Further, the plating solution supply device C is also operated at the same time to connect the plating device A and the electrolysis device B with the plating solution.
[0016]
Operation start device at the same time, the plating apparatus A, the process proceeds dissolution of the anode 3, constituent metal cation species generated by the M, also electrolyzer anode chamber 8 1 In configuration progressed dissolution of the anode 10 a metal N of B Cation species are produced and an anolyte (N) is produced.
At this time, the amount of cation species of the constituent metal M and the amount of cation species of the constituent metal N are controlled by controlling the energization amounts of the anode 3 and the anode 10, respectively. It is preferable to adjust to an amount corresponding to the composition ratio x, y of M and N.
[0017]
Cationic species constituting the metal N generated in the anode chamber 8 1 moves through the partition wall 71 into the plating solution chamber 9, also cationic species constituting the metal M generated by the plating apparatus A plating solution supply device It moves to the plating solution chamber 9 via C, and both ionic species merge in this plating solution chamber 9.
At this time, the anode solution in the plating solution and an anode chamber 8 in the first plating liquid chamber 9 (N), not be mixed with one another by the action of the partition wall 71. Therefore, the constituent metal M is not deposited on the anode 10 by substitution.
[0018]
Although it is possible that the cationic species of the constituent metal M moves through the partition wall 71 to the anode chamber 8 1, is always biased during operation of the electrolysis apparatus B is applied, constituting the metal M The above-mentioned movement hardly occurs, and the amount of movement is virtually negligible.
On the other hand, since the cation species of the constituent metals M and N supplied to the plating solution chamber 9 are prevented from moving to the cathode chamber 8 2 in the partition wall portion 7 2 in the above-described operation process, the cathode chamber 8 2 contains only the catholyte that does not contain the cation species, so that the constituent metals M and N are not deposited on the cathode 11. Then, in the cathode chamber 82, an anion species are produced exclusively hydrogen is generated, which moves through the partition wall 7 2 into the plating liquid chamber 9.
[0019]
In this way, a plating solution having a predetermined concentration is produced in the plating solution chamber 9 without causing substitution deposition between the constituent metals M and N. Then, the plating solution is supplied to the plating apparatus A via the plating solution supply apparatus C and is electroplated on the material 5 to be plated.
Note that, in the apparatus shown in FIG. 1, as described above, since anionic species generated in the cathode chamber 82 moves to the plating solution chamber 9, the anionic species in the plating solution chamber 9 unilaterally increased amount To go. To prevent such problems, it is preferable that the partition wall 7 2 hydrogen ion permselective membrane. This is because the movement of the generated anion species to the plating solution chamber 9 can be prevented. Incidentally, in this case, hydrogen ions of the plating solution in the plating liquid chamber 9 is to continue to move to the cathode chamber 8 2.
[0020]
Next, FIG. 2 shows an example of a ternary alloy plating apparatus.
Here, the ternary alloy is represented by MxNyRz, and the ionization potential of the constituent metal is assumed that the metal R is the lowest and the metal M is the highest. An example of such a ternary alloy is an Ag—Cu—Sn alloy.
This apparatus is composed of a plating apparatus, an electrolysis apparatus, and a plating solution supply apparatus as in the case of the apparatus shown in FIG.
[0021]
Specifically, the electrolysis apparatus has a configuration described later, and in the plating apparatus A, the anode 3A is composed of the constituent metal M having the highest ionization potential. The same.
Here, the electrolysis apparatus B 1 will be described with reference to FIG.
In the case of this electrolysis apparatus B 1 , anode chambers 8 1 A and 8 1 B are continuously arranged inside the electrolytic cell 6. That is, one anode chamber 8 1 in the electrolysis apparatus B shown in FIG. 1 is composed of two anode chambers 8 1 A and 8 1 B via partition walls 7 1 A. A cathode chamber 8 2 having the same configuration as that of the apparatus of FIG. 1 is provided, and a plating solution chamber 9 is located between the anode chamber 8 1 B and the cathode chamber 8 2 .
[0022]
Anode chamber 8 1 A and an anode chamber 8 1 B to be fractions partition wall 7 1 A, and an anode chamber 8 1 B and the partition wall 7 1 B which fractions the plating liquid chamber 9, both, constituent metal M, The cation species of N and R are permeated, but are composed of, for example, a cation exchange membrane capable of preventing mixing of liquids in each room.
