JP4666428B2 - Numerical analysis method and apparatus - Google Patents

Numerical analysis method and apparatus Download PDF

Info

Publication number
JP4666428B2
JP4666428B2 JP2000353905A JP2000353905A JP4666428B2 JP 4666428 B2 JP4666428 B2 JP 4666428B2 JP 2000353905 A JP2000353905 A JP 2000353905A JP 2000353905 A JP2000353905 A JP 2000353905A JP 4666428 B2 JP4666428 B2 JP 4666428B2
Authority
JP
Japan
Prior art keywords
analysis
region
state quantity
state
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000353905A
Other languages
Japanese (ja)
Other versions
JP2002157286A (en
Inventor
亮 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2000353905A priority Critical patent/JP4666428B2/en
Publication of JP2002157286A publication Critical patent/JP2002157286A/en
Application granted granted Critical
Publication of JP4666428B2 publication Critical patent/JP4666428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、非定常的に変化する構造物や事象の物理量を予測解析する方法、装置および記憶媒体に関する。
【0002】
【従来の技術】
時間変化する非定常状態における対象領域内の物理量を予測する手法として、有限要素法、境界要素法、差分法、あるいは有限体積法などの数値解析手法が広く活用され、製品設計や設備設計、各種シミュレーション等へ応用されている。これらは対象領域を、例えば荷重の負荷される製品や構造物などの形状、速度や温度分布をもった気体や流体の流れる領域、またそれらの組み合わせなどとし、解析対象の状態量を圧力、温度、変位、応力、歪み、速度などの物理量として計算している。上記数値解析手法によれば、対象領域をビーム要素などの1次元的形状、三角形や四角形などの2次元的形状、あるいは三角錐や三角柱、六面体などの3次元的形状よりなる複数の微小要素に分割し、各微小要素における初期状態を定義した後、一定または可変の時間増分により時間ステップを進めながら任意時刻tnにおける微小要素の圧力、温度、変位、応力、歪み、速度等の未知の状態量についてコンピュータを用いて算出することができる。
【0003】
例えば射出成形における充填過程のような、金型キャビティ(流路)内における充填材料(流体)の流入過程を解析するにあたり、金型キャビティ内に刻々と充填領域が広がる過程を予測する手法として上記のような数値解析手法が活用されている。ここで充填領域の広がり方や充填圧力上昇、せん断応力を予測することにより、充填バランスの良い材料注入位置やキャビティ空隙寸法などを計算機上でシミュレーションし、実際に金型を制作する前に最適な金型設計を検討することで製品開発期間や開発コストを低減することができる。
【0004】
【発明が解決しようとする課題】
上記数値解析手法を例えば電子コネクタ部品の射出成形など、複雑な形状へ適用する場合、形状を精度良く表現するために微小要素の寸法を小さくする必要があり、必然的に微小要素数が増大する。また近年、設計で活用されている3次元CADにて製品設計を行い、このデータを用いて数値計算を行う場合、プリプロセッサと呼ばれる微小要素への分割ソフトウェアを用いて自動分割されることが多い。このとき微小要素の形状がつぶれ、例えば三角形微小要素が鈍角三角形となった場合は解析精度が低下することから、微小要素のつぶれを防ぐために微小要素の寸法を小さくすることが多く、この場合も微小要素数が増大する傾向がある。
【0005】
こうした微小要素数の増大に対しては、未知変数量が増大することから解析時間が増大し、特に時間方向に解析を繰り返す必要のある非定常解析については、実用的な解析時間内に終了することが困難となることが多い。
【0006】
一方、例えば射出成形過程の解析では、充填の途中において流動先端部分は刻々と変化し急激に圧力が変化するのに対し、既に充填された位置の圧力値は時間的に単調に増加することが多い。このように解析領域の一部分で激しい状態量の変化が生じ、それ以外の部分では比較的単調な変化となる様態が射出成形過程以外の解析においても一般的に見受けられることが多いが、このように状態量の変化の度合いが異なる領域全体を一括して解析する場合は、変化の激しい領域を基準として解析に用いる時間間隔を細かく設定する必要があった。
【0007】
本発明はこうした状況に鑑み、微小要素数の多い大規模な領域を取り扱う非定常数値解析であっても、実用的な時間にて実行可能としやすい物理現象の予測解析方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために本発明によれば、解析対象物の解析領域を解析条件入力装置により射出成形品形状を分割の微小要素サイズを替えることなく複数の微小要素に分割し解析モデルを構築する工程と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する工程と、前記領域Bについて時間的な計算負荷の小さな計算手法により状態量を求めて状態量Bとする工程と、前記状態量Bに基づいて境界条件を設定し、前記領域Aについて時間的な計算負荷の大きな計算手法により状態量を求めて状態量Aとする工程とを有し領域Aと領域Bを併せた状態量解析結果をデータ記憶装置に保存することを特徴とする、物理現象の予測解析方法が提供される。
【0009】
本発明において時間的な計算負荷とはコンピュータのCPUに発生する演算回数であり、計算負荷が小さい、すなわち演算回数が少ないほど計算時間を短くすることができる。状態量の変化の激しい領域Aでは、精度良く解析するために計算負荷の高い解析を行い、領域Bについては計算負荷の小さい計算手法で高速に計算することにより、全体の解析効率を高めることができる。また、領域Aの境界条件の設定とは、領域Aと領域Bとの接する部分の状態量について、状態量Bの値を領域Aの境界上の既知の状態量とすることを表している。
【0010】
また本発明の別の態様によれば、解析対象物の解析領域を解析条件入力装置により射出成形品形状を分割の微小要素サイズを替えることなく複数の微小要素に分割し解析モデルを構築する工程と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する工程と、前記領域Bについては、長い時間増分Δtmごとに状態量を求めて状態量Bとする工程と、前記状態量Bに基づいて前記領域Aについて短い時間増分Δtnごとに状態量を求めて状態量Aとする工程とを有し領域Aと領域Bを併せた状態量解析結果をデータ記憶装置に保存することを特徴とする、物理現象の予測解析方法が提供される。
【0011】
ここで領域Aの解析を行う時刻をΔtn間隔とし領域Aと領域Bを併せた全体領域の解析を行う時刻をΔtm間隔とし、例えばΔtmをΔtnの10〜100倍程度の粗い時間増分とし、Δtm間隔にて全体領域の解析を行い、領域AについてのみΔtn間隔で解析を行うことができる。この方法により全体領域の解析は粗い時間増分であるΔtm間隔となり、Δtn間隔では領域Aの解析のみとなるため、解析に要する時間を大幅に短縮することができる。
【0013】
tnにおける領域Bの状態量Pnを近似的に計算する方法としては、例えば全体領域の解析実施済みの直近2ステップtm-2、tm-1(tm-1− tm-2=Δtm)おける状態量Pm-2、Pm-1より次の式(1)にて外挿して予測することができる。
Pn=Pm-1+{(Pm-1−Pm-2)/(tm-1-tm-2)}×(tn-tm-1) (1)
また、領域BでのPnを予測する方法として、上式はtnに関して1次式を用いているが、2次以上の高次関数や指数関数、対数関数などを用いてより精度良く近似することも可能である。
【0014】
また、以上の方法では解析領域をA,Bの2つに分割しているが、解析領域を3つ以上に分割し、それぞれについて異なる時間増分を設定することも可能である。
【0015】
また、前記時間増分Δtn、Δtmに関しては、必ずしも実時間である必要はなく、解析完了までの完了割合の増分であっても良く、例えば射出成形充填過程を解析する場合に、充填途中における材料の充填体積の成形品体積に対する割合を充填率とし、充填が完了するまでの前記充填率の増分を前記時間増分としても良い。あるいは、構造解析において荷重に対する変形や応力を求める場合において、荷重零の状態から仮想的に徐々に荷重を増加させ、最終的に付加される荷重値に至った時点での変形や応力を求める手法において、最終的に付加される荷重に対する割合の増分を上記時間増分としてもよい。
【0016】
また、本発明の別の好ましい態様によれば、前記解析対象物は流体が流れる流路であり、前記状態量は前記流体の圧力であり、前記領域Aは前記流体の自由表面近傍の流体内部の領域であり、前記領域Bは前記流体内部であって前記領域Aに含まれない領域の一部または全部であることを特徴とする、物理現象の予測解析方法が提供される。
【0017】
例えば射出成形において材料が金型内に充填される過程の解析において、解析対象物は金型の空隙部分(キャビティ)であり、流体である材料の流動先端部分で空気に接する部分が自由表面である。通常、充填開始後の時刻tにおいて、金型空隙部分のうち、充填済みの部分が解析領域となる。数値解析においては解析領域を複数の微小要素に分割して定義するが、微小要素としては円筒などの1次元要素や、三角形や四角形などの2次元要素、三角錐、三角柱、6面体などの3次元要素が用いられる。自由表面に接した充填済み部分の微小要素よりなる領域を自由表面近傍といい、前記領域Aとする。
【0018】
射出成形過程の充填途中の解析では領域Bの圧力値を前記予測方法にて近似し、未充填部分の圧力値を大気圧とすることにより、領域A部分、すなわち流動先端部分の圧力値のみを未知変数として解析することができる。例えばプリンターシャーシなど複雑なリブ構造をもつプラスチック部品をCADにて形状定義し、特開平10−255077号公報に記載の方法等により自動的に前記3次元要素よりなる微小要素の集合に分割して解析する場合、10万個程度の微小要素に分割され、ワークステーションを用いても計算時間が20時間以上となることが多いが、本方法によれば計算の大半を1000〜2000程度の未知変数にて計算することができ、解析時間を2時間程度へ短縮することができる。
【0019】
前記解析方法に関しては、射出成形過程の解析以外にも非定常熱伝導解析、流体流動解析、過渡応答構造解析、大変形構造解析、衝撃解析などへ適用することも可能である。
【0020】
さらに、本発明の別の態様によれば、解析対象物の解析領域を解析条件入力装置により射出成形品形状を分割の微小要素サイズを替えることなく複数の微小要素に分割した解析モデルを構築する解析データ構築手段と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する領域設定手段と、前記領域Bについて時間的な計算負荷の小さな計算手法により状態量を求めて状態量BとするB領域計算手段と、前記状態量Bに基づいて境界条件を設定し、前記領域Aについて時間的な計算負荷の大きな計算手法により求めるA領域計算手段とを有し領域Aと領域Bを併せた状態量解析結果をデータ記憶装置に保存できることを特徴とする、物理現象の予測解析装置が提供される。
【0021】
また、本発明の別の好ましい態様によれば、解析対象物の解析領域を解析条件入力装置により射出成形品形状を分割の微小要素サイズを替えることなく複数の微小要素に分割した解析モデルを構築する解析データ構築手段と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する領域設定手段と、前記領域Bについては、長い時間増分Δtmごとに状態量を求めて、状態量BとするB領域計算手段と、前記状態量Bに基づいて前記領域Aについて短い時間増分Δtnごとに状態量を求めるA領域計算手段とを有し領域Aと領域Bを併せた状態量解析結果をデータ記憶装置に保存できることを特徴とする、物理現象の予測解析装置が提供される。
【0026】
【発明の実施の形態】
図1は本発明を構造物の設計における数値解析に適用した場合の一実施形態例の概略手順をしめすためのフローチャートである。
【0027】
本実施形態における数値解析方法は、通常の数値解析で行われるデータ入力・準備工程(ステップ1,2)、解析実行工程(ステップ3〜8)、および解析結果表示工程(ステップ9)よりなり、解析実行工程は通常の解析実行を行うステップ4、5と、計算効率化のためのステップ6、7に分けられる。
【0028】
さらに本実施形態例で用いる解析装置としては、解析モデルの構築手段108と、初期条件設定手段101、解析実行手段105、領域ABの設定手段102、時刻判定手段103、領域Bの状態量計算手段104、時間ステップ進行手段106、解析結果出力手段107よりなる解析前後の演算処理を行う演算装置100、解析データやソフトウェアなどを保存するメモリやハードディスク等よりなるデータ記憶装置110、キーボードやマウス、デジタイザ、3次元形状測定装置等よりなる解析条件入力装置120、ディスプレイやプリンタ、光造形装置等よりなる出力装置130などがある。装置の構成を図2に示す。この各手段はいずれも演算装置(コンピュータ)のCPUおよびメモリによって構築されるハードウェア上の関数やサブルーチン等の形で実現されている。
【0029】
【実施例】
以下に示す実施形態例では、本発明の基本的な実施方法を解説することを目的とし、図3に示す矩形平板状のキャビティ内への射出成形を例に、本発明を射出成形時の充填解析に適用した場合を説明する。
【0030】
[実施例1]
まずステップ1にて解析条件入力装置120により射出成形品形状を微小要素に分割した形状データおよび、成形材料の粘度、射出温度、射出圧力などの解析条件を入力する。ここでは図3に示すように板状の射出成形品形状を四角形の微小要素に分割した。また材料が射出されるゲート位置として、ゲート部302を入力した。入力された解析条件データはメモリ上に保持されると共に必要に応じてデータ記憶装置110に保存される。
【0031】
次にステップ2にてデータ記憶装置110より解析条件データが演算装置100のメモリに読み込まれ、初期条件設定手段101により初期条件が設定される。解析モデルはこのように既に作成されたものをメモリ上に読み込んだり、外形等を表すCADデータ等から自動的に作成したりしてメモリ上に構築することができる。ここでゲート位置の微小要素が充填済みと定義され、それ以外の微小要素は未充填と定義される。また、微小時間増分(短い時間増分)Δtnおよび粗時間増分(長い時間増分)Δtmが設定され、次回の全体解析時間をtm=Δtmと設定する。ここではΔtn=0.01sec、Δtm=0.1secとした。次にステップ2'にて解析実行手段105により、2Δtn=0.02secまでの解析が実行され、充填済み部分の圧力、温度、速度等の状態量が算出され、データ記憶装置110に保存される。現在時刻tnはtn=2Δtnとする。
【0032】
続いてステップ3にて領域A,B設定手段102により、完全に充填された微小要素よりなる領域Bと、Bに接した微小要素よりなる領域Aが抽出され、データ記憶装置110に保存される。図4は充填途中の一例として流動先端部分401まで流動先端が進展した状態を示し、領域A402および領域B403が抽出された状態を示している。
【0033】
次に現在時刻tnを前記全体解析時間tmと比較し、まずtn≧tmのときはステップ4に進み、AとB両方の領域に関して解析実行手段105により解析を実行し、圧力、温度、速度等の解析結果をPmとしてデータ記憶装置110に保存し、ステップ5にて次の全体解析時間をtm=tm+Δtmへ更新する。一方、tn<tmのときはデータ記憶装置110より2Δtm前の解析結果Pm-2およびΔtm前の結果Pm-1が演算装置100に呼び出され、ステップ6にて領域B計算手段104により、領域Bのtn時点における状態量が例えば次式(2)に基づき算出される。
Pn=Pm-1+(Pm-1−Pm-2)/(tm-1-tm-2)×(tn-tm-1) (2)
図5は図4における領域Bの点404について、圧力値Pnが算出される様子を表す概念図である。領域Bの全ての微小要素についてPnが算出され、データ記憶装置110に保存される。図6に領域Bについて算出された圧力分布を示す。
【0034】
続いてステップ7にて前記領域Bの解析結果が演算装置100に呼び出され、境界条件として拘束された上で、解析実行手段105にて領域Aの状態量Pnが求められ、データ記憶装置110に保存される。図7に領域Aと領域Bを併せた圧力解析結果を示す。なお、ここで解析実行手段105としては、有限要素法、境界要素法、差分法、有限体積法などの数値解析手法を用いたものを利用すれば良い。
【0035】
さらに全ての微小要素が充填完了したか否かが判定され、充填完了していない場合はステップ8にて現在時刻tnがtn+Δtnに更新され、ステップ3から繰り返される。
【0036】
全ての微小要素が充填完了した場合は、解析結果出力手段107により解析結果が出力され、ステップ9にて解析結果出力装置130により圧力、温度、速度等の解析結果が等高線表示図、数値データ出力、グラフ出力、ベクトル表示などの手法にて出力される。
【0037】
[実施例2]
以下、本発明の物理現象の予測解析方法、装置を実用製品へ適用した例として、図8に示す射出成形品に対して適用した実施例について述べる。
【0038】
まずステップ1にて解析条件入力装置120により射出成形品形状を微小要素に分割した解析モデルおよび、成形材料の粘度、射出温度、射出圧力などの解析条件を入力する。ここでは3次元CADにより定義された図8に示す形状データより、例えばPATRAN(MSC.Software Corporationの商品名)などの有限要素法プリプロセッサーを用いて微小要素分割を行い、図9の902に示す三角錐型の微小要素に分割した。また材料が射出されるゲート位置として、図9の902部を入力した。入力された解析条件データはデータ記憶装置110に保存される。
【0039】
次にステップ2にてデータ記憶装置110より解析条件データが演算装置100に読み込まれ、初期条件設定手段101により初期条件が設定される。ここでゲート位置の微小要素が充填済みと定義され、それ以外の微小要素は未充填と定義される。
【0040】
本実施例2では解析の実施制御を充填率に基づき行った。まず微小充填率増分Δrnおよび粗充填率増分Δrmが設定され、次回の全体解析充填率をrm=Δrmと設定する。ここではΔrn=0.01%、Δrm=1%とした。次にステップ2'にて解析実行手段105により、2Δrn=0.02%での解析が実行され、充填済み部分の圧力、温度、速度等の状態量が算出され、データ記憶装置110に保存される。現在の充填率rnはrn=2Δrnとする。