In the anode chamber 8 1 A provided at a position farthest from the cathode chamber 8 2 , the anode 10 A made of the constituent metal R having the lowest ionization potential is disposed, and between this and the cathode 11. The rectifier a 3 A is arranged, and the anode chamber 8 1 B adjacent to the anode chamber 8 1 A is arranged with the anode 10B made of the constituent metal N having an ionization potential between the constituent metals M and R. Another rectifier a 3 B is arranged between the cathode 11 and the cathode 11.
[0023]
In operation of this apparatus, the rectifier a 1 and the rectifier a so that M, N, and R in amounts corresponding to the composition ratios x, y, and z of the constituent metals M, N, and R in the target alloy plating are dissolved. 2, the energization amount of the rectifier a 3 A, and the energization amount of the rectifier a 3 B are controlled.
In the anode chamber 8 1 A of the electrolysis apparatus B 1 , the anode 10 A is dissolved to produce a predetermined amount of cation species of the constituent metal R, and in the anode chamber 8 1 B, the anode 10 B is dissolved and the positive portion of the constituent metal N is positive. A predetermined amount of ionic species is generated. Then, the cation species of the constituent metal R sequentially pass through the partition wall portion 7 1 A and the partition wall portion 7 1 B and move to the plating solution chamber 9, and the cation species of the constituent metal N also pass through the partition wall portion 7 1 B. Then, they move to the plating solution chamber 9, which merges with the cation species of the constituent metal M generated by the plating apparatus A in this plating solution chamber 9.
[0024]
At this time, in the anode compartment of the device B 1, the more the anode chamber closer to the cathode chamber 8 2, since the ionization potential constituent metal of the anode is located nobler, electrolysis current, anode 10A → anode 10B → It flows in the direction of the plating solution chamber 9 → the cathode 11. Accordingly, the constituent metal M of the plating solution chamber 9 cationic species to move toward the anode chamber 8 1 B, or the constituent metal N in the anode chamber 8 1 in B cation species in the anode chamber 8 1 A It is prevented from moving toward.
[0025]
Therefore, a plating solution for ternary alloy plating in which the cation species of the constituent metals M, N, and R are mixed in a predetermined amount is produced in the plating solution chamber 9.
Although the apparatus of FIG. 2 illustrates a ternary alloy plating apparatus, the electrolytic device B 1, and further continuously provided to the anode chamber through the partition wall, and the farthest position from the cathode chamber 8 2 ionization potential of the constituent metal of the anode arranged in the anode chamber is formed of a metal which is the most noble, thereafter, by sequentially ionization potential to form the anode of the continuously arranged anodes compartment with metal to become noble, quaternary It can deform | transform into alloy plating apparatuses, such as an alloy and a ternary alloy.
[0026]
FIG. 3 shows another example of a ternary alloy plating apparatus.
In this apparatus, the plating apparatus A and the plating solution supply apparatus C are the same as those in the apparatus shown in FIG. 2, except that the electrolysis apparatus B 2 is configured as follows.
In this electrolyzer B 2 , the anode chamber 8 1 A for generating the cation species of the constituent metal R and the anode chamber 8 1 B for generating the cation species of the constituent metal N are the same as those of the electrolyzer B 1 shown in FIG. Unlike the case, they are formed independently without being connected to each other.
[0027]
In the case of this electrolysis apparatus B 2 , there are two types of electrolysis currents: the direction of anode 10 A → plating solution chamber 9 → cathode 11 and the other direction of anode 10 B → plating solution chamber 9 → cathode 11. As a result of the electrolytic current, dissolution of the anode 10A and the anode 10B proceeds, and the respective cation species permeate through the partition walls 7 1 B and 7 1 A and join in the plating solution chamber 9.
Therefore, also in this electrolysis apparatus B 2 , the cation species of the constituent metal M in the plating solution chamber 9 do not move to the anode chamber 8 1 A or the anode chamber 8 1 B, but in the plating solution chamber 9. A plating solution having a predetermined composition is produced.
[0028]
【Example】
Example 1, Comparative Example 1
Bi-Sn alloy plating was performed using the alloy plating apparatus shown in FIG.
In the plating apparatus A of FIG. 1, a Pt-plated Ti plate is used as the insoluble anode 4, a stainless steel plate is used as the material 5 to be plated, a Bi plate is used as the anode 3, and the partition wall portion 7 1 is positively charged in the electrolytic unit B 1 . ion-exchange membrane, using a hydrogen ion permselective membrane on the partition wall 7 2, Sn plate as the anode 10, the cathode 11 was a stainless steel plate. Note that the area of all electrodes was kept constant at 0.01 m 2 .