【0041】
続いてステップ3にて領域A,B設定手段102により、完全に充填された微小要素よりなる領域Bと、Bに接した微小要素よりなる領域Aが抽出され、データ記憶装置110に保存される。図10は充填途中の一例として、領域Aおよび領域Bが抽出された状態を示している。
【0042】
次に現在の充填率rnを前記全体解析充填率rmと比較し、まずrn≧rmのときはステップ4に進み、AとB両方の領域に関して解析実行手段105により解析を実行し、圧力、温度、速度等の解析結果をPmとしてデータ記憶装置110に保存し、ステップ5にて次の全体解析充填率rrm+Δrm更新される。一方、rn<rmのときはデータ記憶装置110より2Δrm前の解析結果Pm−2およびΔrm前の結果Pm−1が演算装置100に呼び出され、ステップ6にて領域B計算手段104により、領域Bのrn時点における状態量を次式(3)に基づき算出した。
Pn=Pm−1+(Pm−1−Pm−2)/(rm−1−rm−2)×(rn−rm−1) (3)
領域Bの全ての微小要素についてPnが算出され、データ記憶装置110に保存される。
続いてステップ7にて前記領域Bの解析結果が演算装置100に呼び出され、境界条件として拘束された上で、解析実行手段105にて領域Aの状態量Pnが求められ、データ記憶装置110に保存される。
【0043】
以上により算出された領域AおよびBの圧力値をもとに流動先端部分の流動速度が算出され、流動先端が進められる。そして全ての微小要素が充填完了したか否かが判定され、充填完了していない場合はステップ8にて現在の充填率rnがrn+Δrnに更新され、ステップ3から繰り返される。 図11に充填終了まで解析を繰り返して選られた流動先端部分の進行状態を示す。等高線は各微小要素部分に流動先端が到達した時点の射出開始からの時間を示し、上記の圧力近似手法によってもなめらかな充填解析結果が得られている。
【0044】
全ての微小要素が充填完了した場合は、解析結果出力手段107により解析結果が出力され、ステップ9にて解析結果出力装置130により圧力、温度、速度等の解析結果が等高線表示図、数値データ出力、グラフ出力、ベクトル表示などの手法にて出力される。
【0045】
この方法によって領域AとBを併せた全体領域による解析実行は全体解析充填率増分Δrm間隔となり、流動先端領域Aのみを解析実行する増分Δrnに対して1/100の間隔で行うことができ、トータルの解析時間は常に全体領域で解析を行う場合に1時間を要していたのに対し10分以下とすることができ、解析結果もほぼ同一の結果を得ることができた。
【0046】
【発明の効果】
本願発明に係る数値解析方法および装置の好ましい態様によれば、解析対象物の解析領域を複数の微小要素に分割した解析モデルを構築する工程と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する工程と、前記領域Bについて時間的な計算負荷の小さな計算手法により状態量を求めて状態量Bとする工程と、前記状態量Bに基づいて境界条件を設定し、前記領域Aについて時間的な計算負荷の大きな計算手法により求める工程とを有することを特徴とする、物理現象の予測解析方法および装置が提供され、解析時間を大幅に短縮することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の構成を示すブロック図である。
【図2】本発明の一実施形態の例で用いる解析装置である。
【図3】本発明の実施例の1で用いる矩形キャビティである。
【図4】図3の矩形キャビティの解析途中の状態を示す一例である。
【図5】矩形キャビティの充填済み部分における圧力値近似方法を示す1例である。
【図6】矩形キャビティの領域A部分において近時計算された圧力分布である。
【図7】矩形キャビティの領域Aおよび領域Bを併せた圧力分布分布である。
【図8】実施例の2で用いる射出成形品のCADデータ形状である。
【図9】図8を微小要素に分割した状態を示す1例である。
【図10】図9の充填途中の状態を示す1例である。
【図11】図9の射出成形時における流動先端の進行状況である。
【符号の説明】
100:演算装置
101:演算装置における初期条件設定手段
102:状態量変化の度合いによる領域A、Bの設定手段
103:tnとtmの大小比較を行う時刻判定手段
104:領域Bの状態量を近似計算する領域B計算手段
105:領域Aまたは領域AとB全体の解析を実行する解析実行手段
106:時間ステップ進行手段
107:解析結果出力手段
108:解析モデル構築手段
110:データ記憶装置
120:解析条件入力装置
130:解析結果出力装置
301:四角形微小要素
302:ゲート位置
401:流動先端部分
402:領域A
403:領域B
404:圧力近似計算位置
501:既に計算済みの圧力変化
502:外挿近時された圧力変化
601:領域B部分の圧力値
701:領域Aおよび領域Bを併せた圧力値
801:射出成形品の表面形状を表す三角形ファセット
901:射出成形品形状を分割した三角錐微小要素
902:ゲート位置
1001:充填済みの領域B
1002:流動先端部分である領域A
1003:未充填部分
1101:微小要素の充填時刻
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method, an apparatus, and a storage medium for predicting and analyzing a physical quantity of a structure or event that changes unsteadily.
[0002]
[Prior art]
Numerical analysis methods such as the finite element method, boundary element method, difference method, or finite volume method are widely used as methods for predicting physical quantities in the target region in a time-varying unsteady state. It is applied to simulation. These are the target areas, for example, the shape of the product or structure to which the load is applied, the area where the gas or fluid with the velocity or temperature distribution flows, or the combination thereof, and the state quantity of the analysis target is the pressure, temperature Calculated as physical quantities such as displacement, stress, strain, and speed. According to the above numerical analysis method, the target region is made into a plurality of minute elements having a one-dimensional shape such as a beam element, a two-dimensional shape such as a triangle or a quadrangle, or a three-dimensional shape such as a triangular pyramid, a triangular prism, or a hexahedron. After dividing and defining the initial state of each microelement, unknown state quantities such as pressure, temperature, displacement, stress, strain, speed, etc. of microelement at arbitrary time tn while advancing the time step by constant or variable time increment Can be calculated using a computer.
[0003]
For example, when analyzing the inflow process of the filling material (fluid) in the mold cavity (flow path), such as the filling process in injection molding, the above method is used as a method for predicting the process in which the filling area gradually expands in the mold cavity. A numerical analysis method such as Here, by predicting how the filling area spreads, filling pressure rise, and shear stress, the material injection position with good filling balance and cavity gap dimensions are simulated on the computer, and the optimum before making the mold actually. By considering the mold design, the product development period and development cost can be reduced.
[0004]
[Problems to be solved by the invention]
When the above numerical analysis method is applied to a complicated shape such as injection molding of electronic connector parts, for example, it is necessary to reduce the size of the microelements in order to accurately represent the shape, which inevitably increases the number of microelements. . Further, in recent years, when product design is performed using a three-dimensional CAD utilized in design, and numerical calculation is performed using this data, automatic division is often performed using software for dividing into minute elements called a preprocessor. At this time, the shape of the microelements collapses.For example, if the triangular microelements become obtuse triangles, the analysis accuracy decreases. There is a tendency for the number of microelements to increase.
[0005]
For such an increase in the number of microelements, the amount of unknown variables increases, so the analysis time increases. In particular, unsteady analysis that needs to be repeated in the time direction is completed within the practical analysis time. Often becomes difficult.
[0006]
On the other hand, for example, in the analysis of the injection molding process, the pressure at the filled position increases monotonically with time, while the flow front portion changes every moment during the filling and the pressure changes rapidly. Many. In this way, there is often a state in which a severe change in the state quantity occurs in a part of the analysis region and a relatively monotonous change in the other part in the analysis other than the injection molding process. In the case where the entire region having a different degree of change in the state quantity is collectively analyzed, the time interval used for the analysis needs to be set finely based on the region where the change is rapid.
[0007]
In view of such circumstances, the present invention aims to provide a predictive analysis method for a physical phenomenon that can be easily performed in a practical time even for unsteady numerical analysis that handles a large-scale region with a large number of minute elements. And
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the analysis area of the analysis object is divided into a plurality of minute elements by changing the shape of the injection molded product without changing the minute element size by the analysis condition input device. A step of setting, a region A including a minute element whose state quantity changes rapidly with time and a region B including a minute element whose state quantity changes slowly over time in the analysis region of the analysis model; A step of obtaining a state quantity by using a calculation method with a small temporal calculation load for B, and setting a boundary condition based on the state quantity B, and a calculation with a large temporal calculation load for the region A What is claimed is: 1. A physical phenomenon prediction analysis method comprising a step of obtaining a state quantity by a technique and setting it as a state quantity A, and storing a state quantity analysis result combining the areas A and B in a data storage device. It is subjected.
[0009]
In the present invention, the temporal calculation load is the number of operations generated in the CPU of the computer, and the calculation time can be shortened as the calculation load is smaller, that is, the number of operations is smaller. In the region A where the state quantity changes drastically, an analysis with a high calculation load is performed in order to perform an accurate analysis, and for the region B, a high-speed calculation is performed by a calculation method with a small calculation load, thereby improving the overall analysis efficiency. it can. The setting of the boundary condition of the region A represents that the value of the state amount B is a known state amount on the boundary of the region A with respect to the state amount of the portion where the region A and the region B are in contact with each other.