[0029]
First, 5 L of a methanesulfonic acid plating solution 2 having a Sn concentration of 45.0 g / L and a Bi concentration of 5.0 g / L is prepared, put into the plating tank 1, and the plating solution supply device C is operated to apply a plating device A And the plating solution chamber 9 are connected by the plating solution 2.
On the other hand, the anolyte of Sn concentration 50.0 g / L to the anode chamber 8 1 and 1L-up, the cathode chamber 8 2 and 1L charged catholyte only methanesulfonic acid.
[0030]
In this state, rectifier a 1 was activated to energize 0.5A, rectifier a 2 was activated to energize 11.3A, and rectifier a 3 was energized to energize 11.3A.
After energizing for 50 minutes, the stainless steel plate 5 was taken out, the precipitate was peeled off, and bulk fluorescent X-ray analysis was performed to determine the Bi content. In addition, the composition of the plating solution in the plating apparatus A was also analyzed by the volume method.
[0031]
For comparison, electroplating was performed under the same conditions as in Example 1 except that the electrolysis apparatus B was not used and the insoluble anode 4 was not operated. Analysis was carried out. The above results are collectively shown in Table 1.
[0032]
[Table 1]
Figure 0004667670
[0033]
[Table 2]
Figure 0004667670
[0034]
As is apparent from Table 1, when the example apparatus was operated, the composition of the plating solution hardly changed before and after energization. The Bi content in the precipitate is 5.0% by mass, which is the same as the composition of the plating solution.
However, slightly cloudy was observed on the surface of the cathode chamber 8 2 of the cathode 11, but Sn traces were detected, most of the Sn ions generated by dissolution of the anode 10 was supplied to the plating liquid 2.
On the other hand, in the case of the comparative example, a large amount of Bi component is lost from the plating solution before and after energization, and the precipitate does not have the target composition. And it was observed that the surface of the anode 3 became black sponge-like and Bi substitutional precipitation occurred.
[0035]
Example 2 and Comparative Example 2
A methanesulfonic acid plating solution having a Sn concentration of 55.0 g / L and a Cu concentration of 1.0 g / L was used as the plating solution, a Cu plate was used as the anode 3 of the plating apparatus A, and rectifiers a 1 and a 2 , A 3 energizing amounts were 0.4A, 10.5A, 10.5A, respectively, and the energizing time was 1 hour, and the apparatus was operated under the same conditions as in Example 1. Drove.
[0036]
For comparison, without using the electrolysis apparatus B and the insoluble anode, an Sn-2% Cu alloy plate was used as the anode, and the alloy was plated by energizing for 1 hour at an energization amount of 10.9 A.
The obtained precipitate was analyzed in the same manner as in Example 1. The results are shown in Table 2.
[0037]
As is apparent from Table 2, when the example apparatus was operated, the composition of the plating solution hardly changed before and after energization. Further, the Cu content in the precipitate is 2.0 mass%, which is the same as the composition of the plating solution.
However, slightly cloudy was observed on the surface of the cathode chamber 8 2 of the cathode 11, but Sn traces were detected, most of the Sn ions generated by dissolution of the anode 10 was supplied to the plating liquid 2.
[0038]
On the other hand, in the case of the comparative example, a large amount of Bi component is lost from the plating solution before and after energization, and the precipitate does not have the target composition. Then, it was observed that the surface of the anode became a reddish rough surface, and Cu precipitation was occurring.
[0039]
【The invention's effect】
As is clear from the above description, the alloy plating apparatus of the present invention has a structure that can prevent substitutional precipitation that occurs between a noble metal and a noble metal having an ionization potential among the constituent metals. The multi-component alloy can be electroplated, and its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an alloy plating apparatus of the present invention for performing electroplating of a binary alloy.
FIG. 2 is a schematic view showing an example of an alloy plating apparatus of the present invention for performing electroplating of a ternary alloy.
FIG. 3 is a schematic view showing another example of an alloy plating apparatus of the present invention for performing electroplating of a ternary alloy.
[Explanation of symbols]
A plating apparatus B, B 1 , B 2 electrolysis apparatus C plating solution supply apparatus 1 plating tank 2 plating solution 3, 3A anode 4 insoluble anode 5 material 6 electrolysis tank 7 1 , 7 1 A, 7 1 B, 7 2 Partition section 8 1 , 8 1 A, 8 1 B Anode chamber 8 2 Cathode chamber 9 Plating solution chamber 10, 10A, 10B Anode 11 Cathode a 1 , a 2 , a 3 , a 3 A, a 3 B Rectifier