[0010]
According to another aspect of the present invention, the analysis region of the analysis object is divided into a plurality of microelements without changing the microelement size of the divided injection molded product shape by the analysis condition input device, and the analysis model is constructed And a step of setting a region A including a minute element whose state quantity changes rapidly and a region B including a minute element whose state quantity changes gradually in the analysis region of the analysis model, A step of obtaining a state quantity for each long time increment Δtm to obtain a state quantity B, and a step of obtaining a state quantity for each region A based on the state quantity B and obtaining a state quantity A for a short time increment Δtn. A physical phenomenon prediction / analysis method is provided, in which a state quantity analysis result obtained by combining the possessed area A and the area B is stored in a data storage device.
[0011]
Here, the time when the analysis of the region A is performed is the Δtn interval, the time when the entire region including the region A and the region B is analyzed is the Δtm interval. The entire region can be analyzed at intervals, and only the region A can be analyzed at Δtn intervals. By this method, the analysis of the entire region becomes Δtm intervals, which are coarse time increments, and only the analysis of region A is performed at Δtn intervals, so the time required for the analysis can be greatly reduced.
[0013]
As a method of approximately calculating the state quantity Pn of the region B at tn, for example, the state quantity at the last two steps tm-2 and tm-1 (tm-1−tm-2 = Δtm) in which the entire region has been analyzed. The prediction can be made by extrapolating from Pm-2 and Pm-1 by the following equation (1).
Pn = Pm-1 + {(Pm-1-Pm-2) / (tm-1-tm-2)} * (tn-tm-1) (1)
In addition, as a method for predicting Pn in the region B, the above equation uses a linear equation with respect to tn, but approximates with higher accuracy using a quadratic or higher order function, an exponential function, a logarithmic function, or the like. Is also possible.
[0014]
In the above method, the analysis region is divided into two areas A and B. However, it is also possible to divide the analysis region into three or more and set different time increments for each.
[0015]
In addition, the time increments Δtn and Δtm do not necessarily have to be real time, and may be increments of a completion rate until the analysis is completed. For example, when analyzing an injection molding filling process, The ratio of the filling volume to the molded product volume may be defined as a filling rate, and the increment of the filling rate until the filling is completed may be defined as the time increment. Or, in the case of obtaining deformation or stress for a load in structural analysis, the load is virtually gradually increased from a zero load state, and the method for obtaining the deformation or stress at the point when the finally added load value is reached In the above, the time increment may be an increment of the ratio with respect to the finally added load.
[0016]
Further, according to another preferred aspect of the present invention, the analysis object is a flow path through which a fluid flows, the state quantity is the pressure of the fluid, and the region A is a fluid interior near the free surface of the fluid. There is provided a method for predicting and analyzing a physical phenomenon, wherein the region B is a part or all of a region inside the fluid and not included in the region A.
[0017]
For example, in the analysis of the process in which a material is filled in a mold in injection molding, the object to be analyzed is a void portion (cavity) of the mold, and the portion in contact with air at the flow front portion of the fluid material is a free surface. is there. Usually, at time t after the start of filling, the filled portion of the mold gap portion becomes the analysis region. In numerical analysis, an analysis region is defined by being divided into a plurality of minute elements. The minute elements include three-dimensional elements such as a one-dimensional element such as a cylinder, a two-dimensional element such as a triangle or a quadrangle, a triangular pyramid, a triangular prism, and a hexahedron. Dimensional elements are used. A region composed of minute elements in a filled portion in contact with the free surface is referred to as the vicinity of the free surface and is referred to as region A.
[0018]
In the analysis in the middle of filling in the injection molding process, the pressure value in the region B is approximated by the prediction method, and the pressure value in the unfilled portion is set to the atmospheric pressure, so that only the pressure value in the region A portion, that is, the flow front end portion is obtained. It can be analyzed as an unknown variable. For example, a plastic part having a complicated rib structure, such as a printer chassis, is defined by CAD, and automatically divided into a set of microelements composed of the three-dimensional elements by the method described in JP-A-10-255077. When analyzing, it is divided into about 100,000 small elements, and even if a workstation is used, the calculation time is often 20 hours or more. However, according to this method, most of the calculation is about 1000 to 2000 unknown variables. The analysis time can be reduced to about 2 hours.
[0019]
The analysis method can be applied to unsteady heat conduction analysis, fluid flow analysis, transient response structure analysis, large deformation structure analysis, impact analysis and the like in addition to the analysis of the injection molding process.
[0020]
Furthermore, according to another aspect of the present invention, an analysis model is constructed in which an analysis region of an analysis object is divided into a plurality of microelements without changing the microelement size of an injection molded product by using an analysis condition input device. Analysis data constructing means; area setting means for setting a region A including a minute element whose state quantity changes rapidly with time and a region B containing a minute element whose state quantity changes slowly over time in the analysis area of the analysis model; B region calculation means for obtaining a state quantity by obtaining a state quantity by a calculation method with a small temporal calculation load for the area B, and setting a boundary condition based on the state quantity B. A physical phenomenon characterized by having an A region calculation means obtained by a calculation method with a large calculation load and storing a state quantity analysis result combining the region A and the region B in a data storage device Predictive analysis apparatus is provided.
[0021]
According to another preferred aspect of the present invention, an analysis model is constructed in which an analysis region of an analysis object is divided into a plurality of microelements without changing the microelement size of the injection molded product by an analysis condition input device. Analysis data constructing means, and region setting means for setting a region A including a minute element whose state quantity changes rapidly with time and a region B including a minute element whose state quantity changes slowly over time in the analysis region of the analysis model For the region B, a state quantity is obtained for each long time increment Δtm, and is set as a state quantity B. Based on the state quantity B, the state quantity is obtained for each short time increment Δtn. There is provided an apparatus for predicting and analyzing physical phenomena, characterized in that a state quantity analysis result obtained by combining area A and area B can be stored in a data storage device.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart for showing a schematic procedure of an embodiment when the present invention is applied to numerical analysis in the design of a structure.
[0027]
The numerical analysis method according to the present embodiment includes a data input / preparation step (steps 1 and 2), an analysis execution step (steps 3 to 8), and an analysis result display step (step 9) performed in normal numerical analysis. The analysis execution process is divided into steps 4 and 5 for performing normal analysis execution, and steps 6 and 7 for improving calculation efficiency.
[0028]
Furthermore, the analysis apparatus used in the present embodiment includes an analysis model construction unit 108, an initial condition setting unit 101, an analysis execution unit 105, a region AB setting unit 102, a time determination unit 103, and a state B state quantity calculation unit. 104, an arithmetic device 100 for performing arithmetic processing before and after analysis, comprising a time step advancing means 106 and an analysis result output means 107, a data storage device 110 comprising a memory, a hard disk, etc. for storing analysis data and software, a keyboard, a mouse, a digitizer There are an analysis condition input device 120 including a three-dimensional shape measuring device and the like, an output device 130 including a display, a printer, an optical modeling device, and the like. The configuration of the apparatus is shown in FIG. Each of these means is realized in the form of functions or subroutines on hardware constructed by the CPU and memory of an arithmetic unit (computer).