Claims (5)

被めっき材にめっき合金を電気めっきするための合金めっき装置において、
前記被めっき材に前記めっき合金を構成する金属を析出させる析出装置であって、前記めっき合金を構成する金属のうちイオン化電位が最も高い第1金属の陽イオン及び前記めっき合金を構成する金属のうち前記第1金属以外の他金属の陽イオンを含むめっき液を蓄え、第1陰極となる前記被めっき材が配置されるべきめっき槽と、前記めっき槽にそれぞれ配置された、前記第1金属から成り前記第1金属の陽イオンを発生させる主陽極と、前記めっき液に溶解しない不溶性陽極とを含む析出装置、及び
前記他金属の陽イオンを含むめっき液を調製する電解装置
を備え、
前記電解装置は、
記めっき槽に接続され、前記他金属の陽イオンを含むめっき液を蓄えためっき液室、
記他金属の陽イオンを発生させる少なくとも1個の副陽極槽ユニット、
電解液が蓄えられた1個の陰極室、
前記陰極室内に配置された第2陰極、及び
前記めっき液室と前記陰極室との間を仕切り、前記めっき液室から前記陰極室への前記他金属の陽イオンを少なくとも含む陽イオンの透過を阻止する陰極側隔
含み、
前記副陽極槽ユニットは、
陽極側隔壁で仕切られ、電解液が蓄えられた副陽極室、及び
前記副陽極室内に配置され、前記他金属のうちの1種から成りこの他金属の陽イオンを発生させる副陽極を有し、
前記陽極側隔壁は、
前記めっき液室と前記副陽極室との間にて、前記副陽極室から前記めっき液室への前記他金属の陽イオンの透過を許容し、
前記副陽極槽ユニットで発生した陽イオンが前記めっき液室に加えられて前記他金属の陽イオンを含むめっき液が調製され、
めっき液室の当該他金属の陽イオンを含むめっき液が前記めっき槽に供給されることを特徴とする合金めっき装置。
In an alloy plating apparatus for electroplating a plating alloy on a material to be plated,
A deposition apparatus for precipitating a metal constituting the plating alloy on the material to be plated, the first metal cation having the highest ionization potential among the metals constituting the plating alloy and the metal constituting the plating alloy Among them, a plating solution containing a cation of a metal other than the first metal is stored, and a plating tank in which the material to be plated serving as a first cathode is to be disposed , and the first metal disposed in the plating tank, respectively. depositing device comprising a main anode which generates the formation Ri before Symbol first metal cation from the insoluble anode which does not dissolve in the plating solution, and
Electrolytic apparatus for preparing a plating solution containing a cation of another metal
With
The electrolyzer is
Is connected before Symbol plating tank, the plating solution chamber accumulated a plating solution containing a cation of the other metal,
At least one auxiliary anode cell unit for generating positive ions before Symbol other metals,
One cathode chamber in which the electrolyte is stored ,
The second negative electrode disposed in the cathode chamber, and a partition between said cathode compartment and said plating solution chamber, transmission from the plating solution chamber of the other metal cation containing at least cations to the cathode chamber to prevent the cathode side septal wall
It includes,
The sub-anode unit is
Partitioned by the anode-side partition wall, auxiliary anode chamber electrolytic solution stored, and the arranged sub anode chamber has an auxiliary anode for generating positive ions of the other metal consists one of the other metals ,
The anode-side partition wall is
At between the auxiliary anode chamber and the plating solution chamber, and allow transmission of the said other metal cations from the secondary anode chamber into the plating solution chamber,
A cation generated in the sub-anode tank unit is added to the plating solution chamber to prepare a plating solution containing a cation of the other metal,
An alloy plating apparatus, wherein a plating solution containing a cation of the other metal in the plating solution chamber is supplied to the plating tank .
前記電解装置は、前記副陽極を形成する他金属を互いに異ならした2個の副陽極槽ユニットを含むことを特徴とする請求項1に記載の合金めっき装置。  2. The alloy plating apparatus according to claim 1, wherein the electrolysis apparatus includes two sub-anode tank units in which other metals forming the sub-anode are different from each other. 前記電解装置は、前記副陽極を形成する他金属を互い異ならした3個の副陽極槽ユニットを含むことを特徴とする請求項1に記載の合金めっき装置。The electrolysis apparatus, alloy plating apparatus according to claim 1, characterized in that it comprises three sub-anode cell unit with different other metal forming said auxiliary anode to each other. 前記めっき槽と前記めっき液室との間に配置され、前記めっき液室から前記めっき槽に前記他金属の陽イオンを含むめっき液を供給する供給装置を更に備えることを特徴とする請求項1〜3の何れかに記載の合金めっき装置。The apparatus further comprises a supply device that is disposed between the plating tank and the plating solution chamber and supplies a plating solution containing a cation of the other metal from the plating solution chamber to the plating vessel. The alloy plating apparatus in any one of -3. 請求項4の合金めっき装置の運転中、前記電解装置のめっき液室内の前記他金属の陽イオンを含むめっき液を前記供給装置により前記析出装置の前記めっき槽に強制的に加えながら、前記析出装置にて前記被めっき材に電気めっきを行うことを特徴とする合金めっき方法。During the operation of the alloy plating apparatus according to claim 4, the precipitation is performed while forcibly adding a plating solution containing a cation of the other metal in the plating solution chamber of the electrolytic device to the plating tank of the deposition device by the supply device. An alloy plating method comprising performing electroplating on the material to be plated with an apparatus.
JP2001243973A 2001-08-10 2001-08-10 Alloy plating apparatus and alloy plating method using the same Expired - Fee Related JP4667670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243973A JP4667670B2 (en) 2001-08-10 2001-08-10 Alloy plating apparatus and alloy plating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001243973A JP4667670B2 (en) 2001-08-10 2001-08-10 Alloy plating apparatus and alloy plating method using the same