[0029]
【Example】
In the following embodiment, the purpose of explaining the basic method of implementation of the present invention is described, and the present invention is filled at the time of injection molding, taking as an example the injection molding into a rectangular flat cavity shown in FIG. The case where it applies to an analysis is demonstrated.
[0030]
[Example 1]
First, in step 1, the analysis condition input device 120 inputs shape data obtained by dividing the injection molded product shape into microelements and analysis conditions such as the viscosity of the molding material, the injection temperature, and the injection pressure. Here, as shown in FIG. 3, the shape of the plate-like injection-molded product was divided into quadrangular microelements. A gate portion 302 is input as a gate position where the material is injected. The input analysis condition data is stored in the memory and is stored in the data storage device 110 as necessary.
[0031]
Next, in step 2, the analysis condition data is read from the data storage device 110 into the memory of the arithmetic device 100, and the initial condition is set by the initial condition setting means 101. The analysis model can be constructed on the memory by reading the already created model on the memory or automatically creating it from CAD data representing the outer shape or the like. Here, the microelements at the gate position are defined as filled, and the other microelements are defined as unfilled. Further, a minute time increment (short time increment) Δtn and a coarse time increment (long time increment) Δtm are set, and the next overall analysis time is set to tm = Δtm. Here, Δtn = 0.01 sec and Δtm = 0.1 sec. Next, in step 2 ′, the analysis execution means 105 performs analysis up to 2Δtn = 0.02 sec, and the state quantities such as pressure, temperature, speed, etc. of the filled portion are calculated and stored in the data storage device 110. . The current time tn is tn = 2Δtn.
[0032]
Subsequently, in step 3, the region A and B setting means 102 extracts the region B consisting of the completely filled microelements and the region A consisting of the microelements in contact with B, and stores them in the data storage device 110. . FIG. 4 shows a state where the flow tip has advanced to the flow tip portion 401 as an example during filling, and shows a state where the region A 402 and the region B 403 have been extracted.
[0033]
Next, the current time tn is compared with the total analysis time tm. When tn ≧ tm, the process proceeds to step 4 where the analysis execution means 105 executes analysis for both the areas A and B, and the pressure, temperature, speed, etc. Is stored in the data storage device 110 as Pm, and the next entire analysis time is updated to tm = tm + Δtm in step 5. On the other hand, when tn <tm, the data storage device 110 calls the analysis result Pm−2 before 2Δtm and the result Pm−1 before Δtm to the arithmetic unit 100, and the region B calculation means 104 performs region B in step 6. Is calculated based on the following equation (2), for example.
Pn = Pm-1 + (Pm-1-Pm-2) / (tm-1-tm-2) * (tn-tm-1) (2)
FIG. 5 is a conceptual diagram showing how the pressure value Pn is calculated for the point 404 in the region B in FIG. Pn is calculated for all the minute elements in the region B and stored in the data storage device 110. FIG. 6 shows the pressure distribution calculated for the region B.
[0034]
Subsequently, in step 7, the analysis result of the region B is called by the arithmetic device 100 and is constrained as a boundary condition, and then the state execution amount Pn of the region A is obtained by the analysis execution means 105 and stored in the data storage device 110. Saved. FIG. 7 shows the pressure analysis result combining the region A and the region B. Here, as the analysis execution means 105, a method using a numerical analysis method such as a finite element method, a boundary element method, a difference method, or a finite volume method may be used.
[0035]
Further, it is determined whether or not all the microelements have been filled. If filling has not been completed, the current time tn is updated to tn + Δtn in step 8, and the process is repeated from step 3.
[0036]
When all the microelements have been filled, an analysis result is output by the analysis result output means 107 , and in step 9, the analysis result output device 130 outputs the analysis results such as pressure, temperature, speed, etc., as a contour display diagram and numerical data output. , Graph output, vector display, etc.
[0037]
[Example 2]
As an example of applying the physical phenomenon prediction analysis method and apparatus of the present invention to a practical product, an embodiment applied to an injection molded product shown in FIG. 8 will be described.
[0038]
First, in step 1, the analysis condition input device 120 inputs an analysis model in which the shape of the injection molded product is divided into minute elements, and analysis conditions such as the viscosity of the molding material, the injection temperature, and the injection pressure. Here, from the shape data shown in FIG. 8 defined by three-dimensional CAD, fine element division is performed using a finite element method preprocessor such as PATRAN (trade name of MSC. Software Corporation), for example. Divided into triangular pyramid-shaped microelements. Further, 902 parts in FIG. 9 were input as the gate position where the material was injected. The input analysis condition data is stored in the data storage device 110.
[0039]
Next, in step 2, the analysis condition data is read from the data storage device 110 into the arithmetic device 100, and the initial condition is set by the initial condition setting means 101. Here, the microelements at the gate position are defined as filled, and the other microelements are defined as unfilled.
[0040]
In the second embodiment, analysis control was performed based on the filling rate. First, the minute filling rate increment Δrn and the coarse filling rate increment Δrm are set, and the next overall analysis filling rate is set to rm = Δrm. Here, Δrn = 0.01% and Δrm = 1%. Next, in step 2 ′, the analysis execution means 105 executes an analysis with 2Δrn = 0.02%, and the state quantities such as the pressure, temperature, speed, etc. of the filled portion are calculated and stored in the data storage device 110. The The current filling rate rn is rn = 2.DELTA.rn.
[0041]
Subsequently, in step 3, the region A and B setting means 102 extracts the region B consisting of the completely filled microelements and the region A consisting of the microelements in contact with B, and stores them in the data storage device 110. . FIG. 10 shows a state where region A and region B are extracted as an example of filling.
[0042]
Next, the current filling rate rn is compared with the overall analysis filling rate rm. First, when rn ≧ rm, the process proceeds to step 4 where the analysis is executed by the analysis execution means 105 for both the areas A and B, and the pressure, temperature , and stored in the data storage device 110 the analysis result of the speed, and the like as Pm, the entire analysis packing ratio r m of the next is updated to rm + Δrm step 5. On the other hand, when rn <rm, the data storage device 110 calls the analysis result Pm−2 before 2Δrm and the result Pm−1 before Δrm to the arithmetic unit 100, and the region B calculation means 104 causes the region B Was calculated based on the following equation (3).
Pn = Pm-1 + (Pm-1-Pm-2) / (rm-1-rm-2) * (rn-rm-1) (3)
Pn is calculated for all the minute elements in the region B and stored in the data storage device 110.
Subsequently, in step 7, the analysis result of the region B is called by the arithmetic device 100 and is constrained as a boundary condition, and then the state execution amount Pn of the region A is obtained by the analysis execution unit 105 and stored in the data storage device 110. Saved.
[0043]
Based on the pressure values of the regions A and B calculated as described above, the flow velocity of the flow front end portion is calculated, and the flow front end is advanced. Then, it is determined whether or not the filling of all the microelements has been completed. If the filling has not been completed, the current filling rate rn is updated to rn + Δrn in step 8, and the process is repeated from step 3. FIG. 11 shows the progress state of the flow front end portion selected by repeating the analysis until the end of filling. The contour lines indicate the time from the start of injection when the flow front reaches each minute element portion, and a smooth filling analysis result is obtained by the above-described pressure approximation method.
[0044]
When all the microelements have been filled, an analysis result is output by the analysis result output means 107 , and in step 9, the analysis result output device 130 outputs the analysis results such as pressure, temperature, speed, etc., as a contour display diagram and numerical data output. , Graph output, vector display, etc.
[0045]
By this method, the analysis execution by the entire area including the areas A and B becomes an interval of the entire analysis filling rate increment Δrm, and can be performed at an interval of 1/100 with respect to the increment Δrn for executing the analysis of only the flow front end area A, The total analysis time can always be 10 minutes or less, compared to the time required for the analysis in the entire region, but it was 10 minutes or less, and the analysis results were almost the same.
[0046]
【The invention's effect】
According to a preferred aspect of the numerical analysis method and apparatus according to the present invention, the step of constructing an analysis model in which the analysis region of the analysis object is divided into a plurality of microelements, and the time of the state quantity in the analysis region of the analysis model A step of setting a region A including a minute element that changes drastically and a region B including a minute element whose temporal change in the state quantity is gradual, and obtaining a state quantity for the region B by a calculation method with a small temporal calculation load. Prediction of a physical phenomenon, comprising: a step of setting a state quantity B; and a step of setting a boundary condition based on the state quantity B and obtaining the region A by a calculation method with a large temporal calculation load An analysis method and apparatus are provided, and analysis time can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.
FIG. 2 is an analysis device used in an example of an embodiment of the present invention.
FIG. 3 is a rectangular cavity used in Example 1 of the present invention.
4 is an example showing a state in the middle of analysis of the rectangular cavity of FIG. 3;
FIG. 5 is an example showing a pressure value approximating method in a filled portion of a rectangular cavity.
FIG. 6 is a pressure distribution recently calculated in a region A portion of a rectangular cavity.
FIG. 7 is a pressure distribution in which a rectangular cavity region A and region B are combined.
FIG. 8 is a CAD data shape of an injection molded product used in Example 2;
FIG. 9 is an example showing a state in which FIG. 8 is divided into minute elements.
10 is an example showing a state in the middle of filling in FIG. 9;
FIG. 11 shows the progress of the flow front during the injection molding of FIG.
[Explanation of symbols]
100: Arithmetic unit 101: Initial condition setting unit 102 in the arithmetic unit 102: Areas A and B setting unit 103 according to the degree of change in the state quantity 103: Time determination unit 104 that compares tn and tm in magnitude The approximate state quantity in region B Area B calculation means 105 for calculation: Analysis execution means 106 for executing analysis of the entire area A or areas A and B: Time step advance means 107: Analysis result output means 108: Analysis model construction means 110: Data storage device 120: Analysis Condition input device 130: Analysis result output device 301: Square minute element 302: Gate position 401: Flow tip portion 402: Region A
403: Region B
404: Pressure approximate calculation position 501: Already calculated pressure change 502: Pressure change near extrapolation 601: Pressure value 701 of region B portion 1: Pressure value 801 combining region A and region B 1: Injection molded product Triangular facet 901 representing surface shape: Triangular pyramid microelement 902 divided from injection molded product shape: Gate position 1001: Filled region B
1002: Region A which is the flow front portion
1003: Unfilled portion 1101: Filling time of minute element

Claims (5)

解析対象物の解析領域を解析条件入力装置により射出成形品形状を分割の微小要素サイズを替えることなく複数の微小要素に分割し解析モデルを構築する工程と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する工程と、前記領域Bについて時間的な計算負荷の小さな計算手法により状態量を求めて状態量Bとする工程と、前記状態量Bに基づいて境界条件を設定し、前記領域Aについて時間的な計算負荷の大きな計算手法により状態量を求めて状態量Aとする工程とを有し領域Aと領域Bを併せた状態量解析結果をデータ記憶装置に保存することを特徴とする、物理現象の予測解析方法。  The analysis area of the object to be analyzed is divided into a plurality of microelements without changing the microelement size of the injection molded product by the analysis condition input device, and the analysis model is constructed, and the state within the analysis area of the analysis model A step of setting a region A containing minute elements whose amount changes rapidly and a region B containing minute elements whose state amount changes slowly, and a state amount of the region B by a calculation method with a small temporal calculation load. And obtaining a state quantity B, and setting a boundary condition based on the state quantity B, obtaining a state quantity for the region A by a calculation method with a large temporal calculation load, and obtaining the state quantity A And storing a state quantity analysis result of the region A and the region B in a data storage device. 解析対象物の解析領域を解析条件入力装置により射出成形品形状を分割の微小要素サイズを替えることなく複数の微小要素に分割し解析モデルを構築する工程と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する工程と、前記領域Bについては、長い時間増分Δtmごとに状態量を求めて状態量Bとする工程と、前記状態量Bに基づいて前記領域Aについて短い時間増分Δtnごとに状態量を求めて状態量Aとする工程とを有し領域Aと領域Bを併せた状態量解析結果をデータ記憶装置に保存することを特徴とする、物理現象の予測解析方法。  The analysis area of the object to be analyzed is divided into a plurality of microelements without changing the microelement size of the injection molded product by the analysis condition input device, and the analysis model is constructed, and the state within the analysis area of the analysis model A step of setting a region A including minute elements whose amount changes rapidly and a region B including minute elements whose state amount changes gradually; and for the region B, a state amount is obtained for each long time increment Δtm. The state A and the region B are combined with the step of obtaining the state amount B for the region A based on the state amount B and obtaining the state amount for each short time increment Δtn based on the state amount B. A method for predicting and analyzing a physical phenomenon, characterized in that a quantitative analysis result is stored in a data storage device. 前記解析対象物は、流体が流れる流路であり、前記状態量は前記流体の圧力であり、前記領域Aは前記流体の自由表面近傍の流体内部の領域であり、前記領域Bは前記流体内部であって前記領域Aに含まれない領域の一部または全部であることを特徴とする、請求項1または2のいずれかに記載の物理現象の予測解析方法。  The analysis object is a flow path through which a fluid flows, the state quantity is the pressure of the fluid, the region A is a region inside the fluid near the free surface of the fluid, and the region B is inside the fluid. The physical phenomenon prediction analysis method according to claim 1, wherein the physical phenomenon prediction analysis method is a part or all of a region not included in the region A. 解析対象物の解析領域を解析条件入力装置により射出成形品形状を分割の微小要素サイズを替えることなく複数の微小要素に分割した解析モデルを構築する解析データ構築手段と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する領域設定手段と、前記領域Bについて時間的な計算負荷の小さな計算手法により状態量を求めて状態量BとするB領域計算手段と、前記状態量Bに基づいて境界条件を設定し、前記領域Aについて時間的な計算負荷の大きな計算手法により求めるA領域計算手段とを有し領域Aと領域Bを併せた状態量解析結果をデータ記憶装置に保存できることを特徴とする、物理現象の予測解析装置。  Analysis data construction means for constructing an analysis model in which an analysis area of an analysis object is divided into a plurality of microelements without changing the microelement size of an injection molded product by an analysis condition input device, and an analysis area of the analysis model A region setting means for setting a region A including a minute element whose state quantity changes rapidly over time and a region B including a minute element whose state quantity changes slowly over time; A B area calculation means for obtaining a state quantity by calculating a state quantity, and setting the boundary condition based on the state quantity B, and calculating the A area by a calculation technique with a large temporal calculation load. And a physical quantity prediction / analysis apparatus characterized in that a state quantity analysis result combining the area A and the area B can be stored in a data storage device. 解析対象物の解析領域を解析条件入力装置により射出成形品形状を分割の微小要素サイズを替えることなく複数の微小要素に分割した解析モデルを構築する解析データ構築手段と、前記解析モデルの解析領域内に状態量の時間変化の激しい微小要素を含む領域Aおよび前記状態量の時間変化の緩やかな微小要素を含む領域Bを設定する領域設定手段と、前記領域Bについては、長い時間増分Δtmごとに状態量を求めて、状態量BとするB領域計算手段と、前記状態量Bに基づいて前記領域Aについて短い時間増分Δtnごとに状態量を求めるA領域計算手段とを有し領域Aと領域Bを併せた状態量解析結果をデータ記憶装置に保存できることを特徴とする、物理現象の予測解析装置。  Analysis data construction means for constructing an analysis model in which an analysis area of an analysis object is divided into a plurality of microelements without changing the microelement size of an injection molded product by an analysis condition input device, and an analysis area of the analysis model A region setting means for setting a region A including a minute element whose state quantity changes rapidly and a region B including a minute element whose state quantity changes slowly; and for the region B, every long time increment Δtm A region calculation means for obtaining a state quantity to obtain a state quantity B, and an A area calculation means for obtaining a state quantity for each short time increment Δtn for the area A based on the state quantity B. An apparatus for predicting and analyzing physical phenomena, characterized in that a state quantity analysis result including region B can be stored in a data storage device.
JP2000353905A 2000-11-21 2000-11-21 Numerical analysis method and apparatus Expired - Lifetime JP4666428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000353905A JP4666428B2 (en) 2000-11-21 2000-11-21 Numerical analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353905A JP4666428B2 (en) 2000-11-21 2000-11-21 Numerical analysis method and apparatus

Publications (2)

Publication Number Publication Date
JP2002157286A JP2002157286A (en) 2002-05-31
JP4666428B2 true JP4666428B2 (en) 2011-04-06

Family

ID=18826584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353905A Expired - Lifetime JP4666428B2 (en) 2000-11-21 2000-11-21 Numerical analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP4666428B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276071A (en) * 1990-03-27 1991-12-06 Yoshiomi Kondo Predicting method for physical quantity of liquid and electromagnetic liquid
JPH08193912A (en) * 1995-01-17 1996-07-30 Hitachi Ltd Method for creating analytic lattice
JPH09150443A (en) * 1995-09-26 1997-06-10 Toray Ind Inc Apparatus for analyzing fluid-flow process and manufacture of injection molding
WO1998013775A1 (en) * 1996-09-27 1998-04-02 Southern Methodist University System and method for predicting the behavior of a component
JPH10315291A (en) * 1997-05-14 1998-12-02 Japan Steel Works Ltd:The Temperature rising method for nozzle and cylinder temperature in injection molding machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276071A (en) * 1990-03-27 1991-12-06 Yoshiomi Kondo Predicting method for physical quantity of liquid and electromagnetic liquid
JPH08193912A (en) * 1995-01-17 1996-07-30 Hitachi Ltd Method for creating analytic lattice
JPH09150443A (en) * 1995-09-26 1997-06-10 Toray Ind Inc Apparatus for analyzing fluid-flow process and manufacture of injection molding
WO1998013775A1 (en) * 1996-09-27 1998-04-02 Southern Methodist University System and method for predicting the behavior of a component
JPH10315291A (en) * 1997-05-14 1998-12-02 Japan Steel Works Ltd:The Temperature rising method for nozzle and cylinder temperature in injection molding machine

Also Published As

Publication number Publication date
JP2002157286A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
Udaykumar et al. Multiphase dynamics in arbitrary geometries on fixed Cartesian grids
KR20020041446A (en) Method and apparatus for modeling injection of a fluid of a mold cavity
US9283695B1 (en) Computer-implemented simulation method and non-transitory computer medium capable of predicting fiber orientation for use in a molding process
US8768662B2 (en) Predicting shrinkage of injection molded products with viscoelastic characteristic
US9409335B1 (en) Computer-implemented simulation method and non-transitory computer medium for use in molding process
KR100611689B1 (en) Apparatus of aiding design of resin forming products and method thereof
CN103970928A (en) Simulation Program, Simulation Method, And Simulation Device
EP1385103A1 (en) Simulation of fluid flow and structural analysis within thin walled three dimensional geometries
JP4666428B2 (en) Numerical analysis method and apparatus
Sato et al. Numerical simulation method for viscoelastic flows with free surfaces—fringe element generation method
JP4032848B2 (en) Molding simulation method, molding simulation apparatus, molding simulation program, and computer-readable recording medium recording the molding simulation program
US11651124B2 (en) Anti-warping design method for resin molded article, recording medium, and anti-warping design device for resin molded article
JP4006316B2 (en) Resin flow analysis method and apparatus
JP4707216B2 (en) Structure analysis device
JP4032755B2 (en) Molding simulation method, molding simulation apparatus, molding simulation program, and computer-readable recording medium recording the molding simulation program
JP2008191830A (en) Resin flow analysis program, resin flow analysis device and resin flow analysis method
JP2011201390A (en) Tire performance prediction method and tire performance prediction device
JP4052006B2 (en) Molding simulation method, molding simulation apparatus, molding simulation program, and computer-readable recording medium recording the molding simulation program
US9081923B1 (en) Computer-implemented composite simulation method and non-transitory computer medium for use in molding process
JP3023969B2 (en) Method for analyzing temperature of cooling / heating cycle structure and design apparatus for mold apparatus system
JP2003228594A (en) Method and device for numerical analysis
JP2003112349A (en) Method and apparatus for analyzing injection molding as well as injection molding analytical program
Dance Material Point Method Solver in Houdini
JP4844421B2 (en) Flow analysis method and apparatus for injection molding
JP3582930B2 (en) Manufacturing method for injection molded products

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term