Publications (2)

Publication Number Publication Date
JP2003055798A JP2003055798A (en) 2003-02-26
JP4667670B2 true JP4667670B2 (en) 2011-04-13

Family

ID=19073976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243973A Expired - Fee Related JP4667670B2 (en) 2001-08-10 2001-08-10 Alloy plating apparatus and alloy plating method using the same

Country Status (1)

Country Link
JP (1) JP4667670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699738A (en) * 2019-11-07 2020-01-17 俊杰机械(深圳)有限公司 Independent electroplating device and process for hardware workpiece

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121299A (en) * 1983-12-01 1985-06-28 Tokuyama Soda Co Ltd Nickel plating method
JPH0288790A (en) * 1988-09-22 1990-03-28 C Uyemura & Co Ltd Bismuth-tin alloy electroplating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121299A (en) * 1983-12-01 1985-06-28 Tokuyama Soda Co Ltd Nickel plating method
JPH0288790A (en) * 1988-09-22 1990-03-28 C Uyemura & Co Ltd Bismuth-tin alloy electroplating method

Also Published As

Publication number Publication date
JP2003055798A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP3188361B2 (en) Chrome plating method
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
US6120673A (en) Method and device for regenerating tin-plating solutions
US5419821A (en) Process and equipment for reforming and maintaining electroless metal baths
US6899803B2 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
US4160704A (en) In situ reduction of electrode overvoltage
EP0545586A1 (en) Synthesis of palladium hydroxide compounds
US4292159A (en) Cell having in situ reduction of electrode overvoltage
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
JP4667670B2 (en) Alloy plating apparatus and alloy plating method using the same
WO2001092604A2 (en) Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
GB1580512A (en) Insitu reduction of electrode over voltage
JP2009185383A (en) Feed mechanism for copper plating solution, copper plating apparatus using the same, and copper film-forming method
CN117396638A (en) Device and method for coating a component or a semifinished product with a chromium layer
JP4615159B2 (en) Alloy plating method
JPH06158397A (en) Method for electroplating metal
WO2021123129A1 (en) Method and system for depositing a zinc-nickel alloy on a substrate
JPH0699178A (en) Electrolytical treating method for waste chemical plating liquid
EP3914757B1 (en) Method for electrolytic zinc-nickel alloy deposition using a membrane anode system
JPS6376884A (en) Method for regenerating chromate treatment liquid
JP2006213956A (en) Fe-W ALLOY ELECTROPLATING DEVICE USING CATION EXCHANGE MEMBRANE, CONTINUOUS PLATING METHOD USING THE DEVICE AND COATING FILM
JP2003073889A (en) Electrolytic copper plating method for semiconductor wafer, apparatus therefor and semiconductor wafer plated by using these and having little adhering particle
JP4517177B2 (en) Treatment method of electroless nickel plating solution
WO2021106291A1 (en) Method for suppressing increase in zinc concentration in plating solution, and method for producing zinc-based plating member
JPH0417693A (en) Plating method of ni, ni-zn alloy or ni-zn-co alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees